1
|
Kolesnikov ES, Xiong Y, Onufriev AV. Implicit Solvent with Explicit Ions Generalized Born Model in Molecular Dynamics: Application to DNA. J Chem Theory Comput 2024; 20:8724-8739. [PMID: 39283928 PMCID: PMC11465471 DOI: 10.1021/acs.jctc.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024]
Abstract
The ion atmosphere surrounding highly charged biomolecules, such as nucleic acids, is crucial for their dynamics, structure, and interactions. Here, we develop an approach for the explicit treatment of ions within an implicit solvent framework suitable for atomistic simulations of biomolecules. The proposed implicit solvent/explicit ions model, GBION, is based on a modified generalized Born (GB) model; it includes separate, modified GB terms for solute-ion and ion-ion interactions. The model is implemented in the AMBER package (version 24), and its performance is thoroughly investigated in atomistic molecular dynamics (MD) simulations of double-stranded DNA on a microsecond time scale. The aggregate characteristics of monovalent (Na+ and K+) and trivalent (Cobalt Hexammine, CoHex3+) counterion distributions around double-stranded DNA predicted by the model are in reasonable agreement with the experiment (where available), all-atom explicit water MD simulations, and the expectation from the Manning condensation theory. The radial distributions of monovalent cations around DNA are reasonably close to the ones obtained using the explicit water model: expressed in units of energy, the maximum deviations of local ion concentrations from the explicit solvent reference are within 1 kBT, comparable to the corresponding deviations expected between different established explicit water models. The proposed GBION model is able to simulate DNA fragments in a large volume of solvent with explicit ions with little additional computational overhead compared with the fully implicit GB treatment of ions. Ions simulated using the developed model explore conformational space at least 2 orders of magnitude faster than in the explicit solvent. These advantages allowed us to observe and explore an unexpected "stacking" mode of DNA condensation in the presence of trivalent counterions (CoHex3+) that was revealed by recent experiments.
Collapse
Affiliation(s)
- Egor S. Kolesnikov
- Department
of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yeyue Xiong
- Department
of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Alexey V. Onufriev
- Departments
of Computer Science and Physics, Center for Soft Matter and Biological
Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Upconversion nanoparticle-based optogenetic nanosystem for photodynamic therapy and cascade gene therapy. Acta Biomater 2023; 157:538-550. [PMID: 36494007 DOI: 10.1016/j.actbio.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Most photosensitizer molecules used for the photodynamic therapy (PDT) are chemically-synthesized organic photosensitizer dyes which show several limitations such as unsatisfactory cell uptake, weak selectivity and off-target phototoxicity. Recently, genetically-encoded photosensitizers have attracted increasing attentions which provide the targeted cell elimination with single-cell precision. However, their applications are mainly limited by the shallow tissue penetration depth of the excitation light and the low cell apoptosis ratio. Herein, we developed a feasible upconversion nanoparticle (UCNP)-based optogenetic nanosystem with three-in-one functional integration: bio-imaging, NIR-triggered PDT and cascade gene therapy. Firstly, the mitochondria-targeted genetically-encoded photosensitizer was constructed and transfected into cancer cells. Then, the functional upconversion nanoprobe was constructed with the mitochondria targetability and then the siRNA was loaded on the surface of UCNPs via the reactive oxygen species (ROSs) sensitive chemical bond. After the transfection and incubation, both of the upconversion nanoprobe and the genetically-encoded photosensitizer were accumulated in the mitochondria of cancer cells. Under the NIR irradiation, the emission of UCNPs could excite the expressed protein photosensitizer to generate ROSs which then stimulated the release of siRNAs in a controllable manner, achieving PDT and cascade gene therapy. Since the generation of ROSs and the release of siRNA occurred in the mitochondria in-situ, the mitochondria-mediated cell apoptosis signal pathway would be activated to induce cell apoptosis and subsequently inhibit tumor growth. To the best of our knowledge, this is the first report about NIR laser-activated, organelle-localized genetically-encoded photosensitizers developed for cascade therapy, which will widen the application of optogenetic tools in the tumor therapy. STATEMENT OF SIGNIFICANCE: The application of genetically-encoded photosensitizers in photodynamic therapy (PDT) is mainly limited by the shallow tissue penetration depth of the excitation light and unsatisfactory therapeutic performance. In this experiment, we developed an upconversion nanoparticles-based optogenetic nanosystem to enhance the PDT and cascade gene therapy for malignant tumors. The expressed genetically-encoded photosensitizers were accumulated in the mitochondria, which were activated in situ by the upconversion nanoprobe. Besides, the photogenerated reactive oxygen species (ROSs) stimulated the release of siRNAs in a controllable manner. To the best of our knowledge, this is the first report about NIR laser-activated, genetically-encoded photosensitizers developed for organelle-localized controllable cascade therapy. We hope this work can accelerate the application of genetically-encoded photosensitizers in the tumor therapy.
Collapse
|
3
|
Mani S, Jindal D, Singh M. Gene Therapy, A Potential Therapeutic Tool for Neurological and Neuropsychiatric Disorders: Applications, Challenges and Future Perspective. Curr Gene Ther 2023; 23:20-40. [PMID: 35345999 DOI: 10.2174/1566523222666220328142427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
Abstract
Neurological and neuropsychiatric disorders are the main risks for the health care system, exhibiting a huge socioeconomic load. The available range of pharmacotherapeutics mostly provides palliative consequences and fails to treat such conditions. The molecular etiology of various neurological and neuropsychiatric disorders is mostly associated with a change in genetic background, which can be inherited/triggered by other environmental factors. To address such conditions, gene therapy is considered a potential approach claiming a permanent cure of the disease primarily by deletion, silencing, or edition of faulty genes and by insertion of healthier genes. In gene therapy, vectors (viral/nonvial) play an important role in delivering the desired gene to a specific region of the brain. Targeted gene therapy has unraveled opportunities for the treatment of many neurological and neuropsychiatric disorders. For improved gene delivery, the current techniques mainly focus on designing a precise viral vector, plasmid transfection, nanotechnology, microRNA, and in vivo clustered regulatory interspaced short palindromic repeats (CRISPR)-based therapy. These latest techniques have great benefits in treating predominant neurological and neurodevelopmental disorders, including Parkinson's disease, Alzheimer's disease, and autism spectrum disorder, as well as rarer diseases. Nevertheless, all these delivery methods have their limitations, including immunogenic reactions, off-target effects, and a deficiency of effective biomarkers to appreciate the effectiveness of therapy. In this review, we present a summary of the current methods in targeted gene delivery, followed by the limitations and future direction of gene therapy for the cure of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shalini Mani
- Department of Biotechnology, Centre for Emerging Diseases, Jaypee Institute of Information Technology, Noida, U.P., India
| | - Divya Jindal
- Department of Biotechnology, Centre for Emerging Diseases, Jaypee Institute of Information Technology, Noida, U.P., India
| | - Manisha Singh
- Department of Biotechnology, Centre for Emerging Diseases, Jaypee Institute of Information Technology, Noida, U.P., India
| |
Collapse
|
4
|
Patra P, Banerjee R, Chakrabarti J. Effect of biphosphate salt on dipalmitoylphosphatidylcholine bilayer deformation by Tat polypeptide. Biopolymers 2022; 113:e23518. [PMID: 35621373 DOI: 10.1002/bip.23518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/06/2022]
Abstract
Translocation of positively charged cell penetrating peptides (CPP) through cell membrane is important in drug delivery. Here we report all-atom molecular dynamics simulations to investigate how a biphosphate salt in a solvent affects the interaction of a CPP, HIV-1 Tat peptide with model dipalmitoylphosphatidylcholine (DPPC) lipid bilayer. Tat peptide has a large number of basic arginines and a couple of polar glutamines. We observe that in absence of salt, the basic residues of the polypeptide get localized in the vicinity of the membrane without altering the bilayer properties much; polypeptide induce local thinning of the bilayer membrane at the area of localization. In presence of biphosphate salt, the basic residues, dressed by the biphosphate ions, are repelled by the phosphate head groups of the lipid molecules. However, polar glutamine prefers to stay in the vicinity of the bilayer. This leads to larger local bilayer thickness at the contact point by the polar residue and non-uniform bilayer thickness profile. The thickness deformation of bilayer structure disappears upon mutating the polar residue, suggesting importance of the polar residue in bilayer deformation. Our studies point to control bilayer deformation by appropriate peptide sequence and solvent conditions.
Collapse
Affiliation(s)
- Piya Patra
- Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia, West Bengal, India
| | - Raja Banerjee
- Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia, West Bengal, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological and Macro-Molecular Sciences, Thematic Unit of Excellence on Computational Materials Science and Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Mulia GE, Picanço-Castro V, Stavrou EF, Athanassiadou A, Figueiredo ML. Advances in the Development and the Applications of Non-viral, Episomal Vectors for Gene Therapy. Hum Gene Ther 2021; 32:1076-1095. [PMID: 34348480 PMCID: PMC8819515 DOI: 10.1089/hum.2020.310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nonviral and nonintegrating episomal vectors are reemerging as a valid, alternative technology to integrating viral vectors for gene therapy, due to their more favorable safety profile, significantly lower risk for insertional mutagenesis, and a lesser potential for innate immune reactions, in addition to their low production cost. Over the past few years, attempts have been made to generate highly functional nonviral vectors that display long-term maintenance within cells and promote more sustained gene expression relative to conventional plasmids. Extensive research into the parameters that stabilize the episomal DNA within dividing and nondividing cells has shed light into the genetic and epigenetic mechanisms that govern replication and transcription of episomal DNA within a mammalian nucleus in long-term cell culture. Episomal vectors based on scaffold/matrix attachment regions (S/MARs) do not integrate into the genomic DNA and address the serious problem of plasmid loss during mitosis by providing mitotic stability to established plasmids, which results in long-term transfection and transgene expression. The inclusion, in such vectors, of an origin of replication—initiation region—from the human genome has greatly enhanced their performance in primary cell culture. A number of vectors that function as episomes have arisen, which are either devoid or depleted of harmful CpG sequences and bacterial genes, and their effectiveness, as well as that of nonintegrating viral episomes, is enhanced when combined with S/MAR elements. As a result of these advances, an “S/MAR technology” has emerged for the production of efficient episomal vectors. Significant research continues in this field and innovations, in combination with promising systems based on nanoparticles and potentially combined with physical delivery methods, will enable the generation of optimized systems with scale-up and clinical application suitability utilizing episomal vectors.
Collapse
Affiliation(s)
- Grace E Mulia
- Purdue University, Basic Medical Sciences, West Lafayette, Indiana, United States;
| | - Virginia Picanço-Castro
- University of Sao Paulo Faculty of Medicine of Ribeirao Preto, 54539, Center for Cell-based Therapy, Ribeirao Preto, São Paulo, Brazil;
| | - Eleana F Stavrou
- University of Patras, Department of General Biology, Patras, Greece;
| | - Aglaia- Athanassiadou
- University of Patras Medical School, General Biology, Asklepiou str, University Campus, Rion Patras, Greece, 26504;
| | - Marxa L Figueiredo
- Purdue University, Basic Medical Sciences, 625 Harrison St., LYNN 2177, West Lafayette, Indiana, United States, 47907;
| |
Collapse
|
6
|
Advances and Discoveries in Myxozoan Genomics. Trends Parasitol 2021; 37:552-568. [PMID: 33619004 DOI: 10.1016/j.pt.2021.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
Myxozoans are highly diverse and globally distributed cnidarian endoparasites in freshwater and marine habitats. They have adopted a heteroxenous life cycle, including invertebrate and fish hosts, and have been associated with diseases in aquaculture and wild fish stocks. Despite their importance, genomic resources of myxozoans have proven difficult to obtain due to their miniaturized and derived genome character and close associations with fish tissues. The first 'omic' datasets have now become the main resource for a better understanding of host-parasite interactions, virulence, and diversity, but also the evolutionary history of myxozoans. In this review, we discuss recent genomic advances in the field and outline outstanding questions to be answered with continuous and improved efforts of generating myxozoan genomic data.
Collapse
|
7
|
Guo Q, Li D, Zhai Y, Gu Z. CCPRD: A Novel Analytical Framework for the Comprehensive Proteomic Reference Database Construction of NonModel Organisms. ACS OMEGA 2020; 5:15370-15384. [PMID: 32637811 PMCID: PMC7331046 DOI: 10.1021/acsomega.0c01278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Protein reference databases are a critical part of producing efficient proteomic analyses. However, the method for constructing clean, efficient, and comprehensive protein reference databases of nonmodel organisms is lacking. Existing methods either do not have contamination control procedures, or these methods rely on a three-frame and/or six-frame translation that sharply increases the search space and the need for computational resources. Herein, we propose a framework for constructing a customized comprehensive proteomic reference database (CCPRD) from draft genomes and deep sequencing transcriptomes. Its effectiveness is demonstrated by incorporating the proteomes of nematocysts from endoparasitic cnidarian: myxozoans. By applying customized contamination removal procedures, contaminations in omic data were successfully identified and removed. This is an effective method that does not result in overdecontamination. This can be shown by comparing the CCPRD MS results with an artificially contaminated database and another database with removed contaminations in genomes and transcriptomes added back. CCPRD outperformed traditional frame-based methods by identifying 35.2-50.7% more peptides and 35.8-43.8% more proteins, with a maximum of 84.6% in size reduction. A BUSCO analysis showed that the CCPRD maintained a relatively high level of completeness compared to traditional methods. These results confirm the superiority of the CCPRD over existing methods in peptide and protein identification numbers, database size, and completeness. By providing a general framework for generating the reference database, the CCPRD, which does not need a high-quality genome, can potentially be applied to nonmodel organisms and significantly contribute to proteomic research.
Collapse
Affiliation(s)
- Qingxiang Guo
- Department of Aquatic
Animal Medicine, College of Fisheries, Huazhong
Agricultural University, Wuhan, Hubei Province 430070, PR China
- Hubei Engineering Technology Research
Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, PR China
| | - Dan Li
- Department of Aquatic
Animal Medicine, College of Fisheries, Huazhong
Agricultural University, Wuhan, Hubei Province 430070, PR China
- Hubei Engineering Technology Research
Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, PR China
| | - Yanhua Zhai
- Department of Aquatic
Animal Medicine, College of Fisheries, Huazhong
Agricultural University, Wuhan, Hubei Province 430070, PR China
- Hubei Engineering Technology Research
Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, PR China
| | - Zemao Gu
- Department of Aquatic
Animal Medicine, College of Fisheries, Huazhong
Agricultural University, Wuhan, Hubei Province 430070, PR China
- Hubei Engineering Technology Research
Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, PR China
| |
Collapse
|
8
|
Johnstone B, Stoddart MJ, Im GI. Multi-Disciplinary Approaches for Cell-Based Cartilage Regeneration. J Orthop Res 2020; 38:463-472. [PMID: 31478253 DOI: 10.1002/jor.24458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/23/2019] [Indexed: 02/04/2023]
Abstract
Articular cartilage does not regenerate in adults. A lot of time and resources have been dedicated to cartilage regeneration research. The current understanding suggests that multi-disciplinary approach including biologic, genetic, and mechanical stimulations may be needed for cell-based cartilage regeneration. This review summarizes contents of a workshop sponsored by International Combined Orthopaedic Societies during the 2019 annual meeting of the Orthopaedic Research Society held in Austin, Texas. Three approaches for cell-based cartilage regeneration were introduced, including cellular basis of chondrogenesis, gene-enhanced cartilage regeneration, and physical modulation to divert stem cells to chondrogenic cell fate. While the complicated nature of cartilage regeneration has not allowed us to achieve successful regeneration of hyaline articular cartilage so far, the utilization of multi-disciplinary approaches in various fields of biomedical engineering will provide means to achieve this goal faster. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:463-472, 2020.
Collapse
Affiliation(s)
- Brian Johnstone
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, Oregon
| | | | - Gun-Il Im
- Integrative Research Institute for Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| |
Collapse
|
9
|
Lam P, Steinmetz NF. Delivery of siRNA therapeutics using cowpea chlorotic mottle virus-like particles. Biomater Sci 2019; 7:3138-3142. [PMID: 31257379 PMCID: PMC6705399 DOI: 10.1039/c9bm00785g] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While highly promising in medicine, gene therapy requires delivery agents to protect and target nucleic acid therapeutics. We developed a plant viral siRNA delivery platform making use of self-assembling cowpea chlorotic mottle virus (CCMV). CCMV was loaded with siRNAs targeting GFP or FOXA1; to further enhance cell uptake and intracellular trafficking, resulting in more efficient gene knockdown, we appended CCMV with a cell penetrating peptide (CPP), specifically M-lycotoxin peptide L17E.
Collapse
Affiliation(s)
- Patricia Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Departments of NanoEngineering, Bioengineering, Radiology, Moores Cancer Center, University of California San Diego, La Jolla 92093, USA.
| |
Collapse
|
10
|
Shah E, Kadam A, Jubin T, Begum R, Upadhyay P, Soni HP. EDTA‐Capped Iron Oxide Core‐Corona System as Vehicle for Gene Delivery to Transform
E.coli
: Mimicking the Lipid Bilayer Environment. ChemistrySelect 2019. [DOI: 10.1002/slct.201900964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ekta Shah
- Department of ChemistryFaculty of Science, The Maharaja Sayajirao University of Baroda Vadodara- 390 002, Gujarat India
| | - Ashlesha Kadam
- Department of BiochemistryFaculty of ScienceThe Maharaja Sayajirao University of Baroda Vadodara- 390 002, Gujarat India
| | - Tina Jubin
- Department of BiochemistryFaculty of ScienceThe Maharaja Sayajirao University of Baroda Vadodara- 390 002, Gujarat India
| | - Rasheedunnisa Begum
- Department of BiochemistryFaculty of ScienceThe Maharaja Sayajirao University of Baroda Vadodara- 390 002, Gujarat India
| | - Pratik Upadhyay
- Department of Pharmaceutical TechnologyL. J. Institute of Pharmacy, Ahmedabad, Gujarat India
| | - Hemant P. Soni
- Department of ChemistryFaculty of Science, The Maharaja Sayajirao University of Baroda Vadodara- 390 002, Gujarat India
| |
Collapse
|
11
|
Choi JS, Park JW, Kim BK, Doh KO, Seu YB. A Facile and Convenient Synthesis of Boc-Protected 5-Carboxyspermine. LETT ORG CHEM 2019. [DOI: 10.2174/1570178615666181022143627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene therapy is a powerful technology for treating incurable and hereditary disease in humans.
In the recent years, a lot of studies have been done on the development of DNA carriers. Nonviral
vectors, like liposomes, polymers, and micelles, has become common vehicles due to their safety.
The key compound of DOGS, DOSPA and DOSPER is the 5-carboxyspermine which formed the poly
amine head-group and carries four positive charges. In general, multivalent head-group shows more
transfection efficiency than monovalent analogues. In this paper, the efficient and simple synthesis of
Boc-protected 5-carboxyspermine is described. Boc-protected polyamines were synthesized from (S)-
2,5-diaminopentanoic acid monohydrochloride (L-ornithine) monohydrochloride through both cyanoethylation
and direct catalytic reduction of nitriles with the combination of nickel (II) chloride, sodium
borohydride and di-tert-butyl decarbonate (BOC2O) in a one-pot two-reaction.
Collapse
Affiliation(s)
- Jong-Soo Choi
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | - Jae-Won Park
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | - Bieong-Kil Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | - Kyung-Oh Doh
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 705-717, Korea
| | - Young-Bae Seu
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
12
|
Gao YG, Alam U, Ding AX, Tang Q, Tan ZL, Shi YD, Lu ZL, Qian AR. [12]aneN3-based lipid with naphthalimide moiety for enhanced gene transfection efficiency. Bioorg Chem 2018; 79:334-340. [DOI: 10.1016/j.bioorg.2018.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 01/02/2023]
|
13
|
Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials 2018; 171:72-82. [DOI: 10.1016/j.biomaterials.2018.04.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022]
|
14
|
Misra SK, Bhattacharya S. Physical Chemical and Biomolecular Methods for the Optimization of Cationic Lipid-Based Lipoplexes In Vitro for the Gene Therapy Applications. Methods Mol Biol 2018; 1445:3-17. [PMID: 27436309 DOI: 10.1007/978-1-4939-3718-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Preparation and application protocols play a very important role while optimizing the cationic lipid-based lipoplexes in vitro. These protocols serve as the basis for the betterment of the lipoplexes with regard to their successful application in animals and eventually human subjects. Starting from the chemical structures of used cationic lipids (CLs), optimization of the additive inclusions, methods of nanoparticle (lipoplex) formation, presence of blood serum, time intervals of lipoplex incubation, and type of efficiency read-outs in various conditions play important roles in reaching insightful conclusions. Such steps of summarizing protocols and requirements of the pertinent events focus on getting improved lipoplexes for achieving optimal effects in terms of post transfection gene and protein expression. The progression of optimization and efficiency evaluation lead to predictable structure-method-activity relationship with involvement of various feedback principles including physical chemical and biomolecular evaluations before and after the use of lipoplexes in biological systems. This chapter discusses some of the focused strategies for the establishment of lipoplexes for a better post transfection activity with reduced risk of failure.
Collapse
Affiliation(s)
- Santosh K Misra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India.
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
15
|
Chen F, Kong L, Wang L, Fan Y, Shen M, Shi X. Construction of core-shell tecto dendrimers based on supramolecular host-guest assembly for enhanced gene delivery. J Mater Chem B 2017; 5:8459-8466. [PMID: 32264513 DOI: 10.1039/c7tb02585h] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Design of dendrimer-based nanoarchitectures for enhanced gene delivery still remains a great challenge. Here, we report the design of core-shell tecto dendrimers using a supramolecular assembly approach for enhanced gene delivery applications. Firstly, β-cyclodextrin (CD)-modified generation 5 (G5) poly(amidoamine) (PAMAM) dendrimers (G5-CD) and adamantine (Ad)-modified generation 3 (G3) PAMAM dendrimers (G3-Ad) both having amine termini were synthesized. Through the supramolecular recognition of CD and Ad, G5-CD/Ad-G3 core-shell tecto dendrimers with a G5 core and G3 shell were formed. The formed G5-CD/Ad-G3 core-shell tecto dendrimers with a size of 8.4 nm possess good monodispersity, well-defined three-dimensional structure, and quite low cytotoxicity. Importantly, with the abundant amines on the surface, the core-shell tecto dendrimers are able to transfect the luciferase (Luc) gene with an efficiency 20 times and 170 times higher than the G5-CD and G3-Ad dendrimers, respectively. The higher gene transfection efficiency can also be qualitatively confirmed by transfection of plasmid DNA encoding enhanced green fluorescence protein. Our results suggest that the developed G5-CD/Ad-G3 core-shell tecto dendrimers may be used as a promising vehicle for enhanced gene transfection applications.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China.
| | | | | | | | | | | |
Collapse
|
16
|
Moratz J, Stricker L, Engel S, Ravoo BJ. Controlling Complex Stability in Photoresponsive Macromolecular Host–Guest Systems: Toward Reversible Capture of DNA by Cyclodextrin Vesicles. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/26/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Johanna Moratz
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms‐Universität Münster Corrensstr. 40 48149 Münster Germany
| | - Lucas Stricker
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms‐Universität Münster Corrensstr. 40 48149 Münster Germany
| | - Sabrina Engel
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms‐Universität Münster Corrensstr. 40 48149 Münster Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms‐Universität Münster Corrensstr. 40 48149 Münster Germany
| |
Collapse
|
17
|
Lam P, Steinmetz NF. Plant viral and bacteriophage delivery of nucleic acid therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [DOI: 10.1002/wnan.1487] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/24/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Patricia Lam
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOHUSA
| | - Nicole F. Steinmetz
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOHUSA
- Department of RadiologyCase Western Reserve UniversityClevelandOHUSA
- Department of Materials Science and EngineeringCase Western Reserve UniversityClevelandOHUSA
- Department of Macromolecular Science and EngineeringCase Western Reserve UniversityClevelandOHUSA
- Division of General Medical Sciences‐Oncology, Case Comprehensive Cancer CenterCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
18
|
Wu T, Wang L, Ding S, You Y. Fluorinated PEG-Polypeptide Polyplex Micelles Have Good Serum-Resistance and Low Cytotoxicity for Gene Delivery. Macromol Biosci 2017; 17. [PMID: 28524376 DOI: 10.1002/mabi.201700114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/09/2022]
Abstract
A novel PEGylation polypeptide, poly(ethylene glycol)-b-poly(l-lysine)-b-poly(l-cysteine) (PEG-PLL-PCys) triblock copolymer is synthesized via the sequential ring-opening polymerization of amino acid N-carboxyanhydrides initiated by methoxypolyethylene glycol amine (mPEG-NH2 , Mw is 2 kDa). Subsequently, the obtained polypeptide is partially conjugated with fluorocarbon chains via disulfide exchange reaction. PLL segment can condense plasmid DNA through an electrostatic force to form a complex core, PEG segment surrounding the complex like a corona can prevent the complex from precipitation and reduce the adsorption of serum, while PCys segment with fluorocarbon can enhance the cellular uptake and the stability of the formed polyplex micelles in physiological conditions. Experiment results exhibit that the fluorinated polypeptides have low cytotoxicity and good gene transfection efficiency even in the presence of 50% fetal bovine serum.
Collapse
Affiliation(s)
- Ting Wu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Longhai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
19
|
Yang X, Wang Y, Shen X, Su C, Yang J, Piao M, Jia F, Gao G, Zhang L, Lin Q. One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. J Colloid Interface Sci 2017; 492:1-7. [DOI: 10.1016/j.jcis.2016.12.057] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022]
|
20
|
Zeng K, Lin FX, Xie J, Wang MZ, Rong JL, Zhao Y, You YZ, Asif A, Ge XW. Chitosan modified by γ-ray-induced grafting of poly(tributyl-(4-vinylbenzyl)phosphonium) as a biosafe and high-efficiency gene carrier. NEW J CHEM 2017. [DOI: 10.1039/c7nj00008a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitosan modified by γ-ray-induced grafting polymerization of tributyl-(4-vinylbenzyl)phosphonium chloride can be used as a safe and high-efficiency gene carrier.
Collapse
Affiliation(s)
- Kun Zeng
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Fu-xing Lin
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Juan Xie
- Department of Plastic Surgery
- First Affiliated Hospital of Anhui Medical University
- Hefei
- P. R. China
| | - Mo-zhen Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Jie-lin Rong
- Department of Plastic Surgery
- First Affiliated Hospital of Anhui Medical University
- Hefei
- P. R. China
| | - Yu Zhao
- Department of Plastic Surgery
- First Affiliated Hospital of Anhui Medical University
- Hefei
- P. R. China
| | - Ye-zi You
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Anila Asif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM)
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Xue-wu Ge
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
21
|
Martínez-Negro M, Kumar K, Barrán-Berdón AL, Datta S, Kondaiah P, Junquera E, Bhattacharya S, Aicart E. Efficient Cellular Knockdown Mediated by siRNA Nanovectors of Gemini Cationic Lipids Having Delocalizable Headgroups and Oligo-Oxyethylene Spacers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22113-22126. [PMID: 27508330 DOI: 10.1021/acsami.6b08823] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of small interfering RNAs (siRNAs) to silence specific genes is one of the most promising approaches in gene therapy, but it requires efficient nanovectors for successful cellular delivery. Recently, we reported liposomal gene carriers derived from a gemini cationic lipid (GCL) of the 1,2-bis(hexadecyl dimethyl imidazolium) oligo-oxyethylene series ((C16Im)2(C2H4O)nC2H4 with n = 1, 2, or 3) and 1,2-dioleyol phosphatidylethanolamine as highly efficient cytofectins for pDNA. On the basis of the satisfactory outcomes of the previous study, the present work focuses on the utility of coliposomes of these gemini lipids with the biocompatible neutral lipid mono oleoyl glycerol (MOG) as highly potent vectors for siRNA cellular transport in the presence of serum. The (C16Im)2(C2H4O)nC2H4/MOG-siRNA lipoplexes were characterized through (i) a physicochemical study (zeta potential, cryo-transmission electron microscopy, small-angle X-ray scattering, and fluorescence anisotropy) to establish the relationship between size, structure, fluidity, and the interaction between siRNA and the GCL/MOG gene vectors and (ii) a biological analysis (flow cytometry, fluorescence microscopy, and cell viability) to report the anti-GFP siRNA transfections in HEK 293T, HeLa, and H1299 cancer cell lines. The in vitro biological analysis confirms the cellular uptake and indicates that a short spacer, a very low molar fraction of GCL in the mixed lipid, and a moderate effective charge ratio of the lipoplex yielded maximum silencing efficacy. At these experimental conditions, the siRNA used in this work is compacted by the GCL/MOG nanovectors by forming two cubic structures (Ia3d and Pm3n) that are correlated with excellent silencing activity. These liposomal nanocarriers possess high silencing activity with a negligible cytotoxicity, which strongly supports their practical use for in vivo knockdown studies.
Collapse
Affiliation(s)
- María Martínez-Negro
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid , 28040 Madrid, Spain
| | | | - Ana L Barrán-Berdón
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid , 28040 Madrid, Spain
| | | | | | - Elena Junquera
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid , 28040 Madrid, Spain
| | | | - Emilio Aicart
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid , 28040 Madrid, Spain
| |
Collapse
|
22
|
Tetzlaff MT, Teh BS, Timme TL, Fujita T, Satoh T, Tabata KI, Mai WY, Vlachaki MT, Amato RJ, Kadmon D, Miles BJ, Ayala G, Wheeler TM, Aguilar-Cordova E, Thompson TC, Butler EB. Expanding the Therapeutic Index of Radiation Therapy by Combining In Situ Gene Therapy in the Treatment of Prostate Cancer. Technol Cancer Res Treat 2016; 5:23-36. [PMID: 16417399 DOI: 10.1177/153303460600500104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The advances in radiotherapy (3D-CRT, IMRT) have enabled high doses of radiation to be delivered with the least possible associated toxicity. However, the persistence of cancer (local recurrence after radiotherapy) despite these increased doses as well as distant failure suggesting the existence of micro-metastases, especially in the case of higher risk disease, have underscored the need for continued improvement in treatment strategies to manage local and micro-metastatic disease as definitively as possible. This has prompted the idea that an increase in the therapeutic index of radiotherapy might be achieved by combining it with in situ gene therapy. The goal of these combinatorial therapies is to maximize the selective pressure against cancer cell growth while minimizing treatment-associated toxicity. Major efforts utilizing different gene therapy strategies have been employed in conjunction with radiotherapy. We reviewed our and other published clinical trials utilizing this combined radio-genetherapy approach including their associated pre-clinical in vitro and in vivo models. The use of in situ gene therapy as an adjuvant to radiation therapy dramatically reduced cell viability in vitro and tumor growth in vivo. No significant worsening of the toxicities normally observed in single-modality approaches were identified in Phase I/II clinical studies. Enhancement of both local and systemic T-cell activation was noted with this combined approach suggesting anti-tumor immunity. Early clinical outcome including biochemical and biopsy data was very promising. These results demonstrate the increased therapeutic efficacy achieved by combining in situ gene therapy with radiotherapy in the management of local prostate cancer. The combined approach maximizes tumor control, both local-regional and systemic through radio-genetherapy induced cytotoxicity and anti-tumor immunity.
Collapse
Affiliation(s)
- Michael T Tetzlaff
- Scott Department of Urology, Baylor College of Medicine, 6560 Fannin, ST 2100, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Im GI. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:136-48. [DOI: 10.1089/ten.teb.2015.0347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gun-Il Im
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
24
|
Habrant D, Peuziat P, Colombani T, Dallet L, Gehin J, Goudeau E, Evrard B, Lambert O, Haudebourg T, Pitard B. Design of Ionizable Lipids To Overcome the Limiting Step of Endosomal Escape: Application in the Intracellular Delivery of mRNA, DNA, and siRNA. J Med Chem 2016; 59:3046-62. [PMID: 26943260 DOI: 10.1021/acs.jmedchem.5b01679] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The intracellular delivery of nucleic acid molecules is a complex process involving several distinct steps; among these the endosomal escape appeared to be of particular importance for an efficient protein production (or inhibition) into host cells. In the present study, a new series of ionizable vectors, derived from naturally occurring aminoglycoside tobramycin, was prepared using improved synthetic procedures that allow structural variations on the linker and hydrophobic domain levels. Complexes formed between the new ionizable lipids and mRNA, DNA, or siRNA were characterized by cryo-TEM experiments and their transfection potency was evaluated using different cell types. We demonstrated that lead molecule 30, bearing a biodegradable diester linker, formed small complexes with nucleic acids and provided very high transfection efficiency with all nucleic acids and cell types tested. The obtained results suggested that the improved and "universal" delivery properties of 30 resulted from an optimized endosomal escape, through the lipid-mixing mechanism.
Collapse
Affiliation(s)
- Damien Habrant
- In-Cell-Art , 21 rue de la Noue Bras de Fer, 44200 Nantes, France
| | - Pauline Peuziat
- Unité INSERM UMR1087, CNRS UMR 6291 , 8 quai Moncousu, 44007 Nantes, France.,Université de Nantes , L'institut du Thorax, 8 quai Moncousu, 44007 Nantes, France
| | - Thibault Colombani
- Unité INSERM UMR1087, CNRS UMR 6291 , 8 quai Moncousu, 44007 Nantes, France.,Université de Nantes , L'institut du Thorax, 8 quai Moncousu, 44007 Nantes, France
| | - Laurence Dallet
- CBMN UMR-CNRS 5248 IECB, Université de Bordeaux 1-IPB , Allée Geoffroy Saint Hilaire, Pessac F-33600, France
| | - Johan Gehin
- In-Cell-Art , 21 rue de la Noue Bras de Fer, 44200 Nantes, France
| | - Emilie Goudeau
- In-Cell-Art , 21 rue de la Noue Bras de Fer, 44200 Nantes, France
| | - Bérangère Evrard
- In-Cell-Art , 21 rue de la Noue Bras de Fer, 44200 Nantes, France
| | - Olivier Lambert
- CBMN UMR-CNRS 5248 IECB, Université de Bordeaux 1-IPB , Allée Geoffroy Saint Hilaire, Pessac F-33600, France
| | - Thomas Haudebourg
- Unité INSERM UMR1087, CNRS UMR 6291 , 8 quai Moncousu, 44007 Nantes, France.,Université de Nantes , L'institut du Thorax, 8 quai Moncousu, 44007 Nantes, France
| | - Bruno Pitard
- In-Cell-Art , 21 rue de la Noue Bras de Fer, 44200 Nantes, France.,Unité INSERM UMR1087, CNRS UMR 6291 , 8 quai Moncousu, 44007 Nantes, France.,Université de Nantes , L'institut du Thorax, 8 quai Moncousu, 44007 Nantes, France
| |
Collapse
|
25
|
Ahmed T, Kamel AO, Wettig SD. Interactions between DNA and Gemini surfactant: impact on gene therapy: part I. Nanomedicine (Lond) 2016; 11:289-306. [PMID: 26785905 DOI: 10.2217/nnm.15.203] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonviral gene therapy using gemini surfactants is a unique approach to medicine that can be adapted toward the treatment of various diseases. Recently, gemini surfactants have been utilized as candidates for the formation of nonviral vectors. The chemical structure of the surfactant (variations in the alkyl tail length and spacer/head group) and the resulting physicochemical properties of the lipoplexes are critical parameters for efficient gene transfection. Moreover, studying the interaction of the surfactant with DNA can help in designing an efficient vector and understanding how transfection complexes overcome various cellular barriers. Part I of this review provides an overview of various types of gemini surfactants designed for gene therapy and their transfection efficiency; and Part II will focus on different novel methods utilized to understand the interactions between the gemini and DNA in a lipoplex.
Collapse
Affiliation(s)
- Taksim Ahmed
- School of Pharmacy, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Amany O Kamel
- School of Pharmacy, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada.,Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Khalifa El-Maamon Street, Abbasiya Square, Cairo 11566, Egypt
| | - Shawn D Wettig
- School of Pharmacy, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
26
|
Lin FX, Rong JL, Wang MZ, Bao DD, Wang Y, Gong ZX, Gu YF, Zhao Y, Ge XW. Chitosan-based core-shell structured particles for in vivo sustainable gene transfection. J Mater Chem B 2016; 4:893-901. [PMID: 32263162 DOI: 10.1039/c5tb02074c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A core-shell structured chitosan (CS)-based gene vector with a sustainable gene transfection effect was designed and successfully prepared in this study. The pEGFP was first combined with the thiolated and N-alkylated chitosan (TACS). Then, hydroxybutyl chitosan grafted with poly(ethylene glycol) (EG-HBC) was coated on the pEGFP-loaded TACS particles. The prepared pEGFP-loaded TACS@EG-HBC particles have a size of about 200 nm and little cytotoxicity. The in vitro and in vivo gene transfection experiments indicate that the pEGFP-loaded TACS@EG-HBC particles possess a better sustainable gene transfection capacity and a high transfection efficiency, which should be attributed to the biodegradation of the CS-based shell, the thiolation and N-alkylation modification on CS cores, and the grafted PEG chains with better biocompatibility. The in vivo gene expression of the loaded pEGFP can persist up to 60 days. This novel gene vector has a theoretical and practical significance for gene therapy with sustained transfection effect.
Collapse
Affiliation(s)
- Fu-Xing Lin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang LH, Wu DC, Xu HX, You YZ. High DNA-Binding Affinity and Gene-Transfection Efficacy of Bioreducible Cationic Nanomicelles with a Fluorinated Core. Angew Chem Int Ed Engl 2015; 55:755-9. [PMID: 26586102 DOI: 10.1002/anie.201508695] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 11/11/2022]
Abstract
During the last two decades, cationic polymers have become one of the most promising synthetic vectors for gene transfection. However, the weak interactions formed between DNA and cationic polymers result in low transfection efficacy. Furthermore, the polyplexes formed between cationic polymers and DNA generally exhibit poor stability and toxicity because of the large excess of cationic polymer typically required for complete DNA condensation. Herein, we report the preparation of a novel class of bioreducible cationic nanomicelles by the use of disulfide bonds to connect the cationic shell to the fluorocarbon core. These bioreducible nanomicelles form strong interactions with DNA and completely condense DNA at an N/P ratio of 1. The resulting nanomicelle/DNA polyplexes exhibited high biocompatibility and performed very effectively as a gene-delivery system.
Collapse
Affiliation(s)
- Long-Hai Wang
- Key Laboratory of Soft Matter Chemistry, Chinese Academy of Sciences and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 (China)
| | - De-Cheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P.R. China)
| | - Hang-Xun Xu
- Key Laboratory of Soft Matter Chemistry, Chinese Academy of Sciences and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 (China)
| | - Ye-Zi You
- Key Laboratory of Soft Matter Chemistry, Chinese Academy of Sciences and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 (China).
| |
Collapse
|
28
|
Wang LH, Wu DC, Xu HX, You YZ. High DNA-Binding Affinity and Gene-Transfection Efficacy of Bioreducible Cationic Nanomicelles with a Fluorinated Core. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508695] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Drug nano-reservoirs synthesized using layer-by-layer technologies. Biotechnol Adv 2015; 33:1310-26. [DOI: 10.1016/j.biotechadv.2015.04.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/25/2015] [Accepted: 04/02/2015] [Indexed: 12/18/2022]
|
30
|
Foox J, Ringuette M, Desser SS, Siddall ME. In silico hybridization enables transcriptomic illumination of the nature and evolution of Myxozoa. BMC Genomics 2015; 16:840. [PMID: 26494377 PMCID: PMC4619090 DOI: 10.1186/s12864-015-2039-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/08/2015] [Indexed: 11/24/2022] Open
Abstract
Background The Myxozoa, a group of oligocellular, obligate endoparasites, has long been poorly understood in an evolutionary context. Recent genome-level sequencing techniques such as RNA-seq have generated large amounts of myxozoan sequence data, providing valuable insight into their evolutionary history. However, sequences from host tissue contamination are present in next-generation sequencing reactions of myxozoan tissue, and differentiating between the two has been inadequately addressed. In order to shed light on the genetic underpinnings of myxozoan biology, assembled contigs generated from these studies that derived from the myxozoan must be decoupled from transcripts derived from host tissue and other contamination. This study describes a pipeline for categorization of transcripts asmyxozoan based on similarity searching with known host and parasite sequences, explores the extent to which host contamination is present in previously existing myxozoan datasets, and implements this pipeline on a newly sequenced transcriptome of Myxobolus pendula, a parasite of the common creek chub gill arch. Methods The insilico hybridization pipeline uses iterative BLAST searching and database-driven e-value comparison to categorize transcripts as deriving from host, parasite, or other contamination. Functional genetic analysis of M. pendula was conducted using further BLAST searching, Hidden Markov Modeling, and sequence alignment and phylogenetic reconstruction. Results Three RNA libraries of encysted M. pendula plasmodia were sequenced and subjected to the method. Nearly half of the final set of contiguous assembly sequences (47.3 %) was identified as putative myxozoan transcripts. Putative contamination was also identified in at least 1/3rd of previously published myxozoan transcripts. The set of M. pendula transcripts was mined for a range of biologically insightful genes, including taxonomically restricted nematocyst structural proteins and nematocyst proteins identified through mass tandem spectrometry of other cnidarians. Several novel findings emerged, including a fourth myxozoan minicollagen gene, putative myxozoan toxin proteins,and extracellular matrix glycoproteins. Conclusions This study serves as a model for the handling of next-generation myxozoan sequence. The need for careful categorization was demonstrated in both previous and new sets of myxozoan sequences. The final set of confidently assigned myxozoan transcripts can be mined for any biologically relevant gene or gene family without spurious misidentification of host contamination as a myxozoan homolog. As exemplified by M. pendula, the repertoire of myxozoan polar capsules may be more complex than previously thought, with an additional minicollagen homolog and putative expression of toxin proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2039-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan Foox
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA. .,Division of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
| | - Maurice Ringuette
- Department of Zoology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Sherwin S Desser
- Department of Zoology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Mark E Siddall
- Division of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| |
Collapse
|
31
|
G Protein-Coupled Receptor 87 (GPR87) Promotes Cell Proliferation in Human Bladder Cancer Cells. Int J Mol Sci 2015; 16:24319-31. [PMID: 26473854 PMCID: PMC4632752 DOI: 10.3390/ijms161024319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 11/23/2022] Open
Abstract
G protein-coupled receptor 87 (GPR87) is a newly deorphanized member of the cell surface molecule G protein-coupled receptor family. GPR signaling was shown to play a role in promotion of cell growth and survival, metastasis, and drug resistance. The overexpression of GPR87 has also been reported in many malignant tumors including bladder cancer. The aim of the present study is to examine the effect of silencing GPR87 expression with a replication-deficient recombinant adenoviral vector expressing short hairpin RNA targeting GPR87 (Ad-shGPR87) and to explore the underlying molecular mechanisms in bladder cancer cells. Six GPR87-expressing human bladder cancer cells, HT1197, HT1376, J82, RT112, TCCSUP and UMUC3, were used. Infection with Ad-shGPR87 effectively downregulated the GPR87 expression, and significantly reduced the percentage of viable cells in 4 of 6 cell lines as detected by an MTT assay. Significant inhibition on cell proliferation with Ad-shGPR87 was observed in the wild-type p53 bladder cancer cell lines (HT1197, RT112, TCCSUP and UMUC3), but not in the mutant p53 cells (HT1376 and J82). As represented by a wild-type p53 RT112 cell, Ad-shGPR87 infection significantly enhanced p53 and p21 expression and caused caspase-dependent apoptosis. Furthermore, the treatment with Ad-shGPR87 exerted a significant antitumor effect against the GPR87-expressing RT112 xenografts. GPR87 appeared to be a promising target for gene therapy, and Ad-shGPR87 had strong antitumor effects, specifically anti-proliferative and pro-apoptotic effects, against GPR87-expressing human bladder cancer cells.
Collapse
|
32
|
Abstract
Gold nanoparticles ( AuNPs ) as one of the most stable metal nanoparticles have demonstrated extensive applications in recent years. In this review, the synthetic methods to AuNPs were discussed, which included citrate reduction, Brust–Schiffrin method, ligand-stabilized AuNPs and so on, followed with the synthetic mechanisms. Special emphasis was made on polymer modified AuNPs in biomedical applications, especially for polymer/ AuNPs conjugated in the field of cancer therapy and early diagnosis. The applications based on optoelectronic properties, which was related to surface plasmon resonance (SPR) effect, were also summarized as biosensors for labeling and detection.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yang Jiao
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Qinyuan Chai
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Xinjun Yu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
33
|
Bioreducible cross-linked nanoshell enhances gene transfection of polycation/DNA polyplex in vivo. J Control Release 2015; 213:e133. [DOI: 10.1016/j.jconrel.2015.05.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Yang YY, Hu H, Wang X, Yang F, Shen H, Xu FJ, Wu DC. Acid-Labile Poly(glycidyl methacrylate)-Based Star Gene Vectors. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12238-12248. [PMID: 25993557 DOI: 10.1021/acsami.5b02733] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It was recently reported that ethanolamine-functionalized poly(glycidyl methacrylate) (PGEA) possesses great potential applications in gene therapy due to its good biocompatibility and high transfection efficiency. Importing responsivity into PGEA vectors would further improve their performances. Herein, a series of responsive star-shaped vectors, acetaled β-cyclodextrin-PGEAs (A-CD-PGEAs) consisting of a β-CD core and five PGEA arms linked by acid-labile acetal groups, were proposed and characterized as therapeutic pDNA vectors. The A-CD-PGEAs owned abundant hydroxyl groups to shield extra positive charges of A-CD-PGEAs/pDNA complexes, and the star structure could decrease charge density. The incorporation of acetal linkers endowed A-CD-PGEAs with pH responsivity and degradation. In weakly acidic endosome, the broken acetal linkers resulted in decomposition of A-CD-PGEAs and morphological transformation of A-CD-PGEAs/pDNA complexes, lowering cytotoxicity and accelerating release of pDNA. In comparison with control CD-PGEAs without acetal linkers, A-CD-PGEAs exhibited significantly better transfection performances.
Collapse
Affiliation(s)
- Yan-Yu Yang
- ‡Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
- §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 China
| | - Hao Hu
- ‡Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
- §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 China
| | | | | | | | - Fu-Jian Xu
- ‡Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
- §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 China
| | | |
Collapse
|
35
|
Hu H, Yuan W, Liu FS, Cheng G, Xu FJ, Ma J. Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8942-51. [PMID: 25845425 DOI: 10.1021/acsami.5b02432] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carbon nanotubes have excellent penetrability and encapsulation efficiency in the fields of drug and gene delivery. Because of their excellent physicochemical properties, biocompatible rodlike cellulose nanocrystals (CNCs) were reportedly expected to replace carbon nanotubes. In this work, CNCs from natural cotton wool were functionalized with disulfide bond-linked poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes for effective biomedical applications. A range of CNC-graft-PDMAEMA vectors (termed as CNC-SS-PDs) with various molecular weights of PDMAEMA were synthesized. Under reducible conditions, PDMAEMA chains can be easily cleaved from CNCs. The gene condensation ability, reduction sensitivity, cytotoxicity, gene transfection, and in vivo antitumor activities of CNC-SS-PDs were investigated in detail. The CNC-SS-PDs exhibited good transfection efficiencies and low cytotoxicities. The needlelike shape of CNCs had an important effect on enhancing transfection efficiency. The antitumor effect of CNC-SS-PDs was evaluated by a suicide gene/prodrug system (cytosine deaminase/5-fluorocytosine, CD/5-FC) in vitro and in vivo. This research demonstrates that the functionalization of CNCs with redox-responsive polycations is an effective method for developing novel gene delivery systems.
Collapse
Affiliation(s)
- Hao Hu
- ‡Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
- §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Yuan
- ∥State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Fu-Sheng Liu
- ⊥Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital affiliated with Capital Medical University, Beijing 100050, China
| | - Gang Cheng
- #Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Fu-Jian Xu
- ‡Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
- §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Ma
- ∥State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| |
Collapse
|
36
|
Ma Y, Zhang X, Xu X, Shen L, Yao Y, Yang Z, Liu P. STAT3 Decoy Oligodeoxynucleotides-Loaded Solid Lipid Nanoparticles Induce Cell Death and Inhibit Invasion in Ovarian Cancer Cells. PLoS One 2015; 10:e0124924. [PMID: 25923701 PMCID: PMC4414561 DOI: 10.1371/journal.pone.0124924] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the synthesis of multi-functional nanoparticles have opened up tremendous opportunities for the targeted delivery of genes of interest. Cationic solid lipid nanoparticles (SLN) can efficiently bind nucleic acid molecules and transfect genes in vitro. Few reports have combined SLN with therapy using decoy oligodeoxynucleotides (ODN). In the present study, we prepared SLN to encapsulate STAT3 decoy ODN; then, the properties and in vitro behavior of SLN-STAT3 decoy ODN complexes were investigated. SLN-STAT3 decoy ODN complexes were efficiently taken up by human ovarian cancer cells and significantly suppressed cell growth. Blockage of the STAT3 pathway by SLN-STAT3 decoy ODN complexes resulted in an evident induction of cell death, including apoptotic and autophagic death. The mechanism involved the increased expression of cleaved caspase 3, Bax, Beclin-1 and LC3-II and reduced expression of Bcl-2, pro-caspase 3, Survivin, p-Akt and p-mTOR. In addition, SLN-STAT3 decoy ODN complexes inhibited cell invasion by up-regulating E-cadherin expression and down-regulating Snail and MMP-9 expression. These findings confirmed that SLN as STAT3 decoy ODN carriers can induce cell death and inhibit invasion of ovarian cancer cells. We propose that SLN represent a potential approach for targeted gene delivery in cancer therapy.
Collapse
Affiliation(s)
- Yanhui Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoxuan Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Liang Shen
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated with Shandong University, Jinan, Shandong, China
| | - Yao Yao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Ziyan Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
37
|
Foox J, Siddall ME. The Road To Cnidaria: History of Phylogeny of the Myxozoa. J Parasitol 2015; 101:269-74. [PMID: 25621522 DOI: 10.1645/14-671.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Myxozoans are a clade of highly derived cnidarians. The phylogenetic identity of these extremely simplified parasites of aquatic vertebrates and invertebrates had long been uncertain, with all early classifications designating Myxozoa as protists. Though suggestions were frequently made that the infective spores of these parasites are multicellular and possibly of cnidarian origin, it would take a phylogenetic analysis of ultrastructural developmental characters in combination with rRNA gene sequences to verify the Myxozoa as secondarily reduced cnidarians, sister to the polypoidozoan parasite Polypodium hydriforme . While a series of subsequent molecular studies suggested hypotheses of Myxozoa as basal bilaterians, triploblasts, or even nematodes, phylogenomic analyses with improved taxon sampling corroborated the landmark paper that verified the cnidarian nature of this group. This review of the body of phylogenetic work on Myxozoa aims to clarify historical progress and current knowledge, as well as to emphasize the opportune position that myxozoan biologists now are in, to address fundamental questions of cell biology of these parasites as well as the evolution of animal life.
Collapse
Affiliation(s)
- Jonathan Foox
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024
| | - Mark E Siddall
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024
| |
Collapse
|
38
|
Yue P, Zhang Y, Guo ZF, Cao AC, Lu ZL, Zhai YG. Synthesis of bifunctional molecules containing [12]aneN3 and coumarin moieties as effective DNA condensation agents and new non-viral gene vectors. Org Biomol Chem 2015; 13:4494-505. [DOI: 10.1039/c4ob02676d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bifunctional molecules with different combinations of [12]aneN3 and coumarin moieties were successfully applied in DNA condensation and gene transfection.
Collapse
Affiliation(s)
- Pan Yue
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Ying Zhang
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Zhi-Fo Guo
- College of Chemistry
- Beijing Normal University
- Beijing
- China
- College of Life Science
| | - Ao-Cheng Cao
- Institute of Plant Protection
- Chinese Academy of Agricultural Sciences
- Beijing
- China
| | - Zhong-Lin Lu
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Yong-Gong Zhai
- College of Life Science
- Beijing Normal University
- Beijing
- China
| |
Collapse
|
39
|
Yang Y, Wang J, Li X, Lin L, Yue X. A near infrared fluorescent/ultrasonic bimodal contrast agent for imaging guided pDNA delivery via ultrasound targeted microbubble destruction. RSC Adv 2015. [DOI: 10.1039/c4ra15066j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
MBs@QDs@PEI/pDNA was prepared to operate as a NIR/Ultrasound bimodal imaging guided platform for targeting delivery of pDNA by UTMD.
Collapse
Affiliation(s)
- Yongbo Yang
- School of Life Science and Technology
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Jinrui Wang
- Department of Ultrasonography
- Peking University Third Hospital
- Beijing 100083
- China
| | - Xiaoda Li
- School of Life Science and Technology
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Li Lin
- School of Life Science and Technology
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xiuli Yue
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|
40
|
Huang Y, Wang D, Zhu X, Yan D, Chen R. Synthesis and therapeutic applications of biocompatible or biodegradable hyperbranched polymers. Polym Chem 2015. [DOI: 10.1039/c5py00144g] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent progress in the synthesis, modifications and therapeutic applications of biocompatible or biodegradable hyperbranched polymers has been reviewed.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Rongjun Chen
- Department of Chemical Engineering
- Imperial College London
- London SW7 2AZ
- UK
| |
Collapse
|
41
|
Ojeda E, Puras G, Agirre M, Zárate J, Grijalvo S, Pons R, Eritja R, Martinez-Navarrete G, Soto-Sanchez C, Fernández E, Pedraz JL. Niosomes based on synthetic cationic lipids for gene delivery: the influence of polar head-groups on the transfection efficiency in HEK-293, ARPE-19 and MSC-D1 cells. Org Biomol Chem 2014; 13:1068-81. [PMID: 25412820 DOI: 10.1039/c4ob02087a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We designed niosomes based on three lipids that differed only in the polar-head group to analyze their influence on the transfection efficiency. These lipids were characterized by small-angle X-ray scattering before being incorporated into the niosomes which were characterized in terms of pKa, size, zeta potential, morphology and physical stability. Nioplexes were obtained upon the addition of a plasmid. Different ratios (w/w) were selected to analyze the influence of this parameter on size, charge and the ability to condense, release and protect the DNA. In vitro transfection experiments were performed in HEK-293, ARPE-19 and MSC-D1 cells. Our results show that the chemical composition of the cationic head-group clearly affects the physicochemical parameters of the niosomes and especially the transfection efficiency. Only niosomes based on cationic lipids with a dimethyl amino head group (lipid 3) showed a transfection capacity when compared with their counterparts amino (lipid 1) and tripeptide head-groups (lipid 2). Regarding cell viability, we clearly observed that nioplexes based on the cationic lipid 3 had a more deleterious effect than their counterparts, especially in ARPE-19 cells at 20/1 and 30/1 ratios. Similar studies could be extended to other series of cationic lipids in order to progress in the research on safe and efficient non-viral vectors for gene delivery purposes.
Collapse
Affiliation(s)
- E Ojeda
- NanoBioCel Group, University of Basque Country, Vitoria, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wagh J, Patel KJ, Soni P, Desai K, Upadhyay P, Soni HP. Transfecting pDNA to E. coli DH5α using bovine serum albumin nanoparticles as a delivery vehicle. LUMINESCENCE 2014; 30:583-91. [PMID: 25345764 DOI: 10.1002/bio.2789] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/13/2014] [Accepted: 09/04/2014] [Indexed: 01/29/2023]
Abstract
We describe the formulation of bovine serum albumin nanoparticles (BSA-NPs) by the coacervation method using surfactants. Plasmids (pUC18, pUC18egfp and pBBR1MCS-2) isolated from E. coli were incorporated into the BSA matrix by incubating in albumin solution prior to formulation of NPs. Plasmid incorporation was calculated by % yield, entrapment efficiency, DNA loading capacity and release of entrapped DNA by comparing with blank NPs. BSA-DNA binding studies were carried out by using fluorescence spectroscopy and Fourier Transform Infra Red Spectroscopy (FT-IR). The surface charge distribution of the NPs loaded with plasmid was calculated using zeta potential. The photoluminescence of BSA-NPs was quenched when loaded with pDNA, confirming the interaction of DNA with BSA. Altogether, these results provide evidences for the excellent DNA carrying efficiency of BSA-NPs without loss of plasmid's integrity. The NPs were used to transfect E. coli DH5α strain lacking ampicillin resistance. They, however, showed ampicillin resistance subsequent to transfection with plasmid encoding ampicillin resistance gene. Effect of transfection was confirmed by confocal microscopy and by the isolation of the plasmid by agarose gel electrophoresis from the transfected bacterial culture. This study clearly demonstrates the efficacy of BSA-NPs as delivery vehicle for pDNA transfection.
Collapse
Affiliation(s)
- Jitendra Wagh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-, 390 002, Gujarat, India
| | - Kuldeep J Patel
- Department of Biotechnology, Ashok & Rita Patel Institute of Integrated Study & Research in Biotechnology and Allied Sciences (ARIBAS), Sardar Patel University, V V Nagar, Gujarat, India
| | - Parth Soni
- Department of Biotechnology, Ashok & Rita Patel Institute of Integrated Study & Research in Biotechnology and Allied Sciences (ARIBAS), Sardar Patel University, V V Nagar, Gujarat, India
| | - Krutika Desai
- Department of Biotechnology, Ashok & Rita Patel Institute of Integrated Study & Research in Biotechnology and Allied Sciences (ARIBAS), Sardar Patel University, V V Nagar, Gujarat, India
| | - Pratik Upadhyay
- LJ Institute of Pharmacy, Sarkhej, Ahmedabad, Gujarat, India
| | - Hemant P Soni
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-, 390 002, Gujarat, India
| |
Collapse
|
43
|
Mock U, Riecken K, Berdien B, Qasim W, Chan E, Cathomen T, Fehse B. Novel lentiviral vectors with mutated reverse transcriptase for mRNA delivery of TALE nucleases. Sci Rep 2014; 4:6409. [PMID: 25230987 PMCID: PMC4166709 DOI: 10.1038/srep06409] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/22/2014] [Indexed: 12/23/2022] Open
Abstract
TAL-effector nucleases (TALENs) are attractive tools for sequence-specific genome modifications, but their delivery still remains problematic. It is well known that the presence of multiple sequence repeats in TALEN genes hampers the use of lentiviral vectors. We report that lentiviral vectors readily package full-length vector mRNAs encoding TALENs, but recombination during reverse transcription prevents successful delivery. We reasoned that preventing reverse transcription of lentiviral-vector RNA would allow transfer of TALENs as mRNA. We demonstrate that lentiviral particles containing genetically inactivated reverse transcriptase (RT) mediated efficient transduction of cultured cells and supported transient transgene expression. For proof-of-principle, we transferred CCR5- and TCR-specific TALEN pairs for efficient targeted genome editing and abrogated expression for each of the receptor proteins in different cell lines. Combining the high specificity of TALENs with efficient lentiviral gene delivery should advance genome editing in vitro and potentially in vivo, and RT-deficient lentiviral vectors may be useful for transient expression of various other genes-of-interest.
Collapse
Affiliation(s)
- Ulrike Mock
- Research Dept. Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kristoffer Riecken
- Research Dept. Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Belinda Berdien
- Research Dept. Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Waseem Qasim
- Molecular Immunology Unit, UCL Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Emma Chan
- Molecular Immunology Unit, UCL Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Toni Cathomen
- 1] Institute for Cell and Gene Therapy, University Medical Centre Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany [2] Centre for Chronic Immunodeficiency, University Medical Centre Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Boris Fehse
- Research Dept. Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
44
|
Niyomtham N, Apiratikul N, Chanchang K, Opanasopit P, Yingyongnarongkul BE. Synergistic effect of cationic lipids with different polarheads, central core structures and hydrophobic tails on gene transfection efficiency. Biol Pharm Bull 2014; 37:1534-42. [PMID: 25177036 DOI: 10.1248/bpb.b14-00349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipid-mediated delivery of DNA into cells holds great promise both for gene therapy and basic research applications. The primary approach to improving transfection efficiency is the design and synthesis of novel cationic lipids. Alternatively, using the synergistic effect of different cationic mixtures can provide another approach to increasing transfection efficiency. This paper describes the synergistic effect of lipids with different polarheads, central core structures and hydrophobic tails. The enhancement of cellular transfection into HEK293 cells was observed by combining two lipids having aminoglycerol and di(hydroxylethyl)amino core structures at a 1 : 1 weight ratio. Additionally, the liposome formation of these lipids with the helper lipid, 1,2-dioleoyl-propyl-3-phosphatidylethanolamine (DOPE), at the weight ratio of 1 : 1 can provide higher transfection efficiency into HEK293, MCF-7 and HeLa cells than Lipofectamine™ 2000. Our finding indicated that cationic liposomes comprised of a mixture of lipids with different polarheads, central core structures and hydrophobic tails should be very promising in liposome-mediated gene delivery in vitro and in vivo.
Collapse
Affiliation(s)
- Nattisa Niyomtham
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University
| | | | | | | | | |
Collapse
|
45
|
Piao JG, Ding SG, Yang L, Hong CY, You YZ. Bioreducible Cross-Linked Nanoshell Enhances Gene Transfection of Polycation/DNA Polyplex in Vivo. Biomacromolecules 2014; 15:2907-13. [DOI: 10.1021/bm500518u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ji-Gang Piao
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, Anhui, China
| | - Sheng-Gang Ding
- Department
of Pediatrics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, Anhui, P. R. China
| | - Lu Yang
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, Anhui, China
| | - Chun-Yan Hong
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, Anhui, China
| | - Ye-Zi You
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, Anhui, China
| |
Collapse
|
46
|
Abstract
Gene therapy is a widespread and promising treatment of many diseases resulting from genetic disorders, infections and cancer. The feasibility of the gene therapy is mainly depends on the development of appropriate method and suitable vectors. For an efficient gene delivery, it is very important to use a carrier that is easy to produce, stable, non-oncogenic and non-immunogenic. Currently most of the vectors actually suffer from many problems. Therefore, the ideal gene therapy delivery system should be developed that can be easily used for highly efficient delivery and able to maintain long-term gene expression, and can be applicable to basic research as well as clinical settings. This article provides a brief over view on the concept and aim of gene delivery, the different gene delivery systems and use of different materials as a carrier in the area of gene therapy.
Collapse
|
47
|
Abstract
Gene therapy attempts the insertion and expression of exogenous genetic material in cells for therapeutic purposes. Conceived in the 1960s, gene therapy reached its first clinical trial at the end of the 1980s and by December 2013 around 600 genuine open clinical trials of gene therapy were registered at NIH Clinical Trials Database. Here, we summarize the current efforts towards the development of gene therapy in Latin America. Our survey shows that the number of scientists involved in the development of gene therapy and DNA vaccines in Latin America is still very low. Higher levels of investment in this technology are necessary to boost the advancement of innovation and intellectual property in this field in a way that would ease both the social and financial burden of various medical conditions in Latin America.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ursula Matte
- Centro de Terapia Gênica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
48
|
Song Y, Lou B, Zhao P, Lin C. Multifunctional Disulfide-Based Cationic Dextran Conjugates for Intravenous Gene Delivery Targeting Ovarian Cancer Cells. Mol Pharm 2014; 11:2250-61. [DOI: 10.1021/mp4006672] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yanyan Song
- The
Institute for Biomedical Engineering and Nanoscience, Tongji University
School of Medicine, Tongji University, Shanghai 200092, P. R. China
- School
of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Bo Lou
- The
Institute for Biomedical Engineering and Nanoscience, Tongji University
School of Medicine, Tongji University, Shanghai 200092, P. R. China
- School
of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Peng Zhao
- The
Institute for Biomedical Engineering and Nanoscience, Tongji University
School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Chao Lin
- The
Institute for Biomedical Engineering and Nanoscience, Tongji University
School of Medicine, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
49
|
BMP-functionalised coatings to promote osteogenesis for orthopaedic implants. Int J Mol Sci 2014; 15:10150-68. [PMID: 24914764 PMCID: PMC4100145 DOI: 10.3390/ijms150610150] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/13/2014] [Accepted: 05/22/2014] [Indexed: 12/19/2022] Open
Abstract
The loss of bone integrity can significantly compromise the aesthetics and mobility of patients and can be treated using orthopaedic implants. Over the past decades; various orthopaedic implants; such as allografts; xenografts and synthetic materials; have been developed and widely used in clinical practice. However; most of these materials lack intrinsic osteoinductivity and thus cannot induce bone formation. Consequently; osteoinductive functionalisation of orthopaedic implants is needed to promote local osteogenesis and implant osteointegration. For this purpose; bone morphogenetic protein (BMP)-functionalised coatings have proven to be a simple and effective strategy. In this review; we summarise the current knowledge and recent advances regardingBMP-functionalised coatings for orthopaedic implants.
Collapse
|
50
|
|