1
|
Filimon A, Serbezeanu D, Dobos AM, Onofrei MD, Bargan A, Rusu D, Rimbu CM. Electrospun Membranes Based on Quaternized Polysulfones: Rheological Properties-Electrospinning Mechanisms Relationship. Polymers (Basel) 2024; 16:1503. [PMID: 38891450 PMCID: PMC11174964 DOI: 10.3390/polym16111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Composite membranes based on a polymer mixture solution of quaternized polysulfone (PSFQ), cellulose acetate phthalate (CAP), and polyvinylidene fluoride (PVDF) for biomedical applications were successfully obtained through the electrospinning technique. To ensure the polysulfone membranes' functionality in targeted applications, the selection of electrospinning conditions was essential. Moreover, understanding the geometric characteristics and morphology of fibrous membranes is crucial in designing them to meet the performance standards necessary for future biomedical applications. Thus, the viscosity of the solutions used in the electrospinning process was determined, and the morphology of the electrospun membranes was examined using scanning electron microscopy (SEM). Investigations on the surfaces of electrospun membranes based on water vapor sorption data have demonstrated that their surface properties dictate their biological ability more than their specific surfaces. Furthermore, in order to understand the different macromolecular rearrangements of membrane structures caused by physical interactions between the polymeric chains as well as by the orientation of functional groups during the electrospinning process, Fourier transform infrared (FTIR) spectroscopy was used. The applicability of composite membranes in the biomedical field was established by bacterial adhesion testing on the surface of electrospun membranes using Escherichia coli and Staphylococcus aureus microorganisms. The biological experiments conducted establish a foundation for future applications of these membranes and validate their effectiveness in specific fields.
Collapse
Affiliation(s)
- Anca Filimon
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania; (D.S.); (A.M.D.); (M.D.O.); (A.B.); (D.R.)
| | - Diana Serbezeanu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania; (D.S.); (A.M.D.); (M.D.O.); (A.B.); (D.R.)
| | - Adina Maria Dobos
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania; (D.S.); (A.M.D.); (M.D.O.); (A.B.); (D.R.)
| | - Mihaela Dorina Onofrei
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania; (D.S.); (A.M.D.); (M.D.O.); (A.B.); (D.R.)
| | - Alexandra Bargan
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania; (D.S.); (A.M.D.); (M.D.O.); (A.B.); (D.R.)
| | - Daniela Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania; (D.S.); (A.M.D.); (M.D.O.); (A.B.); (D.R.)
| | - Cristina Mihaela Rimbu
- Department of Public Health, University of Life Science Iasi, 8 Mihail Sadoveanu Alley, 707027 Iasi, Romania;
| |
Collapse
|
2
|
Crowell AD, FitzSimons TM, Anslyn EV, Schultz KM, Rosales AM. Shear Thickening Behavior in Injectable Tetra-PEG Hydrogels Cross-Linked via Dynamic Thia-Michael Addition Bonds. Macromolecules 2023; 56:7795-7807. [PMID: 38798752 PMCID: PMC11126233 DOI: 10.1021/acs.macromol.3c00780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Injectable poly(ethylene glycol) (PEG)-based hydrogels were reversibly cross-linked through thia-conjugate addition bonds and demonstrated to shear thicken at low shear rates. Cross-linking bond exchange kinetics and dilute polymer concentrations were leveraged to tune hydrogel plateau moduli (from 60 to 650 Pa) and relaxation times (from 2 to 8 s). Under continuous flow shear rheometry, these properties affected the onset of shear thickening and the degree of shear thickening achieved before a flow instability occurred. The changes in viscosity were reversible whether the shear rate increased or decreased, suggesting that chain stretching drives this behavior. Given the relevance of dynamic PEG hydrogels under shear to biomedical applications, their injectability was investigated. Injection forces were found to increase with higher polymer concentrations and slower bond exchange kinetics. Altogether, these results characterize the nonlinear rheology of dilute, dynamic covalent tetra-PEG hydrogels and offer insight into the mechanism driving their shear thickening behavior.
Collapse
Affiliation(s)
- Anne D Crowell
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin 78712, United States
| | - Thomas M FitzSimons
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin 78712, United States
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin 78712, United States
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem 18015, United States
| | - Adrianne M Rosales
- Department of Chemical Engineering, The University of Texas at Austin, Austin 78712, United States
| |
Collapse
|
3
|
Filimon A, Onofrei MD, Bargan A, Stoica I, Dunca S. Bioactive Materials Based on Hydroxypropyl Methylcellulose and Silver Nanoparticles: Structural-Morphological Characterization and Antimicrobial Testing. Polymers (Basel) 2023; 15:polym15071625. [PMID: 37050239 PMCID: PMC10096613 DOI: 10.3390/polym15071625] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The progress achieved in recent years in the biomedical field justifies the objective evaluation of new techniques and materials obtained by using silver in different forms as metallic silver, silver salts, and nanoparticles. Thus, the antibacterial, antiviral, antifungal, antioxidant, and anti-inflammatory activity of silver nanoparticles (AgNPs) confers to newly obtained materials characteristics that make them ideal candidates in a wide spectrum of applications. In the present study, the use of hydroxypropyl methyl cellulose (HPMC) in the new formulation, by embedding AgNPs with antibacterial activity, using poly(N-vinylpyrrolidone) (PVP) as a stabilizing agent was investigated. AgNPs were incorporated in HPMC solutions, by thermal reduction of silver ions to silver nanoparticles, using PVP as a stabilizer; a technique that ensures the efficiency and selectivity of the obtained materials. The rheological properties, morphology, in vitro antimicrobial activity, and stability/catching of Ag nanoparticles in resulting HPMC/PVP-AgNPs materials were evaluated. The obtained rheological parameters highlight the multifunctional roles of PVP, focusing on the stabilizing effect of new formulations but also the optimization of some properties of the studied materials. The silver amount was quantified using the spectroscopy techniques (energy-dispersive X-ray fluorescence (XRF), energy-dispersive X-ray spectroscopy (EDX)), while formation of the AgNPs was confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Also, the morphological examination (Atomic Force Microscopy (AFM) and Scanning electron microscopy (SEM)) by means of the texture roughness parameters has evidenced favorable characteristics for targeted applications. Antibacterial activity was tested against Escherichia coli and Staphylococcus aureus and was found to be substantially improved was silver was added in the studied systems.
Collapse
Affiliation(s)
- Anca Filimon
- Polycondensation and Thermostable Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Mihaela Dorina Onofrei
- Polycondensation and Thermostable Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Alexandra Bargan
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Iuliana Stoica
- Atomic Force Microscopy Laboratory, Physical Chemistry of Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Simona Dunca
- Department of Microbiology, Biology Faculty, "Alexandru Ioan Cuza" University of Iasi, 11 Carol I Bvd., 700506 Iasi, Romania
| |
Collapse
|
4
|
Filimon A, Dobos AM, Dumbrava O, Doroftei F, Lupa L. Green Blends Based on Ionic Liquids with Improved Performance for Membrane Technology: Perspectives for Environmental Applications. Int J Mol Sci 2022; 23:ijms23147961. [PMID: 35887303 PMCID: PMC9323397 DOI: 10.3390/ijms23147961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023] Open
Abstract
Present research was directed towards the development of new high-performance and cost-effective polysulfone membranes (PSFQ) by introducing ionic liquids (ILs—Cyphos 101 IL and Aliquat 336) into their matrix. Variation of ILs was performed with the aim to find the one that brings new properties and improves the functionality and selectivity of PSFQ membranes in ultrafiltration processes. Based on the obtained results of the rheological study, we established the compatibility of compounds and optimal content of the used ILs, namely 3 wt% and 15 wt% Cyphos 101 IL and compositions varying between 3 and 15 wt % Aliquat 336. Results indicated that the ILs acted as plasticizers when they were added to the system, a helpful aspect in processing membranes used in water decontamination. The efficiency and performance of the membranes were evaluated by their use in the treatment of diclofenac (DCF)-containing waters. Membranes obtained from PSFQ/Aliquat 336 solution containing 15 wt% IL exhibited a 97% removal degree of DCF in the treatment process of 50 mL solution containing 3 mg/L DCF. The separation efficiency was kept constant for four filtration/cleaning cycles. The results indicated an improvement in membrane performance as the amount of IL in their structure increased, which confirms the potential for application in water treatment processes.
Collapse
Affiliation(s)
- Anca Filimon
- Polycondensation and Thermostable Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (A.M.D.); (O.D.)
- Correspondence:
| | - Adina Maria Dobos
- Polycondensation and Thermostable Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (A.M.D.); (O.D.)
| | - Oana Dumbrava
- Polycondensation and Thermostable Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (A.M.D.); (O.D.)
| | - Florica Doroftei
- Physics of Polymers and Polymeric Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania;
| | - Lavinia Lupa
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, 6 Vasile Parvan Blv, 300223 Timisoara, Romania;
| |
Collapse
|
5
|
Materials Based on Quaternized Polysulfones with Potential Applications in Biomedical Field: Structure-Properties Relationship. Int J Mol Sci 2022; 23:ijms23094721. [PMID: 35563112 PMCID: PMC9104560 DOI: 10.3390/ijms23094721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Starting from the bactericidal properties of functionalized polysulfone (PSFQ) and due to its excellent biocompatibility, biodegradability, and performance in various field, cellulose acetate phthalate (CAP) and polyvinyl alcohol (PVA), as well as their blends (PSFQ/CAP and PSFQ/PVA), have been tested to evaluate their applicative potential in the biomedical field. In this context, because the polymer processing starts from the solution phase, in the first step, the rheological properties were followed in order to assess and control the structural parameters. The surface chemistry analysis, surface properties, and antimicrobial activity of the obtained materials were investigated in order to understand the relationship between the polymers’ structure–surface properties and organization form of materials (fibers and/or films), as important indicators for their future applications. Using the appropriate organization form of the polymers, the surface morphology and performance, including wettability and water permeation, were improved and controlled—these being the desired and needed properties for applications in the biomedical field. Additionally, after antimicrobial activity testing against different bacteria strains, the control of the inhibition mechanism for the analyzed microorganisms was highlighted, making it possible to choose the most efficient polymers/blends and, consequently, the efficiency as biomaterials in targeted applications.
Collapse
|
6
|
Kamkar M, Janmaleki M, Erfanian E, Sanati‐Nezhad A, Sundararaj U. Covalently cross‐linked hydrogels: Mechanisms of nonlinear viscoelasticity. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Milad Kamkar
- Department of Chemical and Petroleum Engineering University of Calgary 2500 University Dr NW, Calgary Alberta Canada
| | - Mohsen Janmaleki
- BioMEMS and Bioinspired Microfluidic Laboratory Biomedical Engineering Graduate Program, University of Calgary Calgary, Alberta T2N1N4 Canada
| | - Elnaz Erfanian
- Department of Chemical and Petroleum Engineering University of Calgary 2500 University Dr NW, Calgary Alberta Canada
| | - Amir Sanati‐Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering University of Calgary Calgary, Alberta T2N1N4 Canada
| | - Uttandaraman Sundararaj
- Department of Chemical and Petroleum Engineering University of Calgary 2500 University Dr NW, Calgary Alberta Canada
| |
Collapse
|
7
|
Liu S, Zhang Z, Chen Q, Matsumiya Y, Watanabe H. Nonlinear Rheology of Telechelic Ionomers Based on Sodium Sulfonate and Carboxylate. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, P. R. China
- University of Science and Technology of China, 230026 Hefei, P. R. China
| | - Zhijie Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, P. R. China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, P. R. China
- University of Science and Technology of China, 230026 Hefei, P. R. China
| | - Yumi Matsumiya
- Institute for Chemical Research, Kyoto University, 611-0011 Uji, Japan
| | - Hiroshi Watanabe
- Institute for Chemical Research, Kyoto University, 611-0011 Uji, Japan
| |
Collapse
|
8
|
Guttman A, Filep C, Karger BL. Fundamentals of Capillary Electrophoretic Migration and Separation of SDS Proteins in Borate Cross-Linked Dextran Gels. Anal Chem 2021; 93:9267-9276. [PMID: 34165952 DOI: 10.1021/acs.analchem.1c01636] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent progress in the development and production of new, innovative protein therapeutics require rapid and adjustable high-resolution bioseparation techniques. Sodium dodecyl sulfate capillary gel electrophoresis (SDS-CGE) using a borate (B) cross-linked dextran (D) separation matrix is widely employed today for rapid consistency analysis of therapeutic proteins in manufacturing and release testing. Transient borate cross-linking of the semirigid dextran polymer chains leads to a high-resolution separation gel for SDS-protein complexes. To understand the migration and separation basis of the D/B gel, the present work explores various gel formulations of dextran monomer (2, 5, 7.5, and 10%) and borate cross-linker (2 and 4%) concentrations. Ferguson plots were analyzed for a mixture of protein standards with molecular weights ranging from 20 to 225 kDa, and the resulting nonlinear concave curves pointed to nonclassical sieving behavior. While the 2% D/4% B gel resulted in the fastest analysis time, the 10% D/2% B gel was found to produce the greatest separation window, even higher than with the 10% D/4% B gel, due to a significant increase in the electroosmotic flow of the former composition in the direction opposite to SDS-protein complex migration. The study then focused on SDS-CGE separation of a therapeutic monoclonal antibody and its subunits. A combination of molecular weight and shape selectivity as well as, to a lesser extent, surface charge density differences (due to glycosylation on the heavy chain) influenced migration. Greater molecular weight selectivity occurred for the higher monomer concentration gels, while improved glycoselectivity was obtained using a more dilute gel, even as low as 2% D/2% B. This latter gel took advantage of the dextran-borate-glycoprotein complexation. The study revealed that by modulating the dextran (monomer) and borate (cross-linker) concentration ratios of the sieving matrix, one can optimize the separation for specific biopharmaceutical modalities with excellent column-to-column, run-to-run, and gel-to-gel migration time reproducibilities (<0.96% relative standard deviation (RSD)). The widely used 10% dextran/4% borate gel represents a good screening option, which can then be followed by a modified composition, optimized for a specific separation as necessary.
Collapse
Affiliation(s)
- András Guttman
- Csaba Horváth Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, 98 Nagyerdei krt, Debrecen H-4032, Hungary.,Translational Glycomics Group, Research Institute for Biomolecular and Chemical Engineering, University of Pannonia, 10 Egyetem u, Veszprem H-8200, Hungary
| | - Csenge Filep
- Csaba Horváth Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, 98 Nagyerdei krt, Debrecen H-4032, Hungary
| | - Barry L Karger
- Barnett Institute, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Wang W, Madsen J, Genina N, Hassager O, Skov AL, Huang Q. Toward a Design for Flowable and Extensible Ionomers: An Example of Diamine-Neutralized Entangled Poly(styrene- co-4-vinylbenzoic acid) Ionomer Melts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wendi Wang
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jeppe Madsen
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Natalja Genina
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ole Hassager
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anne L. Skov
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Qian Huang
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Lalitha Sridhar S, Dunagin J, Koo K, Hough L, Vernerey F. Enhanced Diffusion by Reversible Binding to Active Polymers. Macromolecules 2021; 54:1850-1858. [PMID: 35663922 PMCID: PMC9161825 DOI: 10.1021/acs.macromol.0c02306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells are known to use reversible binding to active biopolymer networks to allow diffusive transport of particles in an otherwise impenetrable mesh. We here determine the motion of a particle that experiences random forces during binding and unbinding events while being constrained by attached polymers. Using Monte-Carlo simulations and a statistical mechanics model, we find that enhanced diffusion is possible with active polymers. However, this is possible only under optimum conditions that has to do with the relative length of the chains to that of the plate. For example, in systems where the plate is shorter than the chains, diffusion is maximum when many chains have the potential to bind but few remain bound at any one time. Interestingly, if the chains are shorter than the plate, we find that diffusion is maximized when more active chains remain transiently bound. The model provides insight into these findings by elucidating the mechanisms for binding-mediated diffusion in biology and design rules for macromolecular transport in transient synthetic polymers.
Collapse
Affiliation(s)
- Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jeffrey Dunagin
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kanghyeon Koo
- Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Loren Hough
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Franck Vernerey
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
11
|
Abstract
For footwear insoles, high rebound performance is required in some instances such as for running, while softness for comfort is of higher importance during normal walking and standing to minimize high stress. Hence, materials with rebound performance in some scenarios and softness for other scenarios are desired. In this paper, we investigate rebound performance and hardness of composites made of a shear-thickening material and elastic foam. First, a hydrogel type of shear-thickening material (Slime) is characterized to investigate the influence of water content. After that, two particular shear-thickening hydrogels with better rebound performance (but not outstanding in the shear-thickening effect) are selected and integrated into the elastic foam to produce a composite insole. It is found that, as compared with the commercial elastic insole and commercial shear-thickening insole, softer and superior rebound performance can be achieved simultaneously only if the right shear-thickening material is used in the composite.
Collapse
|
12
|
Wang TX, Chen HM, Salvekar AV, Lim J, Chen Y, Xiao R, Huang WM. Vitrimer-Like Shape Memory Polymers: Characterization and Applications in Reshaping and Manufacturing. Polymers (Basel) 2020; 12:E2330. [PMID: 33053813 PMCID: PMC7601385 DOI: 10.3390/polym12102330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
The shape memory effect (SME) refers to the ability of a material to recover its original shape, but only in the presence of a right stimulus. Most polymers, either thermo-plastic or thermoset, can have the SME, although the actual shape memory performance varies according to the exact material and how the material is processed. Vitrimer, which is between thermoset and thermo-plastic, is featured by the reversible cross-linking. Vitrimer-like shape memory polymers (SMPs) combine the vitrimer-like behavior (associated with dissociative covalent adaptable networks) and SME, and can be utilized to achieve many novel functions that are difficult to be realized by conventional polymers. In the first part of this paper, a commercial polymer is used to demonstrate how to characterize the vitrimer-like behavior based on the heating-responsive SME. In the second part, a series of cases are presented to reveal the potential applications of vitrimer-like SMPs and their composites. It is concluded that the vitrimer-like feature not only enables many new ways in reshaping polymers, but also can bring forward new approaches in manufacturing, such as, rapid 3D printing in solid state on space/air/sea missions.
Collapse
Affiliation(s)
- Tao Xi Wang
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China;
| | - Hong Mei Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Abhijit Vijay Salvekar
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (A.V.S.); (J.L.)
| | - Junyi Lim
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (A.V.S.); (J.L.)
| | - Yahui Chen
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China;
| | - Rui Xiao
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China;
| | - Wei Min Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (A.V.S.); (J.L.)
| |
Collapse
|
13
|
Dobos AM, Filimon A, Bargan A, Zaltariov MF. New approaches for the development of cellulose acetate/tetraethyl orthosilicate composite membranes: Rheological and microstructural analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Molecular Weight Dependence of Associative Behavior in Polyimide/DMF Solutions. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-020-2358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Chen H, Liu W, Hong M, Zhang E, Dai X, Chen Q, Yang W, Xue Y, Qiu X, Ji X. Associative behavior of polyimide/cyclohexanone solutions. RSC Adv 2019; 9:27455-27463. [PMID: 35529184 PMCID: PMC9070761 DOI: 10.1039/c9ra05538j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
Our previous work has demonstrated that soluble polyimide with relatively weak interaction can be transformed from neutral polymer to associative polymer by increasing molecular weight. Thus, it is necessary to find another way to vary the relatively weak interaction strength, i.e. variation of solvent quality. Herein, viscoelastic behaviors are examined for 2,2-bis(3,4-dicarboxy-phenyl) hexafluoropropane dianhydride (6FDA)-2,2′-bis(trifluoromethyl)-4,4′-diam (TFDB) polyimide (PI), with a relatively low molecular weight (Mw) of 88 000 g mol−1, dissolved in cyclohexanone (CYC). The scaling relationship between viscosity (η0–ηs) and volume fraction is in good agreement with the associative polymer theory proposed by Rubinstein and Semenov. Oscillatory rheological results indicate that the PI solution tends to become a gel with increased volume fraction. The synchrotron radiation small-angle X-ray scattering results imply the existence of dense aggregates in the concentrated PI/CYC solutions. Shear thickening and thinning behaviors are observed in the solutions, and the shear thickening behavior of polyimide solution has not been reported in literature. Their mechanisms are studied by conducting dynamic and steady rheological experiments. Thus, enhancing the relatively weak interaction strength can also make the low Mw polyimide show associative polymer behavior. This work can help us to gain deep insight into polyimide solution properties from dilute to semidilute entangled solutions, and will guide the preparation of polyimide solutions for different processing. Enhancing the relatively weak interaction strength through varying the solvent quality can transform PI from a neutral polymer to an associative polymer.![]()
Collapse
|
16
|
Martinetti L, Carey-De La Torre O, Schweizer KS, Ewoldt RH. Inferring the Nonlinear Mechanisms of a Reversible Network. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01295] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Lalitha Sridhar S, Vernerey FJ. The Chain Distribution Tensor: Linking Nonlinear Rheology and Chain Anisotropy in Transient Polymers. Polymers (Basel) 2018; 10:E848. [PMID: 30960773 PMCID: PMC6403683 DOI: 10.3390/polym10080848] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
Transient polymer networks are ubiquitous in natural and engineered materials and contain cross-links that can reversibly break and re-form. The dynamic nature of these bonds allows for interesting mechanical behavior, some of which include nonlinear rheological phenomena such as shear thickening and shear thinning. Specifically, physically cross-linked networks with reversible bonds are typically observed to have viscosities that depend nonlinearly on shear rate and can be characterized by three flow regimes. In slow shear, they behave like Newtonian fluids with a constant viscosity. With further increase in shear rate, the viscosity increases nonlinearly to subsequently reach a maximum value at the critical shear rate. At this point, network fracture occurs followed by a reduction in viscosity (shear-thinning) with a further increase in shear rate. The underlying mechanism of shear thickening in this process is still unclear with debates between a conversion of intra-chain to inter-chain cross-linking and nonlinear chain stretch under high tension. In this paper, we provide a new framework to describe the nonlinear rheology of transient polymer networks with the so-called chain distribution tensor using recent advances from the transient network theory. This tensor contains quantitatively and statistical information of the chain alignment and possible anisotropy that affect network behavior and mechanics. We investigate shear thickening as a primary result of non-Gaussian chain behavior and derive a relationship for the nonlinear viscosity in terms of the non-dimensional Weissenberg number. We further address the criterion for network fracture at the critical shear rate by introducing a critical chain force when bond dissociation is suddenly accelerated. Finally, we discuss the role of cross-linker density on viscosity using a "sticky" reptation mechanism in the context of previous studies on metallo-supramolecular networks with reversible cross-linkers.
Collapse
Affiliation(s)
- Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
18
|
Taylor E, Hara M. Effect of added ionic liquids on the solubility and viscosity of dilute ionomer solutions in tetrahydrofuran. POLYM INT 2018. [DOI: 10.1002/pi.5514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Elliot Taylor
- Department of Chemical and Biochemical Engineering; Rutgers University; Piscataway NJ USA
| | - Masanori Hara
- Department of Chemical and Biochemical Engineering; Rutgers University; Piscataway NJ USA
| |
Collapse
|
19
|
Kurita O, Sago T, Umetani K, Kokean Y, Yamaoka C, Takahashi N, Iwamoto H. Feasible protein aggregation of phosphorylated poly-γ-glutamic acid derivative from Bacillus subtilis (natto). Int J Biol Macromol 2017; 103:484-492. [PMID: 28527993 DOI: 10.1016/j.ijbiomac.2017.05.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/27/2017] [Accepted: 05/15/2017] [Indexed: 11/24/2022]
Abstract
Poly-γ-glutamic acid (PGA) was modified with phosphorylating agents such as sodium metaphosphate and potassium metaphosphate in the culture medium of Bacillus subtilis (natto). The highly phosphorylated PGA derivatives were prepared and investigated for their chemical and physicochemical properties. The PGA derivatives had approximately 7% (W/W) inorganic phosphorus and characteristic absorbance PO2- bands at 1082cm-1 and 1260cm-1 by Fourier Transform Infrared Spectroscopy. The derivative modified by sodium metaphosphate (J-5) was easily hydrated in water and had extremely low viscosity. The shear rate-induced transition leading to the decrease of viscosity was not observed in J-5 whereas the derivative modified by potassium metaphosphate (J-6) as well as unmodified PGA (J-1) showed the typical decrease of viscosity. In circular dichroism (CD) measurement of J-5, there was a significant loss of the negative chirality CD signal, implying that protein aggregation occured at decreasing pH from 6.2 to 4.4. The thioflavin T fluorescence intensity of the aqueous solution in the J-5 was extremely high despite the absence of heat-treatment. The results indicate that the J-5 is the likeliest type of aggregation by β-sheet cross-linking which is relevant to protein diseases like Alzheimer's disease.
Collapse
Affiliation(s)
- Osamu Kurita
- Mie Prefecture Industrial Research Institute, 5-5-45 Takajaya, Tsu, Mie514-0819, Japan.
| | - Toru Sago
- Mie Prefecture Industrial Research Institute, 5-5-45 Takajaya, Tsu, Mie514-0819, Japan
| | - Kaori Umetani
- Mie Prefecture Industrial Research Institute, 5-5-45 Takajaya, Tsu, Mie514-0819, Japan
| | - Yasushi Kokean
- Mie Prefecture Industrial Research Institute, 5-5-45 Takajaya, Tsu, Mie514-0819, Japan
| | - Chizuru Yamaoka
- Mie Prefecture Industrial Research Institute, 5-5-45 Takajaya, Tsu, Mie514-0819, Japan
| | - Nobuyuki Takahashi
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Gokashou, Uji, Kyoto, Japan
| | - Hiroyuki Iwamoto
- Department of Biotechnology, Faculty of Life Science, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama, Hiroshima 729-0292, Japan
| |
Collapse
|
20
|
Robin C, Lorthioir C, Amiel C, Fall A, Ovarlez G, Le Cœur C. Unexpected Rheological Behavior of Concentrated Poly(methacrylic acid) Aqueous Solutions. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b01552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Clément Robin
- ICMPE
(UMR 7182), CNRS, UPEC, Université Paris Est, F- 94320 Thiais, France
| | - Cédric Lorthioir
- ICMPE
(UMR 7182), CNRS, UPEC, Université Paris Est, F- 94320 Thiais, France
| | - Catherine Amiel
- ICMPE
(UMR 7182), CNRS, UPEC, Université Paris Est, F- 94320 Thiais, France
| | - Abdoulaye Fall
- Laboratoire
Navier (ENPC−CNRS-IFSTTAR), Université Paris-Est, 2 Allée Kepler, 77420 Champs-sur-Marne, France
| | - Guillaume Ovarlez
- CNRS,
Solvay, LOF, UMR 5258, University of Bordeaux, F-33608 Pessac, France
| | - Clémence Le Cœur
- ICMPE
(UMR 7182), CNRS, UPEC, Université Paris Est, F- 94320 Thiais, France
| |
Collapse
|
21
|
Grein-Iankovski A, Riegel-Vidotti IC, Simas-Tosin FF, Narayanan S, Leheny RL, Sandy AR. Exploring the relationship between nanoscale dynamics and macroscopic rheology in natural polymer gums. SOFT MATTER 2016; 12:9321-9329. [PMID: 27805235 DOI: 10.1039/c6sm01492e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a study connecting the nanoscale and macroscale structure and dynamics of Acacia mearnsii gum as probed by small-angle X-ray scattering (SAXS), X-ray photon correlation spectroscopy (XPCS) and rheology. Acacia gum, in general, is a complex polysaccharide used extensively in industry. Over the analyzed concentration range (15 to 30 wt%) the A. mearnsii gum is found to have a gel-like linear rheology and to exhibit shear thinning flow behavior under steady shear. The gum solutions exhibited a steadily increasing elastic modulus with increasing time after they were prepared and also the emergence of shear thickening events within the shear thinning behavior, characteristic of associative polymers. XPCS measurements using gold nanoparticles as tracers were used to explore the microscopic dynamics within the biopolymer gels and revealed a two-step relaxation process with a partial decay at inaccessibly short times, suggesting caged motion of the nanoparticles, followed by a slow decay at later delay times. Non-diffusive motion evidenced by a compressed exponential line shape and an inverse relationship between relaxation time and wave vector characterizes the slow dynamics of A. mearnsii gum gels. Surprisingly, we have determined that the nanometer-scale mean square displacement of the nanoparticles showed a close relationship to the values predicted from the macroscopic elastic properties of the material, obtained through the rheology experiments. Our results demonstrate the potential applicability of the XPCS technique in the natural polymers field to connect their macroscale properties with their nanoscale structure and dynamics.
Collapse
Affiliation(s)
- Aline Grein-Iankovski
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA. and Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19081, CEP 81531-980, Curitiba, PR, Brazil
| | - Izabel C Riegel-Vidotti
- Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19081, CEP 81531-980, Curitiba, PR, Brazil
| | - Fernanda F Simas-Tosin
- Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19081, CEP 81531-980, Curitiba, PR, Brazil and Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Suresh Narayanan
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alec R Sandy
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
22
|
Huang C, Chen Q, Weiss RA. Nonlinear Rheology of Random Sulfonated Polystyrene Ionomers: The Role of the Sol–Gel Transition. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02057] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Chongwen Huang
- Department
of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Quan Chen
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - R. A. Weiss
- Department
of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
23
|
Lu S, Yang Y, Yao J, Shao Z, Chen X. Exploration of the nature of a unique natural polymer-based thermosensitive hydrogel. SOFT MATTER 2016; 12:492-499. [PMID: 26481909 DOI: 10.1039/c5sm01947h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The chitosan (CS)/β-glycerol phosphate (GP) system is a heat induced gelling system with a promising potential application, such as an injectable biomedical material. Unlike most thermosensitive gelling systems, the CS/GP system is only partially reversible. That is once the hydrogel is fully matured, it only softens but cannot go back to its initial liquid state when cooled down. Here, we perform both the small and large amplitude oscillatory shear (SAOS and LAOS) tests on the fully matured CS/GP hydrogel samples at a variety of temperatures within the cooling process. The purpose of such tests is to investigate the structural change of the hydrogel network and thus to understand the possible gelation mechanism of this unique thermosensitive hydrogel. From the LAOS results and the further analysis with the Chebyshev expansion method, it shows that the CS/GP hydrogel is composed of a colloidal network dominated by hydrophobic interactions at high temperature, and gradually turns into a flexible network dominated by hydrogen bonding when the temperature goes down. Therefore, we may conclude that LOAS is a powerful tool to study the nonlinear behaviour of a polymer system that is closely related to its structure, and as a practical example, we achieve a clearer vision on the gelation mechanism of the unique CS/GP thermosensitive hydrogel on the basis of considerable previous studies and assumptions in this laboratory and other research groups.
Collapse
Affiliation(s)
- Shanling Lu
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Yuhong Yang
- Research Centre for Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
24
|
Tan Y, Zhang W, Li Y, Xia Y, Sui K. Grafting of multi-sensitive PDMAEMA brushes onto carbon nanotubes by ATNRC: tunable thickening/thinning and self-assembly behaviors in aqueous solutions. RSC Adv 2016. [DOI: 10.1039/c6ra20088e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Shear-induced thickening/thinning response of synthesized MWNTs-g-PDMAEMA suspensions was facially adjusted by altering the hydrophobic interaction, amount of f-PDMAEMA and grafted-chain length.
Collapse
Affiliation(s)
- Yeqiang Tan
- Collaborative Innovation Center for Marine Biomass Fibers
- Materials and Textiles of Shandong Province
- School of Materials Science and Engineering
- Qingdao University
- Qingdao
| | - Wenqian Zhang
- Collaborative Innovation Center for Marine Biomass Fibers
- Materials and Textiles of Shandong Province
- School of Materials Science and Engineering
- Qingdao University
- Qingdao
| | - Yanhui Li
- Collaborative Innovation Center for Marine Biomass Fibers
- Materials and Textiles of Shandong Province
- School of Materials Science and Engineering
- Qingdao University
- Qingdao
| | - Yanzhi Xia
- Collaborative Innovation Center for Marine Biomass Fibers
- Materials and Textiles of Shandong Province
- School of Materials Science and Engineering
- Qingdao University
- Qingdao
| | - Kunyan Sui
- Collaborative Innovation Center for Marine Biomass Fibers
- Materials and Textiles of Shandong Province
- School of Materials Science and Engineering
- Qingdao University
- Qingdao
| |
Collapse
|
25
|
Wee MS, Matia-Merino L, Goh KK. The cation-controlled and hydrogen bond-mediated shear-thickening behaviour of a tree-fern isolated polysaccharide. Carbohydr Polym 2015; 130:57-68. [DOI: 10.1016/j.carbpol.2015.03.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/30/2015] [Accepted: 03/30/2015] [Indexed: 11/30/2022]
|
26
|
Kulkarni A, Lele A, Sivaram S, Rajamohanan PR, Velankar S, Chatterji A. Star Telechelic Poly(l-lactide) Ionomers. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01854] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Amruta Kulkarni
- Academy of Scientific and Innovative Research, CSIR-National
Chemical Laboratory, Pune, 411008, India
| | - Ashish Lele
- Academy of Scientific and Innovative Research, CSIR-National
Chemical Laboratory, Pune, 411008, India
| | | | - P. R. Rajamohanan
- Academy of Scientific and Innovative Research, CSIR-National
Chemical Laboratory, Pune, 411008, India
| | - Sachin Velankar
- Chemical
Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Apratim Chatterji
- Physics
Department, Indian Institute of Science Education and Research, Pune, 411008, India
| |
Collapse
|
27
|
Zhang YD, Fan XH, Shen Z, Zhou QF. Thermoreversible Ion Gel with Tunable Modulus Self-Assembled by a Liquid Crystalline Triblock Copolymer in Ionic Liquid. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yu-Dong Zhang
- Beijing National Laboratory
for Molecular Sciences, Department of Polymer Science and Engineering,
and Key Laboratory of Polymer Chemistry and Physics of Ministry of
Education, Center for Soft Matter Science and Engineering, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xing-He Fan
- Beijing National Laboratory
for Molecular Sciences, Department of Polymer Science and Engineering,
and Key Laboratory of Polymer Chemistry and Physics of Ministry of
Education, Center for Soft Matter Science and Engineering, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihao Shen
- Beijing National Laboratory
for Molecular Sciences, Department of Polymer Science and Engineering,
and Key Laboratory of Polymer Chemistry and Physics of Ministry of
Education, Center for Soft Matter Science and Engineering, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi-Feng Zhou
- Beijing National Laboratory
for Molecular Sciences, Department of Polymer Science and Engineering,
and Key Laboratory of Polymer Chemistry and Physics of Ministry of
Education, Center for Soft Matter Science and Engineering, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Jaishankar A, Wee M, Matia-Merino L, Goh KK, McKinley GH. Probing hydrogen bond interactions in a shear thickening polysaccharide using nonlinear shear and extensional rheology. Carbohydr Polym 2015; 123:136-45. [DOI: 10.1016/j.carbpol.2015.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/24/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
|
29
|
Zhang H, Yuan G, Luo J, Han CC. Shear-thickening in mixed suspensions of silica colloid and oppositely charged polyethyleneimine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11011-11018. [PMID: 25180890 DOI: 10.1021/la503116g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The liquid-gel-liquid transition tuned by increasing concentration of linear and hyperbranched polyethyleneimine in suspension of silica colloids, and the accompanying shear-thickening phenomena, were investigated by rheological measurements. The influence from linear and hyperbranched polymer conformation and from different size-ratio between particle and polymer on the rheological properties of suspensions flocculated by absorbing polyelectrolyte were considered. Charge neutralization and bridging mechanism are the main reasons for the flocculation of silica colloid in this study. Because of charge reversal, the irreversible bridges are turned into flexible reversible bridges with increasing adsorption amount of oppositely charged polymer, which leads to an abrupt transition from gel to liquid. Over a narrow composition range, around the gel to liquid transition region, shear-thickening flow is observed. It is found that, for given particle volume fraction, the composition region exhibiting shear-thickening for mixed suspension with linear polyethyleneimine is broader than that for mixed suspension with hyperbranched polyethyleneimine, and the onset of shear-thickening depends only on size-ratio, regardless of the actual size of particle and polymer in the range of this study. The relationship between the gel to liquid transition and shear-thickening was discussed.
Collapse
Affiliation(s)
- Huan Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | |
Collapse
|
30
|
Rheological studies of disulfonated poly(arylene ether sulfone) plasticized with poly(ethylene glycol) for membrane formation. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Filimon A, Avram E, Stoica I. Rheological and morphological characteristics of multicomponent polysulfone/poly(vinyl alcohol) systems. POLYM INT 2014. [DOI: 10.1002/pi.4716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anca Filimon
- ‘Petru Poni’ Institute of Macromolecular Chemistry; Physical Chemistry of Polymers Department; 41A Gr. Ghica Voda Alley 700487 Iasi Romania
| | - Ecaterina Avram
- ‘Petru Poni’ Institute of Macromolecular Chemistry; Physical Chemistry of Polymers Department; 41A Gr. Ghica Voda Alley 700487 Iasi Romania
| | - Iuliana Stoica
- ‘Petru Poni’ Institute of Macromolecular Chemistry; Physical Chemistry of Polymers Department; 41A Gr. Ghica Voda Alley 700487 Iasi Romania
| |
Collapse
|
32
|
Hoch E, Schuh C, Hirth T, Tovar GEM, Borchers K. Stiff gelatin hydrogels can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2607-2617. [PMID: 22890515 DOI: 10.1007/s10856-012-4731-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
Gelatin is a very promising matrix material for in vitro cell culture and tissue engineering, e.g. due to its native RGD content. For the generation of medical soft tissue implants chemical modification of gelatin improves the mechanical properties of gelatin hydrogels and the viscous behavior of gelatin solutions for liquid handling. We present a systematic study on the influence of high degrees of methacrylation on the properties of gelatin solutions and photo-chemically crosslinked hydrogels. Changes from shear thinning to shear thickening behavior of gelatin solutions were observed depending on mass fraction and degree of methacrylation. Degrees of swelling of crosslinked hydrogels ranged from 194 to 770 % and storage moduli G' from 368 to 5 kPa, comparable to various natural tissues including several types of cartilage. Crosslinked gels proofed to be cytocompatible according to extract testings based on DIN ISO 10933-5 and in contact with porcine chondrocytes.
Collapse
Affiliation(s)
- Eva Hoch
- Institute for Interfacial Engineering IGVT, University of Stuttgart, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
33
|
Xu D, Asai D, Chilkoti A, Craig SL. Rheological properties of cysteine-containing elastin-like polypeptide solutions and hydrogels. Biomacromolecules 2012; 13:2315-21. [PMID: 22789001 PMCID: PMC3418688 DOI: 10.1021/bm300760s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rheological properties of cysteine-containing elastin-like polypeptide (Cys-ELP) solutions and Cys-ELP hydrogels are reported. The Cys-ELP solutions exhibit a surprisingly high apparent viscosity at low shear rate. The high viscosity is attributed to the formation of an interfacial cross-linked "skin" at the sample surface, rather than the bulk of the Cys-ELP solution. At higher shear rate, the interfacial cross-linked film breaks, and its influence on the viscosity of the Cys-ELP solution can be ignored. Cys-ELP hydrogels are formed by mixing Cys-ELP and hydrogen peroxide (H(2)O(2)). At fixed concentration of Cys-ELP, the gelation time can be tuned by the concentration of H(2)O(2). Cys-ELP hydrogels have the typical characteristics of covalent cross-linked networks, as the storage moduli are larger than the loss moduli and are independent of frequency in dynamic oscillatory frequency sweep experiments. The plateau moduli obtained from linear frequency sweep experiments are much lower than those estimated from the number of thiol groups along the Cys-ELP chain, indicating that only a small fraction of thiols form elastically active cross-links. From the small value of the fraction of elastically active cross-links, the Cys-ELP hydrogel is concluded to be an inhomogenous network. Under steady shear, a 2.5 wt % Cys-ELP hydrogel shear thickens at shear rates lower than that necessary for fracture.
Collapse
Affiliation(s)
- Donghua Xu
- Department of Chemistry and Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, North Carolina 27708-0346, USA
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China
| | - Daisuke Asai
- Department of Chemistry and Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, North Carolina 27708-0346, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Ashutosh Chilkoti
- Department of Chemistry and Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, North Carolina 27708-0346, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | - Stephen L. Craig
- Department of Chemistry and Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, North Carolina 27708-0346, USA
| |
Collapse
|
34
|
Sui K, Zhao X, Wu Z, Xia Y, Liang H, Li Y. Synthesis, rapid responsive thickening, and self-assembly of brush copolymer poly(ethylene oxide)-graft-poly(N,N-dimethylaminoethyl methacrylate) in aqueous solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:153-160. [PMID: 22107261 DOI: 10.1021/la2031472] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Double hydrophilic brush copolymer poly(ethylene oxide)-graft-poly(N,N-dimethylaminoethyl methacrylate) (PEO-g-PDMAEMA) was successfully prepared via atom transfer radical polymerization (ATRP). We investigated the pH/thermoresponsive behaviors of PEO-g-PDMAEMA brush-shaped copolymer concentrated aqueous solutions by rheology. The observed LCST strongly decreased with increasing pH of the solutions, which was lower than that of linear block copolymer for different pH, indicating rapid thermoresponsiveness of the brush PDMAEMA chains. An unexpected shear thickening behavior was observed and could be tuned by the pH, resulting from the mobile nature and tractive force of the densely grafted hydrophobic chains of PDMAEMA at high pH. Self-assembly of the brush copolymer in a different pH and ionic strength environment was studied by transmission electron microscopy. A wormlike cylinder structure was formed at low pH. Fractals were observed for the brush copolymer aqueous solution in the presence of NaCl. The results showed that by adjusting the pH and NaCl concentration of the dispersions fractal aggregates with different topology were obtained. The observations reported here can supply a better understanding of the molecular self-assembling nature and be used to develop responsive materials with better performance.
Collapse
Affiliation(s)
- Kunyan Sui
- State Key Laboratory Cultivating Base for New Fiber Materials and Modern Textile, Department of Polymer Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | | | | | | | | | | |
Collapse
|
35
|
A natural shear-thickening water-soluble polymer from the fronds of the black tree fern, Cyathea medullaris: Influence of salt, pH and temperature. Carbohydr Polym 2012; 87:131-138. [DOI: 10.1016/j.carbpol.2011.07.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 11/22/2022]
|
36
|
Ling GH, Wang Y, Weiss RA. Linear Viscoelastic and Uniaxial Extensional Rheology of Alkali Metal Neutralized Sulfonated Oligostyrene Ionomer Melts. Macromolecules 2011. [DOI: 10.1021/ma201854w] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gerald H. Ling
- Department
of Polymer Engineering and ‡Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Yangyang Wang
- Department
of Polymer Engineering and ‡Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - R. A. Weiss
- Department
of Polymer Engineering and ‡Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
37
|
Polymers for enhanced oil recovery: A paradigm for structure–property relationship in aqueous solution. Prog Polym Sci 2011. [DOI: 10.1016/j.progpolymsci.2011.05.006] [Citation(s) in RCA: 576] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Fleet R, van den Dungen ETA, Klumperman B. Novel Glycopolymer Brushes via ATRP: 2. Thermal and Mechanical Properties. MACROMOL CHEM PHYS 2011. [DOI: 10.1002/macp.201100289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Xu D, Craig SL. Strain Hardening and Strain Softening of Reversibly Cross-linked Supramolecular Polymer Networks. Macromolecules 2011; 44:7478-7488. [PMID: 22043083 DOI: 10.1021/ma201386t] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The large amplitude oscillatory shear behavior of metallo-supramolecular polymer networks formed by adding bis-Pd(II) cross-linkers to poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO) solution is reported. The influence of scanning frequency, dissociation rate of cross-linkers, concentration of cross-linkers, and concentration of PVP solution on the large amplitude oscillatory shear behavior is explored. In semidilute unentangled PVP solutions, above a critical scanning frequency, strain hardening of both storage moduli and loss moduli is observed. In the semidilute entangled regime of PVP solution, however, strain softening is observed for samples with faster cross-linkers (k(d) ∼ 1450 s(-1)), whereas strain hardening is observed for samples with slower cross-linkers (k(d) ∼ 17 s(-1)). The mechanism of strain hardening is attributed primarily to a strain-induced increase in the number of elastically active chains, with possible contributions from non-Gaussian stretching of polymer chains at strains approaching network fracture. The divergent strain softening of samples with faster cross-linkers in semidilute entangled PVP solutions, relative to the strain hardening of samples with slower cross-linkers, is consistent with observed shear thinning/shear thickening behavior reported previously and is attributed to the fact that the average time that a cross-linker remains detached is too short to permit the local relaxation of polymer chain segments that is necessary for a net conversion of elastically inactive to elastically active cross-linkers. These and other observations paint a picture in which strain softening and shear thinning arise from the same set of molecular mechanisms, conceptually uniting the two nonlinear responses for this system.
Collapse
Affiliation(s)
- Donghua Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | | |
Collapse
|
40
|
Xu D, Liu CY, Craig SL. Divergent Shear Thinning and Shear Thickening Behavior of Supramolecular Polymer Networks in Semidilute Entangled Polymer Solutions. Macromolecules 2011; 44:2343-2353. [PMID: 21547008 DOI: 10.1021/ma2000916] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The steady shear behavior of metallo-supramolecular polymer networks formed by bis-Pd(II) cross-linkers and semidilute entangled solutions of poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO) or N,N-dimethyl formamide (DMF) is reported. The steady shear behavior of the networks depends on the dissociation rate and association rate of the cross-linkers, the concentration of cross-linkers, and the concentration of the polymer solution. The divergent steady shear behavior-shear thinning versus shear thickening-of samples with identical structure but different cross-linker dynamics (J. Phys. Chem. Lett. 2010, 1, 1683-1686) is further explored in this paper. The divergent steady shear behavior for networks with different cross-linkers is connected to a competition between different time scales: the average time that a cross-linker remains open (τ(1)) and the local relaxation time of a segment of polymer chain (τ(segment)). When τ(1) is larger than τ(segment), shear thickening is observed. When τ(1) is smaller than τ(segment), only shear thinning is observed.
Collapse
Affiliation(s)
- Donghua Xu
- Department of Chemistry and Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, North Carolina, 27708-0346
| | | | | |
Collapse
|
41
|
|
42
|
Lele A, Shedge A, Badiger M, Wadgaonkar P, Chassenieux C. Abrupt Shear Thickening of Aqueous Solutions of Hydrophobically Modified Poly(N,N′-dimethylacrylamide-co-acrylic acid). Macromolecules 2010. [DOI: 10.1021/ma1017378] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ashish Lele
- Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411 008, India
| | - Aarti Shedge
- Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411 008, India
| | - Manohar Badiger
- Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411 008, India
| | - Prakash Wadgaonkar
- Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411 008, India
| | - Christophe Chassenieux
- Polymer, Colliods and Interfaces UMR CNRS 6120, Universite du Maine, Avenue Olivier Messiaen 72085, Le Mans, cedex 09, France
| |
Collapse
|
43
|
Zhang X, Jiang X, Zhang X, Dai H. Solution properties of thermothickening copolymers bearing hydrocarbon end-capped oxyethylene units. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/polb.22047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Dong X, Li L, Xu J, Guo X. Rheological behavior of PMVE-MA aqueous solution with metallic cations. Front Chem Sci Eng 2010. [DOI: 10.1007/s11705-010-0548-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Wang J, Benyahia L, Chassenieux C, Tassin JF, Nicolai T. Shear-induced gelation of associative polyelectrolytes. POLYMER 2010. [DOI: 10.1016/j.polymer.2010.02.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Xu D, Hawk JL, Loveless DM, Jeon SL, Craig SL. Mechanism of Shear Thickening in Reversibly Cross-linked Supramolecular Polymer Networks. Macromolecules 2010; 43:3556-3565. [PMID: 20479956 DOI: 10.1021/ma100093b] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here the nonlinear rheological properties of metallo-supramolecular networks formed by the reversible cross-linking of semi-dilute unentangled solutions of poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO). The reversible cross-linkers are bis-Pd(II) or bis-Pt(II) complexes that coordinate to the pyridine functional groups on the PVP. Under steady shear, shear thickening is observed above a critical shear rate, and that critical shear rate is experimentally correlated with the lifetime of the metal-ligand bond. The onset and magnitude of the shear thickening depend on the amount of cross-linkers added. In contrast to the behavior observed in most transient networks, the time scale of network relaxation is found to increase during shear thickening. The primary mechanism of shear thickening is ascribed to the shear-induced transformation of intrachain cross-linking to interchain cross-linking, rather than nonlinear high tension along polymer chains that are stretched beyond the Gaussian range.
Collapse
Affiliation(s)
- Donghua Xu
- Department of Chemistry and Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, NC, 27708-0346, USA
| | | | | | | | | |
Collapse
|
47
|
de Bruyn JR, Oppong FK. Microrheology and dynamics of an associative polymer. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 31:25-35. [PMID: 20175286 DOI: 10.1140/epje/i2010-10545-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We study the microscopic viscoelastic properties and relaxation dynamics of solutions of a side-chain associative polymer, hydrophobically modified hydroxyethyl cellulose (hmHEC). Dynamic light scattering from small tracer particles suspended in the polymer solutions is used to determine their viscous and elastic moduli on the scale of the particles. Bulk-scale viscoelastic properties are measured by shear rheometry. The motion of the tracer particles in hmHEC is diffusive at short times and subdiffusive at intermediate and long times. The long-time subdiffusive motion was not observed in parallel experiments on unmodified HEC solutions, and is explained in terms of hindered reptation of the hydrophobically modified polymer chains in the associative network. Dynamic light scattering from the polymer molecules themselves shows that chain relaxation in hmHEC is dominated by slow concentration-dependent processes due to the large-scale associative network structure, while that in HEC is dominated by fast concentration independent Rouse-like dynamics.
Collapse
Affiliation(s)
- J R de Bruyn
- Department of Physics and Astronomy, University of Western Ontario, London, Canada
| | | |
Collapse
|
48
|
Vortex-induced injectable silk fibroin hydrogels. Biophys J 2009; 97:2044-50. [PMID: 19804736 DOI: 10.1016/j.bpj.2009.07.028] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/09/2009] [Accepted: 07/16/2009] [Indexed: 11/21/2022] Open
Abstract
A novel, to our knowledge, technique was developed to control the rate of beta-sheet formation and resulting hydrogelation kinetics of aqueous, native silk solutions. Circular dichroism spectroscopy indicated that vortexing aqueous solutions of silkworm silk lead to a transition from an overall protein structure that is initially rich in random coil to one that is rich in beta-sheet content. Dynamic oscillatory rheology experiments collected under the same assembly conditions as the circular dichroism experiments indicated that the increase in beta-sheet content due to intramolecular conformational changes and intermolecular self-assembly of the silk fibroin was directly correlated with the subsequent changes in viscoelastic properties due to hydrogelation. Vortexing low-viscosity silk solutions lead to orders-of-magnitude increase in the complex shear modulus, G*, and formation of rigid hydrogels (G* approximately 70 kPa for 5.2 wt % protein concentration). Vortex-induced, beta-sheet-rich silk hydrogels consisted of permanent, physical, intermolecular crosslinks. The hydrogelation kinetics could be controlled easily (from minutes to hours) by changing the vortex time, assembly temperature and/or protein concentration, providing a useful timeframe for cell encapsulation. The stiffness of preformed hydrogels recovered quickly, immediately after injection through a needle, enabling the potential use of these systems for injectable cell delivery scaffolds.
Collapse
|
49
|
Ghimici L, Bercea M, Dragan ES. Rheological Behavior of Some Cationic Polyelectrolytes. J MACROMOL SCI B 2009. [DOI: 10.1080/00222340903035618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Luminita Ghimici
- a “Petru Poni” Institute of Macromolecular Chemistry , Iasi, Romania
| | - Maria Bercea
- a “Petru Poni” Institute of Macromolecular Chemistry , Iasi, Romania
| | | |
Collapse
|
50
|
Paillet S, Grassl B, Khoukh A, Torres M, Desbrières J, Müller AJ. Rheological Behavior of Bigrafted Hydrophobically Modified Polyelectrolyte. Macromolecules 2009. [DOI: 10.1021/ma900300p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sabrina Paillet
- Université de Pau et des Pays de l’Adour, IPREM UMR CNRS/UPPA 5254, Hélioparc Pau Pyrénées - 2 Avenue du Président Angot - 64053 Pau cedex 09, France
| | - Bruno Grassl
- Université de Pau et des Pays de l’Adour, IPREM UMR CNRS/UPPA 5254, Hélioparc Pau Pyrénées - 2 Avenue du Président Angot - 64053 Pau cedex 09, France
| | - Abdel Khoukh
- Université de Pau et des Pays de l’Adour, IPREM UMR CNRS/UPPA 5254, Hélioparc Pau Pyrénées - 2 Avenue du Président Angot - 64053 Pau cedex 09, France
| | - Miguel Torres
- Grupo de Polímeros USB, Departamento de Ciencias de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080A, Venezuela
| | - Jacques Desbrières
- Université de Pau et des Pays de l’Adour, IPREM UMR CNRS/UPPA 5254, Hélioparc Pau Pyrénées - 2 Avenue du Président Angot - 64053 Pau cedex 09, France
| | - Alejandro J. Müller
- Grupo de Polímeros USB, Departamento de Ciencias de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080A, Venezuela
| |
Collapse
|