1
|
Wahyutama IS, Larsson HR. Simulating Real-Time Molecular Electron Dynamics Efficiently Using the Time-Dependent Density Matrix Renormalization Group. J Chem Theory Comput 2024; 20:9814-9831. [PMID: 39533900 PMCID: PMC11603620 DOI: 10.1021/acs.jctc.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Compared to ground-state electronic structure optimizations, accurate simulations of molecular real-time electron dynamics are usually much more difficult to perform. To simulate electron dynamics, the time-dependent density matrix renormalization group (TDDMRG) has been shown to offer an attractive compromise between accuracy and cost. However, many simulation parameters significantly affect the quality and efficiency of a TDDMRG simulation. So far, it is unclear whether common wisdom from ground-state DMRG carries over to the TDDMRG, and a guideline on how to choose these parameters is missing. Here, in order to establish such a guideline, we investigate the convergence behavior of the main TDDMRG simulation parameters, such as time integrator, the choice of orbitals, and the choice of matrix-product-state representation for complex-valued nonsinglet states. In addition, we propose a method to select orbitals that are tailored to optimize the dynamics. Lastly, we showcase the TDDMRG by applying it to charge migration ionization dynamics in furfural, where we reveal a rapid conversion from an ionized state with a σ character to one with a π character within less than a femtosecond.
Collapse
Affiliation(s)
- Imam S Wahyutama
- Department of Chemistry and Biochemistry, University of California, Merced, California 95343, United States
| | - Henrik R Larsson
- Department of Chemistry and Biochemistry, University of California, Merced, California 95343, United States
| |
Collapse
|
2
|
Rodríguez-Cuenca E, Picón A, Oberli S, Kuleff AI, Vendrell O. Core-Hole Coherent Spectroscopy in Molecules. PHYSICAL REVIEW LETTERS 2024; 132:263202. [PMID: 38996324 DOI: 10.1103/physrevlett.132.263202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/08/2024] [Accepted: 05/20/2024] [Indexed: 07/14/2024]
Abstract
We study the ultrafast dynamics initiated by a coherent superposition of core-excited states of nitrous oxide molecule. Using high-level ab initio methods, we show that the decoherence caused by the electronic decay and the nuclear dynamics is substantially slower than the induced ultrafast quantum beatings, allowing the system to undergo several oscillations before it dephases. We propose a proof-of-concept experiment using the harmonic up-conversion scheme available at x-ray free-electron laser facilities to trace the evolution of the created core-excited-state coherence through a time-resolved x-ray photoelectron spectroscopy.
Collapse
|
3
|
Chevalier F, Schlathölter T, Poully JC. Radiation-Induced Transfer of Charge, Atoms, and Energy within Isolated Biomolecular Systems. Chembiochem 2023; 24:e202300543. [PMID: 37712497 DOI: 10.1002/cbic.202300543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
In biological tissues, ionizing radiation interacts with a variety of molecules and the consequences include cell killing and the modification of mechanical properties. Applications of biological radiation action are for instance radiotherapy, sterilization, or the tailoring of biomaterial properties. During the first femtoseconds to milliseconds after the initial radiation action, biomolecular systems typically respond by transfer of charge, atoms, or energy. In the condensed phase, it is usually very difficult to distinguish direct effects from indirect effects. A straightforward solution for this problem is the use of gas-phase techniques, for instance from the field of mass spectrometry. In this review, we survey mainly experimental but also theoretical work, focusing on radiation-induced intra- and inter-molecular transfer of charge, atoms, and energy within biomolecular systems in the gas phase. Building blocks of DNA, proteins, and saccharides, but also antibiotics are considered. The emergence of general processes as well as their timescales and mechanisms are highlighted.
Collapse
Affiliation(s)
- François Chevalier
- CIMAP UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| | - Thomas Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen, Groningen (The, Netherlands
- University College Groningen, University of Groningen, Groningen (The, Netherlands
| | - Jean-Christophe Poully
- CIMAP UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| |
Collapse
|
4
|
Dey D, Kuleff AI, Worth GA. Quantum Interference Paves the Way for Long-Lived Electronic Coherences. PHYSICAL REVIEW LETTERS 2022; 129:173203. [PMID: 36332247 DOI: 10.1103/physrevlett.129.173203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The creation and dynamical fate of a coherent superposition of electronic states generated in a polyatomic molecule by broadband ionization with extreme ultraviolet pulses is studied using the multiconfiguration time-dependent Hartree method together with an ionization continuum model Hamiltonian. The electronic coherence between the hole states usually lasts until the nuclear dynamics leads to decoherence. A key goal of attosecond science is to control the electronic motion and design laser control schemes to retain this coherence for longer timescales. Here, we investigate this possibility using time-delayed pulses and show how this opens up the prospect of coherent control of charge migration phenomenon.
Collapse
Affiliation(s)
- Diptesh Dey
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Alexander I Kuleff
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Graham A Worth
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
5
|
Chandra S, Bag S. Attochemistry of hydrogen bonded amide and thioamide model complexes in protein following vertical ionization. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Borrego-Varillas R, Lucchini M, Nisoli M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:066401. [PMID: 35294930 DOI: 10.1088/1361-6633/ac5e7f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Since the first demonstration of the generation of attosecond pulses (1 as = 10-18s) in the extreme-ultraviolet spectral region, several measurement techniques have been introduced, at the beginning for the temporal characterization of the pulses, and immediately after for the investigation of electronic and nuclear ultrafast dynamics in atoms, molecules and solids with unprecedented temporal resolution. The attosecond spectroscopic tools established in the last two decades, together with the development of sophisticated theoretical methods for the interpretation of the experimental outcomes, allowed to unravel and investigate physical processes never observed before, such as the delay in photoemission from atoms and solids, the motion of electrons in molecules after prompt ionization which precede any notable nuclear motion, the temporal evolution of the tunneling process in dielectrics, and many others. This review focused on applications of attosecond techniques to the investigation of ultrafast processes in atoms, molecules and solids. Thanks to the introduction and ongoing developments of new spectroscopic techniques, the attosecond science is rapidly moving towards the investigation, understanding and control of coupled electron-nuclear dynamics in increasingly complex systems, with ever more accurate and complete investigation techniques. Here we will review the most common techniques presenting the latest results in atoms, molecules and solids.
Collapse
Affiliation(s)
- Rocío Borrego-Varillas
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Matteo Lucchini
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Mauro Nisoli
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
7
|
Jia D, Yang Y. Systematic Investigation of the Reliability of the Frozen Nuclei Approximation for Short-Pulse Excitation: The Example of HCCI+. Front Chem 2022; 10:857348. [PMID: 35372267 PMCID: PMC8966390 DOI: 10.3389/fchem.2022.857348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
In this work we quantitatively study the reliability of the frozen nuclei approximation for ultrafast dynamics. Specifically we study laser excitation of HCCI+ from its ground state to the first electronically excited state. The population of the first excited state is obtained by both the frozen nuclei approximation and by multidimensional nuclear dynamics. Detailed comparison of the results by the two methods are performed to provide quantitative criteria for the reliability of the frozen nuclei approximation for this system.
Collapse
Affiliation(s)
- Dongming Jia
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
- *Correspondence: Yonggang Yang,
| |
Collapse
|
8
|
Kobayashi Y, Neumark DM, Leone SR. Theoretical analysis of the role of complex transition dipole phase in XUV transient-absorption probing of charge migration. OPTICS EXPRESS 2022; 30:5673-5682. [PMID: 35209524 DOI: 10.1364/oe.451129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
We theoretically investigate the role of complex dipole phase in the attosecond probing of charge migration. The iodobromoacetylene ion (ICCBr+) is considered as an example, in which one can probe charge migration by accessing both the iodine and bromine ends of the molecule with different spectral windows of an extreme-ultraviolet (XUV) pulse. The analytical expression for transient absorption shows that the site-specific information of charge migration is encoded in the complex phase of cross dipole products for XUV transitions between the I-4d and Br-3d spectral windows. Ab-initio quantum chemistry calculations on ICCBr+ reveal that there is a constant π phase difference between the I-4d and Br-3d transient-absorption spectral windows, irrespective of the fine-structure energy splittings. Transient absorption spectra are simulated with a multistate model including the complex dipole phase, and the results correctly reconstruct the charge-migration dynamics via the quantum beats in the two element spectral windows, exhibiting out-of-phase oscillations.
Collapse
|
9
|
Molteni E, Mattioli G, Alippi P, Avaldi L, Bolognesi P, Carlini L, Vismarra F, Wu Y, Varillas RB, Nisoli M, Singh M, Valadan M, Altucci C, Richter R, Sangalli D. A systematic study of the valence electronic structure of cyclo(Gly-Phe), cyclo(Trp-Tyr) and cyclo(Trp-Trp) dipeptides in the gas phase. Phys Chem Chem Phys 2021; 23:26793-26805. [PMID: 34816853 DOI: 10.1039/d1cp04050b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The electronic energy levels of cyclo(glycine-phenylalanine), cyclo(tryptophan-tyrosine) and cyclo(tryptophan-tryptophan) dipeptides are investigated with a joint experimental and theoretical approach. Experimentally, valence photoelectron spectra in the gas phase are measured using VUV radiation. Theoretically, we first obtain low-energy conformers through an automated conformer-rotamer ensemble sampling scheme based on tight-binding simulations. Then, different first principles computational schemes are considered to simulate the spectra: Hartree-Fock (HF), density functional theory (DFT) within the B3LYP approximation, the quasi-particle GW correction, and the quantum-chemistry CCSD method. Theory allows assignment of the main features of the spectra. A discussion on the role of electronic correlation is provided, by comparing computationally cheaper DFT scheme (and GW) results with the accurate CCSD method.
Collapse
Affiliation(s)
- Elena Molteni
- Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, CP 10, Monterotondo Scalo, Roma, Italy. .,Dipartimento di Fisica, Universita' degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy
| | - Giuseppe Mattioli
- Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, CP 10, Monterotondo Scalo, Roma, Italy.
| | - Paola Alippi
- Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, CP 10, Monterotondo Scalo, Roma, Italy.
| | - Lorenzo Avaldi
- Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, CP 10, Monterotondo Scalo, Roma, Italy.
| | - Paola Bolognesi
- Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, CP 10, Monterotondo Scalo, Roma, Italy.
| | - Laura Carlini
- Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, CP 10, Monterotondo Scalo, Roma, Italy.
| | - Federico Vismarra
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, Italy.,CNR-Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci, 32, Milano, Italy
| | - Yingxuan Wu
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, Italy.,CNR-Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci, 32, Milano, Italy
| | | | - Mauro Nisoli
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, Italy.,CNR-Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci, 32, Milano, Italy
| | - Manjot Singh
- Dipartimento di Scienze Biomediche Avanzate, Universita' degli Studi di Napoli Federico II, via Pansini 5, I-80131, Napoli, Italy
| | - Mohammadhassan Valadan
- Dipartimento di Scienze Biomediche Avanzate, Universita' degli Studi di Napoli Federico II, via Pansini 5, I-80131, Napoli, Italy.,Istituto Nazionale Fisica Nucleare (INFN), Sezione di Napoli, Napoli, Italy
| | - Carlo Altucci
- Dipartimento di Scienze Biomediche Avanzate, Universita' degli Studi di Napoli Federico II, via Pansini 5, I-80131, Napoli, Italy.,Istituto Nazionale Fisica Nucleare (INFN), Sezione di Napoli, Napoli, Italy
| | - Robert Richter
- Sincrotrone Trieste, Area Science Park, Basovizza, Trieste, Italy
| | - Davide Sangalli
- Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, CP 10, Monterotondo Scalo, Roma, Italy. .,Dipartimento di Fisica, Universita' degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy
| |
Collapse
|
10
|
Aebersold LE, Ulusoy IS, Wilson AK. Electron-nuclear quantum dynamics of diatomic molecules: nonadiabatic signatures in molecular spectra. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1988743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lucas E. Aebersold
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Inga S. Ulusoy
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Scientific Software Center, Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Angela K. Wilson
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Merritt ICD, Jacquemin D, Vacher M. Attochemistry: Is Controlling Electrons the Future of Photochemistry? J Phys Chem Lett 2021; 12:8404-8415. [PMID: 34436903 DOI: 10.1021/acs.jpclett.1c02016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling matter with light has always been a great challenge, leading to the ever-expanding field of photochemistry. In addition, since the first generation of light pulses of attosecond (1 as = 10-18 s) duration, a great deal of effort has been devoted to observing and controlling electrons on their intrinsic time scale. Because of their short duration, attosecond pulses have a large spectral bandwidth populating several electronically excited states in a coherent manner, i.e., an electronic wavepacket. Because of interference, such a wavepacket has a new electronic distribution implying a potentially different and totally new reactivity as compared to traditional photochemistry, leading to the novel concept of "attochemistry". This nascent field requires the support of theory right from the start. In this Perspective, we discuss the opportunities offered by attochemistry, the related challenges, and the current and future state-of-the-art developments in theoretical chemistry needed to model it accurately.
Collapse
Affiliation(s)
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Morgane Vacher
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| |
Collapse
|
12
|
Tang WK, Mu X, Li M, Martens J, Berden G, Oomens J, Chu IK, Siu CK. Formation of n → π + interaction facilitating dissociative electron transfer in isolated tyrosine-containing molecular peptide radical cations. Phys Chem Chem Phys 2021; 22:21393-21402. [PMID: 32940309 DOI: 10.1039/d0cp00533a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long-range electron transfer in proteins can be rationalized as a sequential short-distance electron-hopping processes via amino acid residues having low ionization energy as relay stations. Tyrosine residues can serve as such redox-active intermediates through one-electron oxidation to form a π-radical cation at its phenol side chain. An electron transfer from a vicinal functional group to this π-electron hole completes an elementary step of charge migration. However, transient oxidized/reduced intermediates formed at those relay stations during electron transfer processes have not been observed. In this study, formation of analog reactive intermediates via electron donor-acceptor coupling is observed by using IRMPD action spectroscopy. An elementary charge migration at the molecular level in model tyrosine-containing peptide radical cations [M]˙+ in the gas phase is revealed with its unusual Cα-Cβ bond cleavage at the side chain of the N-terminal residue. This reaction is induced by the radical character of the N-terminal amino group (-NH2˙+) resulting from an n → π+ interaction between the nonbonding electron pair of NH2 (n) and the π-electron hole at the Tyr side chain (π+). The formation of -NH2˙+ is supported by the IRMPD spectrum showing a characteristic NH2 scissor vibration coupled with Tyr side-chain stretches at 1577 cm-1. This n → π+ interaction facilitates a dissociative electron transfer with NH2 as the relay station. The occurrence of this side-chain cleavage may be an indicator of the formation of reactive conformers featuring the n → π+ interaction.
Collapse
Affiliation(s)
- Wai Kit Tang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gonçalves CEM, Levine RD, Remacle F. Ultrafast geometrical reorganization of a methane cation upon sudden ionization: an isotope effect on electronic non-equilibrium quantum dynamics. Phys Chem Chem Phys 2021; 23:12051-12059. [PMID: 34008662 DOI: 10.1039/d1cp01029h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ultrafast structural, Jahn-Teller (JT) driven, electronic coherence mediated quantum dynamics in the CH4+ and CD4+ cations that follows sudden ionization using an XUV attopulse exhibits a strong isotope effect. The JT effect makes the methane cation unstable in the Td geometry of the neutral molecule. Upon the sudden ionization the cation is produced in a coherent superposition of three electronic states that are strongly coupled and neither is in equilibrium with the nuclei. In the ground state of the cation the few femtosecond structural rearrangement leads first to a geometrically less distorted D2d minimum followed by a geometrical reorganization to a shallow C2v minimum. The dynamics is computed for an ensemble of 8000 ions randomly oriented with respect to the polarization of the XUV pulse. The ratio, about 3, of the CD4+ to CH4+ autocorrelation functions, is in agreement with experimental measurements of high harmonic spectra. The high value of the ratio is attributed to the faster electronic coherence dynamics in CH4+.
Collapse
Affiliation(s)
- Cayo E M Gonçalves
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium.
| | - R D Levine
- The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - F Remacle
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium. and The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
14
|
Li Y, Li M, Spencer DM, Lau JKC, Martens J, Berden G, Oomens J, Fang DC, Hopkinson AC, Siu KWM, Siu CK, Chu IK. Dissociative electron transfer of copper(ii) complexes of glycyl(glycyl/alanyl)tryptophan in vacuo: IRMPD action spectroscopy provides evidence of transition from zwitterionic to non-zwitterionic peptide structures. Phys Chem Chem Phys 2020; 22:13084-13091. [PMID: 32490449 DOI: 10.1039/d0cp02296a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein the first detailed study of the mechanism of redox reactions occurring during the gas-phase dissociative electron transfer of prototypical ternary [CuII(dien)M]˙2+ complexes (M, peptide). The two final products are (i) the oxidized non-zwitterionic π-centered [M]˙+ species with both the charge and spin densities delocalized over the indole ring of the tryptophan residue and with a C-terminal COOH group intact, and (ii) the complementary ion [CuI(dien)]+. Infrared multiple photon dissociation (IRMPD) action spectroscopy and low-energy collision-induced dissociation (CID) experiments, in conjunction with density functional theory (DFT) calculations, revealed the structural details of the mass-isolated precursor and product cations. Our experimental and theoretical results indicate that the doubly positively charged precursor [CuII(dien)M]˙2+ features electrostatic coordination through the anionic carboxylate end of the zwitterionic M moiety. An additional interaction exists between the indole ring of the tryptophan residue and one of the primary amino groups of the dien ligand; the DFT calculations provided the structures of the precursor ion, intermediates, and products, and enabled us to keep track of the locations of the charge and unpaired electron. The dissociative one-electron transfer reaction is initiated by a gradual transition of the M tripeptide from the zwitterionic form in [CuII(dien)M]˙2+ to the non-zwitterionic M intermediate, through a cascade of conformational changes and proton transfers. In the next step, the highest energy intermediate is formed; here, the copper center is 5-coordinate with coordination from both the carboxylic acid group and the indole ring. A subsequent switch back to 4-coordination to an intermediate IM1, where attachment to GGW occurs through the indole ring only, creates the structure that ultimately undergoes dissociation.
Collapse
Affiliation(s)
- Yinan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Schwob L, Dörner S, Atak K, Schubert K, Timm M, Bülow C, Zamudio-Bayer V, von Issendorff B, Lau JT, Techert S, Bari S. Site-Selective Dissociation upon Sulfur L-Edge X-ray Absorption in a Gas-Phase Protonated Peptide. J Phys Chem Lett 2020; 11:1215-1221. [PMID: 31978303 DOI: 10.1021/acs.jpclett.0c00041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Site-selective dissociation induced by core photoexcitation of biomolecules is of key importance for the understanding of radiation damage processes and dynamics and for its promising use as "chemical scissors" in various applications. However, identifying products of site-selective dissociation in large molecules is challenging at the carbon, nitrogen, and oxygen edges because of the high recurrence of these atoms and related chemical groups. In this paper, we present the observation of site-selective dissociation at the sulfur L-edge in the gas-phase peptide methionine enkephalin, which contains only a single sulfur atom. Near-edge X-ray absorption mass spectrometry has revealed that the resonant S 2p → σ*C-S excitation of the sulfur contained in the methionine side chain leads to site-selective dissociation, which is not the case after core ionization above the sulfur L-edge. The prospects of such results for the study of charge dynamics in biomolecular systems are discussed.
Collapse
Affiliation(s)
- Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Simon Dörner
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Kaan Atak
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Kaja Schubert
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Martin Timm
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
| | - Christine Bülow
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
| | - Vicente Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
| | - Bernd von Issendorff
- Physikalisches Institut , Universität Freiburg , Hermann-Herder-Straße 3 , 79104 Freiburg , Germany
| | - J Tobias Lau
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
- Physikalisches Institut , Universität Freiburg , Hermann-Herder-Straße 3 , 79104 Freiburg , Germany
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
- Institute of X-ray Physics , University of Göttingen , Friedrich-Hund-Platz 1 , 37077 Göttingen , Germany
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| |
Collapse
|
16
|
Yuan KJ, Bandrauk AD. Ultrafast X-ray photoelectron diffraction in triatomic molecules by circularly polarized attosecond light pulses. Phys Chem Chem Phys 2020; 22:325-336. [DOI: 10.1039/c9cp05213e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We theoretically study ultrafast photoelectron diffraction in triatomic molecules with cyclic geometry by ultrafast circular soft X-ray attosecond pulses.
Collapse
Affiliation(s)
- Kai-Jun Yuan
- Institute of Atomic and Molecular Physics
- Jilin University
- Changchun
- China
- Laboratoire de Chimie Théorique
| | - André D. Bandrauk
- Laboratoire de Chimie Théorique
- Faculté des Sciences
- Université de Sherbrooke
- Québec
- Canada
| |
Collapse
|
17
|
Valentini A, van den Wildenberg S, Remacle F. Selective bond formation triggered by short optical pulses: quantum dynamics of a four-center ring closure. Phys Chem Chem Phys 2020; 22:22302-22313. [DOI: 10.1039/d0cp03435e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Making bonds with attopulses: quantum dynamics of the ring closure of norbornadiene to quadricyclane.
Collapse
Affiliation(s)
- Alessio Valentini
- Theoretical Physical Chemistry
- RU MOLSYS
- University of Liege
- B4000 Liege
- Belgium
| | | | - F. Remacle
- Theoretical Physical Chemistry
- RU MOLSYS
- University of Liege
- B4000 Liege
- Belgium
| |
Collapse
|
18
|
Schriber JB, Evangelista FA. Time dependent adaptive configuration interaction applied to attosecond charge migration. J Chem Phys 2019; 151:171102. [DOI: 10.1063/1.5126945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jeffrey B. Schriber
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30318, USA
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
19
|
Yang L, Reimers JR, Kobayashi R, Hush NS. Competition between charge migration and charge transfer induced by nuclear motion following core ionization: Model systems and application to Li 2. J Chem Phys 2019; 151:124108. [PMID: 31575213 DOI: 10.1063/1.5117246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Attosecond and femtosecond spectroscopies present opportunities for the control of chemical reaction dynamics and products, as well as for quantum information processing; we address the somewhat unique situation of core-ionization spectroscopy which, for dimeric chromophores, leads to strong valence charge localization and hence tightly paired potential-energy surfaces of very similar shape. Application is made to the quantum dynamics of core-ionized Li2 +. This system is chosen as Li2 is the simplest stable molecule facilitating both core ionization and valence ionization. First, the quantum dynamics of some model surfaces are considered, with the surprising result that subtle differences in shape between core-ionization paired surfaces can lead to dramatic differences in the interplay between electronic charge migration and charge transfer induced by nuclear motion. Then, equation-of-motion coupled-cluster calculations are applied to determine potential-energy surfaces for 8 core-excited state pairs, calculations believed to be the first of their type for other than the lowest-energy core-ionized molecular pair. While known results for the lowest-energy pair suggest that Li2 + is unsuitable for studying charge migration, higher-energy pairs are predicted to yield results showing competition between charge migration and charge transfer. Central is a focus on the application of Hush's 1975 theory for core-ionized X-ray photoelectron spectroscopy to understand the shapes of the potential-energy surfaces and hence predict key features of charge migration.
Collapse
Affiliation(s)
- Likun Yang
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Jeffrey R Reimers
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Rika Kobayashi
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Noel S Hush
- School of Molecular Biosciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
20
|
Jia D, Manz J, Yang Y. De- and Recoherence of Charge Migration in Ionized Iodoacetylene. J Phys Chem Lett 2019; 10:4273-4277. [PMID: 31287313 DOI: 10.1021/acs.jpclett.9b01687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During charge migration, electrons flow rapidly from one site of a molecule to another, perhaps inducing subsequent processes (e.g., selective breaking of chemical bonds). The first joint experimental and theoretical preparation and measurement of the initial state and subsequent quantum dynamics simulation of charge migration for fixed nuclei was demonstrated recently for oriented, ionized iodoacetylene. Here, we present new quantum dynamics simulations for the same system with moving nuclei. They reveal the decisive role of the nuclei, i.e. they switch charge migration off (decoherence) and on (recoherence). This is a new finding in attosecond-to-femtosecond chemistry and physics which opens new prospects for laser control over electronic dynamics via nuclear motions.
Collapse
Affiliation(s)
- Dongming Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- International Center for Chemical Theory , University of Science and Technology of China , Hefei 230026 , China
- Institut für Chemie und Biochemie , Freie Universität Berlin , 14195 Berlin , Germany
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan 030006 , China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan 030006 , China
| |
Collapse
|
21
|
Palacios A, Martín F. The quantum chemistry of attosecond molecular science. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1430] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alicia Palacios
- Departamento de Química Universidad Autónoma de Madrid Madrid Spain
- Institute of Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid Madrid Spain
| | - Fernando Martín
- Departamento de Química Universidad Autónoma de Madrid Madrid Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA‐Nano) Madrid Spain
- Condensed Matter Physics Center (IFIMAC) Universidad Autónoma de Madrid Madrid Spain
| |
Collapse
|
22
|
Lin YC, Lee C, Lee SH, Lee YY, Lee YT, Tseng CM, Ni CK. Excited-state dissociation dynamics of phenol studied by a new time-resolved technique. J Chem Phys 2018; 148:074306. [PMID: 29471658 DOI: 10.1063/1.5016059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phenol is an important model molecule for the theoretical and experimental investigation of dissociation in the multistate potential energy surfaces. Recent theoretical calculations [X. Xu et al., J. Am. Chem. Soc. 136, 16378 (2014)] suggest that the phenoxyl radical produced in both the X and A states from the O-H bond fission in phenol can contribute substantially to the slow component of photofragment translational energy distribution. However, current experimental techniques struggle to separate the contributions from different dissociation pathways. A new type of time-resolved pump-probe experiment is described that enables the selection of the products generated from a specific time window after molecules are excited by a pump laser pulse and can quantitatively characterize the translational energy distribution and branching ratio of each dissociation pathway. This method modifies conventional photofragment translational spectroscopy by reducing the acceptance angles of the detection region and changing the interaction region of the pump laser beam and the molecular beam along the molecular beam axis. The translational energy distributions and branching ratios of the phenoxyl radicals produced in the X, A, and B states from the photodissociation of phenol at 213 and 193 nm are reported. Unlike other techniques, this method has no interference from the undissociated hot molecules. It can ultimately become a standard pump-probe technique for the study of large molecule photodissociation in multistates.
Collapse
Affiliation(s)
- Yen-Cheng Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chin Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shih-Huang Lee
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yin-Yu Lee
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yuan T Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chien-Ming Tseng
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
23
|
Kraus PM, Wörner HJ. Perspektiven für das Verständnis fundamentaler Elektronenkorrelationen durch Attosekundenspektroskopie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201702759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peter M. Kraus
- Department of Chemistry; University of California; Berkeley California 94720 USA
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| |
Collapse
|
24
|
Kraus PM, Wörner HJ. Perspectives of Attosecond Spectroscopy for the Understanding of Fundamental Electron Correlations. Angew Chem Int Ed Engl 2018; 57:5228-5247. [DOI: 10.1002/anie.201702759] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/29/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Peter M. Kraus
- Department of Chemistry; University of California; Berkeley California 94720 USA
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
25
|
Time-Resolved Photoelectron Imaging of Molecular Coherent Excitation and Charge Migration by Ultrashort Laser Pulses. J Phys Chem A 2018; 122:2241-2249. [DOI: 10.1021/acs.jpca.7b11669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Ayuso D, Palacios A, Decleva P, Martín F. Ultrafast charge dynamics in glycine induced by attosecond pulses. Phys Chem Chem Phys 2018. [PMID: 28631783 DOI: 10.1039/c7cp01856h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The combination of attosecond pump-probe techniques with mass spectrometry methods has recently led to the first experimental demonstration of ultrafast charge dynamics in a biomolecule, the amino acid phenylalanine [Calegari et al., Science, 2014, 346, 336]. Using an extension of the static-exchange density functional theory (DFT) method, the observed dynamics was explained as resulting from the coherent superposition of ionic states produced by the broadband attosecond pulse. Here, we have used the static-exchange DFT method to investigate charge migration induced by attosecond pulses in the glycine molecule. We show that the observed dynamics follows patterns similar to those previously found in phenylalanine, namely that charge fluctuations occur all over the molecule and that they can be explained in terms of a few typical frequencies of the system. We have checked the validity of our approach by explicitly comparing with the photoelectron spectra obtained in synchrotron radiation experiments and with the charge dynamics that follows the removal of an electron from a given molecular orbital, for which fully correlated ab initio results are available in the literature. From this comparison, we conclude that our method provides an accurate description of both the coherent superposition of cationic states generated by the attosecond pulse and its subsequent time evolution. Hence, we expect that the static-exchange DFT method should perform equally well for other medium-size and large molecules, for which the use of fully correlated ab initio methods is not possible.
Collapse
Affiliation(s)
- David Ayuso
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
27
|
Role of electron-nuclear coupled dynamics on charge migration induced by attosecond pulses in glycine. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Attosecond angular flux of partial charges on the carbon atoms of benzene in non-aromatic excited state. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Diestler DJ, Hermann G, Manz J. Charge Migration in Eyring, Walter and Kimball’s 1944 Model of the Electronically Excited Hydrogen-Molecule Ion. J Phys Chem A 2017. [DOI: 10.1021/acs.jpca.7b04714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dennis J. Diestler
- University of Nebraska-Lincoln, Lincoln, Nebraska 68583, United States
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gunter Hermann
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jörn Manz
- State
Key Laboratory of Quantum
Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
30
|
Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser. Nat Commun 2017; 8:15626. [PMID: 28555640 PMCID: PMC5459985 DOI: 10.1038/ncomms15626] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/13/2017] [Indexed: 11/13/2022] Open
Abstract
Light-phase-sensitive techniques, such as coherent multidimensional spectroscopy, are well-established in a broad spectral range, already spanning from radio-frequencies in nuclear magnetic resonance spectroscopy to visible and ultraviolet wavelengths in nonlinear optics with table-top lasers. In these cases, the ability to tailor the phases of electromagnetic waves with high precision is essential. Here we achieve phase control of extreme-ultraviolet pulses from a free-electron laser (FEL) on the attosecond timescale in a Michelson-type all-reflective interferometric autocorrelator. By varying the relative phase of the generated pulse replicas with sub-cycle precision we observe the field interference, that is, the light-wave oscillation with a period of 129 as. The successful transfer of a powerful optical method towards short-wavelength FEL science and technology paves the way towards utilization of advanced nonlinear methodologies even at partially coherent soft X-ray FEL sources that rely on self-amplified spontaneous emission. Phase-sensitive measurements are important to gain insights of light-matter interactions and require phase-controlled pulses. Here the authors demonstrate the phase control and interferometric autocorrelation on a free electron laser using SASE pulse pair created with a split and delay unit.
Collapse
|
31
|
Nisoli M, Decleva P, Calegari F, Palacios A, Martín F. Attosecond Electron Dynamics in Molecules. Chem Rev 2017; 117:10760-10825. [DOI: 10.1021/acs.chemrev.6b00453] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mauro Nisoli
- Department
of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
| | - Piero Decleva
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá di Trieste and IOM- CNR, 34127 Trieste, Italy
| | - Francesca Calegari
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, 20355 Hamburg, Germany
| | - Alicia Palacios
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
32
|
Ding H, Jia D, Manz J, Yang Y. Reconstruction of the electronic flux during adiabatic attosecond charge migration in HCCI+. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1287967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hao Ding
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
| | - Dongming Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
- Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, China
| |
Collapse
|
33
|
Sun S, Mignolet B, Fan L, Li W, Levine RD, Remacle F. Nuclear Motion Driven Ultrafast Photodissociative Charge Transfer of the PENNA Cation: An Experimental and Computational Study. J Phys Chem A 2017; 121:1442-1447. [PMID: 28135094 DOI: 10.1021/acs.jpca.6b12310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultrafast nuclear driven charge transfer prior to dissociation is an important process in modular systems as was demonstrated experimentally in the bifunctional molecule 2-phenylethyl-N,N-dimethylamine (PENNA) in work by Lehr et al. ( J. Phys. Chem. A 2005 , 109 , 8074 ). The ultrafast dynamics of PENNA photoexcited to the three lowest electronic states of the cation (D0, D1, and D2) was studied using quantum chemistry and surface hoping. We show that a conical intersection, localized in the Franck-Condon region, between the D0 and the D1 states, leads to an ultrafast charge transfer, computed here to be on a time scale of 65 fs, between the phenyl and the amine charged subunits. On the D0 ground state, the dissociation proceeds on the 60 ps time scale through a 19 kcal/mol late barrier. The computed kinetic energy release is in good agreement with a new experimental measurement of PENNA ionization by an 800 nm 30 fs intense laser pulse.
Collapse
Affiliation(s)
- Shoutian Sun
- Department of Chemistry, B6c, University of Liege , B4000 Liege, Belgium
| | - Benoit Mignolet
- Department of Chemistry, B6c, University of Liege , B4000 Liege, Belgium
| | - Lin Fan
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Wen Li
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Raphael D Levine
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, and Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States.,The Fritz Haber Research Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| | - Francoise Remacle
- Department of Chemistry, B6c, University of Liege , B4000 Liege, Belgium
| |
Collapse
|
34
|
Jia D, Manz J, Paulus B, Pohl V, Tremblay JC, Yang Y. Quantum control of electronic fluxes during adiabatic attosecond charge migration in degenerate superposition states of benzene. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Chandra S, Bhattacharya A. Attochemistry of Ionized Halogen, Chalcogen, Pnicogen, and Tetrel Noncovalent Bonded Clusters. J Phys Chem A 2016; 120:10057-10071. [DOI: 10.1021/acs.jpca.6b09813] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sankhabrata Chandra
- Department of Inorganic and
Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India 560012
| | - Atanu Bhattacharya
- Department of Inorganic and
Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India 560012
| |
Collapse
|
36
|
Ramasesha K, Leone SR, Neumark DM. Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy. Annu Rev Phys Chem 2016; 67:41-63. [DOI: 10.1146/annurev-physchem-040215-112025] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Krupa Ramasesha
- Department of Chemistry, University of California, Berkeley, California 94720;
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550
| | - Stephen R. Leone
- Department of Chemistry, University of California, Berkeley, California 94720;
- Department of Physics, University of California, Berkeley, California 94720
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720;
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
37
|
Sheu SY, Schlag EW, Yang DY. A model for ultra-fast charge transport in membrane proteins. Phys Chem Chem Phys 2016; 17:23088-94. [PMID: 26274051 DOI: 10.1039/c5cp01442e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isolated proteins have recently been observed to transport charge and reactivity over very long distances with extraordinary rates and near perfect efficiencies in spite of their site. This is not the case if the peptide is in water, where the efficiency of charge hopping to the next site is reduced to approximately 2%. Here, water is not an ideal solvent for charge transport. The issue at hand is how to explain such enormous charge transfer quenching in water compared to another typical medium, namely lipid. We performed molecular dynamics simulations to computationally substantiate the novel long-distance charge transfer yield of the polypeptides in lipids. This is characterized by the charge transfer persistent-distance decay constant and not by the rate, which is seldom, if ever, measured and hence not directly addressed here. This model can encompass an extremely wide range of yields over very long distances in peptides in various media. The calculations here demonstrate the good charge transport efficiency in lipids in contrast to the poor efficiency in water. The protein charge transport also exhibits a very strong anisotropic effect in lipids. The peptide secondary structure effect of charge transfer in membranes is analyzed in contrast to that in water. These results suggest that this model can be useful for the prediction of charge transfer efficiency in various environments of interest and indicate that the charge transfer is highly efficient in membrane proteins.
Collapse
Affiliation(s)
- Sheh-Yi Sheu
- Department of Life Sciences and Institute of Genome Sciences, and Institute of Biomedical Informatics, National Yang-Ming University, Taipei 112, Taiwan.
| | | | | |
Collapse
|
38
|
Nikodem A, Levine RD, Remacle F. Quantum Nuclear Dynamics Pumped and Probed by Ultrafast Polarization Controlled Steering of a Coherent Electronic State in LiH. J Phys Chem A 2016; 120:3343-52. [PMID: 26928262 DOI: 10.1021/acs.jpca.6b00140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The quantum wave packet dynamics following a coherent electronic excitation of LiH by an ultrashort, polarized, strong one-cycle infrared optical pulse is computed on several electronic states using a grid method. The coupling to the strong field of the pump and the probe pulses is included in the Hamiltonian used to solve the time-dependent Schrodinger equation. The polarization of the pump pulse allows us to control the localization in time and in space of the nonequilibrium coherent electronic motion and the subsequent nuclear dynamics. We show that transient absorption, resulting from the interaction of the total molecular dipole with the electric fields of the pump and the probe, is a very versatile probe of the different time scales of the vibronic dynamics. It allows probing both the ultrashort, femtosecond time scale of the electronic coherences as well as the longer dozens of femtoseconds time scales of the nuclear motion on the excited electronic states. The ultrafast beatings of the electronic coherences in space and in time are shown to be modulated by the different periods of the nuclear motion.
Collapse
Affiliation(s)
- Astrid Nikodem
- Département de Chimie, B6c, Université de Liège , B4000 Liège, Belgium
| | - R D Levine
- The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel.,Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine and Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - F Remacle
- Département de Chimie, B6c, Université de Liège , B4000 Liège, Belgium.,The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| |
Collapse
|
39
|
Hermann G, Liu C, Manz J, Paulus B, Pérez-Torres JF, Pohl V, Tremblay JC. Multidirectional Angular Electronic Flux during Adiabatic Attosecond Charge Migration in Excited Benzene. J Phys Chem A 2016; 120:5360-9. [DOI: 10.1021/acs.jpca.6b01948] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Gunter Hermann
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - ChunMei Liu
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Jörn Manz
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
- State
Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute
of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Beate Paulus
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Jhon Fredy Pérez-Torres
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Vincent Pohl
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Jean Christophe Tremblay
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
40
|
Ajay J, Šmydke J, Remacle F, Levine RD. Probing in Space and Time the Nuclear Motion Driven by Nonequilibrium Electronic Dynamics in Ultrafast Pumped N2. J Phys Chem A 2016; 120:3335-42. [DOI: 10.1021/acs.jpca.6b00165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Ajay
- The
Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - J. Šmydke
- The
Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Radiation and Chemical Physics, Institute of Physics, Academy of Sciences of the Czech Republic, 18221 Praha 8, Czech Republic
| | - F. Remacle
- The
Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Département
de Chimie, B6c, Université de Liège, B4000 Liège, Belgium
| | - R. D. Levine
- The
Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Crump
Institute for Molecular Imaging and Department of Molecular and Medical
Pharmacology, David Geffen School of Medicine and Department of Chemistry
and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
41
|
Affiliation(s)
- Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
42
|
Kraus PM, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka EF, Grassi G, Tolstikhin OI, Schneider J, Jensen F, Madsen LB, Bandrauk AD, Remacle F, Wörner HJ. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 2015; 350:790-5. [DOI: 10.1126/science.aab2160] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/25/2015] [Indexed: 11/02/2022]
|
43
|
Zhang Y, Biggs JD, Hua W, Dorfman KE, Mukamel S. Three-dimensional attosecond resonant stimulated X-ray Raman spectroscopy of electronic excitations in core-ionized glycine. Phys Chem Chem Phys 2015; 16:24323-31. [PMID: 25297460 DOI: 10.1039/c4cp03361b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate computationally the valence electronic excitations of the amino acid glycine prepared by a sudden nitrogen core ionization induced by an attosecond X-ray pump pulse. The created superposition of cationic excited states is probed by two-dimensional transient X-ray absorption and by three dimensional attosecond stimulated X-ray Raman signals. The latter, generated by applying a second broadband X-ray pulse combined with a narrowband pulse tuned to the carbon K-edge, reveal the complex coupling between valence and core-excited manifolds of the cation.
Collapse
Affiliation(s)
- Yu Zhang
- Dept. of Chemistry, University of California, 450 Rowland Hall, Irvine, California 92697, USA.
| | | | | | | | | |
Collapse
|
44
|
Khemiri N, Messaoudi S, Abderrabba M, Spighi G, Gaveau MA, Briant M, Soep B, Mestdagh JM, Hochlaf M, Poisson L. Photoionization of Benzophenone in the Gas Phase: Theory and Experiment. J Phys Chem A 2015; 119:6148-54. [PMID: 25866992 DOI: 10.1021/acs.jpca.5b02706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on the single photoionization of jet-cooled benzophenone using a tunable source of VUV synchrotron radiation coupled with a photoion/photoelectron coincidence acquisition device. The assignment and the interpretation of the spectra are based on a characterization by ab initio and density functional theory calculations of the geometry and of the electronic states of the cation. The absence of structures in the slow photoelectron spectrum is explained by a congestion of the spectrum due to the dense vibrational progressions of the very low frequency torsional mode in the cation either in pure form or in combination bands. Also a high density of electronic states has been found in the cation. Presently, we estimate the experimental adiabatic and vertical ionization energy of benzophenone at 8.80 ± 0.01 and 8.878 ± 0.005 eV, respectively. The ionization energy as well as the energies of the excited states are compared to the calculated ones.
Collapse
Affiliation(s)
- Noura Khemiri
- †Laboratoire Matériaux, Molécules et Applications, Institut Préparatoire aux Etudes Scientifiques et Techniques, La Marsa, Université de Carthage, Carthage, Tunisie
| | - Sabri Messaoudi
- †Laboratoire Matériaux, Molécules et Applications, Institut Préparatoire aux Etudes Scientifiques et Techniques, La Marsa, Université de Carthage, Carthage, Tunisie
| | - Manef Abderrabba
- †Laboratoire Matériaux, Molécules et Applications, Institut Préparatoire aux Etudes Scientifiques et Techniques, La Marsa, Université de Carthage, Carthage, Tunisie
| | - Gloria Spighi
- ‡CEA, CNRS, IRAMIS/LIDyL/Laboratoire Francis Perrin URA2453, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Marc-André Gaveau
- ‡CEA, CNRS, IRAMIS/LIDyL/Laboratoire Francis Perrin URA2453, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Marc Briant
- ‡CEA, CNRS, IRAMIS/LIDyL/Laboratoire Francis Perrin URA2453, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Benoît Soep
- §CNRS, CEA, IRAMIS/LIDyL/Laboratoire Francis Perrin URA2453, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Jean-Michel Mestdagh
- §CNRS, CEA, IRAMIS/LIDyL/Laboratoire Francis Perrin URA2453, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Majdi Hochlaf
- ∥Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - Lionel Poisson
- §CNRS, CEA, IRAMIS/LIDyL/Laboratoire Francis Perrin URA2453, CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
45
|
Stern S, Holmegaard L, Filsinger F, Rouzée A, Rudenko A, Johnsson P, Martin AV, Barty A, Bostedt C, Bozek J, Coffee R, Epp S, Erk B, Foucar L, Hartmann R, Kimmel N, Kühnel KU, Maurer J, Messerschmidt M, Rudek B, Starodub D, Thøgersen J, Weidenspointner G, White TA, Stapelfeldt H, Rolles D, Chapman HN, Küpper J. Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers. Faraday Discuss 2015; 171:393-418. [PMID: 25415561 DOI: 10.1039/c4fd00028e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We give a detailed account of the theoretical analysis and the experimental results of an X-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett.112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i.e., picometers and femtoseconds, using X-ray free-electron lasers.
Collapse
Affiliation(s)
- S Stern
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Calegari F, Ayuso D, Trabattoni A, Belshaw L, De Camillis S, Anumula S, Frassetto F, Poletto L, Palacios A, Decleva P, Greenwood JB, Martin F, Nisoli M. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 2014; 346:336-9. [DOI: 10.1126/science.1254061] [Citation(s) in RCA: 502] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
47
|
Pham LTM, Kim SJ, Ahn US, Choi JW, Song BK, Kim YH. Extension of polyphenolics by CWPO-C peroxidase mutant containing radical-robust surface active site. Appl Biochem Biotechnol 2014; 172:792-805. [PMID: 24122664 DOI: 10.1007/s12010-013-0534-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/15/2013] [Indexed: 11/22/2022]
Abstract
Expressed as insoluble forms in Escherichia coli, native cationic cell wall peroxidase (CWPO-C) from the poplar tree and mutant variants were successfully reactivated via refolding experiments and used to elucidate the previously presumed existence of an electron transfer (ET) pathway in the CWPO-C structure. Their catalytic properties were fully characterized through various analyses including steady-state kinetic, direct oxidation of lignin macromolecules and their respective stabilities during the polymerization reactions. The analysis results proved that the 74th residue on the CWPO-C surface plays an important role in catalyzing the macromolecules via supposed ET mechanism. By comparing the residual activities of wild-type CWPO-C and mutant 74W CWPO-C after 3 min, mutation of tyrosine 74 residue to tryptophan increased the radical resistance of peroxidase up to ten times dramatically while maintaining its capability to oxidize lignin macromolecules. Furthermore, extension of poly(catechin) as well as lignin macromolecules with CWPO-C Y74W mutant clearly showed that this radical-resistant peroxidase mutant can increase the molecular weight of various kinds of polyphenolics by using surface-located active site. The anti-oxidation activity of the synthesized poly(catechin) was confirmed by xanthine oxidase assay. The elucidation of a uniquely catalytic mechanism in CWPO-C may improve the applicability of the peroxidase/H2O2 catalyst to green polymer chemistry.
Collapse
|
48
|
Li W, Hu Y, Liu F, Shan X, Sheng L. Site-selective dissociation processes of cationic ethanol conformers: the role of hyperconjugation. J Phys Chem A 2014; 118:7096-103. [PMID: 25080068 DOI: 10.1021/jp5035568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In present report, we explored hyperconjugation effects on the site- and bond-selective dissociation processes of cationic ethanol conformers by the use of theoretical methods (including configuration optimizations, natural bond orbital (NBO) analysis, and density of states (DOS) calculations, etc.) and the tunable synchrotron vacuum ultraviolet (SVUV) photoionization mass spectrometry. The dissociative mechanism of ethanol cations, in which hyperconjugative interactions and charge-transfer processes were involved, was proposed. The results reveal Cα-H and C-C bonds are selectively weakened, which arise as a result of the hyperconjugative interactions σCα-H → p in the trans-conformer and σC-C → p in gauche-conformer after being ionized. As a result, the selective bond cleavages would occur and different fragments were observed.
Collapse
Affiliation(s)
- Weixing Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, P. R. China
| | | | | | | | | |
Collapse
|
49
|
Erk B, Boll R, Trippel S, Anielski D, Foucar L, Rudek B, Epp SW, Coffee R, Carron S, Schorb S, Ferguson KR, Swiggers M, Bozek JD, Simon M, Marchenko T, Küpper J, Schlichting I, Ullrich J, Bostedt C, Rolles D, Rudenko A. Imaging charge transfer in iodomethane upon x-ray photoabsorption. Science 2014; 345:288-91. [DOI: 10.1126/science.1253607] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Benjamin Erk
- Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
- Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - Rebecca Boll
- Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
- Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - Sebastian Trippel
- Center for Free-Electron Laser Science (CFEL), DESY, 22607 Hamburg, Germany
| | - Denis Anielski
- Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
- Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - Lutz Foucar
- Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany
- Max-Planck-Institut für Medizinische Forschung, 69120 Heidelberg, Germany
| | - Benedikt Rudek
- Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
- Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Sascha W. Epp
- Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - Ryan Coffee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 94025 Menlo Park, CA, USA
| | - Sebastian Carron
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 94025 Menlo Park, CA, USA
| | - Sebastian Schorb
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 94025 Menlo Park, CA, USA
| | - Ken R. Ferguson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 94025 Menlo Park, CA, USA
| | - Michele Swiggers
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 94025 Menlo Park, CA, USA
| | - John D. Bozek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 94025 Menlo Park, CA, USA
| | - Marc Simon
- Sorbonne Universités, UPMC Université Paris 06, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005, Paris, France
- CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005, Paris, France
| | - Tatiana Marchenko
- Sorbonne Universités, UPMC Université Paris 06, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005, Paris, France
- CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005, Paris, France
| | - Jochen Küpper
- Center for Free-Electron Laser Science (CFEL), DESY, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
- Center for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| | - Ilme Schlichting
- Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany
- Max-Planck-Institut für Medizinische Forschung, 69120 Heidelberg, Germany
| | - Joachim Ullrich
- Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
- Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Christoph Bostedt
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 94025 Menlo Park, CA, USA
| | - Daniel Rolles
- Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
- Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany
- Max-Planck-Institut für Medizinische Forschung, 69120 Heidelberg, Germany
| | - Artem Rudenko
- Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
50
|
Zhang Y, Hua W, Bennett K, Mukamel S. Nonlinear Spectroscopy of Core and Valence Excitations Using Short X-Ray Pulses: Simulation Challenges. DENSITY-FUNCTIONAL METHODS FOR EXCITED STATES 2014; 368:273-345. [DOI: 10.1007/128_2014_618] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|