1
|
Fourie KR, Jeffery A, Chand D, Choudhary P, Ng SH, Liu H, Magloire D, Khatooni Z, Berberov E, Wilson HL. Vaccination with a Lawsonia intracellularis subunit water in oil emulsion vaccine mitigated some disease parameters but failed to affect shedding. Vaccine 2024; 42:126254. [PMID: 39213981 DOI: 10.1016/j.vaccine.2024.126254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Lawsonia intracellularis is the causative agent of ileitis in swine that manifests as slower weight gain, mild or hemorrhagic diarrhea and/or death in severe cases. As an economically important swine pathogen, development of effective vaccines is important to the swine industry. In developing a subunit vaccine with three recombinant antigens - FliC, GroEL and YopN - we wanted to identify a formulation that would produce robust immune responses that reduce disease parameters associated with Lawsonia intracellularis infection. We formulated these three antigens with four adjuvants: Montanide ISA 660 VG, Montanide Gel 02 PR, Montanide IMS 1313 VG NST, and Montanide ISA 61 VG in an immunogenicity study. Groups vaccinated with formulations including Montanide ISA 660 VG or Montanide ISA 61 VG had significantly more robust immune responses than groups vaccinated with formulations including Montanide Gel 02 PR or Montanide IMS 1313 VG NST. In the challenge study, animals vaccinated with these antigens and Montanide ISA 61 VG had reduced lesion scores, reduced lesion lengths, and increased average daily gain, but no reduction in shedding relative to the control animals. This work shows that this vaccine formulation should be considered for future study in a field and performance trial.
Collapse
Affiliation(s)
- Kezia R Fourie
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Alison Jeffery
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada; Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Dylan Chand
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Pooja Choudhary
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Siew Hon Ng
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Haoming Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Donaldson Magloire
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Zahed Khatooni
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Emil Berberov
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
2
|
Formulation attributes, acid tunable degradability and cellular interaction of acetalated maltodextrin nanoparticles. Carbohydr Polym 2022; 288:119378. [DOI: 10.1016/j.carbpol.2022.119378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 01/06/2023]
|
3
|
Procopio A, Lagreca E, Jamaledin R, La Manna S, Corrado B, Di Natale C, Onesto V. Recent Fabrication Methods to Produce Polymer-Based Drug Delivery Matrices (Experimental and In Silico Approaches). Pharmaceutics 2022; 14:872. [PMID: 35456704 PMCID: PMC9027538 DOI: 10.3390/pharmaceutics14040872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023] Open
Abstract
The study of novel drug delivery systems represents one of the frontiers of the biomedical research area. Multi-disciplinary scientific approaches combining traditional or engineered technologies are used to provide major advances in improving drug bioavailability, rate of release, cell/tissue specificity and therapeutic index. Biodegradable and bio-absorbable polymers are usually the building blocks of these systems, and their copolymers are employed to create delivery components. For example, poly (lactic acid) or poly (glycolic acid) are often used as bricks for the production drug-based delivery systems as polymeric microparticles (MPs) or micron-scale needles. To avoid time-consuming empirical approaches for the optimization of these formulations, in silico-supported models have been developed. These methods can predict and tune the release of different drugs starting from designed combinations. Starting from these considerations, this review has the aim of investigating recent approaches to the production of polymeric carriers and the combination of in silico and experimental methods as promising platforms in the biomedical field.
Collapse
Affiliation(s)
- Anna Procopio
- Biomechatronics Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Elena Lagreca
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, 80131 Naples, Italy; (E.L.); (R.J.)
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, 80131 Naples, Italy; (E.L.); (R.J.)
| | - Sara La Manna
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Brunella Corrado
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80131 Naples, Italy;
| | - Concetta Di Natale
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80131 Naples, Italy;
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-Nanotec), Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
4
|
Li W, Meng J, Ma X, Lin J, Lu X. Advanced materials for the delivery of vaccines for infectious diseases. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
Ali Dahhas M, Alsenaidy MA. Role of site-directed mutagenesis and adjuvants in the stability and potency of anthrax protective antigen. Saudi Pharm J 2022; 30:595-604. [PMID: 35693445 PMCID: PMC9177452 DOI: 10.1016/j.jsps.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 11/03/2022] Open
Abstract
Anthrax is a zoonotic infection caused by the gram-positive, aerobic, spore-forming bacterium Bacillus anthracis. Depending on the origin of the infection, serious health problems or mortality is possible. The virulence of B. anthracis is reliant on three pathogenic factors, which are secreted upon infection: protective antigen (PA), lethal factor (LF), and edema factor (EF). Systemic illness results from LF and EF entering cells through the formation of a complex with the heptameric form of PA, bound to the membrane of infected cells through its receptor. The currently available anthrax vaccines have multiple drawbacks, and recombinant PA is considered a promising second-generation vaccine candidate. However, the inherent chemical instability of PA through Asn deamidation at multiple sites prevents its use after long-term storage owing to loss of potency. Moreover, there is a distinct possibility of B. anthracis being used as a bioweapon; thus, the developed vaccine should remain efficacious and stable over the long-term. Second-generation anthrax vaccines with appropriate adjuvant formulations for enhanced immunogenicity and safety are desired. In this article, using protein engineering approaches, we have reviewed the stabilization of anthrax vaccine candidates that are currently licensed or under preclinical and clinical trials. We have also proposed a formulation to enhance recombinant PA vaccine potency via adjuvant formulation.
Collapse
|
6
|
Xue N, Svensson B, Bai Y. Structure, function and enzymatic synthesis of glucosaccharides assembled mainly by α1 → 6 linkages - A review. Carbohydr Polym 2022; 275:118705. [PMID: 34742430 DOI: 10.1016/j.carbpol.2021.118705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/02/2022]
Abstract
A variety of glucosaccharides composed of glucosyl residues can be classified into α- and β-type and have wide application in food and medicine areas. Among these glucosaccharides, β-type, such as cellulose and α-type, such as starch and starch derivatives, both contain 1 → 4 linkages and are well studied. Notably, in past decades also α1 → 6 glucosaccharides obtained increasing attention for unique physiochemical and biological properties. Especially in recent years, α1 → 6 glucosaccharides of different molecular weight distribution have been created and proved to be functional. However, compared to β- type and α1 → 4 glucosaccharides, only few articles provide a systematic overview of α1 → 6 glucosaccharides. This motivated, the present first comprehensive review on structure, function and synthesis of these α1 → 6 glucosaccharides, aiming both at improving understanding of traditional α1 → 6 glucosaccharides, such as isomaltose, isomaltooligosaccharides and dextrans, and to draw the attention to newly explored α1 → 6 glucosaccharides and their derivatives, such as cycloisomaltooligosaccharides, isomaltomegalosaccharides, and isomalto/malto-polysaccharides.
Collapse
Affiliation(s)
- Naixiang Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Song T, Liao Y, Zuo Q, Liu N, Liu Z. MnO2 nanoparticles as a minimalist multimode vaccine adjuvant/delivery system to regulate antigen presenting cells for tumor immunotherapy. J Mater Chem B 2022; 10:3474-3490. [PMID: 35403638 DOI: 10.1039/d1tb02650j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the field of tumor immunotherapy, tumor vaccines have unique advantages including less side effect, tumor-specificity and immune memory, and hence attract more and more attention. In the development of...
Collapse
Affiliation(s)
- Ting Song
- Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Yang Liao
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Qinhua Zuo
- Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Ning Liu
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| | - Zonghua Liu
- Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Li M, Zhao Y, Zhang W, Zhang S, Zhang S. Multiple-therapy strategies via polysaccharides-based nano-systems in fighting cancer. Carbohydr Polym 2021; 269:118323. [PMID: 34294335 DOI: 10.1016/j.carbpol.2021.118323] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022]
Abstract
Polysaccharide-based biomaterials (e.g., chitosan, dextran, hyaluronic acid, chondroitin sulfate and heparin) have received great attention in healthcare, particularly in drug delivery for tumor therapy. They are naturally abundant and available, outstandingly biodegradable and biocompatible, and they generally have negligible toxicity and low immunogenicity. In addition, they are easily chemically or physically modified. Therefore, PSs-based nanoparticles (NPs) have been extensively investigated for the enhancement of tumor treatment. In this review, we introduce the synthetic pathways of amphiphilic PS derivatives, which allow the constructs to self-assemble into NPs with various structures. We especially offer an overview of the emerging applications of self-assembled PSs-based NPs in tumor chemotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), gene therapy and immunotherapy. We believe that this review can provide criteria for a rational and molecular level-based design of PS-based NPs, and comprehensive insight into the potential of PS-based NPs used in multiple cancer therapies.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China.
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China.
| |
Collapse
|
9
|
Chung JT, Lau CML, Chau Y. The effect of polysaccharide-based hydrogels on the response of antigen-presenting cell lines to immunomodulators. Biomater Sci 2021; 9:6542-6554. [PMID: 34582528 DOI: 10.1039/d1bm00854d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogel presents as foreign material to the host and participates in immune responses, which skew the biofunctions of immunologic loads (antigen and adjuvants) during in situ DC priming. This study aims to investigate the effect of the hydrogel made from different polysaccharides on macrophage (RAW264.7) activation and DC (JAWSII) modulation. We adopted polysaccharides of different sugar chemistry to fabricate hydrogels. Hyaluronate (HA), glycol chitosan (GC) and dextran (DX) were functionalized with vinyl sulfone and chemically cross-linked with dithiothreitol via thiol-click chemistry. We found that HA reduced macrophage adhesion and activation on the hydrogel surface. GC and DX promoted M1 polarization in terms of higher CCR7 expression and TNF-α, IL-6 production. In terms of DC engagement, GC promoted antigen uptake by JAWSII and all hydrogels promoted antigen presentation on MHC-I molecules. GC and DX favoured the generation of immunogenic DC while accommodating immunostimulatory functions of IFN-γ and polyI:C or LPS during co-incubation. Particularly, the co-incubation of IP with GC promoted CCR7 expression on JAWSII. Conversely, HA was more appropriate for the construction of a tolerogenic DC priming platform. We observed that HA did not induce co-stimulatory markers expression on DC but suppressed the action of LPS in inducing TNF-α generation. Moreover, when immunosuppressive cytokines, IL-10 and TGF-β were added, cytokines' immunosuppressive action was amplified by hydrogel bedding, HA, GC and to a less extent DX in suppressing LPS-induced IL-6 generation from JAWSII. We concluded that HA is preferable for tolerogenic DC development while minimizing the macrophage response in conferring foreign body response, whereas DX and GC are more appropriate for immunogenic DC development. This study demonstrates the potential of polysaccharides in conferring in situ DC priming together with antigen and adjuvant loads while addressing the tradeoff between the foreign body responses and DC engagement by selecting appropriate polysaccharides for the hydrogel platform construction.
Collapse
Affiliation(s)
- Jin Teng Chung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Chi Ming Laurence Lau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
10
|
Sandor AM, Sturdivant MS, Ting JPY. Influenza Virus and SARS-CoV-2 Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2509-2520. [PMID: 34021048 PMCID: PMC8722349 DOI: 10.4049/jimmunol.2001287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Seasonal influenza and the current COVID-19 pandemic represent looming global health challenges. Efficacious and safe vaccines remain the frontline tools for mitigating both influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced diseases. This review will discuss the existing strategies for influenza vaccines and how these strategies have informed SARS-CoV-2 vaccines. It will also discuss new vaccine platforms and potential challenges for both viruses.
Collapse
Affiliation(s)
- Adam M Sandor
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC; and
| | - Michael S Sturdivant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Biological and Biomedical Sciences Program, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jenny P Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC;
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
11
|
Wang S, Fontana F, Shahbazi MA, Santos HA. Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chem Commun (Camb) 2021; 57:4212-4229. [PMID: 33913978 DOI: 10.1039/d1cc00811k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acetalated dextran (Ac-DEX) is a pH-responsive dextran derivative polymer. Prepared by a simple acetalation reaction, Ac-DEX has tunable acid-triggered release profile. Despite its relatively short research history, Ac-DEX has shown great potential in various therapeutic applications. Furthermore, the recent functionalization of Ac-DEX makes versatile derivatives with additional properties. Herein, we summarize the cutting-edge development of Ac-DEX and related polymers. Specifically, we focus on the chemical synthesis, nano- and micro-particle fabrication techniques, the controlled-release mechanisms, and the rational design Ac-DEX-based of drug delivery systems in various biomedical applications. Finally, we briefly discuss the challenges and future perspectives in the field.
Collapse
Affiliation(s)
- Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland. and Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland. and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
12
|
Grego EA, Siddoway AC, Uz M, Liu L, Christiansen JC, Ross KA, Kelly SM, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Polymeric Nanoparticle-Based Vaccine Adjuvants and Delivery Vehicles. Curr Top Microbiol Immunol 2021; 433:29-76. [PMID: 33165869 PMCID: PMC8107186 DOI: 10.1007/82_2020_226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As vaccine formulations have progressed from including live or attenuated strains of pathogenic components for enhanced safety, developing new adjuvants to more effectively generate adaptive immune responses has become necessary. In this context, polymeric nanoparticles have emerged as a promising platform with multiple advantages, including the dual capability of adjuvant and delivery vehicle, administration via multiple routes, induction of rapid and long-lived immunity, greater shelf-life at elevated temperatures, and enhanced patient compliance. This comprehensive review describes advances in nanoparticle-based vaccines (i.e., nanovaccines) with a particular focus on polymeric particles as adjuvants and delivery vehicles. Examples of the nanovaccine approach in respiratory infections, biodefense, and cancer are discussed.
Collapse
Affiliation(s)
- Elizabeth A Grego
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Alaric C Siddoway
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Metin Uz
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Luman Liu
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - John C Christiansen
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Kathleen A Ross
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Sean M Kelly
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Surya K Mallapragada
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Michael J Wannemuehler
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
13
|
Liu L, Wang Y, Guo X, Zhao J, Zhou S. A Biomimetic Polymer Magnetic Nanocarrier Polarizing Tumor-Associated Macrophages for Potentiating Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003543. [PMID: 32812355 DOI: 10.1002/smll.202003543] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Indexed: 05/14/2023]
Abstract
The progress of antitumor immunotherapy is usually limited by tumor-associated macrophages (TAMs) that account for the highest proportion of immunosuppressive cells in the tumor microenvironment, and the TAMs can also be reversed by modulating the M2-like phenotype. Herein, a biomimetic polymer magnetic nanocarrier is developed with selectively targeting and polarizing TAMs for potentiating immunotherapy of breast cancer. This nanocarrier PLGA-ION-R837 @ M (PIR @ M) is achieved, first, by the fabrication of magnetic polymer nanoparticles (NPs) encapsulating Fe3 O4 NPs and Toll-like receptor 7 (TLR7) agonist imiquimod (R837) and, second, by the coating of the lipopolysaccharide (LPS)- treated macrophage membranes on the surface of the NPs for targeting TAMs. The intracellular uptake of the PIR @ M can greatly polarize TAMs from M2 to antitumor M1 phenotype with the synergy of Fe3 O4 NPs and R837. The relevant mechanism of the polarization is deeply studied through analyzing the mRNA expression of the signaling pathways. Different from previous reports, the polarization is ascribed to the fact that Fe3 O4 NPs mainly activate the IRF5 signaling pathway via iron ions instead of the reactive oxygen species-induced NF-κB signaling pathway. The anticancer effect can be effectively enhanced through potentiating immunotherapy by the polarization of the TAMs in the combination of Fe3 O4 NPs and R837.
Collapse
Affiliation(s)
- Lingqiao Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xing Guo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jingya Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
14
|
Yang X, Yu T, Zeng Y, Lian K, Zhou X, Ke J, Li Y, Yuan H, Hu F. pH-Responsive Biomimetic Polymeric Micelles as Lymph Node-Targeting Vaccines for Enhanced Antitumor Immune Responses. Biomacromolecules 2020; 21:2818-2828. [DOI: 10.1021/acs.biomac.0c00518] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiqin Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tong Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingping Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Keke Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xueqing Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia Ke
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yinghong Li
- Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Varma DM, Zahid MSH, Bachelder EM, Ainslie KM. Formulation of host-targeted therapeutics against bacterial infections. Transl Res 2020; 220:98-113. [PMID: 32268128 PMCID: PMC10132281 DOI: 10.1016/j.trsl.2020.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/23/2022]
Abstract
The global burden of bacterial infections is rising due to increasing resistance to the majority of first-line antibiotics, rendering these drugs ineffective against several clinically important pathogens. Limited transport of antibiotics into cells compounds this problem for gram-negative bacteria that exhibit prominent intracellular lifecycles. Furthermore, poor bioavailability of antibiotics in infected tissues necessitates higher doses and longer treatment regimens to treat resistant infections. Although emerging antibiotics can combat these problems, resistance still may develop over time. Expanding knowledge of host-pathogen interactions has inspired research and development of host-directed therapies (HDTs). HDTs target host-cell machinery critical for bacterial pathogenesis to treat bacterial infections alone or as adjunctive treatment with traditional antibiotics. Unlike traditional antibiotics that directly affect bacteria, a majority of HDTs function by boosting the endogenous antimicrobial activity of cells and are consequently less prone to bacterial tolerance induced by selection pressure. Therefore, HDTs can be quite effective against intracellular cytosolic or vacuolar bacteria, which a majority of traditional antibiotics are unable to eradicate. However, in vivo therapeutic efficacy of HDTs is reliant on adequate bioavailability. Particle-based formulations demonstrate the potential to enable targeted drug delivery, enhance cellular uptake, and increase drug concentration in the host cell of HDTs. This review selected HDTs for clinically important pathogens, identifies formulation strategies that can improve their therapeutic efficacy and offers insights toward further development of HDTs for bacterial infections.
Collapse
Affiliation(s)
- Devika M Varma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - M Shamim Hasan Zahid
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
16
|
Abstract
Vaccines are powerful tools that can activate the immune system for protection against various diseases. As carbohydrates can play important roles in immune recognition, they have been widely applied in vaccine development. Carbohydrate antigens have been investigated in vaccines against various pathogenic microbes and cancer. Polysaccharides such as dextran and β-glucan can serve as smart vaccine carriers for efficient antigen delivery to immune cells. Some glycolipids, such as galactosylceramide and monophosphoryl lipid A, are strong immune stimulators, which have been studied as vaccine adjuvants. In this review, we focus on the current advances in applying carbohydrates as vaccine delivery carriers and adjuvants. We will discuss the examples that involve chemical modifications of the carbohydrates for effective antigen delivery, as well as covalent antigen-carbohydrate conjugates for enhanced immune responses.
Collapse
Affiliation(s)
- Shuyao Lang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
17
|
Braga CB, Kido LA, Lima EN, Lamas CA, Cagnon VHA, Ornelas C, Pilli RA. Enhancing the Anticancer Activity and Selectivity of Goniothalamin Using pH-Sensitive Acetalated Dextran (Ac-Dex) Nanoparticles: A Promising Platform for Delivery of Natural Compounds. ACS Biomater Sci Eng 2020; 6:2929-2942. [PMID: 33463303 DOI: 10.1021/acsbiomaterials.0c00057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Goniothalamin (GTN), a natural compound isolated from Goniothalamus species, has previously demonstrated cytotoxic activity against several cancer cell lines. However, similarly to many natural and synthetic anticancer compounds, GTN presents toxicity toward some healthy cells and low aqueous solubility, decreasing its bioavailability and precluding its application as an antineoplastic drug. In our efforts to improve the pharmacokinetic behavior and selectivity of GTN against cancer cells, we developed a polymeric nanosystem, in which rac-GTN was encapsulated in pH-responsive acetalated dextran (Ac-Dex) nanoparticles (NPs) with high loadings of the bioactive compound. Dynamic light scattering (DLS) analysis showed that the nanoparticles obtained presented a narrow size distribution of around 100 nm in diameter, whereas electron microscopy (EM) images showed nanoparticles with a regular spherical morphology in agreement with the size range obtained by DLS. Stability and release studies indicated that the GTN@Ac-Dex NPs presented high stability under physiological conditions (pH 7.4) and disassembled under slightly acidic conditions (pH 5.5), releasing the rac-GTN in a sustained manner. In vitro assays showed that GTN@Ac-Dex NPs significantly increased cytotoxicity and selectivity against cancer cells when compared with the empty Ac-Dex NPs and the free rac-GNT. Cellular uptake and morphology studies using MCF-7 cells demonstrated that GTN@Ac-Dex NPs are rapidly internalized into the cancer cells, causing cell death. In vivo investigation confirmed the efficient release of rac-GTN from GTN@Ac-Dex NPs, resulting in the delay of prostate cancer progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Furthermore, liver histopathology evaluation after treatment with GTN@Ac-Dex NPs showed no evidence of toxicity. Therefore, the in vitro and in vivo findings suggest that the Ac-Dex NPs are a promising nanosystem for the sustained delivery of rac-GTN into tumors.
Collapse
Affiliation(s)
- Carolyne B Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Larissa A Kido
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Ellen N Lima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Celina A Lamas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Valéria H A Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Catia Ornelas
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
18
|
Gericke M, Schulze P, Heinze T. Nanoparticles Based on Hydrophobic Polysaccharide Derivatives-Formation Principles, Characterization Techniques, and Biomedical Applications. Macromol Biosci 2020; 20:e1900415. [PMID: 32090505 DOI: 10.1002/mabi.201900415] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Polysaccharide (PS) nanoparticles (NP) are fascinating materials that combine huge application potential with the unique beneficial features of natural biopolymers. Different types of PS-NP can be distinguished depending on the basic preparation principles (top-down vs bottom-up vs coating of nanomaterials) and the material from which they are obtained (native PS vs chemically modified PS derivatives vs nanocomposites). This review provides a comprehensive overview of an approach towards PS-NP that has gained rapidly increasing interest within the last decade; the nanoself-assembling of hydrophobic PS derivatives. This facile process is easy to perform and offers a broad structural diversity in terms of the PS backbone and the additional functionalities that can be introduced. Fundamental principles of different NP preparation techniques along with useful characterization methods are presented in this work. A comprehensive summary of PS-NP prepared by different techniques and with various PS backbones and types/amounts of hydrophobic substituents is given. The intention is to demonstrate how different parameters determine the size, size distribution, and zeta-potential of the particles. Moreover, application trends in biomedical areas are highlighted in which tailored functional PS-NP are evaluated and constantly developed further.
Collapse
Affiliation(s)
- Martin Gericke
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Peter Schulze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Thomas Heinze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| |
Collapse
|
19
|
Bose RJC, Kim M, Chang JH, Paulmurugan R, Moon JJ, Koh WG, Lee SH, Park H. Biodegradable polymers for modern vaccine development. J IND ENG CHEM 2019; 77:12-24. [PMID: 32288512 PMCID: PMC7129903 DOI: 10.1016/j.jiec.2019.04.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023]
Abstract
Most traditional vaccines are composed either of a whole pathogen or its parts; these vaccines, however, are not always effective and can even be harmful. As such, additional agents known as adjuvants are necessary to increase vaccine safety and efficacy. This review summarizes the potential of biodegradable materials, including synthetic and natural polymers, for vaccine delivery. These materials are highly biocompatible and have minimal toxicity, and most biomaterial-based vaccines delivering antigens or adjuvants have been shown to improve immune response, compared to formulations consisting of the antigen alone. Therefore, these materials can be applied in modern vaccine development.
Collapse
Affiliation(s)
- Rajendran JC Bose
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, South Korea
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305-5427, United States
| | - Minwoo Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Ji Hyun Chang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305-5427, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, Department of Biomedical Engineering & Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, YONSEI University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, South Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University Biomedical, Campus 32, Gyeonggi 10326, South Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
20
|
Gim S, Zhu Y, Seeberger PH, Delbianco M. Carbohydrate-based nanomaterials for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1558. [PMID: 31063240 DOI: 10.1002/wnan.1558] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Carbohydrates are abundant biomolecules, with a strong tendency to form supramolecular networks. A host of carbohydrate-based nanomaterials have been exploited for biomedical applications. These structures are based on simple mono- or disaccharides, as well as on complex, polymeric systems. Chemical modifications serve to tune the shapes and properties of these materials. In particular, carbohydrate-based nanoparticles and nanogels were used for drug delivery, imaging, and tissue engineering applications. Due to the reversible nature of the assembly, often based on a combination of hydrogen bonding and hydrophobic interactions, carbohydrate-based materials are valuable substrates for the creations of responsive systems. Herein, we review the current research on carbohydrate-based nanomaterials, with a particular focus on carbohydrate assembly. We will discuss how these systems are formed and how their properties are tuned. Particular emphasis will be placed on the use of carbohydrates for biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soeun Gim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yuntao Zhu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
21
|
Deirram N, Zhang C, Kermaniyan SS, Johnston APR, Such GK. pH-Responsive Polymer Nanoparticles for Drug Delivery. Macromol Rapid Commun 2019; 40:e1800917. [PMID: 30835923 DOI: 10.1002/marc.201800917] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/31/2019] [Indexed: 01/06/2025]
Abstract
Stimuli-responsive nanoparticles have the potential to improve the delivery of therapeutics to a specific cell or region within the body. There are many stimuli that have shown potential for specific release of cargo, including variation of pH, redox potential, or the presence of enzymes. pH variation has generated significant interest for the synthesis of stimuli-responsive nanoparticles because nanoparticles are internalized into cells via vesicles that are acidified. Additionally, the tumor microenvironment is known to have a lower pH than the surrounding tissue. In this review, different strategies to design pH-responsive nanoparticles are discussed, focusing on the use of charge-shifting polymers, acid labile linkages, and crosslinking.
Collapse
Affiliation(s)
- Nayeleh Deirram
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Changhe Zhang
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sarah S Kermaniyan
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Georgina K Such
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
22
|
Braga CB, Perli G, Becher TB, Ornelas C. Biodegradable and pH-Responsive Acetalated Dextran (Ac-Dex) Nanoparticles for NIR Imaging and Controlled Delivery of a Platinum-Based Prodrug into Cancer Cells. Mol Pharm 2019; 16:2083-2094. [PMID: 30901218 DOI: 10.1021/acs.molpharmaceut.9b00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanoparticles (NPs) based on the biodegradable acetalated dextran polymer (Ac-Dex) were used for near-infrared (NIR) imaging and controlled delivery of a PtIV prodrug into cancer cells. The Ac-Dex NPs loaded with the hydrophobic PtIV prodrug 3 (PtIV/Ac-Dex NPs) and with the novel hydrophobic NIR-fluorescent dye 9 (NIR-dye 9/Ac-Dex NPs), as well as Ac-Dex NPs coloaded with both compounds (coloaded Ac-Dex NPs), were assembled using a single oil-in-water nanoemulsion method. Dynamic light scattering measurements and scanning electron microscopy images showed that the resulting Ac-Dex NPs are spherical with an average diameter of 100 nm, which is suitable for accumulation in tumors via the enhanced permeation and retention effect. The new nanosystems exhibited high drug-loading capability, high encapsulation efficiency, high stability in physiological conditions, and pH responsiveness. Drug-release studies clearly showed that the PtIV prodrug 3 release from Ac-Dex NPs was negligible at pH 7.4, whereas at pH 5.5, this compound was completely released with a controlled rate. Confocal laser scanning microscopy unambiguously showed that the NIR-dye 9/Ac-Dex NPs were efficiently taken up by MCF-7 cells, and cytotoxicity assays against several cell lines showed no significant toxicity of blank Ac-Dex NPs up to 1 mg mL-1. The IC50 values obtained for the PtIV prodrug encapsulated in Ac-Dex NPs were much lower when compared with the IC50 values obtained for the free PtIV complex and cisplatin in all cell lines tested. Overall, our results demonstrate, for the first time, that Ac-Dex NPs constitute a promising drug delivery platform for cancer therapy.
Collapse
Affiliation(s)
- Carolyne B Braga
- Institute of Chemistry , University of Campinas-UNICAMP , 13083-970 Campinas , SP , Brazil
| | - Gabriel Perli
- Institute of Chemistry , University of Campinas-UNICAMP , 13083-970 Campinas , SP , Brazil
| | - Tiago B Becher
- Institute of Chemistry , University of Campinas-UNICAMP , 13083-970 Campinas , SP , Brazil
| | - Catia Ornelas
- Institute of Chemistry , University of Campinas-UNICAMP , 13083-970 Campinas , SP , Brazil
| |
Collapse
|
23
|
Watkins-Schulz R, Tiet P, Gallovic MD, Junkins RD, Batty C, Bachelder EM, Ainslie KM, Ting JPY. A microparticle platform for STING-targeted immunotherapy enhances natural killer cell- and CD8 + T cell-mediated anti-tumor immunity. Biomaterials 2019; 205:94-105. [PMID: 30909112 DOI: 10.1016/j.biomaterials.2019.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/03/2019] [Accepted: 03/11/2019] [Indexed: 01/22/2023]
Abstract
Immunotherapies have significantly improved cancer patient survival, but response rates are still limited. Thus, novel formulations are needed to expand the breadth of immunotherapies. Pathogen associated molecular patterns (PAMPs) can be used to stimulate an immune response, but several pathogen recognition receptors are located within the cell, making delivery challenging. We have employed the biodegradable polymer acetalated dextran (Ace-DEX) to formulate PAMP microparticles (MPs) in order to enhance intracellular delivery. While treatment with four different PAMP MPs resulted in tumor growth inhibition, cyclic GMP-AMP (cGAMP) MPs were most effective. cGAMP MPs showed anti-tumor efficacy at doses 100-1000 fold lower than published doses of soluble cGAMP in two murine tumor models. Treatment with cGAMP MPs resulted in increased natural killer cell numbers in the tumor environment. Immune cell depletion studies confirmed that NK cells were responsible for the anti-tumor efficacy in an aggressive mouse melanoma model. NK cells and CD8+ T cells were both required for early anti-tumor function in a triple negative breast cancer model. In summary, cGAMP MP treatment results in NK and T cell-dependent anti-tumor immune response.
Collapse
Affiliation(s)
- Rebekah Watkins-Schulz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pamela Tiet
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Matthew D Gallovic
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert D Junkins
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Cole Batty
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Eric M Bachelder
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kristy M Ainslie
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jenny P Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Institute for Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
24
|
He M, Huang L, Hou X, Zhong C, Bachir ZA, Lan M, Chen R, Gao F. Efficient ovalbumin delivery using a novel multifunctional micellar platform for targeted melanoma immunotherapy. Int J Pharm 2019; 560:1-10. [PMID: 30677484 DOI: 10.1016/j.ijpharm.2019.01.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/27/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy is considered to be one of the alternatives to traditional chemotherapy. It's known that foreign antigen, such as ovalbumin (OVA), can label tumor cells, leading to neoantigen recognition by cytotoxic T lymphocytes. Herein, a novel multifunctional micelle coated with PEGylated hyaluronic acid (HA) was prepared through self-assembly and electrostatic interaction. The OVA-loaded micelle with uniform size (132.1 ± 0.2 nm in diameter) exhibited favorable stability and sustained release profiles. The HA-coated micelle could target CD44-overexpressed cells and enhance the cellular uptake of OVA by 11.9 fold compared to free OVA. In vitro studies revealed that the cationic polymer, polyethyleneimine, could facilitate endosomal escape of OVA to label a tumor cell. After treatment with the OVA-loaded micelle, tumor growth in mice was significantly inhibited by 70% compared to the group treated with free OVA. All these results suggest the potential application of the immunotherapeutic micellar platform for melanoma treatment.
Collapse
Affiliation(s)
- Muye He
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Huang
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyu Hou
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chen Zhong
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zaina Ait Bachir
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Feng Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
25
|
Sharma M, Sharma G, Singh B, Katare OP. Actinic keratosis and imiquimod: a review of novel carriers and patents. Expert Opin Drug Deliv 2018; 16:101-112. [PMID: 30582385 DOI: 10.1080/17425247.2019.1560418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Actinic keratosis is one of the most common disorder characterized by erythematic and generally attached scaly lesions which are present either alone or in clusters. World Health Organization defines actinic keratosis as a common intraepidermal neoplasm of sun-damaged skin, characterized by variable atypia of keratinocytes. AREAS COVERED At the beginning of the 20th century, a new immunomodulator molecule, imiquimod, appears in the market for the treatment of actinic keratosis but suffers from the pitfalls of the conventional approach of dosage form preparation including high dose, poor stability and more side effects. The present article attempts to compile the scatter information related to actinic keratosis and imiquimod at one place. The special emphasis will be made on the information available in various research articles and patents with respect to the efforts made for overcoming shortcomings associated with imiquimod by novel drug delivery or other approaches. EXPERT OPINION The conventional drug delivery systems are unsuccessful to improve the actinic keratosis. The patient acceptance and compliance with these treatments are generally poor due to associated side effects, poor cosmetic outcomes and high costs. Therefore, several available and reported novel therapeutic approaches are being developed in order to provide better action.
Collapse
Affiliation(s)
- Mandeep Sharma
- a UGC Centre of Advanced Studies , University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh , India
| | - Gajanand Sharma
- a UGC Centre of Advanced Studies , University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh , India
| | - Bhupinder Singh
- a UGC Centre of Advanced Studies , University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh , India.,b UGC-Centre of Excellence in Applications of Nanomaterials , Nanoparticles and Nanocomposites, Panjab University , Chandigarh , India
| | - O P Katare
- a UGC Centre of Advanced Studies , University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh , India
| |
Collapse
|
26
|
Lee S, Stubelius A, Hamelmann N, Tran V, Almutairi A. Inflammation-Responsive Drug-Conjugated Dextran Nanoparticles Enhance Anti-Inflammatory Drug Efficacy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40378-40387. [PMID: 30067018 PMCID: PMC7170936 DOI: 10.1021/acsami.8b08254] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stimuli-responsive nanoparticles (NPs) are especially interesting to enhance the drug delivery specificity for biomedical applications. With the aim to achieve a highly stable and inflammation-specific drug release, we designed a reactive oxygen species (ROS)-responsive dextran-drug conjugate (Nap-Dex). By blending Nap-Dex with the acid-sensitive acetalated dextran polymer, we achieved a dual-responsive NP with high specificity toward the inflammatory environment. The inflammatory environment not only has elevated ROS levels but also has a lower pH than healthy tissues, making pH and ROS highly suitable triggers to target inflammatory diseases. The anti-inflammatory cyclooxygenase inhibitor naproxen was modified with an ROS-responsive phenylboronic acid (PBA) and conjugated onto dextran. The dextran units were functionalized with up to 87% modified naproxen. This resulted in a complete drug release from the polymer within 20 min at 10 mM H2O2. The dual-responsive NPs reduced the levels of the proinflammatory cytokine IL-6 120 times more efficiently and TNFα 6 times more efficiently than free naproxen from lipopolysaccharide (LPS)-activated macrophages. These additional anti-inflammatory effects were found to be mainly attributed to ROS-scavenging effects. In addition, the model cargo fluorescein diacetate was released in an LPS-induced inflammatory response in vitro. We believe that drug conjugation using PBA can be applied to various drugs and dextran-based materials for enhanced drug efficacy, where this work demonstrates the significance of functionalized carbohydrates polymer-drug conjugates.
Collapse
Affiliation(s)
| | | | - Naomi Hamelmann
- Department of Biomolecular Nanotechnology, MESA+ Institute of Nanotechnology, Faculty of Science and Technology , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | | | | |
Collapse
|
27
|
Paßlick D, Piradashvili K, Bamberger D, Li M, Jiang S, Strand D, R. Wich P, Landfester K, Bros M, Grabbe S, Mailänder V. Delivering all in one: Antigen-nanocapsule loaded with dual adjuvant yields superadditive effects by DC-directed T cell stimulation. J Control Release 2018; 289:23-34. [DOI: 10.1016/j.jconrel.2018.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
|
28
|
Kim NW, Kim SY, Lee JE, Yin Y, Lee JH, Lim SY, Kim ES, Duong HTT, Kim HK, Kim S, Kim JE, Lee DS, Kim J, Lee MS, Lim YT, Jeong JH. Enhanced Cancer Vaccination by In Situ Nanomicelle-Generating Dissolving Microneedles. ACS NANO 2018; 12:9702-9713. [PMID: 30141896 DOI: 10.1021/acsnano.8b04146] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Efficient delivery of tumor antigens and immunostimulatory adjuvants into lymph nodes is crucial for the maturation and activation of antigen-presenting cells (APCs), which subsequently induce adaptive antitumor immunity. A dissolving microneedle (MN) has been considered as an attractive method for transcutaneous immunization due to its superior ability to deliver vaccines through the stratum corneum in a minimally invasive manner. However, because dissolving MNs are mostly prepared using water-soluble sugars or polymers for their rapid dissolution in intradermal fluid after administration, they are often difficult to formulate with poorly water-soluble vaccine components. Here, we develop amphiphilic triblock copolymer-based dissolving MNs in situ that generate nanomicelles (NMCs) upon their dissolution after cutaneous application, which facilitate the efficient encapsulation of poorly water-soluble Toll-like receptor 7/8 agonist (R848) and the delivery of hydrophilic antigens. The sizes of NMCs range from 30 to 40 nm, which is suitable for the efficient delivery of R848 and antigens to lymph nodes and promotion of cellular uptake by APCs, minimizing systemic exposure of the R848. Application of MNs containing tumor model antigen (OVA) and R848 to the skin of EG7-OVA tumor-bearing mice induced a significant level of antigen-specific humoral and cellular immunity, resulting in significant antitumor activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong Kee Kim
- Raphas R&D Center/Raphas Co., Ltd. , Seoul 07793 , Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Collier MA, Junkins RD, Gallovic MD, Johnson BM, Johnson MM, Macintyre AN, Sempowski GD, Bachelder EM, Ting JPY, Ainslie KM. Acetalated Dextran Microparticles for Codelivery of STING and TLR7/8 Agonists. Mol Pharm 2018; 15:4933-4946. [PMID: 30281314 DOI: 10.1021/acs.molpharmaceut.8b00579] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vaccines are the most effective tool for preventing infectious diseases; however, subunit vaccines, considered the safest type, suffer from poor immunogenicity and require adjuvants to create a strong and sustained immune response. As adjuvants, pathogen-associated molecular patterns (PAMPs) offer potent immunostimulatory properties and defined mechanisms of action through their cognate pattern recognition receptors (PRRs). Their activity can be further enhanced through combining two or more PAMPs, particularly those that activate multiple immune signaling pathways. However, the cytosolic localization of many PRRs requires intracellular delivery of PAMPs for optimal biological activity, which is particularly true of the stimulator of interferon genes (STING) PRR. Using acetalated dextran (Ace-DEX) microparticles (MPs) encapsulating STING agonist 3'3'-cyclic GMP-AMP (cGAMP) combined with soluble PAMPS, we screened the effect of codelivery of adjuvants using primary mouse bone marrow derived dendritic cells (BMDCs). We identified that codelivery of cGAMP MPs and soluble Toll-like receptor 7/8 (TLR7/8) agonist resiquimod (R848) elicited the broadest cytokine response. cGAMP and R848 were then coencapsulated within Ace-DEX MPs via electrospray. Using the model antigen ovalbumin, we observed that Ace-DEX MPs coencapsulating cGAMP and R848 (cGAMP/R848 Ace-DEX MPs) induced antigen-specific cellular immunity, and a balanced Th1/Th2 humoral response that was greater than cGAMP Ace-DEX MPs alone and PAMPs delivered in separate MPs. These data indicate that polymeric Ace-DEX MPs loaded with STING and TLR7/8 agonists represent a potent cellular and humoral vaccine adjuvant.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew N Macintyre
- Duke Human Vaccine Institute , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Gregory D Sempowski
- Duke Human Vaccine Institute , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | | | | | | |
Collapse
|
30
|
Yang X, Lian K, Meng T, Liu X, Miao J, Tan Y, Yuan H, Hu F. Immune Adjuvant Targeting Micelles Allow Efficient Dendritic Cell Migration to Lymph Nodes for Enhanced Cellular Immunity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33532-33544. [PMID: 30192498 DOI: 10.1021/acsami.8b10081] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cellular immunity is essential for the effectiveness of vaccines against cancer. After capture of vaccines, dendritic cells (DCs) have to migrate to lymph nodes via chemokine receptor type 7 (CCR7). Subsequently, DCs present cytosolic antigens via major histocompatibility complex class I (MHC I) molecules to induce cellular immunity. However, various vaccines fail to induce potent cellular immunity due to insufficient MHC I-restricted antigen presentation and limitations of immune adjuvants. Hence, we constructed novel immune adjuvant targeting micelles (M-COSA) to targeted codeliver antigen ovalbumin (OVA) and plasmid DNA encoding CCR7 (CCR7 pDNA) to the cytosol of DCs, thus promoting DC migration to lymph nodes to boost MHC I-restricted antigen presentation. M-COSA exhibited adjuvant activity and demonstrated more efficient DC cellular uptake compared with COSA. M-COSA/OVA/pDNA increased costimulatory molecule expression and cytokine secretion, resulting in DC activation and maturation. Moreover, antigens and pDNA, which were encapsulated in micelles, escaped from the endosome into the cytoplasm to achieve MHC I-restricted antigen presentation and increase CCR7 expression. The number of CD8+ T cells, which was positively correlated with tumor rejection, was notably increased and tumor growth was dramatically suppressed after vaccination with M-COSA/OVA/pDNA. In summary, M-COSA/OVA/pDNA micelles, which allow DC targeting and efficient DC migration to lymph nodes to enhance cellular immunity, exhibit effective tumor inhibition and lay the foundation for novel vaccine design.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanan Tan
- Ocean College , Zhejiang University , Zhoushan 316021 , China
| | | | | |
Collapse
|
31
|
YUBA E. Development of Immunity-Inducing Systems Using pH-Responsive Polysaccharides and Liposomes. KOBUNSHI RONBUNSHU 2018. [DOI: 10.1295/koron.2018-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eiji YUBA
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| |
Collapse
|
32
|
Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases. J Control Release 2018; 272:114-144. [DOI: 10.1016/j.jconrel.2017.12.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/09/2023]
|
33
|
Bamberger D, Hobernik D, Konhäuser M, Bros M, Wich PR. Surface Modification of Polysaccharide-Based Nanoparticles with PEG and Dextran and the Effects on Immune Cell Binding and Stimulatory Characteristics. Mol Pharm 2017; 14:4403-4416. [DOI: 10.1021/acs.molpharmaceut.7b00507] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Denise Bamberger
- Department
of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg
5, 55128 Mainz, Germany
| | - Dominika Hobernik
- Department
of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, 55131 Mainz, Germany
| | - Matthias Konhäuser
- Department
of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg
5, 55128 Mainz, Germany
| | - Matthias Bros
- Department
of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, 55131 Mainz, Germany
| | - Peter R. Wich
- Department
of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg
5, 55128 Mainz, Germany
| |
Collapse
|
34
|
Yuba E, Sakaguchi N, Kanda Y, Miyazaki M, Koiwai K. pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity. Vaccines (Basel) 2017; 5:vaccines5040041. [PMID: 29113042 PMCID: PMC5748608 DOI: 10.3390/vaccines5040041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic delivery of antigen via membrane rupture or fusion with endosomes. However, a more versatile cytoplasmic delivery system is desired for practical use. For this study, we developed pH-responsive micelles composed of dilauroyl phosphatidylcholine (DLPC) and deoxycholic acid and investigated their cytoplasmic delivery performance and immunity-inducing capability. (2) Methods: Interaction of micelles with fluorescence dye-loaded liposomes, intracellular distribution of micelles, and antigenic proteins were observed. Finally, antigen-specific cellular immune response was evaluated in vivo using ELIspot assay. (3) Results: Micelles induced leakage of contents from liposomes via lipid mixing at low pH. Micelles were taken up by dendritic cells mainly via macropinocytosis and delivered ovalbumin (OVA) into the cytosol. After intradermal injection of micelles and OVA, OVA-specific cellular immunity was induced in the spleen. (4) Conclusions: pH-responsive micelles composed of DLPC and deoxycholic acid are promising as enhancers of cytosol delivery of antigens and the induction capability of cellular immunity for the treatment of cancer immunotherapy and infectious diseases.
Collapse
Affiliation(s)
- Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
| | | | - Yuhei Kanda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
| | - Maiko Miyazaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5998531, Japan.
| | | |
Collapse
|
35
|
Development of pH-sensitive Dextran Derivatives with Strong Adjuvant Function and Their Application to Antigen Delivery. MEMBRANES 2017; 7:membranes7030041. [PMID: 28777336 PMCID: PMC5618126 DOI: 10.3390/membranes7030041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022]
Abstract
To achieve efficient cancer immunotherapy, the induction of cytotoxic T lymphocyte-based cellular immunity is necessary. In order to induce cellular immunity, antigen carriers that can deliver antigen into cytosol of antigen presenting cells and can activate these cells are required. We previously developed 3-methyl glutarylated dextran (MGlu-Dex) for cytoplasmic delivery of antigen via membrane disruption ability at weakly acidic pH in endosome/lysosomes. MGlu-Dex-modified liposomes delivered model antigens into cytosol of dendritic cells and induced antigen-specific cellular immunity. However, their antitumor effects were not enough to complete the regression of the tumor. In this study, antigen delivery performance of dextran derivatives was improved by the introduction of more hydrophobic spacer groups next to carboxyl groups. 2-Carboxycyclohexane-1-carboxylated dextran (CHex-Dex) was newly synthesized as pH-responsive dextran derivative. CHex-Dex formed stronger hydrophobic domains at extremely weak acidic pH and destabilized lipid membrane more efficiently than MGlu-Dex. CHex-Dex-modified liposomes were taken up by dendritic cells 10 times higher than MGlu-Dex-modified liposomes and delivered model antigen into cytosol. Furthermore, CHex-Dex achieved 600 times higher IL-12 production from dendritic cells than MGlu-Dex. Therefore, CHex-Dex is promising as multifunctional polysaccharide having both cytoplasmic antigen delivery function and strong activation property of dendritic cells for induction of cellular immunity.
Collapse
|
36
|
Potential of glucans as vaccine adjuvants: A review of the α-glucans case. Carbohydr Polym 2017; 165:103-114. [DOI: 10.1016/j.carbpol.2017.02.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/06/2023]
|
37
|
Yuba E, Yamaguchi A, Yoshizaki Y, Harada A, Kono K. Bioactive polysaccharide-based pH-sensitive polymers for cytoplasmic delivery of antigen and activation of antigen-specific immunity. Biomaterials 2017; 120:32-45. [DOI: 10.1016/j.biomaterials.2016.12.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/03/2016] [Accepted: 12/16/2016] [Indexed: 11/17/2022]
|
38
|
Sevimli S, Knight FC, Gilchuk P, Joyce S, Wilson JT. Fatty Acid-Mimetic Micelles for Dual Delivery of Antigens and Imidazoquinoline Adjuvants. ACS Biomater Sci Eng 2017; 3:179-194. [PMID: 29046894 PMCID: PMC5642296 DOI: 10.1021/acsbiomaterials.6b00408] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vaccine design has undergone a shift towards the use of purified protein subunit vaccines, which offer increased safety and greater control over antigen specificity, but at the expense of immunogenicity. Here we report the development of a new polymer-based vaccine delivery platform engineered to enhance immunity through the co-delivery of protein antigens and the Toll-like receptor 7 (TLR7) agonist imiquimod (IMQ). Owing to the preferential solubility of IMQ in fatty acids, a series of block copolymer micelles with a fatty acid-mimetic core comprising lauryl methacrylate (LMA) and methacrylic acid (MAA), and a poly(ethylene glycol) methyl ether methacrylate (PEGMA) corona decorated with pyridyl disulfide ethyl methacrylate (PDSM) moieties for antigen conjugation were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Carriers composed of 50 mole% LMA (LMA50) demonstrated the highest IMQ loading (2.2 w/w%) and significantly enhanced the immunostimulatory capacity of IMQ to induce dendritic cell maturation and proinflammatory cytokine production. Conjugation of a model antigen, ovalbumin (OVA), to the corona of IMQ-loaded LMA50 micelles enhanced in vitro antigen uptake and cross-presentation on MHC class I (MHC-I). A single intranasal (IN) immunization of mice with carriers co-loaded with IMQ and OVA elicited significantly higher pulmonary and systemic CD8+ T cell responses and increased serum IgG titer relative to a soluble formulation of antigen and adjuvant. Collectively, these data demonstrate that rationally designed fatty acid-mimetic micelles enhance intracellular antigen and IMQ delivery and have potential as synthetic vectors for enhancing the immunogenicity of subunit vaccines.
Collapse
Affiliation(s)
- Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2400 Highland Avenue
| | - Frances C. Knight
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North
- Department of Veterans Administration Tennessee Valley Healthcare System, 1310 24th Avenue South
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North
- Department of Veterans Administration Tennessee Valley Healthcare System, 1310 24th Avenue South
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, 2301 Vanderbilt Place, Nashville, TN 37235, USA
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2400 Highland Avenue
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, 2301 Vanderbilt Place, Nashville, TN 37235, USA
| |
Collapse
|
39
|
Gallovic MD, Montjoy DG, Collier MA, Do C, Wyslouzil BE, Bachelder EM, Ainslie KM. Chemically modified inulin microparticles serving dual function as a protein antigen delivery vehicle and immunostimulatory adjuvant. Biomater Sci 2017; 4:483-93. [PMID: 26753184 DOI: 10.1039/c5bm00451a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To develop a new subunit vaccine adjuvant, we chemically modified a naturally-occurring, immunostimulatory inulin polysaccharide to produce an acid-sensitive biopolymer (acetalated inulin, Ace-IN). Various hydrophobic Ace-IN polymers were formed into microparticles (MPs) by oil-in-water emulsions followed by solvent evaporation These Ace-IN MPs possessed tunable degradation characteristics that, unlike polyesters used in FDA-approved microparticulate formulations, had only pH-neutral hydrolytic byproducts. Macrophages were passively targeted with cytocompatible Ace-IN MPs. TNF-α production by macrophages treated with Ace-IN MPs could be altered by adjusting the polymers' chemistry. Mice immunized with Ace-IN MPs encapsulating a model ovalbumin (OVA) antigen showed higher production of anti-OVA IgG antibody levels relative to soluble antigen. The antibody titers were also comparable to an alum-based formulation. This proof-of-concept establishes the potential for chemically-modified inulin MPs to simultaneously enable dual functionality as a stimuli-controlled antigen delivery vehicle and immunostimulatory adjuvant.
Collapse
Affiliation(s)
- Matthew D Gallovic
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Douglas G Montjoy
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A Collier
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Clement Do
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Barbara E Wyslouzil
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA and Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA
| | - Eric M Bachelder
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Kristy M Ainslie
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
40
|
Fontana F, Shahbazi MA, Liu D, Zhang H, Mäkilä E, Salonen J, Hirvonen JT, Santos HA. Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603239. [PMID: 28009461 DOI: 10.1002/adma.201603239] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/28/2016] [Indexed: 05/17/2023]
Abstract
Immunoadjuvant porous silicon (PSi)-based nanovaccines are prepared by nanoprecipitation in a glass capillary microfluidics device. Vesicles, derived from cancer cell membranes encapsulating thermally oxidized PSi nanoparticles or PSi-polymer nanosystems binding a model antigen, are biocompatible over a wide range of concentrations, and show immunostimulant properties in human cells, promoting the expression of co-stimulatory signals and the secretion of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Flavia Fontana
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, University of Turku, FI-20014, Turku, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, University of Turku, FI-20014, Turku, Finland
| | - Jouni T Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
41
|
Well-defined star polymers for co-delivery of plasmid DNA and imiquimod to dendritic cells. Acta Biomater 2017; 48:378-389. [PMID: 27989922 DOI: 10.1016/j.actbio.2016.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/08/2016] [Accepted: 10/26/2016] [Indexed: 12/30/2022]
Abstract
Co-delivery of antigen-encoding plasmid DNA (pDNA) and immune-modulatory molecules has importance in advancing gene-based immunotherapy and vaccines. Here novel star polymer nanocarriers were synthesized for co-delivery of pDNA and imiquimod (IMQ), a poorly soluble small-molecule adjuvant, to dendritic cells. Computational modeling and experimental results revealed that the polymers formed either multimolecular or unimolecular core-shell-type micelles in water, depending on the nature of the outer hydrophilic shell. Micelles loaded with both IMQ and pDNA were able to release IMQ in response to intracellular pH of the endo-lysosome and transfect mouse dendritic cells (DC2.4 line) in vitro. Importantly, IMQ-loaded micelle/pDNA complexes displayed much enhanced transfection efficiency than IMQ-free complexes. These results demonstrate the feasibility of co-delivery of pDNA and IMQ to antigen-presenting cells by multifunctional polymer nanocarriers with potential use in gene-based vaccine approaches.
Collapse
|
42
|
Abstract
Many diseases that were considered major affliction of mankind in the past have been successfully eradicated with introduction of appropriate vaccine strategies. In order to expedite new challenges coming up to deal with various infectious diseases, nano-particulate-based subunit vaccines seem to be the demand of ordeal. The nano-vaccines can find better scope for the diseases that were not rampant in the semi-advanced world few years back. For example in present-day circumstances that corroborate with advancement in the field of medical sciences in terms of cancer chemotherapy, organ transplantation, therapy of autoimmune diseases, etc.; along with prevalence of altogether unheard diseases such as HIV infection, people are at risk of infliction with many more pathogens. In this regard, development of an effective prophylactic strategy against many opportunistic infections primarily caused by fungal pathogens needs better understanding of host pathogen relation and role of active immunity against pathogenic fungi. In the present study, we have tried to decipher effectiveness of a nano-sized vaccine delivery system in imparting protection against fungal pathogens.
Collapse
Affiliation(s)
- Swaleha Zubair
- Women's College, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, 202002, India
| | - Asim Azhar
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, 202002, India
| | - Nazoora Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, 202002, India
| | - Ejaj Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, 202002, India
| | - Mohd Ajmal
- Department of Anatomy, JNMC, Aligarh Muslim University (AMU), Aligarh, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
43
|
|
44
|
Bachelder EM, Pino EN, Ainslie KM. Acetalated Dextran: A Tunable and Acid-Labile Biopolymer with Facile Synthesis and a Range of Applications. Chem Rev 2016; 117:1915-1926. [PMID: 28032507 DOI: 10.1021/acs.chemrev.6b00532] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acetalated dextran (Ac-DEX) is a tunable acid-labile biopolymer with facile synthesis, aptly designed for the formulation of microparticles for vaccines and immune modulation. Tunability of degradation is achieved based on the kinetics of reaction and the molecular weight of the parent dextran polymer. This tunability translated to differential rates of activation of CD8+ T cells in an in vitro ovalbumin model and illustrated that acid-labile polymer can activate CD8+ T cells at an increased rate compared to acid-insensitive polymers. In addition, Ac-DEX has been used to encapsulate small molecules, deliver nucleotides, transport inorganic molecules, formulate immune modulating therapies and vaccines, and trigger pH responsive constructs for therapy. Here we highlight the properties and results of Ac-DEX nano-/microparticles as well as the use of the polymer in other constructs and chemistries.
Collapse
Affiliation(s)
- Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Erica N Pino
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
45
|
Jia J, Zhang W, Liu Q, Yang T, Wang L, Ma G. Adjuvanticity Regulation by Biodegradable Polymeric Nano/microparticle Size. Mol Pharm 2016; 14:14-22. [PMID: 28043126 DOI: 10.1021/acs.molpharmaceut.6b00434] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymeric nano/microparticles as vaccine adjuvants have been researched in experimental and clinical studies. A more profound understanding of how the physicochemical properties regulate specific immune responses has become a vital requirement. Here we prepared poly(d,l-lactic-co-glycolic acid) (PLGA) nano/microparticles with uniform sizes (500 nm, 900 nm, 2.1 μm, and 4.9 μm), and the size effects on particle uptake, activation of macrophages, and antigen internalization were evaluated. Particle uptake kinetic studies demonstrated that 900 nm particles were the easiest to accumulate in cells. Moreover, they could induce macrophages to secrete NO and IL-1β and facilitate antigen internalization. Furthermore, 900 nm particles, mixed with antigen, could exhibit superior adjuvanticity in both humoral and cellular immune responses in vivo, including offering the highest antibody protection, promoting the maximum secretion levels of IFN-γ and IL-4 than particles with other sizes. Overall, 900 nm might be the optimum choice for PLGA particle-based vaccine adjuvants especially for recombinant antigens. Understanding the effect of particle size on the adjuvanticity based immune responses might have important enlightenments for rational vaccine design and applications.
Collapse
Affiliation(s)
- Jilei Jia
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China.,University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Weifeng Zhang
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China.,University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Qi Liu
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China.,University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Tingyuan Yang
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China
| | - Lianyan Wang
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing 210023, PR China
| |
Collapse
|
46
|
Lin W, Yao N, Li H, Hanson S, Han W, Wang C, Zhang L. Co-Delivery of Imiquimod and Plasmid DNA via an Amphiphilic pH-Responsive Star Polymer that Forms Unimolecular Micelles in Water. Polymers (Basel) 2016; 8:E397. [PMID: 30974677 PMCID: PMC6431966 DOI: 10.3390/polym8110397] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 01/03/2023] Open
Abstract
Dual functional unimolecular micelles based on a pH-responsive amphiphilic star polymer β-CD-(PLA-b-PDMAEMA-b-PEtOxMA)21 have been developed for the co-delivery of imiquimod and plasmid DNA to dendritic cells. The star polymer with well-defined triblock arms was synthesized by combining activator regenerated by electron-transfer atom-transfer radical polymerization with ring-opening polymerization. Dissipative particle dynamics simulation showed that core-mesophere-shell-type unimolecular micelles could be formed. Imiquimod-loaded micelles had a drug loading of 1.6 wt % and a larger average size (28 nm) than blank micelles (19 nm). The release of imiquimod in vitro was accelerated at the mildly acidic endolysosomal pH (5.0) in comparison to physiologic pH (7.4). Compared with blank micelles, a higher N:P ratio was required for imiquimod-loaded micelles to fully condense DNA into micelleplexes averaging 200⁻400 nm in size. In comparison to blank micelleplexes, imiquimod-loaded micelleplexes of the same N:P ratio displayed similar or slightly higher efficiency of gene transfection in a mouse dendritic cell line (DC2.4) without cytotoxicity. These results suggest that such pH-responsive unimolecular micelles formed by the well-defined amphiphilic star polymer may serve as promising nano-scale carriers for combined delivery of hydrophobic immunostimulatory drugs (such as imiquimod) and plasmid DNA with potential application in gene-based immunotherapy.
Collapse
Affiliation(s)
- Wenjing Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Na Yao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hongru Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Samuel Hanson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Wenqing Han
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Chun Wang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
47
|
Gallovic MD, Schully KL, Bell MG, Elberson MA, Palmer JR, Darko CA, Bachelder EM, Wyslouzil BE, Keane-Myers AM, Ainslie KM. Acetalated Dextran Microparticulate Vaccine Formulated via Coaxial Electrospray Preserves Toxin Neutralization and Enhances Murine Survival Following Inhalational Bacillus Anthracis Exposure. Adv Healthc Mater 2016; 5:2617-2627. [PMID: 27594343 DOI: 10.1002/adhm.201600642] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/20/2016] [Indexed: 12/30/2022]
Abstract
Subunit formulations are regarded as the safest type of vaccine, but they often contain a protein-based antigen that can result in significant challenges, such as preserving antigenicity during formulation and administration. Many studies have demonstrated that encapsulation of protein antigens in polymeric microparticles (MPs) via emulsion techniques results in total IgG antibody titers comparable to alum formulations, however, the antibodies themselves are non-neutralizing. To address this issue, a coaxial electrohydrodynamic spraying (electrospray) technique is used to formulate a microparticulate-based subunit anthrax vaccine under conditions that minimize recombinant protective antigen (rPA) exposure to harsh solvents and high shear stress. rPA and the adjuvant resiquimod are encapsulated either in separate or the same acetalated dextran MPs. Using a murine model, the electrospray formulations lead to higher IgG2a subtype titers as well as comparable total IgG antibody titers and toxin neutralization relative to the FDA-approved vaccine (BioThrax). BioThrax provides no protection against a lethal inhalational challenge of the highly virulent Ames Bacillus anthracis anthrax strain, whereas 50% of the mice vaccinated with separately encapsulated electrospray MPs survive. Overall, this study demonstrates the potential use of electrospray for encapsulating protein antigens in polymeric MPs.
Collapse
Affiliation(s)
- Matthew D. Gallovic
- Department of Chemical and Biomolecular Engineering; College of Engineering; The Ohio State University; Columbus OH 43210 USA
- Division of Molecular Pharmaceutics; Eshelman School of Pharmacy; University of North Carolina; Chapel Hill NC 27599 USA
| | - Kevin L. Schully
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - Matthew G. Bell
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - Margaret A. Elberson
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - John R. Palmer
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - Christian A. Darko
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - Eric M. Bachelder
- Division of Molecular Pharmaceutics; Eshelman School of Pharmacy; University of North Carolina; Chapel Hill NC 27599 USA
| | - Barbara E. Wyslouzil
- Department of Chemical and Biomolecular Engineering; College of Engineering; The Ohio State University; Columbus OH 43210 USA
- Department of Chemistry and Biochemistry; College of Arts and Sciences; The Ohio State University; Columbus OH 43210 USA
| | - Andrea M. Keane-Myers
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - Kristy M. Ainslie
- Division of Molecular Pharmaceutics; Eshelman School of Pharmacy; University of North Carolina; Chapel Hill NC 27599 USA
| |
Collapse
|
48
|
Fontana F, Liu D, Hirvonen J, Santos HA. Delivery of therapeutics with nanoparticles: what's new in cancer immunotherapy? WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27470448 DOI: 10.1002/wnan.1421] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/25/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022]
Abstract
The application of nanotechnology to the treatment of cancer or other diseases has been boosted during the last decades due to the possibility to precise deliver drugs where needed, enabling a decrease in the drug's side effects. Nanocarriers are particularly valuable for potentiating the simultaneous co-delivery of multiple drugs in the same particle for the treatment of heavily burdening diseases like cancer. Immunotherapy represents a new concept in the treatment of cancer and has shown outstanding results in patients treated with check-point inhibitors. Thereby, researchers are applying nanotechnology to cancer immunotherapy toward the development of nanocarriers for delivery of cancer vaccines and chemo-immunotherapies. Cancer nanovaccines can be envisioned as nanocarriers co-delivering antigens and adjuvants, molecules often presenting different physicochemical properties, in cancer therapy. A wide range of nanocarriers (e.g., polymeric, lipid-based and inorganic) allow the co-formulation of these molecules, or the delivery of chemo- and immune-therapeutics in the same system. Finally, there is a trend toward the use of biologically inspired and derived nanocarriers. In this review, we present the recent developments in the field of immunotherapy, describing the different systems proposed by categories: polymeric nanoparticles, lipid-based nanosystems, metallic and inorganic nanosystems and, finally, biologically inspired and derived nanovaccines. WIREs Nanomed Nanobiotechnol 2017, 9:e1421. doi: 10.1002/wnan.1421 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Flavia Fontana
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
49
|
Design of pH-sensitive polymer-modified liposomes for antigen delivery and their application in cancer immunotherapy. Polym J 2016. [DOI: 10.1038/pj.2016.31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Rosales-Mendoza S, Salazar-González JA, Decker EL, Reski R. Implications of plant glycans in the development of innovative vaccines. Expert Rev Vaccines 2016; 15:915-25. [DOI: 10.1586/14760584.2016.1155987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, Mexico
| | - Jorge A. Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, Mexico
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, Germany
- BIOSS – Centre for Biological Signalling Studies, Freiburg, Germany
- FRIAS – Freiburg Institute for Advanced Studies, Freiburg, Germany
| |
Collapse
|