1
|
Akbar WA, Rahim HU, Rutigliano FA. Microbial- and seaweed-based biopolymers: Sources, extractions and implications for soil quality improvement and environmental sustainability - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120964. [PMID: 38692027 DOI: 10.1016/j.jenvman.2024.120964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/10/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Improving soil quality without creating any environmental problems is an unescapable goal of sustainable agroecosystem management, according to the United Nations 2030 Agenda for Sustainable Development. Therefore, sustainable solutions are in high demand. One of these is the use of biopolymers derived from microbes and seaweed. This paper aims to provide an overview of the sources of extraction and use of microbial (bacteria and cyanobacteria) and seaweed-based biopolymers as soil conditioners, the characteristics of biopolymer-treated soils, and their environmental concerns. A preliminary search was also carried out on the entire Scopus database on biopolymers to find out how much attention has been paid to biopolymers as biofertilizers compared to other applications of these molecules until now. Several soil quality indicators were evaluated, including soil moisture, color, structure, porosity, bulk density, temperature, aggregate stability, nutrient availability, organic matter, and microbial activity. The mechanisms involved in improving soil quality were also discussed.
Collapse
Affiliation(s)
- Waqas Ali Akbar
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, via Vivaldi, n. 43, 81100, Caserta, Italy.
| | - Hafeez Ur Rahim
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Italy
| | - Flora Angela Rutigliano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, via Vivaldi, n. 43, 81100, Caserta, Italy
| |
Collapse
|
2
|
Kumari M, Sharma S, Kanwar N, Naman S, Baldi A. Dextran-based Drug Delivery Approaches for Lung Diseases: A Review. Curr Drug Deliv 2024; 21:1474-1496. [PMID: 38243938 DOI: 10.2174/0115672018267737231116100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 01/22/2024]
Abstract
Respiratory disorders, such as tuberculosis, cystic fibrosis, chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary inflammation, are among the most prevalent ailments in today's world. Dextran, an exopolysaccharide formed by Leuconostoc mesenteroides (slimeproducing bacteria), and its derivatives are investigated for several therapeutic utilities. Dextranbased drug delivery system can become an innovative strategy in the treatment of several respiratory ailments as it offers numerous advantages, such as mucolytic action, airway hydration, antiinflammatory properties, and radioprotective effect as compared to other polysaccharides. Being biocompatible, flexible hydrophilic nature, biodegradable, tasteless, odourless, non-mutagenic, watersoluble and non-toxic edible polymer, dextran-based drug delivery systems have been explored for a wide range of therapeutic applications, especially in lungs and respiratory diseases. The present article comprehensively discusses various derivatives of dextran with their attributes to be considered for drug delivery and extensive therapeutic benefits, with a special emphasis on the armamentarium of dextran-based formulations for the treatment of respiratory disorders and associated pathological conditions. The information provided will act as a platform for formulation scientists as important considerations in designing therapeutic approaches for lung and respiratory diseases. With an emphasis on lung illnesses, this article will offer an in-depth understanding of dextran-based delivery systems in respiratory illnesses.
Collapse
Affiliation(s)
- Manisha Kumari
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Sanyam Sharma
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Navjot Kanwar
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Subh Naman
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Ashish Baldi
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| |
Collapse
|
3
|
Lupu A, Gradinaru LM, Gradinaru VR, Bercea M. Diversity of Bioinspired Hydrogels: From Structure to Applications. Gels 2023; 9:gels9050376. [PMID: 37232968 DOI: 10.3390/gels9050376] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels are three-dimensional networks with a variety of structures and functions that have a remarkable ability to absorb huge amounts of water or biological fluids. They can incorporate active compounds and release them in a controlled manner. Hydrogels can also be designed to be sensitive to external stimuli: temperature, pH, ionic strength, electrical or magnetic stimuli, specific molecules, etc. Alternative methods for the development of various hydrogels have been outlined in the literature over time. Some hydrogels are toxic and therefore are avoided when obtaining biomaterials, pharmaceuticals, or therapeutic products. Nature is a permanent source of inspiration for new structures and new functionalities of more and more competitive materials. Natural compounds present a series of physico-chemical and biological characteristics suitable for biomaterials, such as biocompatibility, antimicrobial properties, biodegradability, and nontoxicity. Thus, they can generate microenvironments comparable to the intracellular or extracellular matrices in the human body. This paper discusses the main advantages of the presence of biomolecules (polysaccharides, proteins, and polypeptides) in hydrogels. Structural aspects induced by natural compounds and their specific properties are emphasized. The most suitable applications will be highlighted, including drug delivery, self-healing materials for regenerative medicine, cell culture, wound dressings, 3D bioprinting, foods, etc.
Collapse
Affiliation(s)
- Alexandra Lupu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Luiza Madalina Gradinaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, "Alexandru Ioan Cuza" University, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
4
|
Su Z, Yan Z, Nakashima K, Takano C, Kawasaki S. Naturally Derived Cements Learned from the Wisdom of Ancestors: A Literature Review Based on the Experiences of Ancient China, India and Rome. MATERIALS (BASEL, SWITZERLAND) 2023; 16:603. [PMID: 36676340 PMCID: PMC9867412 DOI: 10.3390/ma16020603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
For over a thousand years, many ancient cements have remained durable despite long-term exposure to atmospheric or humid agents. This review paper summarizes technologies of worldwide ancient architectures which have shown remarkable durability that has preserved them over thousands of years of constant erosion. We aim to identify the influence of organic and inorganic additions in altering cement properties and take these lost and forgotten technologies to the production frontline. The types of additions were usually decided based on the local environment and purpose of the structure. The ancient Romans built magnificent structures by making hydraulic cement using volcanic ash. The ancient Chinese introduced sticky rice and other local materials to improve the properties of pure lime cement. A variety of organic and inorganic additions used in traditional lime cement not only changes its properties but also improves its durability for centuries. The benefits they bring to cement may also be useful in enzyme-induced carbonate precipitation (EICP) and microbially induced carbonate precipitation (MICP) fields. For instance, sticky rice has been confirmed to play a crucial role in regulating calcite crystal growth and providing interior hydrophobic conditions, which contribute to improving the strength and durability of EICP- and MICP-treated samples in a sustainable way.
Collapse
Affiliation(s)
- Zhan Su
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Zhen Yan
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kazunori Nakashima
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Chikara Takano
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Satoru Kawasaki
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
5
|
Masuda T, Takahashi S, Ochiai T, Yamada T, Shimada N, Maruyama A. Autonomous Vesicle/Sheet Transformation of Cell-Sized Lipid Bilayers by Hetero-Grafted Copolymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53558-53566. [PMID: 36442490 DOI: 10.1021/acsami.2c17435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lipid bilayer transformations are involved in biological phenomena including cell division, autophagy, virus infection, and vesicle transport. Artificial materials to manipulate membrane dynamics play a vital role in cellular engineering and drug delivery technology that accesses the membranes of cells or liposomes. Transformation from 3D lipid vesicles to 2D nanosheets is thermodynamically prohibited because the apolar/polar interfaces between the hydrophobic bilayer edges and water are energetically unfavorable. We recently reported that cell-sized lipid vesicles (or giant vesicles) can be thoroughly transformed to 2D nanosheets by the addition of the amphiphilic E5 peptide and a cationic graft copolymer. Here, to understand the mechanisms underlying the lipid nanosheet formation, we systematically investigated the structural effects of the cationic copolymers on nanosheet formation. We found that lipid nanosheet formation is controlled in an all-or-nothing manner when the graft content of the copolymer is increased from 5.7 mol % to 7.7 mol %. This finding prompted us to obtain autonomous 2D/3D transformation system. A newly designed hetero-grafted cationic copolymers with thermoresponsive poly(N-isopropylacrylamide) grafts enables spontaneous 3D vesicle/2D nanosheet transformation in response to temperature. These findings would enable us to obtain smart nanointerfaces that trigger cell-sized lipid membrane dynamics in response to diverse stimuli and to create 2D-3D convertible lipid-based biomaterials.
Collapse
Affiliation(s)
- Tsukuru Masuda
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa226-8501, Japan
| | - Shutaro Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa226-8501, Japan
| | - Takuro Ochiai
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa226-8501, Japan
| | - Takayoshi Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa226-8501, Japan
| | - Naohiko Shimada
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa226-8501, Japan
| | - Atsushi Maruyama
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa226-8501, Japan
| |
Collapse
|
6
|
Dextrans and dextran derivatives as polyelectrolytes in layer-by-layer processing materials – A review. Carbohydr Polym 2022; 293:119700. [DOI: 10.1016/j.carbpol.2022.119700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
|
7
|
Zhao C, Pan B, Wang M, Si Y, Taha AY, Liu G, Pan T, Sun G. Improving the Sensitivity of Nanofibrous Membrane-Based ELISA for On-Site Antibiotics Detection. ACS Sens 2022; 7:1458-1466. [PMID: 35426310 DOI: 10.1021/acssensors.2c00208] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An ultrasensitive and portable colorimetric enzyme-linked immunosorbent assay (ELISA) sensor for antibiotics was fabricated by immobilizing antibodies inside the largely porous and highly hydrophilic nanofibrous membranes. Different from regular electrospun nanofibrous membranes where antibodies may frequently be blocked by the heterogeneous porous structure and sterically crowded loaded on the surface, the controlled microporous structure and increased hydrophilicity of nanofibrous membranes could improve the diffusion properties of antibodies, reduce the sterically crowding effect, and dramatically improve the sensitivity of the membrane-based ELISA. The limitation of detection (LOD) for chloramphenicol (CAP) reached 0.005 ng/mL, around 200 times lower than the conventional paper-based ELISA, making quantitative analysis and portable on-site detection achievable via the use of smartphones. The successful design and fabrication of the nanofibrous membrane-based ELISA with novel features overcome the structural drawbacks of regular electrospun nanofibrous membranes and provide new paths to develop highly sensitive on-site detection of hazardous chemical agents.
Collapse
Affiliation(s)
- Cunyi Zhao
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| | - Bofeng Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| | - Minyuan Wang
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616, United States
| | - Yang Si
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California, Davis, California 95616, United States
| | - Gangyu Liu
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616, United States
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Tingrui Pan
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
8
|
Structural characteristics of Saccharomyces cerevisiae mannoproteins: Impact of their polysaccharide part. Carbohydr Polym 2022; 277:118758. [PMID: 34893213 DOI: 10.1016/j.carbpol.2021.118758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
While they have many properties of interest in enology, the structure-function relationships of mannoproteins and the part played by their polysaccharide moiety are not yet well understood. Mannoproteins (MP) extracted with β-glucanase from a laboratory yeast strain (WT), two of its mutants (Mnn2 with unbranched N-glycosylated chains and Mnn4 without mannosyl-phosphorylation), and an enological strain (Com) were purified and thoroughly characterized. The protein moiety of the four MPs had the same amino acid composition. Glycosyl-linkage and net charge analyses confirmed the expected differences in mutant strain MPs. MP-Com had the highest mannose/glucose ratio followed by MP-WT/MP-Mnn4, and MP-Mnn2 (13.5 > 5.6 ≈ 5.2 > 2.2). The molar mass dependencies of Rg, Rh, and [η], determined through HPSEC-MALLS-QELS-Viscosimetry, revealed specific conformational properties of mannoproteins related to their nature of highly branched copolymers with two branching levels. It also clearly showed structural differences between MP-Com, MP-WT/Mnn4, and MP Mnn2, and differences between two populations within the four mannoproteins.
Collapse
|
9
|
Abstract
Biopolymers are natural polymers sourced from plants and animals, which include a variety of polysaccharides and polypeptides. The inclusion of biopolymers into biomedical hydrogels is of great interest because of their inherent biochemical and biophysical properties, such as cellular adhesion, degradation, and viscoelasticity. The objective of this Review is to provide a detailed overview of the design and development of biopolymer hydrogels for biomedical applications, with an emphasis on biopolymer chemical modifications and cross-linking methods. First, the fundamentals of biopolymers and chemical conjugation methods to introduce cross-linking groups are described. Cross-linking methods to form biopolymer networks are then discussed in detail, including (i) covalent cross-linking (e.g., free radical chain polymerization, click cross-linking, cross-linking due to oxidation of phenolic groups), (ii) dynamic covalent cross-linking (e.g., Schiff base formation, disulfide formation, reversible Diels-Alder reactions), and (iii) physical cross-linking (e.g., guest-host interactions, hydrogen bonding, metal-ligand coordination, grafted biopolymers). Finally, recent advances in the use of chemically modified biopolymer hydrogels for the biofabrication of tissue scaffolds, therapeutic delivery, tissue adhesives and sealants, as well as the formation of interpenetrating network biopolymer hydrogels, are highlighted.
Collapse
Affiliation(s)
- Victoria G. Muir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Zeini D, Glover JC, Knudsen KD, Nyström B. Influence of Lysine and TRITC Conjugation on the Size and Structure of Dextran Nanoconjugates with Potential for Biomolecule Delivery to Neurons. ACS APPLIED BIO MATERIALS 2021; 4:6832-6842. [DOI: 10.1021/acsabm.1c00544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Darya Zeini
- Department of Chemistry, University of Oslo, Blindern, P.O.
Box 1033, Oslo N-0315, Norway
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.
Box 1103, Oslo N-0317, Norway
| | - Joel C. Glover
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.
Box 1103, Oslo N-0317, Norway
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo N-0317, Norway
| | | | - Bo Nyström
- Department of Chemistry, University of Oslo, Blindern, P.O.
Box 1033, Oslo N-0315, Norway
| |
Collapse
|
11
|
Kilian HI, Pradhan AJ, Jahagirdar D, Ortega J, Atilla-Gokcumen GE, Lovell JF. Light-Triggered Release of Large Biomacromolecules from Porphyrin-Phospholipid Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10859-10865. [PMID: 34450021 DOI: 10.1021/acs.langmuir.1c01848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liposomes containing small amounts of porphyrin-phospholipid (PoP) have been shown to encapsulate small molecular weight cargos and then release them upon exposure to red light. A putative mechanism involves transient pore formation in the bilayer induced by PoP-mediated photo-oxidation of unsaturated lipids. However, little is known about the properties of such pores. This study assesses whether large carbohydrate and protein molecules could be released from PoP liposomes upon red light exposure. A small fluorophore with ∼0.5 kDa in molecular weight, fluorescently labeled dextrans of ∼5 and ∼500 kDa, and a ∼240 kDa fluorescent protein were passively entrapped in PoP liposomes. When exposed to 665 nm irradiation, liposomes containing PoP, but not liposomes lacking it, released all these cargos in a size-dependent manner that occurred with oxidation of unsaturated lipids included in the bilayer. Thus, this study demonstrates the feasibility of light-triggered release of large biomacromolecules from liposomes.
Collapse
Affiliation(s)
- Hailey I Kilian
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Apoorva J Pradhan
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Gunes Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
12
|
Rangel Euzcateguy G, Parajua-Sejil C, Marchal P, Chapron D, Averlant-Petit MC, Stefan L, Pickaert G, Durand A. Rheological investigation of the influence of dextran on the self-assembly of lysine derivatives in water/dimethylsulfoxide mixtures. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Lee J, Seo M. Downsizing of Block Polymer-Templated Nanopores to One Nanometer via Hyper-Cross-Linking of High χ-Low N Precursors. ACS NANO 2021; 15:9154-9166. [PMID: 33950684 DOI: 10.1021/acsnano.1c02690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthesizing nanoporous polymer from the block polymer template by selective removal of the sacrificial domain offers straightforward pore size control as a function of the degree of polymerization (N). Downscaling pore size into the microporous regime (<2 nm) has been thermodynamically challenging, because the low N drives the system to disorder and the small-sized pore is prone to collapse. Herein, we report that maximizing cross-linking density of a block polymer precursor with an increased interaction parameter (χ) can help successfully stabilize the structure bearing pore sizes of 1.1 nm. We adopt polymerization-induced microphase separation (PIMS) combined with hyper-cross-linking as a strategy for the preparation of the bicontinuous block polymer precursors with a densely cross-linked framework by copolymerization of vinylbenzyl chloride with divinylbenzene and also Friedel-Crafts alkylation. Incorporating 4-vinylbiphenyl as a higher-χ comonomer to the sacrificial polylactide (PLA) block and optimizing the segregation strength versus cross-linking density allow for further downscaling. Control of pore size by N of PLA is demonstrated in the range of 9.9-1.1 nm. Accessible surface area to fluorescein-tagged dextrans is regulated by the relative size of the pore to the guest, and pore size is controlled. These findings will be useful for designing microporous polymers with tailored pore size for advanced catalytic and separation applications.
Collapse
Affiliation(s)
| | - Myungeun Seo
- Department of Chemistry, KAIST, Daejeon 34141, Korea
- KAIST Institute for Nanocentury, KAIST, Daejeon 34141, Korea
| |
Collapse
|
14
|
Karthik CS, Chethana MH, Manukumar HM, Ananda AP, Sandeep S, Nagashree S, Mallesha L, Mallu P, Jayanth HS, Dayananda BP. Synthesis and characterization of chitosan silver nanoparticle decorated with benzodioxane coupled piperazine as an effective anti-biofilm agent against MRSA: A validation of molecular docking and dynamics. Int J Biol Macromol 2021; 181:540-551. [PMID: 33766592 DOI: 10.1016/j.ijbiomac.2021.03.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
Biomaterial research has improved the delivery and efficacy of drugs over a wide range of pharmaceutical applications. The objective of this study was to synthesize benzodioxane coupled piperazine decorated chitosan silver nanoparticle (Bcp*C@AgNPs) against methicillin-resistant Staphylococcus aureus (MRSA) and to assess the nanoparticle as an effective candidate for antibacterial and anti-biofilm care. Antibacterial activity of the compound was examined and minimum inhibitory concentration (MIC) was observed at (10.21 ± 0.03 ZOI) a concentration of 200 μg/mL. The Bcp*C@AgNPs interferes with surface adherence of MRSA, suggesting an anti-biofilm distinctive property that is verified for the first time by confocal laser microscopic studies. By ADMET studies the absorption, distribution, metabolism, excretion and toxicity of the compound was examined. The interaction solidity and the stability of the compound when surrounded by water molecules were analyzed by docking and dynamic simulation analysis. The myoblast cell line (L6) was considered for toxicity study and was observed that the compound exhibited less toxic effect. This current research highlights the biocidal efficiency of Bcp*C@AgNPs with their bactericidal and anti-biofilm properties over potential interesting clinical trial targets in future.
Collapse
Affiliation(s)
- C S Karthik
- Department of Chemistry, SJCE, JSS Science and Technology University, Mysuru 570 006, Karnataka, India
| | - M H Chethana
- Department of Chemistry, SJCE, JSS Science and Technology University, Mysuru 570 006, Karnataka, India
| | - H M Manukumar
- Department of Chemistry, SJCE, JSS Science and Technology University, Mysuru 570 006, Karnataka, India
| | - A P Ananda
- Ganesh Consultancy and Analytical Services, Hebbal Industrial Area, Mysuru 570016, Karnataka, India
| | - S Sandeep
- Department of Chemistry, SJCE, JSS Science and Technology University, Mysuru 570 006, Karnataka, India
| | - S Nagashree
- Department of Chemistry, SJCE, JSS Science and Technology University, Mysuru 570 006, Karnataka, India
| | - L Mallesha
- PG Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru 570 025, Karnataka, India
| | - P Mallu
- Department of Chemistry, SJCE, JSS Science and Technology University, Mysuru 570 006, Karnataka, India.
| | - H S Jayanth
- Department of Microbiology, Yuvaraja's College, University of Mysore, Mysuru 570005, Karnataka, India
| | - B P Dayananda
- PG Department of Chemistry, Maharani's College, University of Mysore, Mysuru 570005, Karnataka, India
| |
Collapse
|
15
|
Grossutti M, Dutcher JR. Hydration Water Structure, Hydration Forces, and Mechanical Properties of Polysaccharide Films. Biomacromolecules 2020; 21:4871-4877. [DOI: 10.1021/acs.biomac.0c01098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael Grossutti
- Department of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - John R. Dutcher
- Department of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
16
|
Semenova M, Zelikina D, Antipova A, Martirosova E, Palmina N, Chebotarev S, Samuseva Y, Bogdanova N, Kasparov V. Impact of the character of the associative interactions between chitosan and whey protein isolate on the structure, thermodynamic parameters, and functionality of their complexes with essential lipids. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Shivgan AT, Marzinek JK, Huber RG, Krah A, Henchman RH, Matsudaira P, Verma CS, Bond PJ. Extending the Martini Coarse-Grained Force Field to N-Glycans. J Chem Inf Model 2020; 60:3864-3883. [PMID: 32702979 DOI: 10.1021/acs.jcim.0c00495] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycans play a vital role in a large number of cellular processes. Their complex and flexible nature hampers structure-function studies using experimental techniques. Molecular dynamics (MD) simulations can help in understanding dynamic aspects of glycans if the force field parameters used can reproduce key experimentally observed properties. Here, we present optimized coarse-grained (CG) Martini force field parameters for N-glycans, calibrated against experimentally derived binding affinities for lectins. The CG bonded parameters were obtained from atomistic (ATM) simulations for different glycan topologies including high mannose and complex glycans with various branching patterns. In the CG model, additional elastic networks are shown to improve maintenance of the overall conformational distribution. Solvation free energies and octanol-water partition coefficients were also calculated for various N-glycan disaccharide combinations. When using standard Martini nonbonded parameters, we observed that glycans spontaneously aggregated in the solution and required down-scaling of their interactions for reproduction of ATM model radial distribution functions. We also optimized the nonbonded interactions for glycans interacting with seven lectin candidates and show that a relatively modest scaling down of the glycan-protein interactions can reproduce free energies obtained from experimental studies. These parameters should be of use in studying the role of glycans in various glycoproteins and carbohydrate binding proteins as well as their complexes, while benefiting from the efficiency of CG sampling.
Collapse
Affiliation(s)
- Aishwary T Shivgan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Jan K Marzinek
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Roland G Huber
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Alexander Krah
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Paul Matsudaira
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| | - Chandra S Verma
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551
| | - Peter J Bond
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| |
Collapse
|
18
|
An oligosaccharide-marker approach to quantify specific polysaccharides in herbal formula by LC-qTOF-MS: Danggui Buxue Tang, a case study. J Pharm Biomed Anal 2020; 185:113235. [DOI: 10.1016/j.jpba.2020.113235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022]
|
19
|
Dewi BP, van der Linden E, Bot A, Venema P. Second order virial coefficients from phase diagrams. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Dockhorn R, Plüschke L, Geisler M, Zessin J, Lindner P, Mundil R, Merna J, Sommer JU, Lederer A. Polyolefins Formed by Chain Walking Catalysis-A Matter of Branching Density Only? J Am Chem Soc 2019; 141:15586-15596. [PMID: 31438682 DOI: 10.1021/jacs.9b06785] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recently developed chain walking (CW) catalysis is an elegant approach to produce materials with controllable structure and properties. However, there is still a lack in understanding of how the reaction mechanism influences the macromolecular structures. In this study, a series of dendritic polyethylenes (PE) synthesized by Pd-α-diimine-complex through CW catalysis (CWPE) is investigated by means of theory and experiment. Thereby, the exceptional ability of in situ tailoring polymer structure by varying synthesis parameters was exploited to tune the branching architecture, which allowed us to establish a precise relationship between synthesis, structure, and solution properties. The systematically produced polymers were characterized by state-of-the-art multidetector separation and neutron scattering experiments as well as atomic force microscopy to access molecular properties of CWPE. On a global scale, the CWPE appear in a worm-like conformation independently on the synthesis conditions. However, severe differences in their contraction factors suggested that CWPE differ substantially in topology. These observations were verified by NMR studies that showed that CWPE possess a constant total number of branches but varying branching distribution. Small angle neutron scattering experiments gave access to structural characteristics from global to segmental scale and revealed the unique heterogeneity of CWPE, which is predominantly based on differences in their dendritic side chains. The experimental data were compared to theoretical CW structures modeled with different reaction-to-walking probabilities. Simple theoretical arguments predict a crossover from dendritic to linear topologies yielding a structural range from purely linear to dendritic chain growth. Yet, comparison of theoretical and empirical scattering curves gave the first evidence that a transition state to worm-like topologies is actually experimentally accessible. This crossover regime is characterized by linear global features and dendritic local substructures contrary to randomly hyperbranched systems. Instead, the obtained CWPE systems have characteristics of disordered dendritic bottle brushes and can be adjusted by the walking rate/reaction probability of the catalyst.
Collapse
Affiliation(s)
- Ron Dockhorn
- Leibniz Institute of Polymer Research Dresden , Hohe Strasse 6 , 01069 Dresden , Germany
| | - Laura Plüschke
- Leibniz Institute of Polymer Research Dresden , Hohe Strasse 6 , 01069 Dresden , Germany.,Technische Universität Dresden , 01062 Dresden , Germany
| | - Martin Geisler
- Leibniz Institute of Polymer Research Dresden , Hohe Strasse 6 , 01069 Dresden , Germany.,Technische Universität Dresden , 01062 Dresden , Germany
| | - Johanna Zessin
- Leibniz Institute of Polymer Research Dresden , Hohe Strasse 6 , 01069 Dresden , Germany.,Technische Universität Dresden , 01062 Dresden , Germany
| | - Peter Lindner
- Institut Laue-Langevin (ILL) , 71 Avenue des Martyrs , 38000 Grenoble , France
| | - Robert Mundil
- University of Chemistry and Technology Prague , Technická 5 , 16628 Prague 6 , Czech Republic
| | - Jan Merna
- University of Chemistry and Technology Prague , Technická 5 , 16628 Prague 6 , Czech Republic
| | - Jens-Uwe Sommer
- Leibniz Institute of Polymer Research Dresden , Hohe Strasse 6 , 01069 Dresden , Germany.,Technische Universität Dresden , 01062 Dresden , Germany
| | - Albena Lederer
- Leibniz Institute of Polymer Research Dresden , Hohe Strasse 6 , 01069 Dresden , Germany.,Technische Universität Dresden , 01062 Dresden , Germany
| |
Collapse
|
21
|
Hao N, Umair A, Zhu M, Duan X, Li L. Effect of Macromonomer Branching on Structural Features and Solution Properties of Long-Subchain Hyperbranched Polymers: The Case of Four-Arm Star Macromonomers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nairong Hao
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China 518060
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China 230026
| | - Ahmad Umair
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China 230026
| | - Mo Zhu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China 230026
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China 130022
| | - Lianwei Li
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China 518060
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China 230026
| |
Collapse
|
22
|
Smith P, Ziolek RM, Gazzarrini E, Owen DM, Lorenz CD. On the interaction of hyaluronic acid with synovial fluid lipid membranes. Phys Chem Chem Phys 2019; 21:9845-9857. [PMID: 31032510 DOI: 10.1039/c9cp01532a] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
All-atom molecular dynamics simulations have been used to investigate the adsorption of low molecular weight hyaluronic acid to lipid membranes. We have determined the interactions that govern the adsorption of three different molecular weight hyaluronic acid molecules (0.4, 3.8 & 15.2 kDa) to lipid bilayers that are representative of the surface-active phospholipid bilayers found in synovial joints. We have found that both direct hydrogen bonds and water-mediated interactions with the lipid headgroups play a key role in the binding of hyaluronic acid to the lipid bilayer. The water-mediated interactions become increasingly important in stabilising the adsorbed hyaluronic acid molecules as the molecular weight of hyaluronic acid increases. We also observe a redistribution of ions around bound hyaluronic acid molecules and the associated lipid headgroups, and that the degree of redistribution increases with the molecular weight of hyaluronic acid. By comparing this behaviour to that observed in simulations of the charge-neutral polysaccharide dextran (MW ∼ 15 kDa), we show that this charge redistribution leads to an increased alignment of the lipid headgroups with the membrane normal, and therefore to more direct and water-mediated interactions between hyaluronic acid and the lipid membrane. These findings provide a detailed understanding of the general structure of hyaluronic acid-lipid complexes that have recently been presented experimentally, as well as a potential mechanism for their enhanced tribological properties.
Collapse
Affiliation(s)
- Paul Smith
- Biological Physics & Soft Matter Group, Department of Physics, King's College London, London, UK.
| | | | | | | | | |
Collapse
|
23
|
Hao N, Duan X, Yang H, Umair A, Zhu M, Zaheer M, Yang J, Li L. How Does the Branching Effect of Macromonomer Influence the Polymerization, Structural Features, and Solution Properties of Long-Subchain Hyperbranched Polymers? Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02364] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nairong Hao
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China 230026
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China 130022
| | - Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, China 213164
| | - Ahmad Umair
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China 230026
| | - Mo Zhu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China 230026
| | - Muhammad Zaheer
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China 230026
| | - Jinxian Yang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China 230026
| | - Lianwei Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China 230026
| |
Collapse
|
24
|
Fei B, Shen Q. Effects of molecule weight on the liquid adsorption, surface free energy and rheological properties of dextran. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2018. [DOI: 10.1080/10601325.2018.1496793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ben Fei
- State Key Laboratory for Modification of Chemical Fiber and Polymer, Polymer Department of Donghua University, Shanghai, P. R. China
| | - Qing Shen
- State Key Laboratory for Modification of Chemical Fiber and Polymer, Polymer Department of Donghua University, Shanghai, P. R. China
| |
Collapse
|
25
|
Elwinger F, Wernersson J, Furó I. Quantifying Size Exclusion by Diffusion NMR: A Versatile Method to Measure Pore Access and Pore Size. Anal Chem 2018; 90:11431-11438. [DOI: 10.1021/acs.analchem.8b02474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fredrik Elwinger
- Division of Applied Physical Chemistry, KTH Royal Institute of Technology, Teknikringen 36, SE-10044 Stockholm, Sweden
- GE Healthcare Bio-Sciences AB, Björkgatan 31, SE-75184 Uppsala, Sweden
| | - Jonny Wernersson
- GE Healthcare Bio-Sciences AB, Björkgatan 31, SE-75184 Uppsala, Sweden
| | - István Furó
- Division of Applied Physical Chemistry, KTH Royal Institute of Technology, Teknikringen 36, SE-10044 Stockholm, Sweden
- GE Healthcare Bio-Sciences AB, Björkgatan 31, SE-75184 Uppsala, Sweden
| |
Collapse
|
26
|
Krawczyk T, Zalewski M, Janeta A, Hodurek P. SEC Separation of Polysaccharides Using Macroporous Spherical Silica Gel as a Stationary Phase. Chromatographia 2018; 81:1365-1372. [PMID: 30294004 PMCID: PMC6153982 DOI: 10.1007/s10337-018-3582-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 01/01/2023]
Abstract
Abstract Meso- and macroporous spherical silica gels of pore sizes in the range of 60–1000 Å and 40–75 µm particle size were investigated as a stationary phase for the separation and purification of polysaccharides and poly(ethylene glycols) (PEGs) of various MWs using an aqueous mobile phase. Sephadex and Bio-Gel were used for comparison as the most common stationary phases for similar purposes. The separation of dextrans of a mean MW = 31 kDa from small molecules (NaCl) was possible with SiO2 with a pore size of 60–300 Å, but the observed efficiencies of a column of the same size were lower comparing with Sephadex or Bio-Gel. In the case of oxidized alginic acid only SiO2 of the 60 Å pore size was suitable, while Sephadex, Bio-Gel and other investigated silicas were not efficient. Sephadex and 300–1000 Å SiO2 offered the possibility of dividing dextrans with MW within the range of 1 MDa–10 kDa into fractions of various MWs, while Bio-Gel and 60 Å SiO2 were not suitable. The investigated silica gels strongly adsorbed PEGs of MW 2–20 kDa. The amount adsorbed decreased with the increase of pore size and they were not useful as a stationary phase for this class of polymers. An advantage of SiO2 of the investigated particle size was a very low back pressure comparing with Sephadex. A considerably lower price of silica offers time- and cost-efficient separation of polysaccharides. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Tomasz Krawczyk
- 1Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mariusz Zalewski
- 1Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Anna Janeta
- 1Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Paweł Hodurek
- 2Wroclaw Medical University, Wybrzeże L. Pasteura 1, 50-367 Wrocław, Poland
| |
Collapse
|
27
|
Abstract
Dextrans are a versatile class of polysaccharides with applications that span medicine, cell biology, food science, and consumer goods. Here, we report on a new type of large monofunctionalized dextran that exhibits unusual properties: efficient cytosolic and nuclear uptake. This dextran permeates various human cell types without the use of transfection agents, electroporation, or membrane perturbation. Cellular uptake occurs primarily through active transport via receptor-mediated processes. These monofunctionalized dextrans could serve as intracellular delivery platforms for drugs or other cargos.
Collapse
Affiliation(s)
- Wen Chyan
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Henry R. Kilgore
- Graduate Program in Biophysics, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Directing filtration to narrow molecular weight distribution of oligodextran in an enzymatic membrane reactor. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Faucard P, Grimaud F, Lourdin D, Maigret JE, Moulis C, Remaud-Siméon M, Putaux JL, Potocki-Véronèse G, Rolland-Sabaté A. Macromolecular structure and film properties of enzymatically-engineered high molar mass dextrans. Carbohydr Polym 2018; 181:337-344. [DOI: 10.1016/j.carbpol.2017.10.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
|
30
|
Salimi-Kenari H, Mollaie F, Dashtimoghadam E, Imani M, Nyström B. Effects of chain length of the cross-linking agent on rheological and swelling characteristics of dextran hydrogels. Carbohydr Polym 2018; 181:141-149. [DOI: 10.1016/j.carbpol.2017.10.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
|
31
|
Su WC, Gettel DL, Chabanon M, Rangamani P, Parikh AN. Pulsatile Gating of Giant Vesicles Containing Macromolecular Crowding Agents Induced by Colligative Nonideality. J Am Chem Soc 2018; 140:691-699. [DOI: 10.1021/jacs.7b10192] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - Morgan Chabanon
- Department
of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Padmini Rangamani
- Department
of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093, United States
| | | |
Collapse
|
32
|
Zannini E, Jeske S, Lynch KM, Arendt EK. Development of novel quinoa-based yoghurt fermented with dextran producer Weissella cibaria MG1. Int J Food Microbiol 2018; 268:19-26. [PMID: 29316448 DOI: 10.1016/j.ijfoodmicro.2018.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 12/24/2017] [Accepted: 01/01/2018] [Indexed: 10/18/2022]
Abstract
The aim of this study was to develop a novel beverage fermented with Weissella cibaria MG1 based on aqueous extracts of wholemeal quinoa flour. The protein digestibility of quinoa based-milk was improved by applying complex proteolytic enzymes able to increase protein solubility by 54.58%. The growth and fermentation characteristics of Weissella cibaria MG1, including EPS production at the end of fermentation, were investigated. Fermented wholemeal quinoa milk using MG1 showed high viable cell counts (>109cfu/ml), a pH of 5.16, and significantly higher water holding capacity (WHC, 100%), viscosity (0.57mPas) and exopolysaccharide (EPS) amount (40mg/l) than the chemical acidified control. High EPS (dextran) concentration in quinoa milk caused earlier aggregation because more EPS occupy more space, and the chenopodin were forced to interact with each other. Microstructure observation indicated that the network structures of EPS-protein improve the texture of fermented quinoa milk. Overall, Weissella cibaria MG1 showed satisfactory technology properties and great potential for further possible application in the development of high viscosity fermented quinoa milk.
Collapse
Affiliation(s)
- Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Ireland
| | - Stephanie Jeske
- School of Food and Nutritional Sciences, University College Cork, Ireland
| | - Kieran M Lynch
- School of Food and Nutritional Sciences, University College Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Ireland; APC Microbiome Institute, Ireland.
| |
Collapse
|
33
|
Vuillemin M, Grimaud F, Claverie M, Rolland-Sabaté A, Garnier C, Lucas P, Monsan P, Dols-Lafargue M, Remaud-Siméon M, Moulis C. A dextran with unique rheological properties produced by the dextransucrase from Oenococcus kitaharae DSM 17330. Carbohydr Polym 2017; 179:10-18. [PMID: 29111031 DOI: 10.1016/j.carbpol.2017.09.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
Abstract
A gene encoding a novel dextransucrase was identified in the genome of Oenococcus kitaharae DSM17330 and cloned into E. coli. With a kcat of 691s-1 and a half-life time of 111h at 30°C, the resulting recombinant enzyme -named DSR-OK- stands as one of the most efficient and stable dextransucrase characterized to date. From sucrose, this enzyme catalyzes the synthesis of a quasi linear dextran with a molar mass higher than 1×109g·mol-1 that presents uncommon rheological properties such as a higher viscosity than that of the most industrially used dextran from L. mesenteroides NRRL-B-512F, a yield stress that was never described before for any type of dextran, as well as a gel-like structure. All these properties open the way to a vast array of new applications in health, food/feed, bulk or fine chemicals fields.
Collapse
Affiliation(s)
- Marlène Vuillemin
- LISBP, Université de Toulouse, CNRS, INRA, INSA, F-31077 Toulouse, France
| | - Florent Grimaud
- LISBP, Université de Toulouse, CNRS, INRA, INSA, F-31077 Toulouse, France
| | - Marion Claverie
- LISBP, Université de Toulouse, CNRS, INRA, INSA, F-31077 Toulouse, France
| | - Agnès Rolland-Sabaté
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France; UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université Avignon, F-84000 Avignon, France
| | - Catherine Garnier
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France
| | - Patrick Lucas
- Université de Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, Institut polytechnique de Bordeaux, INRA USC 1366, F-33140 Villenave d'Ornon, France
| | - Pierre Monsan
- Toulouse White Biotechnology Center, Parc Technologique du Canal, F-31520 Ramonville Saint Agnes, France
| | - Marguerite Dols-Lafargue
- Université de Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, Institut polytechnique de Bordeaux, INRA USC 1366, F-33140 Villenave d'Ornon, France
| | | | - Claire Moulis
- LISBP, Université de Toulouse, CNRS, INRA, INSA, F-31077 Toulouse, France.
| |
Collapse
|
34
|
Schmalhorst PS, Deluweit F, Scherrers R, Heisenberg CP, Sikora M. Overcoming the Limitations of the MARTINI Force Field in Simulations of Polysaccharides. J Chem Theory Comput 2017; 13:5039-5053. [DOI: 10.1021/acs.jctc.7b00374] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Felix Deluweit
- Wyatt Technology Europe, Hochstraße
18, 56307 Dernbach, Germany
| | - Roger Scherrers
- Wyatt Technology Europe, Hochstraße
18, 56307 Dernbach, Germany
| | | | - Mateusz Sikora
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
35
|
Breitenbach BB, Schmid I, Wich PR. Amphiphilic Polysaccharide Block Copolymers for pH-Responsive Micellar Nanoparticles. Biomacromolecules 2017; 18:2839-2848. [DOI: 10.1021/acs.biomac.7b00771] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Benjamin B. Breitenbach
- Institut für Pharmazie
und Biochemie, Johannes Gutenberg-Universität Mainz, Staudingerweg
5, 55128 Mainz, Germany
| | - Ira Schmid
- Institut für Pharmazie
und Biochemie, Johannes Gutenberg-Universität Mainz, Staudingerweg
5, 55128 Mainz, Germany
| | - Peter R. Wich
- Institut für Pharmazie
und Biochemie, Johannes Gutenberg-Universität Mainz, Staudingerweg
5, 55128 Mainz, Germany
| |
Collapse
|
36
|
Zhang M, Yang B, Liu W, Li S. Influence of hydroxypropyl methylcellulose, methylcellulose, gelatin, poloxamer 407 and poloxamer 188 on the formation and stability of soybean oil-in-water emulsions. Asian J Pharm Sci 2017; 12:521-531. [PMID: 32104365 PMCID: PMC7032244 DOI: 10.1016/j.ajps.2017.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/03/2017] [Accepted: 05/20/2017] [Indexed: 11/30/2022] Open
Abstract
Macromolecules of polysaccharides, proteins and poloxamers have a hydrophobic portion and a hydrophilic one that can be used as emulsifiers. Parts of these emulsifiers are safe pharmaceutical excipients, which can replace the irritant low molecular weight surfactants to formulate emulsions for the pharmaceutical field. This project focused on preparing O/W emulsions stabilized with polymers for pharmaceuticals such as polysaccharides, proteins and poloxamers, including hydroxypropyl methylcellulose (HPMC), methylcellulose (MC), gelatin, poloxamer 407 (F127) and poloxamer 188 (F68). Emulsion physical stability was assessed by centrifugation, autoclaving sterilization and droplet size measurements. The stabilization mechanisms of emulsions were determined by interfacial tension and rheological measurements. Results stated that the efficacy of these polymers for pharmaceuticals stabilized emulsions was sorted in the order: F127 > F68 > HPMC > MC > Gelatin.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning, China
| | - Baixue Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning, China
| | - Wei Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning, China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning, China
| |
Collapse
|
37
|
Alpaslan E, Geilich BM, Yazici H, Webster TJ. pH-Controlled Cerium Oxide Nanoparticle Inhibition of Both Gram-Positive and Gram-Negative Bacteria Growth. Sci Rep 2017; 7:45859. [PMID: 28387344 PMCID: PMC5384081 DOI: 10.1038/srep45859] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/03/2017] [Indexed: 12/13/2022] Open
Abstract
Here, the antibacterial activity of dextran-coated nanoceria was examined against Pseudomonas aeruginosa and Staphylococcus epidermidis by varying the dose, the time of treatment, and the pH of the solution. Findings suggested that dextran-coated nanoceria particles were much more effective at killing P. aeruginosa and S. epidermidis at basic pH values (pH = 9) compared to acidic pH values (pH = 6) due to a smaller size and positive surface charge at pH 9. At pH 9, different particle concentrations did cause a delay in the growth of P. aeruginosa, whereas impressively S. epidermidis did not grow at all when treated with a 500 μg/mL nanoceria concentration for 24 hours. For both bacteria, a 2 log reduction and elevated amounts of reactive oxygen species (ROS) generation per colony were observed after 6 hours of treatment with nanoceria at pH 9 compared to untreated controls. After 6 hours of incubation with nanoceria at pH 9, P. aeruginosa showed drastic morphological changes as a result of cellular stress. In summary, this study provides significant evidence for the use of nanoceria (+4) for a wide range of anti-infection applications without resorting to the use of antibiotics, for which bacteria are developing a resistance towards anyway.
Collapse
Affiliation(s)
- Ece Alpaslan
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Benjamin M. Geilich
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Hilal Yazici
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- TUBITAK-MAM, Genetic Engineering & Biotechnology Research Institute, 41470, Gebze, Kocaeli, Turkey
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
38
|
Grossutti M, Bergmann E, Baylis B, Dutcher JR. Equilibrium Swelling, Interstitial Forces, and Water Structuring in Phytoglycogen Nanoparticle Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2810-2816. [PMID: 28244760 DOI: 10.1021/acs.langmuir.7b00025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Phytoglycogen is a highly branched polymer of glucose that forms dendrimeric nanoparticles. This special structure leads to a strong interaction with water that produces exceptional properties such as high water retention, low viscosity, and high stability of aqueous dispersions. We have used ellipsometry at controlled relative humidity (RH) to measure the equilibrium swelling of ultrathin films of phytoglycogen, which directly probes the interstitial forces acting within the films. Comparison of the swelling behavior of films of highly branched phytoglycogen to that of other glucose-based polysaccharides shows that the chain architecture plays an important role in determining both the strong, short-range repulsion of the chains at low RH and the repulsive hydration forces at high RH. In particular, the length scale λ0 that characterizes the exponentially decaying hydration forces provides a quantitative, RH-independent measure of film swelling that differs significantly for different glucose-based polysaccharides. By combining ellipsometry with infrared spectroscopy, we have determined the relationship between water structuring and inter-chain separation in the highly branched phytoglycogen nanoparticles, with maintenance of a high degree of water structure as the film swells significantly at high RH. These insights into the structure-hydration relationship for phytoglycogen are essential to the development of new products and technologies based on this sustainable nanomaterial.
Collapse
Affiliation(s)
- Michael Grossutti
- Department of Physics, University of Guelph , Guelph, Ontario, Canada N1G 2W1
| | - Eric Bergmann
- Department of Physics, University of Guelph , Guelph, Ontario, Canada N1G 2W1
| | - Ben Baylis
- Department of Physics, University of Guelph , Guelph, Ontario, Canada N1G 2W1
| | - John R Dutcher
- Department of Physics, University of Guelph , Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
39
|
Kang L, Lubensky TC. Chiral twist drives raft formation and organization in membranes composed of rod-like particles. Proc Natl Acad Sci U S A 2017; 114:E19-E27. [PMID: 27999184 PMCID: PMC5224397 DOI: 10.1073/pnas.1613732114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipid rafts are hypothesized to facilitate protein interaction, tension regulation, and trafficking in biological membranes, but the mechanisms responsible for their formation and maintenance are not clear. Insights into many other condensed matter phenomena have come from colloidal systems, whose micron-scale particles mimic basic properties of atoms and molecules but permit dynamic visualization with single-particle resolution. Recently, experiments showed that bidisperse mixtures of filamentous viruses can self-assemble into colloidal monolayers with thermodynamically stable rafts exhibiting chiral structure and repulsive interactions. We quantitatively explain these observations by modeling the membrane particles as chiral liquid crystals. Chiral twist promotes the formation of finite-sized rafts and mediates a repulsion that distributes them evenly throughout the membrane. Although this system is composed of filamentous viruses whose aggregation is entropically driven by dextran depletants instead of phospholipids and cholesterol with prominent electrostatic interactions, colloidal and biological membranes share many of the same physical symmetries. Chiral twist can contribute to the behavior of both systems and may account for certain stereospecific effects observed in molecular membranes.
Collapse
Affiliation(s)
- Louis Kang
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Tom C Lubensky
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
40
|
Ni X, Chen W, Xiao M, Wu K, Kuang Y, Corke H, Jiang F. Physical stability and rheological properties of konjac glucomannan-ethyl cellulose mixed emulsions. Int J Biol Macromol 2016; 92:423-430. [DOI: 10.1016/j.ijbiomac.2016.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/23/2016] [Accepted: 07/04/2016] [Indexed: 11/26/2022]
|
41
|
Microwave-Assisted Extraction, Chemical Structures, and Chain Conformation of Polysaccharides from a Novel Cordyceps Sinensis
Fungus UM01. J Food Sci 2016; 81:C2167-74. [DOI: 10.1111/1750-3841.13407] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/21/2016] [Accepted: 07/01/2016] [Indexed: 12/26/2022]
|
42
|
Structural elucidation, chain conformation and immuno-modulatory activity of glucogalactomannan from cultured Cordyceps sinensis fungus UM01. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Schulz M, Soltani A, Zheng X, Ernst M. Effect of inorganic colloidal water constituents on combined low-pressure membrane fouling with natural organic matter (NOM). J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Semenova MG, Antipova AS, Zelikina DV, Martirosova EI, Plashchina IG, Palmina NP, Binyukov VI, Bogdanova NG, Kasparov VV, Shumilina EA, Ozerova NS. Biopolymer nanovehicles for essential polyunsaturated fatty acids: Structure-functionality relationships. Food Res Int 2016; 88:70-78. [PMID: 28847405 DOI: 10.1016/j.foodres.2016.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/29/2016] [Accepted: 05/08/2016] [Indexed: 11/25/2022]
Abstract
Design of stimuli-sensitive (i.e., smart) nano-sized delivery systems for nutraceuticals, having both a nutritional and pharmaceutical value, is very important for the formulation of novel functional food. Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are among the most needed nutraceuticals for the maintenance of good health. It is medically proven that in order to get the best effect on the human health the weight ratio of ω-6/ω-3 PUFAs should be within the range between 1/1 and 5/1. Thus, our work was focused on the molecular design of the delivery systems based on the nano-sized complexes formed between covalent conjugate (sodium caseinate+maltodextrin (a dextrose equivalent=2)) and the combinations of polyunsaturated lipids, which are mutually complementary in the ω-6 and ω-3 PUFAs content: α-linolenic (ALA)+linoleic (LA) acids; liposomes of soy phosphatidylcholine (PC)+ALA; and micelles of soy lysophosphatidylcholine (LPC)+ALA. For such complex particles the high extent (>95%) of encapsulation of these all combinations of lipids by the conjugate was found along with both the high protection of the lipids against oxidation and their high solubility in an aqueous medium. To gain a better insight into such functionality of the complex particles a number of their structural (the weight-averaged molar weight, Mw; the radius of gyration, RG; the hydrodynamic radius, Rh; the architecture; the volume; the density; the ζ-potential; the microviscosity of both the bilayers of PC liposomes and LPC micelles), and thermodynamic (the osmotic second virial coefficient, A2, reflecting the nature and intensity of both the complex-complex and complex-solvent pair interactions) parameters were measured by a combination of such basic physico-chemical methods as static and dynamic multiangle laser light scattering, particle electrophoresis, atomic-force microscopy and electron spin resonance spectroscopy.
Collapse
Affiliation(s)
- Maria G Semenova
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygin str. 4, 119334 Moscow, Russian Federation.
| | - Anna S Antipova
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygin str. 4, 119334 Moscow, Russian Federation
| | - Darya V Zelikina
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygin str. 4, 119334 Moscow, Russian Federation
| | - Elena I Martirosova
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygin str. 4, 119334 Moscow, Russian Federation
| | - Irina G Plashchina
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygin str. 4, 119334 Moscow, Russian Federation
| | - Nadezda P Palmina
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygin str. 4, 119334 Moscow, Russian Federation
| | - Vladimir I Binyukov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygin str. 4, 119334 Moscow, Russian Federation
| | - Natalia G Bogdanova
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygin str. 4, 119334 Moscow, Russian Federation
| | - Valerii V Kasparov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygin str. 4, 119334 Moscow, Russian Federation
| | - Elena A Shumilina
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygin str. 4, 119334 Moscow, Russian Federation
| | - Natalia S Ozerova
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygin str. 4, 119334 Moscow, Russian Federation
| |
Collapse
|
45
|
The size and shape of three water-soluble, non-ionic polysaccharides produced by lactic acid bacteria: A comparative study. Carbohydr Polym 2016; 142:91-7. [DOI: 10.1016/j.carbpol.2016.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 11/21/2022]
|
46
|
Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol). J Chromatogr A 2016; 1452:107-15. [PMID: 27155914 DOI: 10.1016/j.chroma.2016.04.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/07/2016] [Accepted: 04/27/2016] [Indexed: 11/23/2022]
Abstract
Dextran and poly(ethylene glycol) (PEG) in phase separated aqueous two-phase systems (ATPSs) of these two polymers, with a broad molar mass distribution for dextran and a narrow molar mass distribution for PEG, were separated and quantified by gel permeation chromatography (GPC). Tie lines constructed by GPC method are in excellent agreement with those established by the previously reported approach based on density measurements of the phases. The fractionation of dextran during phase separation of ATPS leads to the redistribution of dextran of different chain lengths between the two phases. The degree of fractionation for dextran decays exponentially as a function of chain length. The average separation parameters, for both dextran and PEG, show a crossover from mean field behavior to Ising model behavior, as the critical point is approached.
Collapse
|
47
|
Kang L, Gibaud T, Dogic Z, Lubensky TC. Entropic forces stabilize diverse emergent structures in colloidal membranes. SOFT MATTER 2016; 12:386-401. [PMID: 26472139 DOI: 10.1039/c5sm02038g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The depletion interaction mediated by non-adsorbing polymers promotes condensation and assembly of repulsive colloidal particles into diverse higher-order structures and materials. One example, with particularly rich emergent behaviors, is the formation of two-dimensional colloidal membranes from a suspension of filamentous fd viruses, which act as rods with effective repulsive interactions, and dextran, which acts as a condensing, depletion-inducing agent. Colloidal membranes exhibit chiral twist even when the constituent virus mixture lacks macroscopic chirality, change from a circular shape to a striking starfish shape upon changing the chirality of constituent rods, and partially coalesce via domain walls through which the viruses twist by 180°. We formulate an entropically-motivated theory that can quantitatively explain these experimental structures and measurements, both previously published and newly performed, over a wide range of experimental conditions. Our results elucidate how entropy alone, manifested through the viruses as Frank elastic energy and through the depletants as an effective surface tension, drives the formation and behavior of these diverse structures. Our generalizable principles propose the existence of analogous effects in molecular membranes and can be exploited in the design of reconfigurable colloidal structures.
Collapse
Affiliation(s)
- Louis Kang
- Department of Physics & Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, Pennsylvania 19104, USA.
| | - Thomas Gibaud
- Laboratoire de Physique, École Normale Supérieure de Lyon, Université de Lyon, CNRS/UMR 5672, 46 allée d'Italie, 69007 Lyon, France
| | - Zvonimir Dogic
- The Martin Fisher School of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA
| | - T C Lubensky
- Department of Physics & Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
48
|
Semenova M, Zelikina D, Antipova A, Martirosova E, Grigorovich N, Obushaeva R, Shumilina E, Ozerova N, Palmina N, Maltseva E, Kasparov V, Bogdanova N, Krivandin A. Impact of the structure of polyunsaturated soy phospholipids on the structural parameters and functionality of their complexes with covalent conjugates combining sodium caseinate with maltodextrins. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Arkhangelsky E, Levitsky I, Gitis V. Retention of Biopolymers by Ultrafiltration Membranes. Chem Eng Technol 2015. [DOI: 10.1002/ceat.201400775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Lopez-Torrez L, Nigen M, Williams P, Doco T, Sanchez C. Acacia senegal vs. Acacia seyal gums – Part 1: Composition and structure of hyperbranched plant exudates. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.04.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|