1
|
|
2
|
SAKAKI Y. A Japanese history of the Human Genome Project. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:441-458. [PMID: 31611500 PMCID: PMC6819149 DOI: 10.2183/pjab.95.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
The Human Genome Project (HGP) is one of the most important international achievements in life sciences, to which Japanese scientists made remarkable contributions. In the early 1980s, Akiyoshi Wada pioneered the first project for the automation of DNA sequencing technology. Ken-ichi Matsubara exhibited exceptional leadership to launch the comprehensive human genome program in Japan. Hideki Kambara made a major contribution by developing a key device for high-speed DNA sequencers, which enabled scientists to construct human genome draft sequences. The RIKEN team led by Yoshiyuki Sakaki (the author) played remarkable roles in the draft sequencing and completion of chromosomes 21, 18, and 11. Additionally, the Keio University team led by Nobuyoshi Shimizu made noteworthy contributions to the completion of chromosomes 22, 21, and 8. In April 2003, the Japanese team joined the international consortium in declaring the completion of the human genome sequence. Consistent with the HGP mandate, Japan has successfully developed a wide range of ambitious genomic sciences.
Collapse
Affiliation(s)
- Yoshiyuki SAKAKI
- Emeritus Professor, The University of Tokyo, Tokyo, Japan
- Emeritus Professor, Kyushu University, Fukuoka, Japan
- Emeritus Researcher, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
3
|
Maxson Jones K, Ankeny RA, Cook-Deegan R. The Bermuda Triangle: The Pragmatics, Policies, and Principles for Data Sharing in the History of the Human Genome Project. JOURNAL OF THE HISTORY OF BIOLOGY 2018; 51:693-805. [PMID: 30390178 PMCID: PMC7307446 DOI: 10.1007/s10739-018-9538-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Bermuda Principles for DNA sequence data sharing are an enduring legacy of the Human Genome Project (HGP). They were adopted by the HGP at a strategy meeting in Bermuda in February of 1996 and implemented in formal policies by early 1998, mandating daily release of HGP-funded DNA sequences into the public domain. The idea of daily sharing, we argue, emanated directly from strategies for large, goal-directed molecular biology projects first tested within the "community" of C. elegans researchers, and were introduced and defended for the HGP by the nematode biologists John Sulston and Robert Waterston. In the C. elegans community, and subsequently in the HGP, daily sharing served the pragmatic goals of quality control and project coordination. Yet in the HGP human genome, we also argue, the Bermuda Principles addressed concerns about gene patents impeding scientific advancement, and were aspirational and flexible in implementation and justification. They endured as an archetype for how rapid data sharing could be realized and rationalized, and permitted adaptation to the needs of various scientific communities. Yet in addition to the support of Sulston and Waterston, their adoption also depended on the clout of administrators at the US National Institutes of Health (NIH) and the UK nonprofit charity the Wellcome Trust, which together funded 90% of the HGP human sequencing effort. The other nations wishing to remain in the HGP consortium had to accommodate to the Bermuda Principles, requiring exceptions from incompatible existing or pending data access policies for publicly funded research in Germany, Japan, and France. We begin this story in 1963, with the biologist Sydney Brenner's proposal for a nematode research program at the Laboratory of Molecular Biology (LMB) at the University of Cambridge. We continue through 2003, with the completion of the HGP human reference genome, and conclude with observations about policy and the historiography of molecular biology.
Collapse
Affiliation(s)
- Kathryn Maxson Jones
- Department of History, Princeton University, Princeton, NJ, USA.
- MBL McDonnell Foundation Scholar, Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Rachel A Ankeny
- School of Humanities, The University of Adelaide, Adelaide, Australia
| | - Robert Cook-Deegan
- School for the Future of Innovation in Society, Consortium for Science, Policy & Outcomes, Arizona State University, Barrett & O'Connor Washington Center, Washington, D.C., USA
| |
Collapse
|
4
|
Non-profit Drug Research and Development at a Crossroads. Pharm Res 2018; 35:52. [DOI: 10.1007/s11095-018-2351-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
|
5
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
6
|
Abstract
Mammals have the oldest sex chromosome system known: the mammalian X and Y chromosomes evolved from ordinary autosomes beginning at least 180 million years ago. Despite their shared ancestry, mammalian Y chromosomes display enormous variation among species in size, gene content, and structural complexity. Several unique features of the Y chromosome--its lack of a homologous partner for crossing over, its functional specialization for spermatogenesis, and its high degree of sequence amplification--contribute to this extreme variation. However, amid this evolutionary turmoil many commonalities have been revealed that have contributed to our understanding of the selective pressures driving the evolution and biology of the Y chromosome. Two biological themes have defined Y-chromosome research over the past six decades: testis determination and spermatogenesis. A third biological theme begins to emerge from recent insights into the Y chromosome's roles beyond the reproductive tract--a theme that promises to broaden the reach of Y-chromosome research by shedding light on fundamental sex differences in human health and disease.
Collapse
Affiliation(s)
- Jennifer F Hughes
- Whitehead Institute, Howard Hughes Medical Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142;
| | - David C Page
- Whitehead Institute, Howard Hughes Medical Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142;
| |
Collapse
|
7
|
An Y, Toyoda A, Zhao C, Fujiyama A, Agata K. A colony multiplex quantitative PCR-Based 3S3DBC method and variations of it for screening DNA libraries. PLoS One 2015; 10:e0116997. [PMID: 25646755 PMCID: PMC4315571 DOI: 10.1371/journal.pone.0116997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
A DNA library is a collection of DNA fragments cloned into vectors and stored individually in host cells, and is a valuable resource for molecular cloning, gene physical mapping, and genome sequencing projects. To take the best advantage of a DNA library, a good screening method is needed. After describing pooling strategies and issues that should be considered in DNA library screening, here we report an efficient colony multiplex quantitative PCR-based 3-step, 3-dimension, and binary-code (3S3DBC) method we used to screen genes from a planarian genomic DNA fosmid library. This method requires only 3 rounds of PCR reactions and only around 6 hours to distinguish one or more desired clones from a large DNA library. According to the particular situations in different research labs, this method can be further modified and simplified to suit their requirements.
Collapse
Affiliation(s)
- Yang An
- Department of Biophysics, Kyoto University, Kyoto, Kyoto, Japan
- * E-mail: (KA); (YA)
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Chen Zhao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Kyoto University, Kyoto, Kyoto, Japan
- * E-mail: (KA); (YA)
| |
Collapse
|
8
|
Revah F. Genethon: patient-empowered research. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.971753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Foote S, Marshall V, Munroe DJ, Segre JA. Constructing contigs from large-insert clones. CURRENT PROTOCOLS IN HUMAN GENETICS 2008; Chapter 5:Unit 5.10. [PMID: 18428284 DOI: 10.1002/0471142905.hg0510s15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This unit describes three approaches that are widely used to define alignments between overlapping clones bearing large-insert genomic DNA and to generate extensive contiguous overlapping sets of clones (contigs). The three approaches are sequence-tagged site (STS) content mapping, repetitive-element hybridization fingerprinting, and Alu-PCR fingerprinting. Methods for isolating the necessary BAC DNA suitable for automated fluorescent sequencing and generating new STS markers are discussed in support protocols. An alternate protocol presents repetitive-element hybridization fingerprinting to detect overlaps and build contigs with full-genomic YAC libraries.
Collapse
Affiliation(s)
- S Foote
- Walter and Eliza Hall Institute, Victoria, Australia
| | | | | | | |
Collapse
|
10
|
Gemmill RM, Bolin R, Albertsen H, Tomkins JP, Wing RA. Pulsed-field gel electrophoresis for long-range restriction mapping. CURRENT PROTOCOLS IN HUMAN GENETICS 2008; Chapter 5:Unit5.1. [PMID: 18428330 DOI: 10.1002/0471142905.hg0501s31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This unit describes procedures for generating long-range restriction maps of genomic DNA and for analysis of large insert clones. The basic protocol details restriction digestion of agarose-embedded DNA, PFGE separation, Southern transfer, and hybridization. Support protocols describe the preparation of high-molecular-weight genomic DNA samples in agarose blocks and in agarose microbeads, respectively. Additional support protocols describe the preparation of DNA size standards from l phage and two yeast species, Saccharomyces cerevisiae and Schizosaccharomyces pombe. An alternative method of preparing S. cerevisiae size standards using lithium dodecyl sulfate (LiDS) solubilization is provided. The final protocol details the preparation of BAC DNA suitable for digestion, mapping, and sequencing.
Collapse
Affiliation(s)
- Robert M Gemmill
- Eleanor Roosevelt Institute for Cancer Research, Denver, Colorado, USA
| | | | | | | | | |
Collapse
|
11
|
Gemmill RM, Bolin R, Strauss WM, Pavan W. Purification and characterization of YACs containing large inserts. CURRENT PROTOCOLS IN HUMAN GENETICS 2008; Chapter 5:Unit 5.7. [PMID: 18428294 DOI: 10.1002/0471142905.hg0507s00] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This unit provides protocols for characterizing DNA segments cloned in YACs and for purifying YACs from yeast chromosomes. The first basic protocol describes Southern blotting and partial-digest restriction analysis of YACs. These methods are useful for determining the size and complexity of the cloned insert DNA, the presence and location of particular restriction sites or sequences, and even the species of origin of the insert DNA (indicated by hybridization to species-specific repetitive elements such as Alu repeats). The second basic protocol describes gel purification of YACs for use in procedures requiring pure YAC DNA, such as mammalian-cell transformation and subcloning into smaller insert vectors. The third basic protocol details characterizing and analyzing YACs: in vivo fragmentation via homologous recombination with specialized fragmentation vectors containing specific probe sequences or repetitive elements, followed by Southern blotting with YAC- and human-derived probes.
Collapse
Affiliation(s)
- R M Gemmill
- Eleanor Roosevelt Institute for Cancer Research, Denver, Colorado, USA
| | | | | | | |
Collapse
|
12
|
Bowl MR, Nesbit MA, Harding B, Levy E, Jefferson A, Volpi E, Rizzoti K, Lovell-Badge R, Schlessinger D, Whyte MP, Thakker RV. An interstitial deletion-insertion involving chromosomes 2p25.3 and Xq27.1, near SOX3, causes X-linked recessive hypoparathyroidism. J Clin Invest 2005; 115:2822-31. [PMID: 16167084 PMCID: PMC1201662 DOI: 10.1172/jci24156] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Accepted: 07/12/2005] [Indexed: 02/04/2023] Open
Abstract
X-linked recessive hypoparathyroidism, due to parathyroid agenesis, has been mapped to a 906-kb region on Xq27 that contains 3 genes (ATP11C, U7snRNA, and SOX3), and analyses have not revealed mutations. We therefore characterized this region by combined analysis of single nucleotide polymorphisms and sequence-tagged sites. This identified a 23- to 25-kb deletion, which did not contain genes. However, DNA fiber-FISH and pulsed-field gel electrophoresis revealed an approximately 340-kb insertion that replaced the deleted fragment. Use of flow-sorted X chromosome-specific libraries and DNA sequence analyses revealed that the telomeric and centromeric breakpoints on X were, respectively, approximately 67 kb downstream of SOX3 and within a repetitive sequence. Use of a monochromosomal somatic cell hybrid panel and metaphase-FISH mapping demonstrated that the insertion originated from 2p25 and contained a segment of the SNTG2 gene that lacked an open reading frame. However, the deletion-insertion [del(X)(q27.1) inv ins (X;2)(q27.1;p25.3)], which represents a novel abnormality causing hypoparathyroidism, could result in a position effect on SOX3 expression. Indeed, SOX3 expression was demonstrated, by in situ hybridization, in the developing parathyroid tissue of mouse embryos between 10.5 and 15.5 days post coitum. Thus, our results indicate a likely new role for SOX3 in the embryonic development of the parathyroid glands.
Collapse
MESH Headings
- Animals
- Base Sequence/genetics
- Chromosome Inversion/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, X/genetics
- DNA Mutational Analysis/methods
- DNA-Binding Proteins/genetics
- Female
- Gene Expression Regulation, Developmental/genetics
- Genes, Recessive/genetics
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/pathology
- High Mobility Group Proteins/genetics
- Humans
- Hypoparathyroidism/genetics
- Hypoparathyroidism/pathology
- In Situ Hybridization, Fluorescence/methods
- Male
- Mice
- Mutagenesis, Insertional/genetics
- Open Reading Frames/genetics
- Parathyroid Glands/embryology
- Parathyroid Glands/pathology
- Pedigree
- SOXB1 Transcription Factors
- Sequence Deletion/genetics
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Michael R Bowl
- Academic Endocrine Unit, Nuffield Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chabert C, Jamon M, Cherfouh A, Duquenne V, Smith DJ, Rubin E, Roubertoux PL. Functional analysis of genes implicated in Down syndrome: 1. Cognitive abilities in mice transpolygenic for Down Syndrome Chromosomal Region-1 (DCR-1). Behav Genet 2005; 34:559-69. [PMID: 15520513 DOI: 10.1007/s10519-004-5584-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Down syndrome occurs every 1/1000 births and is the most frequent genetic cause of mental retardation. The genetic substrate of Down syndrome, an extra chromosome 21, was discovered by Lejeune, half-a-century ago, and the chromosome has been fully sequenced, although the gene(s) implicated in the mental retardation observed with the syndrome are still unknown. Observations of patients with partial trisomy of the 21q22.2 fragment suggest that most of the signs of the syndrome, including mental retardation, could be influenced by the region referred to as the Down Minimal Chromosomal Region-1 (DCR-1) for that reason. Using the extensive syntenies between human chromosome 21 and murine chromosome 16, Smith et al. (1995, 1997) developed transpolygenic mice with human chromosome 21 fragments covering the DCR-1. Here, we explored cognitive performances in mice over-expressing the genes carried by these fragments with the Morris water-maze and fear-conditioning procedures. The 152F7 transpolygenic mice had lower performance levels, compared to non-transgenic and other transgenic mice on most measurements in the water-maze. In fear-conditioning, all transgenic mice recorded lower performance levels compared to controls in the altered context stage. The 230E8, 141G6 and 285E6 mice failed to learn or react when the sound used as the conditional stimulus was added. These results showed that the 152F7 region played a crucial role in cognitive impairment, supporting the hypothesis of DYRK-1A gene involvement. However, the data presented here also suggest that other chromosomal regions within the DCR-1 may be involved in specific cognitive functions.
Collapse
|
14
|
Affiliation(s)
- David Patterson
- Eleanor Roosevelt Institute, Department of Biological Sciences, University of Denver, Colorado 80206, USA.
| | | |
Collapse
|
15
|
El Mouatassim S, Becker M, Kuzio S, Ronsin C, Gil S, Nouchy M, Druard L, Forestier F. Prenatal Diagnosis of Common Aneuploidies Using Multiplex Quantitative Fluorescent Polymerase Chain Reaction. Fetal Diagn Ther 2004; 19:496-503. [PMID: 15539874 DOI: 10.1159/000080162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 10/02/2003] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Prenatal diagnosis of foetal trisomies is usually performed by cytogenetic analysis. This requires lengthy laboratory procedures and it is expensive. Here, we report a retrospective study of quantitative fluorescent polymerase chain reaction (QF-PCR) for prenatal detection of trisomies 13, 18 and 21. METHODS QF-PCR was performed on a total of 447 amniotic fluids blindly analysed without any knowledge of the cytogenetic results and 43 samples with known karyotype. All samples were tested with at least 4 small tandem repeat markers specific for each chromosome 13, 18 or 21. RESULTS QF-PCR results on amniotic fluid were consistent with conventional cytogenetic data. QF-PCR detected 5 cases of trisomy 21, 2 cases of trisomy 18, 1 case of trisomy 13 and 1 case with Klinefelter's syndrome. CONCLUSIONS QF-PCR has proved to be very useful in clinical settings, since it allows the detection of major numerical disorders in a few hours after sampling and thus reduces parental anxiety.
Collapse
Affiliation(s)
- S El Mouatassim
- Laboratoire Marcel Mérieux, Service de Génétique Moléculaire, Lyon, France.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tonkin ET, Smith M, Eichhorn P, Jones S, Imamwerdi B, Lindsay S, Jackson M, Wang TJ, Ireland M, Burn J, Krantz ID, Carr P, Strachan T. A giant novel gene undergoing extensive alternative splicing is severed by a Cornelia de Lange-associated translocation breakpoint at 3q26.3. Hum Genet 2004; 115:139-48. [PMID: 15168106 PMCID: PMC4894837 DOI: 10.1007/s00439-004-1134-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 04/19/2004] [Indexed: 10/26/2022]
Abstract
Cornelia de Lange syndrome (CdLS) is a rare developmental malformation syndrome characterised by mental handicap, growth retardation, distinctive facial features and limb reduction defects. The vast majority of CdLS cases are sporadic. We carried out a high density bacterial artificial chromosome (BAC) microarray comparative genome hybridisation screen but no evidence was found for a consistent pattern of microdeletion/microduplication. As an alternative, we focused on identifying chromosomal regions spanning associated translocation breakpoints. We prioritised the distal 3q region because of the occurrence, in a classical CdLS patient, of a de novo balanced translocation with a breakpoint at 3q26.3 and of reports of phenotypic overlap between cases of mild CdLS and individuals trisomic for the 3q26-q27 region. We show that the 3q26.3 breakpoint severs a previously uncharacterised giant gene, NAALADL2, containing at least 32 exons spanning 1.37 Mb. Northern blot analysis identified up to six different transcripts in the 1-10 kb range with strongest expression in kidney and placenta; embryonic expression was largely confined to duodenal and stomach endoderm, mesonephros, metanephros and pancreas. Transcript analysis identified extensive alternative splicing leading to multiple 5' and 3' untranslated regions and variable coding sequences. Multiple protein isoforms were defined by different N-terminal regions (with at least four alternative initiating methionine codons), and by differential protein truncation/use of alternative C-terminal sequences attributable to alternative splicing/polyadenylation. Outside the N-terminal regions, the predicted proteins showed significant homology to N-acetylated alpha-linked acidic dipeptidase and transferrin receptors. Mutation screening of NAALADL2 in a panel of CdLS patient DNA samples failed to identify patient-specific mutations. We discuss the possibility that the 3q26.3 translocation could nevertheless contribute to pathogenesis.
Collapse
Affiliation(s)
- Emma T. Tonkin
- Institute of Human Genetics, International Centre for Life, University of Newcastle, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Melanie Smith
- Institute of Human Genetics, International Centre for Life, University of Newcastle, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Piet Eichhorn
- Institute of Human Genetics, International Centre for Life, University of Newcastle, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Sandie Jones
- Institute of Human Genetics, International Centre for Life, University of Newcastle, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Burhan Imamwerdi
- Institute of Human Genetics, International Centre for Life, University of Newcastle, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Susan Lindsay
- Institute of Human Genetics, International Centre for Life, University of Newcastle, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Mike Jackson
- Institute of Human Genetics, International Centre for Life, University of Newcastle, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Tzu-Jou Wang
- Institute of Human Genetics, International Centre for Life, University of Newcastle, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Maggie Ireland
- Institute of Human Genetics, International Centre for Life, University of Newcastle, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - John Burn
- Institute of Human Genetics, International Centre for Life, University of Newcastle, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ian D. Krantz
- Division of Human Genetics and Molecular Biology, The Children’s Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Philippa Carr
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Tom Strachan
- Institute of Human Genetics, International Centre for Life, University of Newcastle, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK, Tel.: +44-191-2418616 Fax: +44-191-2418666
| |
Collapse
|
17
|
Sinclair AM, Bench AJ, Bloor AJC, Li J, Göttgens B, Stanley ML, Miller J, Piltz S, Hunter S, Nacheva EP, Sanchez MJ, Green AR. Rescue of the lethal scl(-/-) phenotype by the human SCL locus. Blood 2002; 99:3931-8. [PMID: 12010791 DOI: 10.1182/blood.v99.11.3931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The stem cell leukemia (SCL) gene encodes a basic helix-loop-helix transcription factor with a critical role in the development of both blood and endothelium. Loss-of-function studies have shown that SCL is essential for the formation of hematopoietic stem cells, for subsequent erythroid development and for yolk sac angiogenesis. SCL exhibits a highly conserved pattern of expression from mammals to teleost fish. Several murine SCL enhancers have been identified, each of which directs reporter gene expression in vivo to a subdomain of the normal SCL expression pattern. However, regulatory elements necessary for SCL expression in erythroid cells remain to be identified and the size of the chromosomal domain needed to support appropriate SCL transcription is unknown. Here we demonstrate that a 130-kilobase (kb) yeast artificial chromosome (YAC) containing the human SCL locus completely rescued the embryonic lethal phenotype of scl(-/-) mice. Rescued YAC(+) scl(-/-) mice were born in appropriate Mendelian ratios, were healthy and fertile, and exhibited no detectable abnormality of yolk sac, fetal liver, or adult hematopoiesis. The human SCL protein can therefore substitute for its murine homologue. In addition, our results demonstrate that the human SCL YAC contains the chromosomal domain necessary to direct expression to the erythroid lineage and to all other tissues in which SCL performs a nonredundant essential function.
Collapse
Affiliation(s)
- Angus M Sinclair
- University of Cambridge, Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 2XY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mann K, Fox SP, Abbs SJ, Yau SC, Scriven PN, Docherty Z, Ogilvie CM. Development and implementation of a new rapid aneuploidy diagnostic service within the UK National Health Service and implications for the future of prenatal diagnosis. Lancet 2001; 358:1057-61. [PMID: 11589937 DOI: 10.1016/s0140-6736(01)06183-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Prenatal diagnosis for chromosome abnormality is routinely undertaken by full karyotype analysis of chromosomes from cultured cells; pregnant women must wait on average 13-14 days for their results. Autosomal trisomies, which account for around 80% of significant abnormalities, can be detected by quantitative fluorescence (QF) PCR. We report on the development and implementation of this technique as the first such routine service within a diagnostic department of the UK National Health Service (NHS). METHODS We designed a "one-tube test" comprising four primer pairs for polymorphic tetranucleotide repeat sequences on chromosome 21, four primer pairs for sequences on chromosome 18, three primer pairs for sequences on chromosome 13, and one primer pair to identify the sex chromosomes. All prenatal samples received by our NHS diagnostic department between April, 2000, and April, 2001, were tested. After DNA extraction, PCR amplification was done and the products separated on a capillary-based genetic analyser; the results were interpreted with dedicated software. Follow-up karyotype analysis was done on all samples. FINDINGS 1148 amniotic fluid samples, 188 chorionic villus samples, and 37 fetal tissue samples were tested; the amplification failure rate was zero with our current protocol. QF-PCR results were obtained and reported on 1314 (98%) of the prenatal samples; the remaining 22 (2%) were uninformative because of maternal-cell contamination. One case of mosaicism in a chorionic villus sample, and two cases indicating somatic expansion of a tetranucleotide repeat were found. No false positive or false negative results were obtained. The mean reporting time for the last 4 months of data collection was 1.25 working days. INTERPRETATION QF-PCR aneuploidy testing is an efficient and accurate technique for the detection of autosomal trisomies in prenatal samples. Implementation of this service has led to the rapid diagnosis of abnormalities and early reassurance for women with normal results.
Collapse
Affiliation(s)
- K Mann
- Genetics Centre, Guy's and St Thomas' Hospital Trust, London, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Last year we celebrated the sequencing of the entire long arm of human chromosome 21. This achievement now provides unprecedented opportunities to understand the molecular pathophysiology of trisomy 21, elucidate the mechanisms of all monogenic disorders of chromosome 21, and discover genes and functional sequence variations that predispose to common complex disorders. All these steps require the functional analysis of gene products and the determination of the sequence variation of this chromosome.
Collapse
Affiliation(s)
- S E Antonarakis
- Division of Medical Genetics, University of Geneva Medical School and University Hospitals, Geneva, Switzerland.
| |
Collapse
|
20
|
Affiliation(s)
- H U Weier
- Department of Subcellular Structures, E. O. Lawrence Berkeley National Laboratory, University of California, Berkeley 94720, USA
| |
Collapse
|
21
|
Biochemical Genetics. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Jones TA, Flomen RH, Senger G, Nizetić D, Sheer D. The homeobox gene MEIS1 is amplified in IMR-32 and highly expressed in other neuroblastoma cell lines. Eur J Cancer 2000; 36:2368-74. [PMID: 11094311 DOI: 10.1016/s0959-8049(00)00332-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neuroblastoma is a childhood tumour of the sympathetic nervous system that demonstrates striking clinical heterogeneity. In order to determine which genes are abnormally expressed in neuroblastoma, we screened regions of amplification from the short arm of chromosome 2 in the neuroblastoma cell line IMR-32 and found that the homeobox gene, myeloid ecotropic integration site 1 (MEIS1), is highly amplified. MEIS1 normally maps to chromosome band 2p14. High expression of MEIS1 without amplification was also found in other neuroblastoma cell lines, with and without MYCN amplification, and in medulloblastoma and crythroleukaemia cell lines. MEIS1 is highly expressed in cerebellum and ubiquitously expressed in normal immunohaematopoietic tissues and is thought to be important in cell proliferation and differentiation. While several lines of evidence point towards a role for homeobox genes in the development of other malignancies, this is the first report showing the amplification of a homeobox gene in neuroblastoma.
Collapse
Affiliation(s)
- T A Jones
- Human Cytogenetics Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London, UK
| | | | | | | | | |
Collapse
|
23
|
Debeer P, Schoenmakers EF, Thoelen R, Fryns JP, Van de Ven WJ. Physical mapping of the t(12;22) translocation breakpoints in a family with a complex type of 3/3'/4 synpolydactyly. CYTOGENETICS AND CELL GENETICS 2000; 81:229-34. [PMID: 9730609 DOI: 10.1159/000015036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported clinical and radiological findings in a Belgian family with a complex type of synpolydactyly associated with metacarpal and metatarsal synostoses, cosegregating with a balanced t(12;22). Recently, expansions of a polyalanine stretch within the first exon of the HOXD13 gene, which resides on chromosome 2q31, have been shown to cause synpolydactyly (SPD). Using exon amplification followed by direct sequencing, we were able to exclude the direct involvement of the HOXD13 gene in this family. As a first step toward the positional cloning of a candidate disease gene on chromosome 12 and/or 22 responsible for the type of complex synpolydactyly observed in this family, we report here the construction of a somatic cell hybrid retaining only the der(22) of the t(12;22)(p11.3;q13.3). STS content mapping and FISH experiments allowed us to position the chromosomal breakpoints between markers D12S1596 and D12S1034 on chromosome 12 and markers N73F4 and D22S158 on chromosome 22.
Collapse
Affiliation(s)
- P Debeer
- Center for Human Genetics and Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
| | | | | | | | | |
Collapse
|
24
|
van Soest S, van Rossem MJ, Heckenlively JR, van den Born LI, de Meulemeester TM, Vliex S, de Jong PT, Bleeker-Wagemakers EM, Westerveld A, Bergen AA. Integrated genetic and physical map of the 1q31-->q32.1 region, encompassing the RP12 locus, the F13B and HF1 genes, and the EEF1AL11 and RPL30 pseudogenes. CYTOGENETICS AND CELL GENETICS 2000; 84:22-7. [PMID: 10343093 DOI: 10.1159/000015204] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The gene for autosomal recessive retinitis pigmentosa (RP12) with preserved para-arteriolar retinal pigment epithelium was previously mapped close to the F13B gene in region 1q31-->q32.1. A 4-Mb yeast artificial chromosome contig spanning this interval was constructed to facilitate cloning of the RP12 gene. The contig comprises 25 sequence-tagged sites, polymorphic markers, and single-copy probes, including five newly obtained probes. The contig orders the F13B and HF1 genes, as well as five expressed sequence tags, with respect to the integrated genetic map of this region. Homozygosity mapping resulted in refinement of the candidate gene locus for RP12 to a 1. 3-cM region. Currently, approximately 1 Mb of the contig is represented in P1-derived artificial chromosome (PAC) clones. Direct screening of a cDNA library derived from neural retina with PACs resulted in identification of the human elongation factor 1alpha pseudogene (EEF1AL11) and a human ribosomal protein L30 pseudogene (RPL30). A physical and genetic map covering the entire RP12 candidate gene region was constructed.
Collapse
Affiliation(s)
- S van Soest
- Department of Ophthalmogenetics, The Netherlands Ophthalmic Research Institute, Amsterdam
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, Toyoda A, Ishii K, Totoki Y, Choi DK, Groner Y, Soeda E, Ohki M, Takagi T, Sakaki Y, Taudien S, Blechschmidt K, Polley A, Menzel U, Delabar J, Kumpf K, Lehmann R, Patterson D, Reichwald K, Rump A, Schillhabel M, Schudy A, Zimmermann W, Rosenthal A, Kudoh J, Schibuya K, Kawasaki K, Asakawa S, Shintani A, Sasaki T, Nagamine K, Mitsuyama S, Antonarakis SE, Minoshima S, Shimizu N, Nordsiek G, Hornischer K, Brant P, Scharfe M, Schon O, Desario A, Reichelt J, Kauer G, Blocker H, Ramser J, Beck A, Klages S, Hennig S, Riesselmann L, Dagand E, Haaf T, Wehrmeyer S, Borzym K, Gardiner K, Nizetic D, Francis F, Lehrach H, Reinhardt R, Yaspo ML. The DNA sequence of human chromosome 21. Nature 2000; 405:311-9. [PMID: 10830953 DOI: 10.1038/35012518] [Citation(s) in RCA: 700] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosome 21 is the smallest human autosome. An extra copy of chromosome 21 causes Down syndrome, the most frequent genetic cause of significant mental retardation, which affects up to 1 in 700 live births. Several anonymous loci for monogenic disorders and predispositions for common complex disorders have also been mapped to this chromosome, and loss of heterozygosity has been observed in regions associated with solid tumours. Here we report the sequence and gene catalogue of the long arm of chromosome 21. We have sequenced 33,546,361 base pairs (bp) of DNA with very high accuracy, the largest contig being 25,491,867 bp. Only three small clone gaps and seven sequencing gaps remain, comprising about 100 kilobases. Thus, we achieved 99.7% coverage of 21q. We also sequenced 281,116 bp from the short arm. The structural features identified include duplications that are probably involved in chromosomal abnormalities and repeat structures in the telomeric and pericentromeric regions. Analysis of the chromosome revealed 127 known genes, 98 predicted genes and 59 pseudogenes.
Collapse
Affiliation(s)
- M Hattori
- RIKEN, Genomic Sciences Center, Sagamihara, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fuentes JJ, Dierssen M, Pucharcós C, Fillat C, Casas C, Estivill X, Pritchard M. Application of Alu-splice PCR on chromosome 21: DSCR1 and Intersectin. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2000; 57:337-52. [PMID: 10666688 DOI: 10.1007/978-3-7091-6380-1_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Down syndrome (DS) is a major cause of mental retardation and congenital heart defects, with an overall incidence of one in 700 live births. DS is caused by increases in the amounts of a number of normal gene products, the exact number and identity of which are presently unknown. Elucidating the molecular basis of DS relies on the identification of the gene products whose augmentation by 50% or more causes symptoms of the disease. With the aim of contributing to the transcriptional map of human chromosome 21 and to identify new genes with potential involvement in DS, we developed a technique to isolate expressed sequences called Alu-splice PCR, which is very simple to perform and is independent of gene expression patterns. Putative exons are PCR amplified in genomic DNA by virtue of their proximity to Alu repeats using primers designed from splice-site consensus sequences in combination with specific Alu repeat primers. The Alu repeats, which are repetitive DNA elements found exclusively and at high frequency in the genomes of primates, impart the human specificity to the method. The splice-site consensus sequences were used to direct primers to exon boundaries. Using the Alu-splice technique, we have identified at least three new genes. We trapped an exon of DSCR1 (Down Syndrome Candidate Region 1) and two different exons of a gene called human Intersectin (ITSN). Presently, we are working with another novel trapped exon to identify the corresponding gene. The major advantage of Alu-splice PCR is that the technique can be readily established in any laboratory which has the basic facilities for molecular biology because no specialised materials or expertise is required.
Collapse
Affiliation(s)
- J J Fuentes
- Medical and Molecular Genetics Center-IRO, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Falzetti D, Vermeesch JR, Matteucci C, Ciolli S, Martelli MF, Marynen P, Mecucci C. Microdissection and FISH investigations in acute myeloid leukemia: a step forward to full identification of complex karyotypic changes. CANCER GENETICS AND CYTOGENETICS 2000; 118:28-34. [PMID: 10731587 DOI: 10.1016/s0165-4608(99)00189-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complex chromosomal rearrangements in malignant hemopathies frequently remain unclarified because of paucity of material for further fluorescence in situ hybridization analyses and/or lack of suitable probes. Chromosome microdissection (MD) can be an adequate approach to elucidate chromosome aberrations unrecognizable by conventional karyotyping. We applied MD in two patients with acute myeloid leukemia (AML) and unidentified chromosome changes at karyotype. Microdissection of a ring chromosome in an AML-M5 case revealed 21q polysomy. In an AML-M4 case, MD of an add(15p) disclosed a t(8;15) with over-representation of both 8q22 and 8q24 bands. YAC probes were helpful in showing duplication of the ETO gene at 8q22, and amplification of C-MYC, at 8q24.
Collapse
Affiliation(s)
- D Falzetti
- Department of Hematology, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Prejean C, Colamonici OR. Role of the cytoplasmic domains of the type I interferon receptor subunits in signaling. Semin Cancer Biol 2000; 10:83-92. [PMID: 10936059 DOI: 10.1006/scbi.2000.0311] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type I interferons are imperative in maintaining a defense against viral infection. These cytokines also play an important role in the control of cell proliferation. These effects are triggered by ligand binding to a specific cell surface receptor. In the present article, we attempt to analyze the advances made in the last four years on type I interferon signaling. This review will focus on the contribution of the cytoplasmic domain of the alpha and betaL chains of the receptor to the activation of the Jak-Stat pathway. We also analyze the possible role of other pathways in interferon signaling.
Collapse
Affiliation(s)
- C Prejean
- Department of Pharmacology, University of Illinois, Chicago 60612, USA
| | | |
Collapse
|
29
|
Graw SL, Sample T, Bleskan J, Sujansky E, Patterson D. Cloning, sequencing, and analysis of inv8 chromosome breakpoints associated with recombinant 8 syndrome. Am J Hum Genet 2000; 66:1138-44. [PMID: 10712224 PMCID: PMC1288148 DOI: 10.1086/302821] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/1999] [Accepted: 12/10/1999] [Indexed: 12/31/2022] Open
Abstract
Rec8 syndrome (also known as "recombinant 8 syndrome" and "San Luis Valley syndrome") is a chromosomal disorder found in individuals of Hispanic descent with ancestry from the San Luis Valley of southern Colorado and northern New Mexico. Affected individuals typically have mental retardation, congenital heart defects, seizures, a characteristic facial appearance, and other manifestations. The recombinant chromosome is rec(8)dup(8q)inv(8)(p23.1q22.1), and is derived from a parental pericentric inversion, inv(8)(p23.1q22.1). Here we report on the cloning, sequencing, and characterization of the 8p23.1 and 8q22 breakpoints from the inversion 8 chromosome associated with Rec8 syndrome. Analysis of the breakpoint regions indicates that they are highly repetitive. Of 6 kb surrounding the 8p23.1 breakpoint, 75% consists of repetitive gene family members-including Alu, LINE, and LTR elements-and the inversion took place in a small single-copy region flanked by repetitive elements. Analysis of 3.7 kb surrounding the 8q22 breakpoint region reveals that it is 99% repetitive and contains multiple LTR elements, and that the 8q inversion site is within one of the LTR elements.
Collapse
Affiliation(s)
- S L Graw
- Eleanor Roosevelt Institute, Denver, CO, 80206, USA. . edu
| | | | | | | | | |
Collapse
|
30
|
Abstract
Interferon (IFN) was approved by the U.S. Food and Drug Administration on June 5, 1986. As the first biotherapeutic approved, IFN-alpha paved the way for development of many other cytokines and growth factors. Nevertheless, we have just touched the surface of understanding the multitude of human IFNs. This paper reviews the history of the purification of human leukocyte IFN and key aspects of our current state of knowledge of human interferon alpha genes, proteins, and receptors.
Collapse
Affiliation(s)
- S Pestka
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA.
| |
Collapse
|
31
|
Valero R, Marfany G, González-Angulo O, González-González G, Puelles L, Gonzàlez-Duarte R. USP25, a novel gene encoding a deubiquitinating enzyme, is located in the gene-poor region 21q11.2. Genomics 1999; 62:395-405. [PMID: 10644437 DOI: 10.1006/geno.1999.6025] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified a new gene, USP25, spanning over 150 kb at 21q11. 2, one of the lowest gene-density regions of the human genome. USP25 is made up of 25 exons and encodes a 1087-aa protein. Database comparisons reveal high homology with members of the ubiquitin protease family (UBP). Basal expression was observed in all human tissues tested, and two main transcripts were identified. The homologous murine gene has also been characterized. In situ hybridization in mouse embryonic brains showed a clear correlation of expression with proliferative neuroepithelial cells and postmitotic neurons. Moreover, high expression was observed in adult mouse testis. UBPs belong to a complex family of deubiquitinating enzymes that specifically cleave ubiquitin conjugates on a great variety of substrates. These enzymes have an essential role in protein degradation via the 26S proteasome and thus regulate many cellular pathways. An increase in USP25 gene dosage in Down syndrome patients could seriously disturb the balance between ubiquitinated and deubiquitinated substrates.
Collapse
Affiliation(s)
- R Valero
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, Barcelona, 08028, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Yang Y, Kiss H, Kost-Alimova M, Kedra D, Fransson I, Seroussi E, Li J, Szeles A, Kholodnyuk I, Imreh MP, Fodor K, Hadlaczky G, Klein G, Dumanski JP, Imreh S. A 1-Mb PAC contig spanning the common eliminated region 1 (CER1) in microcell hybrid-derived SCID tumors. Genomics 1999; 62:147-55. [PMID: 10610706 DOI: 10.1006/geno.1999.5952] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed an elimination test to identify chromosomal regions that contain tumor inhibitory genes. Monochromosomal human/mouse microcell hybrids are generated and passaged through SCID mice. Derived tumors are then analyzed for deletions on the transgenomic chromosome. Using this strategy, we have previously identified a 1.6-cM common eliminated region 1 (CER1) on human 3p21. 3. We now report that CER1 contains 14 markers that are deleted in 19 SCID-derived tumors. A 1-Mb PAC contig that spans CER1 was assembled. Five chemokine receptor genes (CCR1, CCR3, CCR2, CCR5, and CCR6) were localized in CER1 in a 225-kb cluster. The lactotransferrin gene (LTF, or lactoferrin, LF), which reportedly has tumor inhibitory activity, also maps to CER1. Our results create a basis for characterization and further functional testing of genes within CER1.
Collapse
Affiliation(s)
- Y Yang
- Microbiology and Tumor Biology Center (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang SY, Cruts M, Del-Favero J, Zhang Y, Tissir F, Potier MC, Patterson D, Nizetic D, Bosch A, Chen H, Bennett L, Estivill X, Kessling A, Antonarakis SE, van Broeckhoven C. A high-resolution physical map of human chromosome 21p using yeast artificial chromosomes. Genome Res 1999; 9:1059-73. [PMID: 10568746 PMCID: PMC310823 DOI: 10.1101/gr.9.11.1059] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The short arm of human chromosome 21 (21p) contains many different types of repetitive sequences and is highly homologous to the short arms of other acrocentric chromosomes. Owing to its repetitive nature and the lack of chromosome 21p-specific molecular markers, most physical maps of chromosome 21 exclude this region. We constructed a physical map of chromosome 21p using sequence tagged site (STS) content mapping of yeast artificial chromosomes (YACs). To this end, 39 STSs located on the short arm or near the centromere of chromosome 21 were constructed, including four polymorphic simple tandem repeats (STRs) and two expressed sequence tags (ESTs). Thirty YACs were selected from the St. Louis YAC library, the chromosome 21-enriched ICRF YAC library, and the CEPH YAC and megaYAC libraries. These were assembled in a YAC contig map ranging from the centromere to the rDNA gene cluster at 21p12. The total size of the region covered by YACs is estimated between 2.9 and 5 Mb. The integrity of the YAC contig was confirmed by restriction enzyme fingerprinting and fluorescence in situ hybridization (FISH). One gap with an estimated size of 400 kb remained near the telomeric end of the contig. This YAC contig map of the short arm of human chromosome 21 constitutes a basic framework for further structural and functional studies of chromosome 21p.
Collapse
Affiliation(s)
- S Y Wang
- Flanders Interuniversity Institute for Biotechnology (VIB), Born-Bunge Foundation (BBS), Department of Biochemistry, University of Antwerp (UIA), B-2610 Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ruault M, Trichet V, Gimenez S, Boyle S, Gardiner K, Rolland M, Roizès G, De Sario A. Juxta-centromeric region of human chromosome 21 is enriched for pseudogenes and gene fragments. Gene 1999; 239:55-64. [PMID: 10571034 DOI: 10.1016/s0378-1119(99)00381-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A physical map including four pseudogenes and 10 gene fragments and spanning 500 kb in the juxta-centromeric region of the long arm of human chromosome 21 is presented. cDNA fragments isolated from a selected cDNA library were characterized and mapped to the 831B6 YAC and to two BAC contigs that cover 250 kb of the region. An 85 kb genomic sequence located in the proximal region of the map was analyzed for putative exons. Four pseudogenes were found, including psiIGSF3, psiEIF3, psiGCT-rel whose functional copies map to chromosome 1p13, chromosome 2 and chromosome 22q11, respectively. The TTLL1 pseudogene corresponds to a new gene whose functional copy maps to chromosome 22q13. Ten gene fragments represent novel sequences that have related sequences on different human chromosomes and show 97-100% nucleotide identity to chromosome 21. These may correspond to pseudogenes on chromosome 21 and to functional genes in other chromosomes. The 85 kb genomic sequence was analyzed also for GC content, CpG islands, and repetitive sequence distribution. A GC-poor L isochore spanning 40 kb from satellite 1 was observed in the most centromeric region, next to a GC-rich H isochore that is a candidate region for the presence of functional genes. The pericentric duplication of a 7.8 kb region that is derived from the 22q13 chromosome band is described. We showed that the juxta-centromeric region of human chromosome 21 is enriched for retrotransposed pseudogenes and gene fragments transferred by interchromosome duplications, but we do not rule out the possibility that the region harbors functional genes also.
Collapse
Affiliation(s)
- M Ruault
- Séquences Répétées et Centromères Humains, CNRS UPR 1142, Institut de Biologie, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lo AW, Liao GC, Rocchi M, Choo KH. Extreme reduction of chromosome-specific alpha-satellite array is unusually common in human chromosome 21. Genome Res 1999; 9:895-908. [PMID: 10523519 DOI: 10.1101/gr.9.10.895] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human centromeres contain large arrays of alpha-satellite DNA that are thought to provide centromere function. The arrays show size and sequence variation, but the extent to which extremely low levels of this DNA can occur on normal centromeres is unclear. Using a set of chromosome-specific alpha-satellite probes for each of the human chromosomes, we performed interphase fluorescence in situ hybridization (FISH) in a population-screening study. Our results demonstrate that extreme reduction of chromosome-specific alpha satellite is unusually common in chromosome 21 (screened with the alphaRI probe), with a prevalence of 3.70%, compared to < or =0.12% for each of chromosomes 13 and 17, and 0% for the other chromosomes. No analphoid centromere was identified in >17,000 morphologically normal chromosomes studied. All of the low-alphoid centromeres are fully functional as indicated by their mitotic stability and binding to centromere proteins CENP-B, CENP-C, and CENP-E. Sensitive metaphase FISH analysis of the low-alphoid chromosome 21 centromeres established the presence of residual alphaRI as well as other non-alphaRI alpha-satellite DNA suggesting that centromere function may be provided by (1) the residual alphaRI DNA, (2) other non-alphaRI alpha-satellite sequences, (3) a combination of 1 and 2, or (4) an activated neocentromere DNA. The low-alphoid centromeres, in particular those of chromosome 21, should provide unique opportunities for the study of the evolution and the minimal DNA requirement of the human centromere.
Collapse
Affiliation(s)
- A W Lo
- The Murdoch Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | | | | | | |
Collapse
|
36
|
Srivastava AK, McMillan S, Jermak C, Shomaker M, Copeland-Yates SA, Sossey-Alaoui K, Mumm S, Schlessinger D, Nagaraja R. Integrated STS/YAC physical, genetic, and transcript map of human Xq21.3 to q23/q24 (DXS1203-DXS1059). Genomics 1999; 58:188-201. [PMID: 10366451 DOI: 10.1006/geno.1999.5820] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A map has been assembled that extends from the XY homology region in Xq21.3 to proximal Xq24, approximately 20 Mb, formatted with 200 STSs that include 25 dinucleotide repeat polymorphic markers and more than 80 expressed sequences including 30 genes. New genes HTRP5, CAPN6, STPK, 14-3-3PKR, and CALM1 and previously known genes including BTK, DDP, GLA, PLP, COL4A5, COL4A6, PAK3, and DCX are localized; candidate loci for other disorders for which genes have not yet been identified, including DFN-2, POF, megalocornea, and syndromic and nonsyndromic mental retardation, are also mapped in the region. The telomeric end of the contig overlaps a yeast artificial chromosome (YAC) contig from Xq24-q26 and with other previously published contigs provides complete sequence-tagged site (STS)/YAC-based coverage of the long arm of the X chromosome. The order of published landmark loci in genetic and radiation hybrid maps is in general agreement. Combined with high-density STS landmarks, the multiple YAC clone coverage and integrated genetic, radiation hybrid, and transcript map provide resources to further disease gene searches and sequencing.
Collapse
Affiliation(s)
- A K Srivastava
- J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, 29646, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Petit MM, Schoenmakers EF, Huysmans C, Geurts JM, Mandahl N, Van de Ven WJ. LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes. Genomics 1999; 57:438-41. [PMID: 10329012 DOI: 10.1006/geno.1999.5778] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major cytogenetic subgroup among human lipomas is characterized by translocations involving the HMGIC gene at 12q15. In the context of an ongoing research program aiming at the elucidation of the functional consequences of HMGIC translocations in the etiology of lipomas, we have isolated a novel human gene, LHFP (lipoma HMGIC fusion partner), that acts as a translocation partner of HMGIC in a lipoma with t(12;13). The LHFP gene was mapped to the long arm of chromosome 13, a region recurrently targeted by chromosomal aberrations in lipomas. By Northern blot analysis, a transcript of 2. 4 kb was detected in a variety of human tissues. We assembled a cDNA contig containing the entire coding region of LHFP. Nucleotide sequence analysis of the composite LHFP cDNA revealed an open reading frame encoding a protein of 200 amino acids. The predicted human LHFP protein is almost identical to a translated mouse EST that covers almost the entire LHFP coding region. In addition, BLAST searches revealed that the LHFP protein belongs to a new protein family consisting of at least four or five members. In the lipoma studied, the expressed HMGIC/LHFP fusion transcript encodes the three DNA binding domains of HMGIC followed by 69 amino acids encoded by frame-shifted LHFP sequences. LHFP is the second translocation partner of HMGIC identified in lipomas and represents a candidate target gene for lipomas with 13q aberrations.
Collapse
Affiliation(s)
- M M Petit
- Laboratory for Molecular Oncology, Center for Human Genetics, University of Leuven and Flanders Interuniversity Institute of Biotechnology, Herestraat 49, Leuven, B-3000, Belgium
| | | | | | | | | | | |
Collapse
|
38
|
Perveen R, Hart-Holden N, Dixon MJ, Wiszniewski W, Fryer AE, Brunner HG, Pinkners AJ, van Beersum SE, Black GC. Refined genetic and physical localization of the Wagner disease (WGN1) locus and the genes CRTL1 and CSPG2 to a 2- to 2.5-cM region of chromosome 5q14.3. Genomics 1999; 57:219-26. [PMID: 10198161 DOI: 10.1006/geno.1999.5766] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wagner syndrome (WGN1; MIM 143200), an autosomal dominant vitreoretinopathy characterized by chorioretinal atrophy, cataract, and retinal detachment, is linked to 5q14.3. Other vitreoretinopathies without systemic stigmata, including erosive vitreoretinopathy, are also linked to this region and are likely to be allelic. Within the critical region lie genes encoding two extracellular macromolecules, link protein (CRTL1) and versican (CSPG2), which are important in binding hyaluronan, a significant component of the mammalian vitreous gel, and which therefore represent excellent candidates for Wagner syndrome. Genetic mapping presented here in two further families reduces the critical region to approximately 2 cM. Subsequent refinement of the physical map allows ordering of known polymorphic microsatellites and excludes CRTL1 as a likely candidate for the disorder. CSPG2 is shown to lie within the critical region; however, analysis of the complete coding region of the mature peptide reveals no clear evidence that it is the gene underlying WGN1.
Collapse
Affiliation(s)
- R Perveen
- University Department of Medical Genetics and Regional Genetic Service, St. Mary's Hospital, Hathersage Road, Manchester, M13 OJH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hildmann T, Kong X, O’Brien J, Riesselman L, Christensen HM, Dagand E, Lehrach H, Yaspo ML. A Contiguous 3-Mb Sequence-Ready Map in the S3–MX Region on 21q22.2 Based on High- Throughput Nonisotopic Library Screenings. Genome Res 1999. [DOI: 10.1101/gr.9.4.360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Progress in complete genomic sequencing of human chromosome 21 relies on the construction of high-quality bacterial clone maps spanning large chromosomal regions. To achieve this goal, we have applied a strategy based on nonradioactive hybridizations to contig building. A contiguous sequence-ready map was constructed in the Down syndrome congenital heart disease (DS-CHD) region in 21q22.2, as a framework for large-scale genomic sequencing and positional candidate gene approach. Contig assembly was performed essentially by high throughput nonisotopic screenings of genomic libraries, prior to clone validation by (1) restriction digest fingerprinting, (2) STS analysis, (3) Southern hybridizations, and (4) FISH analysis. The contig contains a total of 50 STSs, of which 13 were newly isolated. A minimum tiling path (MTP) was subsequently defined that consists of 20 PACs, 2 BACs, and 5 cosmids covering 3 Mb between D21S3 and MX1. Gene distribution in the region includes 9 known genes (c21–LRP, WRB, SH3BGR, HMG14, PCP4, DSCAM, MX2, MX1, and TMPRSS2) and 14 new additional gene signatures consisting of cDNA selection products and ESTs. Forthcoming genomic sequence information will unravel the structural organization of potential candidate genes involved in specific features of Down syndrome pathogenesis.
Collapse
|
40
|
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is the only autoimmune disease characterized so far that is caused by a defect in a single gene. We have recently isolated the defective gene in this disease by positional cloning and have identified several different mutations in APECED patients. This novel gene, AIRE, contains two plant homeodomain (PHD)-type zinc finger motifs and a newly described putative DNA-binding domain SAND. We have further shown that the protein encoded by the AIRE gene is localized to the nuclear body-like structures of cell nuclei. Similar discrete speckles within the nucleus have been suggested to be involved in the regulation of transcription, oncogenesis and differentiation of cells. Together with the predicted structural features of the APECED protein the new data obtained both in vitro and ex vivo suggest that this protein participates in the regulation of gene expression in a restricted set of tissues and cells.
Collapse
Affiliation(s)
- J Aaltonen
- National Public Health Institute, Department of Human Molecular Genetics, Helsinki, Finland
| | | |
Collapse
|
41
|
Van Eynde A, Pérez-Callejón E, Schoenmakers E, Jacquemin M, Stalmans W, Bollen M. Organization and alternate splice products of the gene encoding nuclear inhibitor of protein phosphatase-1 (NIPP-1). EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:291-300. [PMID: 10103062 DOI: 10.1046/j.1432-1327.1999.00272.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nuclear inhibitor of protein phosphatase-1 (NIPP-1) is one of two major regulatory subunits of protein phosphatase-1 in mammalian nuclei. We report here the cloning and structural characterization of the human NIPP-1 genes, designated PPP1R8P and PPP1R8 in human gene nomenclature. PPP1R8P (1.2 kb) is a processed pseudogene and was localized by in situ hybridization to chromosome 1p33-32. PPP1R8 is an authentic NIPP-1 gene and was localized to chromosome 1p35. PPP1R8 (25.2 kb) is composed of seven exons and encodes four different transcripts, as determined from cDNA library screening, reverse transcriptase-PCR (RT-PCR) and/or EST (expressed sequence tag) database search analysis. NIPP-1alpha mRNA represents the major transcript in human tissues and various cell lines, and encodes a polypeptide of 351 residues that only differs from the previously cloned calf thymus NIPP-1 by a single residue. The other transcripts, termed NIPP-1beta, gamma and delta, are generated by alternative 5'-splice site usage, by exon skipping and/or by alternative polyadenylation. The NIPP-1beta/delta and NIPP-1gamma mRNAs are expected to encode fragments of NIPP-1alpha that differ from the latter by the absence of the first 142 and 224 residues, respectively. NIPP-1gamma corresponds to 'activator of RNA decay-1' (Ard-1) which, unlike NIPP-1alpha, displays in vitro and endoribonuclease activity and lacks an RVXF consensus motif for interaction with protein phosphatase-1. While the NIPP-1alpha/beta/delta-transcripts were found to be present in various human tissues, the NIPP-1gamma transcript could only be detected in human transformed B-lymphocytes.
Collapse
Affiliation(s)
- A Van Eynde
- Afdeling Biochemie, Campus Gasthuisberg KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
42
|
Wlodarska I, Selleri L, La Starza R, Paternotte C, Evans GA, Boogaerts M, Van den Berghe H, Mecucci C. Molecular cytogenetics localizes two new breakpoints on 11q23.3 and 21q11.2 in myelodysplastic syndrome with t(11;21) translocation. Genes Chromosomes Cancer 1999; 24:199-206. [PMID: 10451699 DOI: 10.1002/(sici)1098-2264(199903)24:3<199::aid-gcc4>3.0.co;2-v] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Translocation t(11;21)(q24;q11.2) is a rare but recurrent chromosomal abnormality associated with myelodysplastic syndrome (MDS) that until now has not been characterized at the molecular level. We report here results of a molecular cytogenetic analysis of this translocation in a patient with refractory anemia. Using FISH with a panel of 11q and 21q cosmid/YAC probes, we localized the chromosome 11 breakpoint at q23.3 in a region flanked by CP-921G9 and CP-939H3 YACs, distal to the HRX/MLL locus frequently involved in acute leukemias. The chromosome 21 breakpoint was mapped in a 800-kb fragment inserted into the CP-145E3 YAC at 21q11.2, proximal to the AML1 gene. It is noteworthy that in all four cases with a t(11;21) reported until now, a second der(11)t(11;21) and loss of normal chromosome 11 could be observed either at diagnosis or during the course of the disease. Since in our case heteromorphism was detected by FISH on the centromeric region of the two der(11), the second der(11) chromosome could be the result of a mitotic recombination that had occurred on the long arm of chromosome 11, rather than of duplication of the original der(11). Constancy of secondary karyotypic changes resulting in an extra copy of the putative chimeric gene at der(11), loss of 11 qter sequences, and partial trisomy 21 suggest that neoplastic progression of MDS cases with a t(11;21) may be driven by the same mechanism(s).
Collapse
Affiliation(s)
- I Wlodarska
- Center for Human Genetics, K.U. Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bottoli AP, Kertesz-Chaloupková K, Boulianne RP, Granado JD, Aebi M, Kües U. Rapid isolation of genes from an indexed genomic library of C. cinereus in a novel pab1+ cosmid. J Microbiol Methods 1999; 35:129-41. [PMID: 10192045 DOI: 10.1016/s0167-7012(98)00109-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study we present an indexed genomic library of homokaryon AmutBmut constructed within a novel cosmid carrying pab1+ as a selectable Coprinus marker. The average insert size per cosmid comprises 41 kb. We screened the library and detected copies of known (a1-2, beta-tub, cgl1, ras, trp1) and of new Coprinus genes (cac, lac1, lac2, lac3). Screening was performed either by Southern blot hybridisation or more efficiently by non-radioactive PCR amplification. We successfully applied PCR with specific and with degenerate primers, multiplex PCR and colony PCR in library screening. Our results suggest a new, more efficient pooling strategy for future high throughput screenings to be used in PCR with pooled cosmid DNAs, or in a less laborious approach using pooled Escherichia coli colonies for PCR.
Collapse
Affiliation(s)
- A P Bottoli
- Mikrobiologisches Institut, ETH Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Van Alewijk DC, Van der Weiden MM, Eussen BJ, Van Den Andel-Thijssen LD, Ehren-van Eekelen CC, König JJ, van Steenbrugge GJ, Dinjens WN, Trapman J. Identification of a homozygous deletion at 8p12-21 in a human prostate cancer xenograft. Genes Chromosomes Cancer 1999; 24:119-26. [PMID: 9885978 DOI: 10.1002/(sici)1098-2264(199902)24:2<119::aid-gcc4>3.0.co;2-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One of the most frequent genetic abnormalities in prostate cancer is loss of the complete or part of the short arm of chromosome 8, indicating the localization of one or more tumor suppressor genes on this chromosomal arm. Using allelotyping, a frequently deleted region in prostate cancer in a genetic interval of approximately 17 cM between sequence tagged sites D8S87 and D8S133 at chromosome arm 8p12-21 was previously detected. A detailed physical map of this region is now available. Using known and novel polymorphic and nonpolymorphic sequence tagged sites in this interval, a search for homozygous deletions in DNAs from 14 prostate cancer-derived cell lines and xenografts was carried out. In DNA from xenograft PC133, the presence of a small homozygously deleted region of 730-1,320 kb was unambiguously established. At one site, the deletion disrupts the Werner syndrome gene. Data from allelotyping were confirmed and extended by fluorescence in situ hybridization analysis of PC133 chromosome spreads using centromere, YAC, and PAC chromosome 8 probes.
Collapse
Affiliation(s)
- D C Van Alewijk
- Department of Pathology, Erasmus University, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Horelli-Kuitunen N, Aaltonen J, Yaspo ML, Eeva M, Wessman M, Peltonen L, Palotie A. Mapping ESTs by Fiber–FISH. Genome Res 1999. [DOI: 10.1101/gr.9.1.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A visual transcript map of six genes was constructed on the chromosome 21q22.3 by high resolution fluorescence in situ hybridization (FISH). Expressed sequence tags (ESTs) from six genes—PWP2, KNP1, AIRE, C21orf3,SMT3A, and C21orf1—were successfully localized by fiber–FISH by use of sensitive tyramide-based detection. The sizes of the ESTs varied between 315 to 956 bp and most of them map within the 3′-untranslated region. The ESTs were assigned to and subsequently ordered within cosmid, PAC, and BAC clones hybridized on DNA fibers. Physical distances between ESTs and known markers were determined. Our results demonstrate the feasibility and accuracy of visual mapping EST sequences in relation to known markers. The main advantage of this approach is that it can be applied to finely map any of the database ESTs for positional cloning efforts. The sensitivity, specificity, and reproducibility of this high-resolution EST mapping technique is evaluated.
Collapse
|
46
|
Zhang P, Ye X, Liao L, Russo JJ, Fischer SG. Integrated mapping package--a physical mapping software tool kit. Genomics 1999; 55:78-87. [PMID: 9889001 DOI: 10.1006/geno.1998.5631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed an integrated physical mapping computer software package (IMP), originally designed to support the physical mapping of human chromosome 13 and expanded to support several gene-identification projects based on the positional candidate approach. IMP displays map data in a form that provides useful guidelines to the end users. An integrated map with high resolution and confidence is constructed from different types of mapping data, including hybridization experiments, STS-based PCR assays, genetic linkage mapping, cDNA localization, and FISH data. The map is also designed to provide suggestions for specific experiments that are required to obtain maps with even higher resolution and confidence. To this end, the optimization employs multiple constraints that take into account already established STS "scaffold" maps. This software thus serves as an important general tool kit for physical mapping, sequencing, and gene-hunting projects.
Collapse
Affiliation(s)
- P Zhang
- Columbia Genome Center, Columbia University, New York, New York, 10032, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
We have begun a joint program as part of a coordinated international effort to determine a complete human genome sequence. Our strategy is to map large-insert bacterial clones and to sequence each clone by a random shotgun approach followed by directed finishing. As of September 1998, we have identified the map positions of bacterial clones covering approximately 860 Mb for sequencing and completed >98 Mb ( approximately 3.3%) of the human genome sequence. Our progress and sequencing data can be accessed via the World Wide Web (http://webace.sanger.ac.uk/HGP/ or http://genome.wustl.edu/gsc/).
Collapse
|
48
|
Guipponi M, Scott HS, Chen H, Schebesta A, Rossier C, Antonarakis SE. Two isoforms of a human intersectin (ITSN) protein are produced by brain-specific alternative splicing in a stop codon. Genomics 1998; 53:369-76. [PMID: 9799604 DOI: 10.1006/geno.1998.5521] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using selected trapped exons with homology to specific protein domains, we identified a new full-length cDNA encoding a protein containing many motifs for protein-protein interactions. There are two major mRNA transcripts, a ubiquitously expressed mRNA of 5.3 kb and a brain-specific transcript of approximately 15 kb, encoding proteins of 1220 and 1721 amino acids, respectively. The stop codon of the ORF of the shorter transcript is split between adjacent exons. In brain tissues the last exon of the short transcript is skipped, and an alternative downstream exon, the first of several additional, is used to produce the 15-kb mRNA. The putative human protein is highly homologous to Xenopus intersectin (81% identical) and to Drosophila dynamin-associated protein, Dap160 (31% identical) and was termed intersectin (ITSN). Both human proteins contain five SH3 (Src homology 3) domains, two EH (Eps15 homology) domains, and an alpha-helix-forming region. The brain-specific long transcript encodes for three additional domains: a GEF (guanine-nucleotide exchange factors), a PH (pleckstrin homology), and a C2 domain. The Drosophila homologue is associated with dynamin, a protein family involved in the endocytic pathway and/or synaptic vesicle recycling. The structure of the human ITSN protein is consistent with its involvement in membrane-associated molecular trafficking and signal transduction pathways. The human ITSN gene has been mapped to 21q22. 1-q22.2 between markers D21S319 and D21S65, and its importance in Down syndrome and monogenic disorders is currently unknown.
Collapse
Affiliation(s)
- M Guipponi
- Department of Genetics and Microbiology, University of Geneva Medical School, Geneva 4, 1211
| | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- R Waterston
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, MO 63108, USA.
| | | |
Collapse
|
50
|
Bentley DR, Pruitt KD, Deloukas P, Schuler GD, Ostell J. Coordination of human genome sequencing via a consensus framework map. Trends Genet 1998; 14:381-4. [PMID: 9820023 DOI: 10.1016/s0168-9525(98)01591-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|