1
|
Palumbo CT, Ouellette ET, Zhu J, Román-Leshkov Y, Stahl SS, Beckham GT. Accessing monomers from lignin through carbon-carbon bond cleavage. Nat Rev Chem 2024; 8:799-816. [PMID: 39367248 DOI: 10.1038/s41570-024-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Lignin, the heterogeneous aromatic macromolecule found in the cell walls of vascular plants, is an abundant feedstock for the production of biochemicals and biofuels. Many valorization schemes rely on lignin depolymerization, with decades of research focused on accessing monomers through C-O bond cleavage, given the abundance of β-O-4 bonds in lignin and the large number of available C-O bond cleavage strategies. Monomer yields are, however, invariably lower than desired, owing to the presence of recalcitrant C-C bonds whose selective cleavage remains a major challenge in catalysis. In this Review, we highlight lignin C-C cleavage reactions, including those of linkages arising from biosynthesis (β-1, β-5, β-β and 5-5) and industrial processing (5-CH2-5 and α-5). We examine multiple approaches to C-C cleavage, including homogeneous and heterogeneous catalysis, photocatalysis and biocatalysis, to identify promising strategies for further research and provide guidelines for definitive measurements of lignin C-C bond cleavage.
Collapse
Affiliation(s)
- Chad T Palumbo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Erik T Ouellette
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Jie Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shannon S Stahl
- Department of Chemistry. Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA.
- Center for Bioenergy Innovation, Oak Ridge, TN, USA.
| |
Collapse
|
2
|
Li S, Park S, Sherman BD, Yoo CG, Leem G. Photoelectrochemical approaches for the conversion of lignin at room temperature. Chem Commun (Camb) 2023; 59:401-413. [PMID: 36519448 DOI: 10.1039/d2cc05491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The selective cleavage of C-C/C-O linkages represents a key step toward achieving the chemical conversion of biomass to targeted value-added chemical products under ambient conditions. Using photoelectrosynthetic solar cells is a promising method to address the energy intensive depolymerization of lignin for the production of biofuels and valuable chemicals. This feature article gives an in-depth overview of recent progress using dye-sensitized photoelectrosynthetic solar cells (DSPECs) to initiate the cleavage of C-C/C-O bonds in lignin and related model compounds. This approach takes advantage of N-oxyl mediated catalysis in organic electrolytes and presents a promising direction for the sustainable production of chemicals currently derived from fossil fuels.
Collapse
Affiliation(s)
- Shuya Li
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA.
| | - Seongsu Park
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA.
| | - Benjamin D Sherman
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA.,The Michael M. Szwarc Polymer Research Institute, Syracuse, New York 13210, USA
| | - Gyu Leem
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA. .,The Michael M. Szwarc Polymer Research Institute, Syracuse, New York 13210, USA
| |
Collapse
|
3
|
Peera SG, Liu C. Unconventional and scalable synthesis of non-precious metal electrocatalysts for practical proton exchange membrane and alkaline fuel cells: A solid-state co-ordination synthesis approach. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Radical generation and fate control for photocatalytic biomass conversion. Nat Rev Chem 2022; 6:197-214. [PMID: 37117437 DOI: 10.1038/s41570-022-00359-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
Abstract
Photocatalysis is an emerging approach for sustainable chemical production from renewable biomass under mild conditions. Active radicals are always generated as key intermediates, in which their high reactivity renders them versatile for various upgrading processes. However, controlling their reaction is a challenge, especially in highly functionalized biomass frameworks. In this Review, we summarize recent advanced photocatalytic systems for selective biomass valorization, with an emphasis on their distinct radical-mediated reaction patterns. The strategies for generating a specific radical intermediate and controlling its subsequent conversion towards desired chemicals are also highlighted, aiming to provide guidance for future studies. We believe that taking full advantage of the unique reactivity of radical intermediates would provide great opportunities to develop more efficient photocatalytic systems for biomass valorization.
Collapse
|
5
|
Lim SH, Jang H, Kim MJ, Wee KR, Lim DH, Kim YI, Cho DW. Visible-Light-Induced Selective C–C Bond Cleavage Reactions of Dimeric β-O-4 and β-1 Lignin Model Substrates Utilizing Amine-Functionalized Fullerene. J Org Chem 2022; 87:2289-2300. [DOI: 10.1021/acs.joc.1c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suk Hyun Lim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Hannara Jang
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Min-Ji Kim
- Department of Chemistry and Institute of Natural Science, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Kyung-Ryang Wee
- Department of Chemistry and Institute of Natural Science, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Dong Hyun Lim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Young-Il Kim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Dae Won Cho
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| |
Collapse
|
6
|
Cajnko MM, Oblak J, Grilc M, Likozar B. Enzymatic bioconversion process of lignin: mechanisms, reactions and kinetics. BIORESOURCE TECHNOLOGY 2021; 340:125655. [PMID: 34388661 DOI: 10.1016/j.biortech.2021.125655] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Lignin is a wasted renewable source of biomass-derived value-added chemicals. However, due to its material resistance to degradation, it remains highly underutilized. In order to develop new, catalysed and more environment friendly reaction processes for lignin valorization, science has turned a selective concentrated attention to microbial enzymes. This present work looks at the enzymes involved with the main reference focus on the different elementary mechanisms of action/conversion rate kinetics. Pathways, like with laccases/peroxidases, employ radicals, which more readily result in polymerization than de-polymerization. The β-etherase system interaction of proteins targets β-O-4 ether covalent bond, which targets lower molecular weight product species. Enzymatic activity is influenced by a wide variety of different factors which need to be considered in order to obtain the best functionality and synthesis yields.
Collapse
Affiliation(s)
- Miša Mojca Cajnko
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, NIC, Hajdrihova, 19, SI-1001 Ljubljana, Slovenia
| | - Jošt Oblak
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, NIC, Hajdrihova, 19, SI-1001 Ljubljana, Slovenia
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, NIC, Hajdrihova, 19, SI-1001 Ljubljana, Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, NIC, Hajdrihova, 19, SI-1001 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Montjoy DG, Hou H, Bahng JH, Eskafi A, Jiang R, Kotov NA. Photocatalytic Hedgehog Particles for High Ionic Strength Environments. ACS NANO 2021; 15:4226-4234. [PMID: 33606497 DOI: 10.1021/acsnano.0c05992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High ionic strength environments can profoundly influence catalytic reactions involving charged species. However, control of selectivity and yield of heterogeneous catalytic reactions involving nano- and microscale colloids remains hypothetical because high ionic strength leads to aggregation of particle dispersions. Here we show that microscale hedgehog particles (HPs) with semiconductor nanoscale spikes display enhanced stability in solutions of monovalent/divalent salts in both aqueous and hydrophobic media. HPs enable tuning of photocatalytic reactions toward high-value products by adding concentrated inert salts to amplify local electrical fields in agreement with Derjaguin, Landau, Verwey, and Overbeek theory. After optimization of HP geometry for a model photocatalytic reaction, we show that high salt conditions increase the yield of HP-facilitated photooxidation of 2-phenoxy-1-phenylethanol to benzaldehyde and 2-phenoxyacetophenone by 6 and 35 times, respectively. Depending on salinity, electrical fields at the HP-media interface increase from 1.7 × 104 V/m to 8.5 × 107 V/m, with high fields favoring products generated via intermediate cation radicals rather than neutral species. Electron transfer rates were modulated by varying the ionic strength, which affords a convenient and hardly used reaction pathway for engineering a multitude of redox reactions including those involved in the environmental remediation of briny and salty water.
Collapse
Affiliation(s)
| | | | - Joong Hwan Bahng
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Ruiyu Jiang
- Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | | |
Collapse
|
8
|
Luo H, Wang L, Shang S, Li G, Lv Y, Gao S, Dai W. Cobalt Nanoparticles-Catalyzed Widely Applicable Successive C-C Bond Cleavage in Alcohols to Access Esters. Angew Chem Int Ed Engl 2020; 59:19268-19274. [PMID: 32662588 DOI: 10.1002/anie.202008261] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 12/21/2022]
Abstract
Selective cleavage and functionalization of C-C bonds have important applications in organic synthesis and biomass utilization. However, functionalization of C-C bonds by controlled cleavage remains difficult and challenging because they are inert. Herein, we describe an unprecedented efficient protocol for the breaking of successive C-C bonds in alcohols to form esters with one or multiple carbon atoms less using heterogeneous cobalt nanoparticles as catalyst with dioxygen as the oxidant. A wide range of alcohols including inactive long-chain alkyl aryl alcohols undergo smoothly successive cleavage of adjacent -(C-C)n - bonds to afford the corresponding esters. The catalyst was used for seven times without any decrease in activity. Characterization and control experiments disclose that cobalt nanoparticles are responsible for the successive cleavage of C-C bonds to achieve excellent catalytic activity, while the presence of Co-Nx has just the opposite effect. Preliminary mechanistic studies reveal that a tandem sequence reaction is involved in this process.
Collapse
Affiliation(s)
- Huihui Luo
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianyue Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sensen Shang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guosong Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ying Lv
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shuang Gao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wen Dai
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
9
|
Demchenko N, Tkachenko S, Demchenko S. Synthesis, Antibacterial and Anti-Corrosive Activity of 2,3-Dihydroimidazo[1,2-a]Pyridinium Bromides. CHEMISTRY & CHEMICAL TECHNOLOGY 2020. [DOI: 10.23939/chcht14.03.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Luo H, Wang L, Shang S, Li G, Lv Y, Gao S, Dai W. Cobalt Nanoparticles‐Catalyzed Widely Applicable Successive C−C Bond Cleavage in Alcohols to Access Esters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huihui Luo
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lianyue Wang
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Sensen Shang
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Guosong Li
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Ying Lv
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Shuang Gao
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Wen Dai
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
11
|
Wu X, Luo N, Xie S, Zhang H, Zhang Q, Wang F, Wang Y. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem Soc Rev 2020; 49:6198-6223. [DOI: 10.1039/d0cs00314j] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review highlights recent advances in photocatalytic transformations of lignocellulosic biomass (polysaccharides and lignin) into chemicals (in particular organic oxygenates).
Collapse
Affiliation(s)
- Xuejiao Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Nengchao Luo
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Shunji Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Haikun Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Feng Wang
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| |
Collapse
|
12
|
van Erven G, Wang J, Sun P, de Waard P, van der Putten J, Frissen GE, Gosselink RJA, Zinovyev G, Potthast A, van Berkel WJH, Kabel MA. Structural Motifs of Wheat Straw Lignin Differ in Susceptibility to Degradation by the White-Rot Fungus Ceriporiopsis subvermispora. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2019; 7:20032-20042. [PMID: 31867146 PMCID: PMC6921689 DOI: 10.1021/acssuschemeng.9b05780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Indexed: 05/11/2023]
Abstract
The white-rot fungus Ceriporiopsis subvermispora delignifies plant biomass extensively and selectively and, therefore, has great biotechnological potential. We previously demonstrated that after 7 weeks of fungal growth on wheat straw 70% w/w of lignin was removed and established the underlying degradation mechanisms via selectively extracted diagnostic substructures. In this work, we fractionated the residual (more intact) lignin and comprehensively characterized the obtained isolates to determine the susceptibility of wheat straw lignin's structural motifs to fungal degradation. Using 13C IS pyrolysis gas chromatography-mass spectrometry (py-GC-MS), heteronuclear single quantum coherence (HSQC) and 31P NMR spectroscopy, and size-exclusion chromatography (SEC) analyses, it was shown that β-O-4' ethers and the more condensed phenylcoumarans and resinols were equally susceptible to fungal breakdown. Interestingly, for β-O-4' ether substructures, marked cleavage preferences could be observed: β-O-4'-syringyl substructures were degraded more frequently than their β-O-4'-guaiacyl and β-O-4'-tricin analogues. Furthermore, diastereochemistry (threo > erythro) and γ-acylation (γ-OH > γ-acyl) influenced cleavage susceptibility. These results indicate that electron density of the 4'-O-coupled ring and local steric hindrance are important determinants of oxidative β-O-4' ether degradation. Our findings provide novel insight into the delignification mechanisms of C. subvermispora and contribute to improving the valorization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Gijs van Erven
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Jianli Wang
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Peicheng Sun
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Pieter de Waard
- MAGNEFY
(MAGNEtic Resonance Research FacilitY), Wageningen University & Research, Stippeneng 4, 6708
WE Wageningen, The Netherlands
| | - Jacinta van der Putten
- Wageningen
Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Guus E. Frissen
- Wageningen
Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Richard J. A. Gosselink
- Wageningen
Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Grigory Zinovyev
- Department
of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Antje Potthast
- Department
of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Willem J. H. van Berkel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Mirjam A. Kabel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
13
|
Nguyen ST, Murray PRD, Knowles RR. Light-Driven Depolymerization of Native Lignin Enabled by Proton-Coupled Electron Transfer. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04813] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Suong T. Nguyen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Philip R. D. Murray
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
14
|
Liu H, Li H, Luo N, Wang F. Visible-Light-Induced Oxidative Lignin C–C Bond Cleavage to Aldehydes Using Vanadium Catalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03768] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huifang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Hongji Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Nengchao Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| |
Collapse
|
15
|
Redox-neutral photocatalytic strategy for selective C-C bond cleavage of lignin and lignin models via PCET process. Sci Bull (Beijing) 2019; 64:1658-1666. [PMID: 36659779 DOI: 10.1016/j.scib.2019.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 01/21/2023]
Abstract
It remains challenging to achieve the selective cleavage of C-C bonds in lignin or lignin model compounds to produce aromatic products in high yield and selectivity. We have developed a redox-neutral photocatalytic strategy to accomplish this goal in both β-O-4 and β-1 lignin models at room temperature (RT) via proton-coupled electron transfer (PCET) process without any pretreatments of substrate, by adjusting the alkalinity of base to obtain a lignin models/base PCET pair with a bond dissociation free energy close to 102 kcal/mol. Without breaking down Cβ-Cγ bond and any C-O bonds, this PCET method is 100% atom economy and produces exclusive Cα-Cβ bond cleavage products, such as benzaldehydes (up to 97%) and phenyl ethers (up to 96%), in high to excellent yields and selectivities. Preliminary studies indicated that the PCET strategy is also effective for the depolymerization of native lignin at RT, thus providing significantly important foundation to the depolymerization of lignin.
Collapse
|
16
|
Zhao X, Yang Y, Zhu R, Liu C, Zhang D. Mechanistic picture of the redox-neutral C C bond cleavage in 1,3-dilignol lignin model compound catalyzed by [Ru(Cl)(H)(PPh3)3]/triphos. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Zhu X, Akiyama T, Yokoyama T, Matsumoto Y. Stereoselective Formation of β-O-4 Structures Mimicking Softwood Lignin Biosynthesis: Effects of Solvent and the Structures of Quinone Methide Lignin Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6950-6961. [PMID: 31150582 DOI: 10.1021/acs.jafc.9b01968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
p-Quinone methide (QM) is formed as an intermediate during lignin biosynthesis. The aromatization of the QM by the attack of a nucleophile at the α-position of its side chain generates a phenolic hydroxy group in a growing polymer and creates stereoisomeric forms in the side chain. A series of β-O-4-aryl ether QMs was reacted with water at 25 °C to replicate the formation of p-hydroxyphenyl (H) and guaiacyl (G) β-O-4 structures in plant cell walls. Water addition occurred in 3-methoxy-substituted QMs (G-type QMs) with half-lives ( t1/2) between 13 and 15 min, at pH 7, in 50% water solution (dioxane-water, 1:1). The rate increased as the water concentration increased to 99% ( t1/2, 1.2-1.4 min). Similar solvent effects were observed for more reactive nonsubstituted QMs (H-type QMs with t1/2 of <1 min). Consequently, t1/2 of the H-type QMs was shorter than that of the G-type QMs under every solvent condition. Upon increasing the water concentration, the variation in the erythro/ threo ratios of the four dimeric β-O-4 products increased. Interestingly, the effect of pH on the stereopreference, which was observed in 50% water solution, was small and became imperceptible as the water concentration increased to 99%, suggesting that the effect of the solvent, as well as the effect of the pH, plays an important role in understanding the reaction conditions in cell walls during lignin biosynthesis. The threo isomer was preferentially formed in the four dimeric β-O-4 structures, which is inconsistent with the structural features of compression wood lignin rich in H-units. However, the erythro-selective formation was attained in an H-type QM at every pH studied (pH 3.5-7) by introducing a biphenyl structure into the β-etherified ring moiety.
Collapse
Affiliation(s)
- Xuhai Zhu
- Wood Chemistry Laboratory, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| | - Takuya Akiyama
- Wood Chemistry Laboratory, Department of Forest Resource Chemistry , Forestry and Forest Products Research Institute , 1 Matsunosato , Tsukuba , Ibaraki 305-8687 , Japan
| | - Tomoya Yokoyama
- Wood Chemistry Laboratory, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| | - Yuji Matsumoto
- Wood Chemistry Laboratory, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| |
Collapse
|
18
|
Yeromina H, Demchenko N, Kiz O, Ieromina Z, Demchenko S. The Synthesis and Antimicrobial Properties of New 2-(R-Phenylimino)-1,3-thiazoline Derivatives Containing the N-Methylpiperazine Moiety. CHEMISTRY & CHEMICAL TECHNOLOGY 2019. [DOI: 10.23939/chcht13.02.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Zhu X, Akiyama T, Yokoyama T, Matsumoto Y. Lignin-Biosynthetic Study: Reactivity of Quinone Methides in the Diastereopreferential Formation of p-Hydroxyphenyl- and Guaiacyl-Type β- O-4 Structures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2139-2147. [PMID: 30668903 DOI: 10.1021/acs.jafc.8b06465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
p-Quinone methides are involved in lignin biosynthesis as transient intermediates, and the aromatization step has a great impact on the chemical structure of the resulting lignin. A series of quinone methides (QMs) were synthesized and allowed to react with water in pH 3-7 buffers at 25 °C to mimic the formation of p-hydroxyphenyl- and guaiacyl-type (H- and G-type, respectively) β- O-4 structures in gymnosperm-plant cell walls. Water addition occurred in 3-methoxy-substituted QMs (G-type QMs) with half-lives of 1.4-15 min. In contrast, nonsubstituted QMs (H-type QMs) were very labile; they were aromatized to β- O-4 products with half-lives of only 10-40 s. The rapid aromatization in H-type QMs may provide an advantage over G-type species for efficiently driving the lignin-polymerization cycle, which possibly contributes to the development of highly lignified compression wood. In the water-addition reaction, the threo isomers of the β- O-4 products were stereopreferentially formed more than the erythro isomers from both G- and H-type QMs ( erythro/ threo ratios of 24:76 and 50:50, respectively). The proportion of erythro isomers was higher at lower-pH conditions. This pH-dependent trend agrees with findings from a previous study on 3,5-dimethoxy-substituted (syringyl-type, S-type) QMs; thus, this pH-dependent trend is common in H-, G-, and S-type lignin-related QMs. Higher threo-selectivity was obtained by changing the β-etherified aromatic rings from G- to H-type. A similar but weaker effect was also observed by changing the QM moiety from G- to H-type.
Collapse
Affiliation(s)
- Xuhai Zhu
- Wood Chemistry Laboratory, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| | - Takuya Akiyama
- Wood Chemistry Laboratory, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| | - Tomoya Yokoyama
- Wood Chemistry Laboratory, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| | - Yuji Matsumoto
- Wood Chemistry Laboratory, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-8657 , Japan
| |
Collapse
|
20
|
Salonen HEP, Mecke CPA, Karjomaa MI, Joensuu PM, Koskinen AMP. Copper Catalyzed Alcohol Oxidation and Cleavage of β-O-4 Lignin Model Systems: From Development to Mechanistic Examination. ChemistrySelect 2018. [DOI: 10.1002/slct.201802715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- H. Eemil P. Salonen
- Department of Chemistry and Materials Science; Aalto University School of Chemical Engineering; Espoo Finland
| | - Carsten P. A. Mecke
- Department of Chemistry and Materials Science; Aalto University School of Chemical Engineering; Espoo Finland
| | - Miika I. Karjomaa
- Department of Chemistry and Materials Science; Aalto University School of Chemical Engineering; Espoo Finland
| | - Pekka M. Joensuu
- Department of Chemistry and Materials Science; Aalto University School of Chemical Engineering; Espoo Finland
| | - Ari M. P. Koskinen
- Department of Chemistry and Materials Science; Aalto University School of Chemical Engineering; Espoo Finland
| |
Collapse
|
21
|
Zhou W, Nakahashi J, Miura T, Murakami M. Light/Copper Relay for Aerobic Fragmentation of Lignin Model Compounds. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wang Zhou
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University, Katsura Kyoto 615-8510 Japan
| | - Junki Nakahashi
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University, Katsura Kyoto 615-8510 Japan
| | - Tomoya Miura
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University, Katsura Kyoto 615-8510 Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University, Katsura Kyoto 615-8510 Japan
| |
Collapse
|
22
|
Zhang J. Conversion of Lignin Models by Photoredox Catalysis. CHEMSUSCHEM 2018; 11:3071-3080. [PMID: 29989337 DOI: 10.1002/cssc.201801370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/06/2018] [Indexed: 06/08/2023]
Abstract
One prominent goal of 21st century research is to develop a sustainable carbon-neutral biorefinery. Lignin is an important component of lignocellulosic biomass; however, it is currently underutilized owing to its highly cross-linked, complex, and randomly polymerized composition, which poses a significant challenge to its depolymerization and valorization. Chemical catalytic approaches based on transition metals represent the primary research area to drive degradation reactions. Recently, alternative photocatalytic strategies that employ sustainable solar energy to initiate the transformation of lignin have started to emerge. This Concept article examines new developments of photocatalyzed reactions and provides insight into C-O and C-C bond-cleavage reactions of lignin models in both homogeneous and heterogeneous systems.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
23
|
Chen J, Xu MW, Wu J, Li CM. Center-iodized graphene as an advanced anode material to significantly boost the performance of lithium-ion batteries. NANOSCALE 2018; 10:9115-9122. [PMID: 29718033 DOI: 10.1039/c8nr00061a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Iodine edge-doped graphene can improve the capacity and stability of lithium-ion batteries (LIBs). Our theoretical calculations indicate that center-iodization can further significantly enhance the anode catalytic process. To experimentally prove the theoretical prediction, iodine-doped graphene materials were prepared by one-pot hydrothermal and ball-milling approaches to realize different doping-sites. Results show that the center-iodinated graphene (CIG) anode exhibits a remarkably high reversible capacity (1121 mA h g-1 after 180 cycles at 0.5 A g-1), long-cycle life (0.01% decay per cycle over 300 cycles at 1 A g-1) and high-rate capacity (374 mA h g-1 after 800 cycles at 8 A g-1), which greatly improves the performance of the edge-iodinated graphene anode and these results are in good agreement with the theoretical analysis. More importantly, the CIG anode also delivers a high-rate capacity and excellent cycling stability (279 mA h g-1 after 500 cycles at 10 A g-1) in full-cells. Both the theoretical analysis and experimental investigation reveal the enhancement mechanism, in which the center-iodization increases the surface charge for fast electron transfer rate, improves the conductivity for charge transport and rationalizes the pore structure for enhanced mass transport and ion insertion/desertion, thus resulting in a high rate capacity and long cycle life. This work not only discloses the critical role of catalytic sites including both amounts and site positions but also offers great potential for high-power rechargeable LIB applications.
Collapse
Affiliation(s)
- Jie Chen
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, P.R. China.
| | | | | | | |
Collapse
|
24
|
Review on Catalytic Cleavage of C–C Inter-unit Linkages in Lignin Model Compounds: Towards Lignin Depolymerisation. Top Catal 2018. [DOI: 10.1007/s11244-018-0909-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Fang Z, Meier MS. Toward the oxidative deconstruction of lignin: oxidation of β-1 and β-5 linkages. Org Biomol Chem 2018. [DOI: 10.1039/c8ob00409a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Production of monomers and other products from the oxidation of β-1 and β-5 lignin models.
Collapse
Affiliation(s)
- Zhen Fang
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| | - Mark S. Meier
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| |
Collapse
|
26
|
Hou T, Luo N, Li H, Heggen M, Lu J, Wang Y, Wang F. Yin and Yang Dual Characters of CuOx Clusters for C–C Bond Oxidation Driven by Visible Light. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00629] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tingting Hou
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Nengchao Luo
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Hongji Li
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Marc Heggen
- Ernst
Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
| | - Jianmin Lu
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yehong Wang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Feng Wang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
27
|
Gao WJ, Lam CM, Sun BG, Little RD, Zeng CC. Selective electrochemical C O bond cleavage of β-O-4 lignin model compounds mediated by iodide ion. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Sáez-Jiménez V, Rencoret J, Rodríguez-Carvajal MA, Gutiérrez A, Ruiz-Dueñas FJ, Martínez AT. Role of surface tryptophan for peroxidase oxidation of nonphenolic lignin. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:198. [PMID: 28616078 PMCID: PMC5467052 DOI: 10.1186/s13068-016-0615-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/09/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND Despite claims as key enzymes in enzymatic delignification, very scarce information on the reaction rates between the ligninolytic versatile peroxidase (VP) and lignin peroxidase (LiP) and the lignin polymer is available, due to methodological difficulties related to lignin heterogeneity and low solubility. RESULTS Two water-soluble sulfonated lignins (from Picea abies and Eucalyptus grandis) were chemically characterized and used to estimate single electron-transfer rates to the H2O2-activated Pleurotus eryngii VP (native enzyme and mutated variant) transient states (compounds I and II bearing two- and one-electron deficiencies, respectively). When the rate-limiting reduction of compound II was quantified by stopped-flow rapid spectrophotometry, from fourfold (softwood lignin) to over 100-fold (hardwood lignin) lower electron-transfer efficiencies (k3app values) were observed for the W164S variant at surface Trp164, compared with the native VP. These lignosulfonates have ~20-30 % phenolic units, which could be responsible for the observed residual activity. Therefore, methylated (and acetylated) samples were used in new stopped-flow experiments, where negligible electron transfer to the W164S compound II was found. This revealed that the residual reduction of W164S compound II by native lignin was due to its phenolic moiety. Since both native lignins have a relatively similar phenolic moiety, the higher W164S activity on the softwood lignin could be due to easier access of its mono-methoxylated units for direct oxidation at the heme channel in the absence of the catalytic tryptophan. Moreover, the lower electron transfer rates from the derivatized lignosulfonates to native VP suggest that peroxidase attack starts at the phenolic lignin moiety. In agreement with the transient-state kinetic data, very low structural modification of lignin, as revealed by size-exclusion chromatography and two-dimensional nuclear magnetic resonance, was obtained during steady-state treatment (up to 24 h) of native lignosulfonates with the W164S variant compared with native VP and, more importantly, this activity disappeared when nonphenolic lignosulfonates were used. CONCLUSIONS We demonstrate for the first time that the surface tryptophan conserved in most LiPs and VPs (Trp164 of P. eryngii VPL) is strictly required for oxidation of the nonphenolic moiety, which represents the major and more recalcitrant part of the lignin polymer.
Collapse
Affiliation(s)
- Verónica Sáez-Jiménez
- CSIC, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Jorge Rencoret
- CSIC, Instituto de Recursos Naturales y Agrobiología de Sevilla, Avenida Reina Mercedes 10, 41012 Seville, Spain
| | | | - Ana Gutiérrez
- CSIC, Instituto de Recursos Naturales y Agrobiología de Sevilla, Avenida Reina Mercedes 10, 41012 Seville, Spain
| | | | - Angel T. Martínez
- CSIC, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
29
|
Affiliation(s)
- Nathan A. Romero
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A. Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
30
|
Gazi S, Hung Ng WK, Ganguly R, Putra Moeljadi AM, Hirao H, Soo HS. Selective photocatalytic C-C bond cleavage under ambient conditions with earth abundant vanadium complexes. Chem Sci 2015; 6:7130-7142. [PMID: 29861949 PMCID: PMC5951195 DOI: 10.1039/c5sc02923f] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/10/2015] [Indexed: 11/21/2022] Open
Abstract
Chemoselective aliphatic carbon–carbon bond activation photocatalyzed by vanadium oxo complexes under ambient conditions and visible light.
Selective C–C bond cleavage under ambient conditions is a challenging chemical transformation that can be a valuable tool for organic syntheses and macromolecular disassembly. Herein, we show that base metal vanadium photocatalysts can harvest visible light to effect the chemoselective C–C bond cleavage of lignin model compounds under ambient conditions. Lignin, a major aromatic constituent of non-food biomass, is an inexpensive, accessible source of fine chemical feedstocks such as phenols and aryl ethers. However, existing lignin degradation technologies are harsh and indiscriminately degrade valuable functional groups to produce intractable mixtures. The selective, photocatalytic depolymerization of lignin remains underexplored. In the course of our studies on lignin model compounds, we have uncovered a new C–C activation reaction that takes place under exceptionally mild conditions with high conversions. We present our fundamental studies on representative lignin model compounds, with the aim of expanding and generalizing the substrate scope in the future. Visible light is employed in the presence of earth-abundant vanadium oxo catalysts under ambient conditions. Selective C–C bond cleavage leads to valuable and functionally rich fine chemicals such as substituted aryl aldehydes and formates. Isotope labeling experiments, product analyses, and intermediate radical trapping, together with density functional theory studies, suggest a unique pathway that involves a photogenerated T1 state during the C–C bond cleavage reactions. Our study demonstrates a sustainable approach to harvest sunlight for an unusual, selective bond activation, which can potentially be applied in organic transformations and biomass valorization.
Collapse
Affiliation(s)
- Sarifuddin Gazi
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . ; .,Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE) , 1 Create Way , Singapore 138602
| | - Wilson Kwok Hung Ng
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . ;
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . ;
| | - Adhitya Mangala Putra Moeljadi
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . ;
| | - Hajime Hirao
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . ;
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . ; .,Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE) , 1 Create Way , Singapore 138602
| |
Collapse
|
31
|
Lim SH, Lee WS, Kim YI, Sohn Y, Cho DW, Kim C, Kim E, Latham JA, Dunaway-Mariano D, Mariano PS. Photochemical and enzymatic SET promoted C–C bond cleavage reactions of lignin β-1 model compounds containing varying number of methoxy substituents on their arene rings. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.04.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
vom Stein T, den Hartog T, Buendia J, Stoychev S, Mottweiler J, Bolm C, Klankermayer J, Leitner W. Ruthenium-Catalyzed CC Bond Cleavage in Lignin Model Substrates. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410620] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
vom Stein T, den Hartog T, Buendia J, Stoychev S, Mottweiler J, Bolm C, Klankermayer J, Leitner W. Ruthenium-catalyzed C-C bond cleavage in lignin model substrates. Angew Chem Int Ed Engl 2015; 54:5859-63. [PMID: 25809138 DOI: 10.1002/anie.201410620] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/25/2015] [Indexed: 11/08/2022]
Abstract
Ruthenium-triphos complexes exhibited unprecedented catalytic activity and selectivity in the redox-neutral C-C bond cleavage of the β-O-4 lignin linkage of 1,3-dilignol model compounds. A mechanistic pathway involving a dehydrogenation-initiated retro-aldol reaction for the C-C bond cleavage was proposed in line with experimental data and DFT calculations.
Collapse
Affiliation(s)
- Thorsten vom Stein
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany) www.itmc.rwth-aachen.de
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Luo FX, Zhou TG, Li X, Luo YL, Shi ZJ. Fragmentation of structural units of lignin promoted by persulfate through selective C–C cleavage under mild conditions. Org Chem Front 2015. [DOI: 10.1039/c5qo00116a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A high selectivity and activity for the fragmentation of β-O-4 and β-1 lignin models to high-value chemicals were achieved by using persulfate.
Collapse
Affiliation(s)
- Fei-Xian Luo
- Beijing National Laboratory of Molecule Science (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Green Chemistry Center
- Peking University
- Beijing
- China
| | - Tai-Gang Zhou
- Beijing National Laboratory of Molecule Science (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Green Chemistry Center
- Peking University
- Beijing
- China
| | - Xin Li
- Beijing National Laboratory of Molecule Science (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Green Chemistry Center
- Peking University
- Beijing
- China
| | - Yun-Lei Luo
- School of Chemistry and Chemical engineering
- Southwest University
- Chongqing
- China
| | - Zhang-Jie Shi
- Beijing National Laboratory of Molecule Science (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Green Chemistry Center
- Peking University
- Beijing
- China
| |
Collapse
|
35
|
Wu A, Lauzon JM, James BR. Hydrogenolysis of a γ-Acetylated Lignin Model Compound with a Ruthenium–Xantphos Catalyst. Catal Letters 2014. [DOI: 10.1007/s10562-014-1401-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
A highly diastereoselective oxidant contributes to Ligninolysis by the white rot basidiomycete Ceriporiopsis subvermispora. Appl Environ Microbiol 2014; 80:7536-44. [PMID: 25261514 DOI: 10.1128/aem.02111-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The white rot basidiomycete Ceriporiopsis subvermispora delignifies wood selectively and has potential biotechnological applications. Its ability to remove lignin before the substrate porosity has increased enough to admit enzymes suggests that small diffusible oxidants contribute to delignification. A key question is whether these unidentified oxidants attack lignin via single-electron transfer (SET), in which case they are expected to cleave its propyl side chains between Cα and Cβ and to oxidize the threo-diastereomer of its predominating β-O-4-linked structures more extensively than the corresponding erythro-diastereomer. We used two-dimensional solution-state nuclear magnetic resonance (NMR) techniques to look for changes in partially biodegraded lignin extracted from spruce wood after white rot caused by C. subvermispora. The results showed that (i) benzoic acid residues indicative of Cα-Cβ cleavage were the major identifiable truncated structures in lignin after decay and (ii) depletion of β-O-4-linked units was markedly diastereoselective with a threo preference. The less selective delignifier Phanerochaete chrysosporium also exhibited this diastereoselectivity on spruce, and a P. chrysosporium lignin peroxidase operating in conjunction with the P. chrysosporium metabolite veratryl alcohol did likewise when cleaving synthetic lignin in vitro. However, C. subvermispora was significantly more diastereoselective than P. chrysosporium or lignin peroxidase-veratryl alcohol. Our results show that the ligninolytic oxidants of C. subvermispora are collectively more diastereoselective than currently known fungal ligninolytic oxidants and suggest that SET oxidation is one of the chemical mechanisms involved.
Collapse
|
37
|
Sedai B, Baker RT. Copper Catalysts for Selective CC Bond Cleavage of β-O-4 Lignin Model Compounds. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400463] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Beste A. ReaxFF study of the oxidation of lignin model compounds for the most common linkages in softwood in view of carbon fiber production. J Phys Chem A 2014; 118:803-14. [PMID: 24428197 DOI: 10.1021/jp410454q] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lignin is an underused but major component of biomass. One possible area of utilization is the production of carbon fiber. A necessary processing step is the stabilization of lignin fiber (typically in an oxygen environment) before high temperature treatment. We investigate oxidative, thermal conversion of lignin using computational methods. Dilignol model compounds for the most common (seven) linkages in softwood are chosen to represent the diverse structure of lignin. We perform molecular dynamics simulation where the potential energy surface is described by a reactive force field (ReaxFF). We calculate overall activation energies for model conversion and reveal initial mechanisms of formaldehyde formation. We record fragmentation patterns and average carbon oxidation numbers at various temperatures. Most importantly, we identify mechanisms for stabilizing reactions that result in cyclic and rigid connections in softwood lignin fibers that are necessary for further processing into carbon fibers.
Collapse
Affiliation(s)
- Ariana Beste
- Joint Institute for Computational Sciences, The University of Tennessee , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
39
|
Nguyen JD, Matsuura BS, Stephenson CRJ. A Photochemical Strategy for Lignin Degradation at Room Temperature. J Am Chem Soc 2014; 136:1218-21. [DOI: 10.1021/ja4113462] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- John D. Nguyen
- Department of Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| | - Bryan S. Matsuura
- Department of Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corey R. J. Stephenson
- Department of Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
40
|
Janesko BG. Acid-catalyzed hydrolysis of lignin β-O-4 linkages in ionic liquid solvents: a computational mechanistic study. Phys Chem Chem Phys 2014; 16:5423-33. [DOI: 10.1039/c3cp53836b] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Sedai B, Díaz-Urrutia C, Baker RT, Wu R, Silks LA“P, Hanson SK. Aerobic Oxidation of β-1 Lignin Model Compounds with Copper and Oxovanadium Catalysts. ACS Catal 2013. [DOI: 10.1021/cs400636k] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Baburam Sedai
- Department
of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Christian Díaz-Urrutia
- Department
of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - R. Tom Baker
- Department
of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | | | | | | |
Collapse
|
42
|
Jeon IY, Zhang S, Zhang L, Choi HJ, Seo JM, Xia Z, Dai L, Baek JB. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:6138-6145. [PMID: 24038522 DOI: 10.1002/adma.201302753] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Indexed: 06/02/2023]
Abstract
To replace precious platinum (Pt)-based electrocatalysts for cathodic oxygen reduction reaction (ORR), edge-selectively sulfurized graphene nanoplatelets (SGnP) are synthesized as efficient metal-free electrocatalysts simply by ball-milling pristine graphite in the presence of sulfur (S8 ). The resultant SGnPs exhibit remarkable electrocatalytic activity toward ORR with better tolerance to methanol crossover/CO poisoning effects and longer-term stability than those of pristine graphite and commercial Pt/C electrocatalysts. Edge-Selectively Sulfurized Graphene Nanoplatelets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect.
Collapse
Affiliation(s)
- In-Yup Jeon
- Interdisciplinary School of Green, Energy/Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon, Ulsan, 689-798, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci Rep 2013; 3:1810. [PMID: 23736800 PMCID: PMC3672906 DOI: 10.1038/srep01810] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/19/2013] [Indexed: 12/21/2022] Open
Abstract
A series of edge-selectively halogenated (X = Cl, Br, I) graphene nanoplatelets (XGnPs = ClGnP, BrGnP, IGnP) were prepared simply by ball-milling graphite in the presence of Cl2, Br2 and I2, respectively. High BET surface areas of 471, 579 and 662 m(2)/g were observed for ClGnP, BrGnP and IGnP, respectively, indicating a significant extent of delamination during the ball-milling and subsequent workup processes. The newly-developed XGnPs can be well dispersed in various solvents, and hence are solution processable. Furthermore, XGnPs showed remarkable electrocatalytic activities toward oxygen reduction reaction (ORR) with a high selectivity, good tolerance to methanol crossover/CO poisoning effects, and excellent long-term cycle stability. First-principle density-functional calculations revealed that halogenated graphene edges could provide decent adsorption sites for oxygen molecules, in a good agreement with the experimental observations.
Collapse
|
44
|
Lim SH, Nahm K, Ra CS, Cho DW, Yoon UC, Latham JA, Dunaway-Mariano D, Mariano PS. Effects of alkoxy groups on arene rings of lignin β-O-4 model compounds on the efficiencies of single electron transfer-promoted photochemical and enzymatic C-C Bond Cleavage Reactions. J Org Chem 2013; 78:9431-43. [PMID: 23992466 DOI: 10.1021/jo401680z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To gain information about how alkoxy substitution in arene rings of β-O-4 structural units within lignin governs the efficiencies/rates of radical cation C1-C2 bond cleavage reactions, single electron transfer (SET) photochemical and lignin peroxidase-catalyzed oxidation reactions of dimeric/tetrameric model compounds have been explored. The results show that the radical cations derived from less alkoxy-substituted dimeric β-O-4 models undergo more rapid C1-C2 bond cleavage than those of more alkoxy-substituted analogues. These findings gained support from the results of DFT calculations, which demonstrate that C1-C2 bond dissociation energies of β-O-4 radical cations decrease as the degree of alkoxy substitution decreases. In SET reactions of tetrameric compounds consisting of two β-O-4 units, containing different degrees of alkoxy substitution, regioselective radical cation C-C bond cleavage was observed to occur in one case at the C1-C2 bond in the less alkoxy-substituted β-O-4 moiety. However, regioselective C1-C2 cleavage in the more alkoxy-substituted β-O-4 moiety was observed in another case, suggesting that other factors might participate in controlling this process. These observations show that lignins containing greater proportions of less rather than more alkoxylated rings as part of β-O-4 units would be more efficiently cleaved by SET mechanisms.
Collapse
Affiliation(s)
- Suk Hyun Lim
- Department of Chemistry, Yeungnam University , Gyeongsan, Gyeongbuk 712-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Beste A, Buchanan AC. Computational Investigation of the Pyrolysis Product Selectivity for α-Hydroxy Phenethyl Phenyl Ether and Phenethyl Phenyl Ether: Analysis of Substituent Effects and Reactant Conformer Selection. J Phys Chem A 2013; 117:3235-42. [DOI: 10.1021/jp4015004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ariana Beste
- Joint Institute
for Computational Sciences, The University of Tennessee, Oak Ridge, Tennessee 37831, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee
37831, United States
| | - A. C. Buchanan
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
46
|
Beste A, Buchanan AC. Role of Carbon–Carbon Phenyl Migration in the Pyrolysis Mechanism of β-O-4 Lignin Model Compounds: Phenethyl Phenyl Ether and α-Hydroxy Phenethyl Phenyl Ether. J Phys Chem A 2012. [DOI: 10.1021/jp3104694] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ariana Beste
- Joint Institute
for Computational
Sciences, The University of Tennessee,
Oak Ridge, Tennessee 37831, United States
| | - A. C. Buchanan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
37831, United States
| |
Collapse
|
47
|
Kinetic simulation of the thermal degradation of phenethyl phenyl ether, a model compound for the β-O-4 linkage in lignin. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.08.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Fernández-Fueyo E, Ruiz-Dueñas FJ, Miki Y, Martínez MJ, Hammel KE, Martínez AT. Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora. J Biol Chem 2012; 287:16903-16. [PMID: 22437835 DOI: 10.1074/jbc.m112.356378] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The white-rot fungus Ceriporiopsis subvermispora delignifies lignocellulose with high selectivity, but until now it has appeared to lack the specialized peroxidases, termed lignin peroxidases (LiPs) and versatile peroxidases (VPs), that are generally thought important for ligninolysis. We screened the recently sequenced C. subvermispora genome for genes that encode peroxidases with a potential ligninolytic role. A total of 26 peroxidase genes was apparent after a structural-functional classification based on homology modeling and a search for diagnostic catalytic amino acid residues. In addition to revealing the presence of nine heme-thiolate peroxidase superfamily members and the unexpected absence of the dye-decolorizing peroxidase superfamily, the search showed that the C. subvermispora genome encodes 16 class II enzymes in the plant-fungal-bacterial peroxidase superfamily, where LiPs and VPs are classified. The 16 encoded enzymes include 13 putative manganese peroxidases and one generic peroxidase but most notably two peroxidases containing the catalytic tryptophan characteristic of LiPs and VPs. We expressed these two enzymes in Escherichia coli and determined their substrate specificities on typical LiP/VP substrates, including nonphenolic lignin model monomers and dimers, as well as synthetic lignin. The results show that the two newly discovered C. subvermispora peroxidases are functionally competent LiPs and also suggest that they are phylogenetically and catalytically intermediate between classical LiPs and VPs. These results offer new insight into selective lignin degradation by C. subvermispora.
Collapse
Affiliation(s)
- Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Wu A, Patrick BO, Chung E, James BR. Hydrogenolysis of β-O-4 lignin model dimers by a ruthenium-xantphos catalyst. Dalton Trans 2012; 41:11093-106. [DOI: 10.1039/c2dt31065a] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Buendia J, Mottweiler J, Bolm C. Preparation of Diastereomerically Pure Dilignol Model Compounds. Chemistry 2011; 17:13877-82. [DOI: 10.1002/chem.201101579] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/31/2011] [Indexed: 11/06/2022]
|