1
|
Tamura AM, Stewart KA, Young JB, Wei NB, Cantor AJ, Sumerlin BS. Selective Depolymerization for Sculpting Polymethacrylate Molecular Weight Distributions. J Am Chem Soc 2025; 147:5220-5227. [PMID: 39879111 DOI: 10.1021/jacs.4c15553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Chain-end reactivation of polymethacrylates generated by reversible-deactivation radical polymerization (RDRP) has emerged as a powerful tool for triggering depolymerization at significantly milder temperatures than those traditionally employed. In this study, we demonstrate how the facile depolymerization of poly(butyl methacrylate) (PBMA) can be leveraged to selectively skew the molecular weight distribution (MWD) and predictably alter the viscoelastic properties of blended PBMA mixtures. By mixing polymers with thermally active chain ends with polymers of different molecular weights and inactive chain ends, the MWD of the blends can be skewed to be high or low by selective depolymerization. This approach leads to the counterintuitive principle of the "destructive strengthening" of a material. Finally, we demonstrate, as a proof of concept, the encryption of information within polymer mixtures by linking Morse code with the MWDs before and after selective depolymerization, allowing for the encoding of data within blends of synthetic macromolecules.
Collapse
Affiliation(s)
- Ariana M Tamura
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kevin A Stewart
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - James B Young
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Nathan B Wei
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alexander J Cantor
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Xu J, Li H, Niu Y. Synthesis of a temperature sensitive graft carbon dioxide‐based copolymer and its evaluation as a nano drug carrier. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Pessoni L, Siniscalco D, Boussonnière A, Castanet AS, Billon L, Delorme N. Photo-reversible solid to liquid transition of azobenzene containing polymers: impact of the chemical structure and chain length. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
|
5
|
Sincari V, Petrova SL, Konefał R, Hruby M, Jäger E. Microwave-assisted RAFT polymerization of N-(2-hydroxypropyl) methacrylamide and its relevant copolymers. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Castagnet T, Ballard N, Billon L, Asua JM. Microwave-Assisted Ultrafast RAFT Miniemulsion Polymerization of Biobased Terpenoid Acrylates. Biomacromolecules 2020; 21:4559-4568. [DOI: 10.1021/acs.biomac.0c00662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Thibault Castagnet
- Université de Pau & des Pays de l’Adour, E2S UPPA, CNRS, IPREM-UMR 5254, 64000 Pau, France
- Bio-Inspired Materials Group: Functionalities and Self-Assembly, Université de Pau & des Pays de l’Adour, E2S UPPA, 64000 Pau, France
- POLYMAT, University of the Basque Country UPV/EHU, Kimika Aplikatua Saila, Kimika Zientzien Fakultatea, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastián, Spain
| | - Nicholas Ballard
- POLYMAT, University of the Basque Country UPV/EHU, Kimika Aplikatua Saila, Kimika Zientzien Fakultatea, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Laurent Billon
- Université de Pau & des Pays de l’Adour, E2S UPPA, CNRS, IPREM-UMR 5254, 64000 Pau, France
- Bio-Inspired Materials Group: Functionalities and Self-Assembly, Université de Pau & des Pays de l’Adour, E2S UPPA, 64000 Pau, France
| | - José M. Asua
- POLYMAT, University of the Basque Country UPV/EHU, Kimika Aplikatua Saila, Kimika Zientzien Fakultatea, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
7
|
Barsbay M, Güven O. Nanostructuring of polymers by controlling of ionizing radiation-induced free radical polymerization, copolymerization, grafting and crosslinking by RAFT mechanism. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2018.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
9
|
Castagnet T, Agirre A, Ballard N, Billon L, Asua JM. Non-thermal microwave effects in radical polymerization of bio-based terpenoid (meth)acrylates. Polym Chem 2020. [DOI: 10.1039/d0py01192d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Non-thermal microwave effects are operative for terpenoid acrylates but not for methacrylates, provided that a minimum irradiation power is applied.
Collapse
Affiliation(s)
- Thibault Castagnet
- Université de Pau & des Pays de l'Adour
- E2S UPPA
- CNRS
- IPREM-UMR 5254
- 64000 Pau
| | - Amaia Agirre
- POLYMAT
- University of the Basque Country UPV/EHU
- Kimika Aplikatua saila
- Kimika Zientzien Fakultatea
- Joxe Mari Korta Zentroa
| | - Nicholas Ballard
- POLYMAT
- University of the Basque Country UPV/EHU
- Kimika Aplikatua saila
- Kimika Zientzien Fakultatea
- Joxe Mari Korta Zentroa
| | - Laurent Billon
- Université de Pau & des Pays de l'Adour
- E2S UPPA
- CNRS
- IPREM-UMR 5254
- 64000 Pau
| | - José M. Asua
- POLYMAT
- University of the Basque Country UPV/EHU
- Kimika Aplikatua saila
- Kimika Zientzien Fakultatea
- Joxe Mari Korta Zentroa
| |
Collapse
|
10
|
Knox ST, Warren NJ. Enabling technologies in polymer synthesis: accessing a new design space for advanced polymer materials. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00474b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review discusses how developments in laboratory technologies can push the boundaries of what is achievable using existing polymer synthesis techniques.
Collapse
Affiliation(s)
- Stephen T. Knox
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | | |
Collapse
|
11
|
Tran JD, Mikulec SN, Calzada OM, Prossnitz AN, Ennis AF, Sherwin WJ, Magsumbol AS, Jameson A, Schellinger JG. Microwave‐Assisted Reversible Addition–Fragmentation Chain Transfer Polymerization of Cationic Monomers in Mixed Aqueous Solvents. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jonathan D. Tran
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| | - Sydney N. Mikulec
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| | - Oscar M. Calzada
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| | - Alexander N. Prossnitz
- Department of Bioengineering University of Washington 3720 15th Ave NE Seattle WA 98105 USA
| | - Amanda F. Ennis
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| | - William J. Sherwin
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| | - Alisson S. Magsumbol
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| | - Alexandra Jameson
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| | - Joan G. Schellinger
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| |
Collapse
|
12
|
Reyhani A, McKenzie TG, Fu Q, Qiao GG. Fenton‐Chemistry‐Mediated Radical Polymerization. Macromol Rapid Commun 2019; 40:e1900220. [DOI: 10.1002/marc.201900220] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Amin Reyhani
- Polymer Science Group, Department of Chemical EngineeringThe University of Melbourne Parkville VIC 3010 Australia
| | - Thomas G. McKenzie
- Polymer Science Group, Department of Chemical EngineeringThe University of Melbourne Parkville VIC 3010 Australia
| | - Qiang Fu
- Polymer Science Group, Department of Chemical EngineeringThe University of Melbourne Parkville VIC 3010 Australia
| | - Greg G. Qiao
- Polymer Science Group, Department of Chemical EngineeringThe University of Melbourne Parkville VIC 3010 Australia
| |
Collapse
|
13
|
Kang TH, Lee HI. Microwave-Assisted Synthesis of Core-Crosslinked Star Polymers with Benzophenone Derivatives in the Core. Macromol Res 2019. [DOI: 10.1007/s13233-019-7064-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Reyhani A, McKenzie TG, Fu Q, Qiao GG. Redox-Initiated Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization. Aust J Chem 2019. [DOI: 10.1071/ch19109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reversible addition–fragmentation chain transfer (RAFT) polymerization initiated by a radical-forming redox reaction between a reducing and an oxidizing agent (i.e. ‘redox RAFT’) represents a simple, versatile, and highly useful platform for controlled polymer synthesis. Herein, the potency of a wide range of redox initiation systems including enzyme-mediated redox reactions, the Fenton reaction, peroxide-based reactions, and metal-catalyzed redox reactions, and their application in initiating RAFT polymerization, are reviewed. These redox-RAFT polymerization methods have been widely studied for synthesizing a broad range of homo- and co-polymers with tailored molecular weights, compositions, and (macro)molecular structures. It has been demonstrated that redox-RAFT polymerization holds particular promise due to its excellent performance under mild conditions, typically operating at room temperature. Redox-RAFT polymerization is therefore an important and core part of the RAFT methodology handbook and may be of particular importance going forward for the fabrication of polymeric biomaterials under biologically relevant conditions or in biological systems, in which naturally occurring redox reactions are prevalent.
Collapse
|
15
|
López-Domínguez P, Olvera-Mancilla J, Palacios-Alquisira J, Alexandrova L, Dubé MA, Vivaldo-Lima E. Kinetic modeling of vinyl acetate telomerization catalyzed by metal transition complexes under thermal and microwave heating. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2018. [DOI: 10.1080/10601325.2018.1424549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Porfirio López-Domínguez
- Facultad de Química, Departamento de Ingeniería Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jessica Olvera-Mancilla
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Joaquín Palacios-Alquisira
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Larissa Alexandrova
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marc A. Dubé
- Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Eduardo Vivaldo-Lima
- Facultad de Química, Departamento de Ingeniería Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
16
|
Phommalysack-Lovan J, Chu Y, Boyer C, Xu J. PET-RAFT polymerisation: towards green and precision polymer manufacturing. Chem Commun (Camb) 2018; 54:6591-6606. [DOI: 10.1039/c8cc02783h] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photoinduced electron/energy transfer-reversible addition–fragmentation chain transfer (PET-RAFT) process has opened up a new way of precision polymer manufacturing to satisfy the concept of green chemistry.
Collapse
Affiliation(s)
- Jamie Phommalysack-Lovan
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Yingying Chu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| |
Collapse
|
17
|
Microwave-assisted rapid fabrication of antibacterial polyacrylonitrile microfibers/nanofibers via nitrile click chemistry and electrospinning. J Appl Polym Sci 2017. [DOI: 10.1002/app.45490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Arshad M, Pradhan RA, Ullah A. Synthesis of lipid-based amphiphilic block copolymer and its evaluation as nano drug carrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:217-223. [DOI: 10.1016/j.msec.2017.03.109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/24/2022]
|
19
|
Yeow J, Boyer C. Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700137. [PMID: 28725534 PMCID: PMC5514979 DOI: 10.1002/advs.201700137] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/20/2017] [Indexed: 05/17/2023]
Abstract
The polymerization-induced self-assembly (PISA) process is a useful synthetic tool for the efficient synthesis of polymeric nanoparticles of different morphologies. Recently, studies on visible light initiated PISA processes have offered a number of key research opportunities that are not readily accessible using traditional thermally initiated systems. For example, visible light mediated PISA (Photo-PISA) enables a high degree of control over the dispersion polymerization process by manipulation of the wavelength and intensity of incident light. In some cases, the final nanoparticle morphology of a single formulation can be modulated by simple manipulation of these externally controlled parameters. In addition, temporal (and in principle spatial) control over the Photo-PISA process can be achieved in most cases. Exploitation of the mild room temperature polymerizations conditions can enable the encapsulation of thermally sensitive therapeutics to occur without compromising the polymerization rate and their activities. Finally, the Photo-PISA process can enable further mechanistic insights into the morphological evolution of nanoparticle formation such as the effects of temperature on the self-assembly process. The purpose of this mini-review is therefore to examine some of these recent advances that have been made in Photo-PISA processes, particularly in light of the specific advantages that may exist in comparison with conventional thermally initiated systems.
Collapse
Affiliation(s)
- Jonathan Yeow
- School of Chemical EngineeringCentre for Advanced Macromolecular Design (CAMD) and Australian Centre for Nanomedicine (ACN)UNSW SydneySydneyNSW2052Australia
| | - Cyrille Boyer
- School of Chemical EngineeringCentre for Advanced Macromolecular Design (CAMD) and Australian Centre for Nanomedicine (ACN)UNSW SydneySydneyNSW2052Australia
| |
Collapse
|
20
|
Reyhani A, McKenzie TG, Ranji-Burachaloo H, Fu Q, Qiao GG. Fenton-RAFT Polymerization: An "On-Demand" Chain-Growth Method. Chemistry 2017; 23:7221-7226. [PMID: 28382790 DOI: 10.1002/chem.201701410] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Indexed: 01/03/2023]
Abstract
Fine control over the architecture and/or microstructure of synthetic polymers is fast becoming a reality owing to the development of efficient and versatile polymerization techniques and conjugation reactions. However, the transition of these syntheses to automated, programmable, and high-throughput operating systems is a challenging step needed to translate the vast potential of precision polymers into machine-programmable polymers for biological and functional applications. Chain-growth polymerizations are particularly appealing for their ability to form structurally and chemically well-defined macromolecules through living/controlled polymerization techniques. Even using the latest polymerization technologies, the macromolecular engineering of complex functional materials often requires multi-step syntheses and purification of intermediates, and results in sub-optimal yields. To develop a proof-of-concept of a framework polymerization technique that is readily amenable to automation requires several key characteristics. In this study, a new approach is described that is believed to meet these requirements, thus opening avenues toward automated polymer synthesis.
Collapse
Affiliation(s)
- Amin Reyhani
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Thomas G McKenzie
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hadi Ranji-Burachaloo
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Qiang Fu
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
21
|
Yamamoto S, Miyashita T, Mitsuishi M. Amphiphilic acrylamide block copolymer: RAFT block copolymerization and monolayer behaviour. RSC Adv 2017. [DOI: 10.1039/c7ra06788g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Amphiphilic acrylamide block copolymer, synthesized by RAFT polymerization, takes a stable monolayer formation with phase-separated structures at the air–water interface.
Collapse
Affiliation(s)
- Shunsuke Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai 980-8577
- Japan
| | - Tokuji Miyashita
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai 980-8577
- Japan
| | - Masaya Mitsuishi
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai 980-8577
- Japan
| |
Collapse
|
22
|
Kang M, Lee SY, Shin HH, Yu YC, Youk JH. Microwave-assisted rapid one-step synthesis of poly(2-oxazoline)-based block copolymers using a dual initiator for CROP and RAFT polymerization. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.01.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Garrett ET, Pei Y, Lowe AB. Microwave-assisted synthesis of block copolymer nanoparticles via RAFT with polymerization-induced self-assembly in methanol. Polym Chem 2016. [DOI: 10.1039/c5py01672j] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comparative study of microwave-assisted (MA) and conductive heating in RAFT dispersion polymerization formulations in MeOH that result in polymerization-induced self-assembly is detailed.
Collapse
Affiliation(s)
- Elden T. Garrett
- Nanochemistry Research Institute (NRI) & Department of Chemistry
- Curtin University
- Perth
- Australia
| | - Yiwen Pei
- Nanochemistry Research Institute (NRI) & Department of Chemistry
- Curtin University
- Perth
- Australia
| | - Andrew B. Lowe
- Nanochemistry Research Institute (NRI) & Department of Chemistry
- Curtin University
- Perth
- Australia
| |
Collapse
|
24
|
Hill MR, Carmean RN, Sumerlin BS. Expanding the Scope of RAFT Polymerization: Recent Advances and New Horizons. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00342] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Megan R. Hill
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - R. Nicholas Carmean
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
25
|
Kabb CP, Carmean RN, Sumerlin BS. Probing the surface-localized hyperthermia of gold nanoparticles in a microwave field using polymeric thermometers. Chem Sci 2015; 6:5662-5669. [PMID: 29861901 PMCID: PMC5949850 DOI: 10.1039/c5sc01535a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/03/2015] [Indexed: 11/21/2022] Open
Abstract
Gold nanoparticles decorated with “polymeric thermometers,” consisting of a polymeric spacer, thermally-labile azo linker, and fluorescent tag, were used to quantify the extent of localized hyperthermia under microwave irradiation.
The surface-localized hyperthermia of gold nanoparticles under microwave irradiation was examined. Gold nanoparticles with a hydrodynamic diameter of ∼6 nm stabilized by polymeric “thermometers” were used to gather information on the extent of heating as well as its spatial confinements. Reversible addition–fragmentation chain transfer polymerization was employed to synthesize well-defined, functional polymers of predetermined molecular weights, allowing for estimation of the distance between the nanoparticle surface and the polymer chain end. The polymers were conjugated with a fluorescent dye separated by a thermally-labile azo linkage, and these polymeric ligands were bound to gold nanoparticles via gold–thiolate bonds. Conventional heating experiments elucidated the relationship between temperature and the extent of dye release from the gold nanoparticle using fluorescence spectroscopy. The local temperature increase experienced under microwave irradiation was calculated using the same methodology. This approach indicated the temperature near the surface of the nanoparticle was nearly 70 °C higher than the bulk solution temperature, but decreased rapidly with distance, with no noticeable temperature increase when the azo linkage was approximately 2 nm away.
Collapse
Affiliation(s)
- Christopher P Kabb
- George & Josephine Butler Polymer Research Laboratory , Center for Macromolecular Science & Engineering , Department of Chemistry , University of Florida , PO Box 117200 , Gainesville , FL 32611-7200 , USA .
| | - R Nicholas Carmean
- George & Josephine Butler Polymer Research Laboratory , Center for Macromolecular Science & Engineering , Department of Chemistry , University of Florida , PO Box 117200 , Gainesville , FL 32611-7200 , USA .
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory , Center for Macromolecular Science & Engineering , Department of Chemistry , University of Florida , PO Box 117200 , Gainesville , FL 32611-7200 , USA .
| |
Collapse
|
26
|
Mishra K, Joy A. Dual functionalized telechelic block copolymers with reproducible block sizes prepared by microwave assisted RAFT polymerization. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Gody G, Barbey R, Danial M, Perrier S. Ultrafast RAFT polymerization: multiblock copolymers within minutes. Polym Chem 2015. [DOI: 10.1039/c4py01251h] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A remarkably efficient and versatile procedure for the preparation of multiblock copolymers is presented.
Collapse
Affiliation(s)
- Guillaume Gody
- Key Centre for Polymers & Colloids
- School of Chemistry
- The University of Sydney
- NSW 2006
- Australia
| | - Raphael Barbey
- Key Centre for Polymers & Colloids
- School of Chemistry
- The University of Sydney
- NSW 2006
- Australia
| | - Maarten Danial
- Key Centre for Polymers & Colloids
- School of Chemistry
- The University of Sydney
- NSW 2006
- Australia
| | - Sébastien Perrier
- Key Centre for Polymers & Colloids
- School of Chemistry
- The University of Sydney
- NSW 2006
- Australia
| |
Collapse
|
28
|
Hayden S, Studentschnig AFH, Schober S, Kappe CO. A Critical Investigation on the Occurrence of Microwave Effects in Emulsion Polymerizations. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephan Hayden
- Christian Doppler Laboratory for Microwave Chemistry and Institute of Chemistry; University of Graz, NAWI Graz; Heinrichstrasse 28 A-8010 Graz Austria
| | | | - Sigurd Schober
- Institute of Chemistry; University of Graz, NAWI Graz; Heinrichstrasse 28 A-8010 Graz Austria
| | - C. Oliver Kappe
- Christian Doppler Laboratory for Microwave Chemistry and Institute of Chemistry; University of Graz, NAWI Graz; Heinrichstrasse 28 A-8010 Graz Austria
| |
Collapse
|
29
|
Jiang X, Jiang X, Lu G, Feng C, Huang X. The first amphiphilic graft copolymer bearing a hydrophilic poly(2-hydroxylethyl acrylate) backbone synthesized by successive RAFT and ATRP. Polym Chem 2014. [DOI: 10.1039/c4py00415a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports the first synthesis of well-defined amphiphilic graft copolymers, consisting of a hydrophilic poly(2-hydroxyethyl acrylate) (PHEA) backbone and hydrophobic polystyrene side chains, by the combination of RAFT polymerization, ATRP, and the grafting-from strategy.
Collapse
Affiliation(s)
- Xiuyu Jiang
- Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032, P. R. China
| | - Xue Jiang
- Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032, P. R. China
| | - Guolin Lu
- Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032, P. R. China
| | - Chun Feng
- Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032, P. R. China
| | - Xiaoyu Huang
- Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032, P. R. China
| |
Collapse
|
30
|
López-Domínguez P, Vivaldo-Lima E. Analysis of the Microwave Activated Atom Transfer Radical Polymerization of Methyl Methacrylate and Styrene Using Modeling Tools. MACROMOL REACT ENG 2013. [DOI: 10.1002/mren.201300127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Porfirio López-Domínguez
- Facultad de Química; Departamento de Ingeniería Química, Universidad Nacional Autónoma de México; 04510 México D.F. Mexico
| | - Eduardo Vivaldo-Lima
- Facultad de Química; Departamento de Ingeniería Química, Universidad Nacional Autónoma de México; 04510 México D.F. Mexico
| |
Collapse
|
31
|
RAFT-mediated synthesis of poly(N-(2-hydroxypropyl)methacrylamide-b-4-vinylpyridine) by conventional and microwave heating. Polym Bull (Berl) 2013. [DOI: 10.1007/s00289-013-0993-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
|
33
|
BURUIANA EMILC, CHIBAC ANDREEAL, MELINTE VIOLETA, BURUIANA TINCA. Preparation of amphiphilic block copolymer containing triazene moieties and fluorescence study. J CHEM SCI 2013. [DOI: 10.1007/s12039-012-0350-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Song X, Yao W, Lu G, Li Y, Huang X. tBHBMA: a novel trifunctional acrylic monomer for the convenient synthesis of PAA-g-PCL well-defined amphiphilic graft copolymer. Polym Chem 2013. [DOI: 10.1039/c3py00046j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Hornung CH, Nguyen X, Kyi S, Chiefari J, Saubern S. Synthesis of RAFT Block Copolymers in a Multi-Stage Continuous Flow Process Inside a Tubular Reactor. Aust J Chem 2013. [DOI: 10.1071/ch12479] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This work describes a multi-stage continuous flow polymerisation process for the synthesis of block copolymers using the RAFT polymerization method. The process retains all the benefits and versatility of the RAFT method and has been adapted for a series of monomer combinations, including acrylates, acrylamides, and vinyl monomers. It resulted in polymers with molecular weights between 13500 and 34100 g mol–1, and dispersities typically between 1.21 and 1.58. Different architectures were prepared (including combinations of hydrophilic and hydrophobic blocks) which are soluble in a range of different solvents including aqueous and organic media.
Collapse
|
36
|
Hayden S, Damm M, Kappe CO. On the Importance of Accurate Internal Temperature Measurements in the Microwave Dielectric Heating of Viscous Systems and Polymer Synthesis. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200449] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Schacher FH, Rupar PA, Manners I. Funktionale Blockcopolymere: nanostrukturierte Materialien mit neuen Anwendungsmöglichkeiten. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200310] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Schacher FH, Rupar PA, Manners I. Functional Block Copolymers: Nanostructured Materials with Emerging Applications. Angew Chem Int Ed Engl 2012; 51:7898-921. [DOI: 10.1002/anie.201200310] [Citation(s) in RCA: 564] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Indexed: 01/07/2023]
|
39
|
Huang X, Jiang X, Zhuo R. Microwave-assisted solid-phase synthesis of pH-responsive polyaspartamide derivatives. Carbohydr Polym 2012; 89:788-94. [DOI: 10.1016/j.carbpol.2012.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 11/25/2022]
|
40
|
Synthesis of Star Poly(N-vinylcarbazole) by Microwave-Assisted Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT). Polymers (Basel) 2012. [DOI: 10.3390/polym4021183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Guo W, Hensarling RM, LeBlanc AL, Hoff EA, Baranek AD, Patton DL. Rapid Synthesis of Polymer Brush Surfaces via Microwave-Assisted Surface-Initiated Radical Polymerization. Macromol Rapid Commun 2012; 33:863-8. [DOI: 10.1002/marc.201100829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/30/2012] [Indexed: 11/07/2022]
|
42
|
|
43
|
Ramier J, Renard E, Grande D. Microwave-assisted synthesis and characterization of biodegradable block copolyesters based on poly(3-hydroxyalkanoate)s and poly(D,L
-lactide). ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.25916] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Gregory A, Stenzel MH. Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2011.08.004] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Moad G, Rizzardo E, Thang SH. Living Radical Polymerization by the RAFT Process – A Third Update. Aust J Chem 2012. [DOI: 10.1071/ch12295] [Citation(s) in RCA: 825] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper provides a third update to the review of reversible deactivation radical polymerization (RDRP) achieved with thiocarbonylthio compounds (ZC(=S)SR) by a mechanism of reversible addition-fragmentation chain transfer (RAFT) that was published in June 2005 (Aust. J. Chem. 2005, 58, 379). The first update was published in November 2006 (Aust. J. Chem. 2006, 59, 669) and the second in December 2009 (Aust. J. Chem. 2009, 62, 1402). This review cites over 700 publications that appeared during the period mid 2009 to early 2012 covering various aspects of RAFT polymerization which include reagent synthesis and properties, kinetics and mechanism of polymerization, novel polymer syntheses, and a diverse range of applications. This period has witnessed further significant developments, particularly in the areas of novel RAFT agents, techniques for end-group transformation, the production of micro/nanoparticles and modified surfaces, and biopolymer conjugates both for therapeutic and diagnostic applications.
Collapse
|
46
|
Sugihara Y, Semsarilar M, Perrier S, Zetterlund PB. Assessment of the influence of microwave irradiation on conventional and RAFT radical polymerization of styrene. Polym Chem 2012. [DOI: 10.1039/c2py20434g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Kwak Y, Mathers RT, Matyjaszewski K. Critical Evaluation of the Microwave Effect on Radical (Co)Polymerizations. Macromol Rapid Commun 2011; 33:80-6. [DOI: 10.1002/marc.201100618] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/06/2011] [Indexed: 11/05/2022]
|
48
|
Kempe K, Becer CR, Schubert US. Microwave-Assisted Polymerizations: Recent Status and Future Perspectives. Macromolecules 2011. [DOI: 10.1021/ma2004794] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kristian Kempe
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - C. Remzi Becer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands
| |
Collapse
|
49
|
Roy D, Sumerlin BS. Block copolymerization of vinyl ester monomers via RAFT/MADIX under microwave irradiation. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.04.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Hornung CH, Guerrero-Sanchez C, Brasholz M, Saubern S, Chiefari J, Moad G, Rizzardo E, Thang SH. Controlled RAFT Polymerization in a Continuous Flow Microreactor. Org Process Res Dev 2011. [DOI: 10.1021/op1003314] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian H. Hornung
- CSIRO Materials Science & Engineering, Bag 10, Clayton South, Victoria 3169, Australia
| | | | - Malte Brasholz
- CSIRO Materials Science & Engineering, Bag 10, Clayton South, Victoria 3169, Australia
| | - Simon Saubern
- CSIRO Materials Science & Engineering, Bag 10, Clayton South, Victoria 3169, Australia
| | - John Chiefari
- CSIRO Materials Science & Engineering, Bag 10, Clayton South, Victoria 3169, Australia
| | - Graeme Moad
- CSIRO Materials Science & Engineering, Bag 10, Clayton South, Victoria 3169, Australia
| | - Ezio Rizzardo
- CSIRO Materials Science & Engineering, Bag 10, Clayton South, Victoria 3169, Australia
| | - San H. Thang
- CSIRO Materials Science & Engineering, Bag 10, Clayton South, Victoria 3169, Australia
| |
Collapse
|