1
|
Dobreva A, Camacho ET, Miranda M. Mathematical model for glutathione dynamics in the retina. Sci Rep 2023; 13:10996. [PMID: 37419948 PMCID: PMC10328985 DOI: 10.1038/s41598-023-37938-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/29/2023] [Indexed: 07/09/2023] Open
Abstract
The retina is highly susceptible to the generation of toxic reactive oxygen species (ROS) that disrupt the normal operations of retinal cells. The glutathione (GSH) antioxidant system plays an important role in mitigating ROS. To perform its protective functions, GSH depends on nicotinamide adenine dinucleotide phosphate (NADPH) produced through the pentose phosphate pathway. This work develops the first mathematical model for the GSH antioxidant system in the outer retina, capturing the most essential components for formation of ROS, GSH production, its oxidation in detoxifying ROS, and subsequent reduction by NADPH. We calibrate and validate the model using experimental measurements, at different postnatal days up to PN28, from control mice and from the rd1 mouse model for the disease retinitis pigmentosa (RP). Global sensitivity analysis is then applied to examine the model behavior and identify the pathways with the greatest impact in control compared to RP conditions. The findings underscore the importance of GSH and NADPH production in dealing with oxidative stress during retinal development, especially after peak rod degeneration occurs in RP, leading to increased oxygen tension. This suggests that stimulation of GSH and NADPH synthesis could be a potential intervention strategy in degenerative mouse retinas with RP.
Collapse
Affiliation(s)
- Atanaska Dobreva
- Department of Mathematics, Augusta University, Augusta, GA, 30912, USA.
| | - Erika Tatiana Camacho
- University of Texas at San Antonio, San Antonio, TX, 78249, USA
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - María Miranda
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, 46115, Valencia, Spain
| |
Collapse
|
2
|
Powers SK, Schrager M. Redox signaling regulates skeletal muscle remodeling in response to exercise and prolonged inactivity. Redox Biol 2022; 54:102374. [PMID: 35738088 PMCID: PMC9233275 DOI: 10.1016/j.redox.2022.102374] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Skeletal muscle fibers are malleable and undergo rapid remodeling in response to increased contractile activity (i.e., exercise) or prolonged periods of muscle inactivity (e.g., prolonged bedrest). Exploration of the cell signaling pathways regulating these skeletal muscle adaptations reveal that redox signaling pathways play a key role in the control of muscle remodeling during both exercise and prolonged muscle inactivity. In this regard, muscular exercise results in an acute increase in the production of reactive oxygen species (ROS) in the contracting fibers; however, this contraction-induced rise in ROS production rapidly declines when contractions cease. In contrast, prolonged muscle disuse results in a chronic elevation in ROS production within the inactive fibers. This difference in the temporal pattern of ROS production in muscle during exercise and muscle inactivity stimulates divergent cell-signaling pathways that activate both genomic and nongenomic mechanisms to promote muscle remodeling. This review examines the role that redox signaling plays in skeletal muscle adaptation in response to both prolonged muscle inactivity and endurance exercise training. We begin with a summary of the sites of ROS production in muscle fibers followed by a review of the cellular antioxidants that are responsible for regulation of ROS levels in the cell. We then discuss the specific redox-sensitive signaling pathways that promote skeletal muscle adaptation in response to both prolonged muscle inactivity and exercise. To stimulate future research, we close with a discussion of unanswered questions in this exciting field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Health Sciences, Stetson University, Deland, FL, 32723, USA.
| | - Matthew Schrager
- Department of Health Sciences, Stetson University, Deland, FL, 32723, USA
| |
Collapse
|
3
|
Aoyama Y, Inagaki S, Aoshima K, Iwata Y, Nakamura S, Hara H, Shimazawa M. Involvement of endoplasmic reticulum stress in rotenone-induced leber hereditary optic neuropathy model and the discovery of new therapeutic agents. J Pharmacol Sci 2021; 147:200-207. [PMID: 34384568 DOI: 10.1016/j.jphs.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is caused by mitochondrial DNA mutations and is the most common inherited mitochondrial disease. It is responsible for central vision loss in young adulthood. However, the precise mechanisms of onset are unknown. This study aimed to elucidate the mechanisms underlying LHON pathology and to discover new therapeutic agents. First, we assessed whether rotenone, a mitochondrial complex Ⅰ inhibitor, induced retinal degeneration such as that in LHON in a mouse model. Rotenone decreased the thickness of the inner retina and increased the expression levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and immunoglobulin heavy-chain binding protein (BiP). Second, we assessed whether rotenone reproduces LHON pathologies on RGC-5, a neural progenitor cell derived from the retina. Rotenone increased the cell death rate, ROS production and the expression levels of ER stress markers. During chemical compounds screening, we used anti-oxidative compounds, ER stress inhibitors and anti-inflammatory compounds in a rotenone-induced in vitro model. We found that SUN N8075, an ER stress inhibitor, reduced mitochondrial ROS production and improved the mitochondrial membrane potential. Consequently, the ER stress response is strongly related to the pathologies of LHON, and ER stress inhibitors may have a protective effect against LHON.
Collapse
MESH Headings
- Aniline Compounds/pharmacology
- Animals
- Cells, Cultured
- DNA, Mitochondrial/genetics
- Disease Models, Animal
- Drug Discovery
- Drug Evaluation, Preclinical
- Endoplasmic Reticulum Stress/drug effects
- Endoplasmic Reticulum Stress/genetics
- Endoplasmic Reticulum Stress/physiology
- Male
- Membrane Potential, Mitochondrial/drug effects
- Membrane Potential, Mitochondrial/genetics
- Mice, Inbred C57BL
- Molecular Targeted Therapy
- Mutation
- Optic Atrophy, Hereditary, Leber/chemically induced
- Optic Atrophy, Hereditary, Leber/drug therapy
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/pathology
- Piperazines/pharmacology
- Reactive Oxygen Species/metabolism
- Retina/drug effects
- Retina/metabolism
- Retina/pathology
- Retinal Degeneration/chemically induced
- Retinal Degeneration/genetics
- Retinal Degeneration/pathology
- Rotenone/adverse effects
- Mice
Collapse
Affiliation(s)
- Yakumo Aoyama
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoshi Inagaki
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kota Aoshima
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Iwata
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
4
|
Lee EJ, Zheng M, Craft CM, Jeong S. Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) are localized in the nucleus of retinal Müller glial cells and modulated by cytokines and oxidative stress. PLoS One 2021; 16:e0253915. [PMID: 34270579 PMCID: PMC8284794 DOI: 10.1371/journal.pone.0253915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in the pathology of numerous inflammatory retinal degenerations, including retinitis pigmentosa (RP). Our previous work revealed that intravitreal injections with tissue inhibitor of metalloproteinases 1 (TIMP-1) reduce the progression of rod cell death and inhibit cone cell remodeling that involves reactive gliosis in retinal Müller glial cells (MGCs) in rodent models. The underlying cellular and molecular mechanisms of how TIMP-1 functions in the retina remain to be resolved; however, MGCs are involved in structural homeostasis, neuronal cell survival and death. In the present study, MMP-9 and TIMP-1 expression patterns were investigated in a human MGC line (MIO-M1) under inflammatory cytokine (IL-1β and TNF-α) and oxidative stress (H2O2) conditions. First, both IL-1β and TNF-α, but not H2O2, have a mild in vitro pro-survival effect on MIO-M1 cells. Treatment with either cytokine results in the imbalanced secretion of MMP-9 and TIMP-1. H2O2 treatment has little effect on their secretion. The investigation of their intracellular expression led to interesting observations. MMP-9 and TIMP-1 are both expressed, not only in the cytoplasm, but also inside the nucleus. None of the treatments alters the MMP-9 intracellular distribution pattern. In contrast to MMP-9, TIMP-1 is detected as speckles. Intracellular TIMP-1 aggregation forms in the cytoplasmic area with IL-1β treatment. With H2O2 treatments, the cell morphology changes from cobbles to spindle shapes and the nuclei become larger with increases in TIMP-1 speckles in an H2O2 dose-dependent manner. Two TIMP-1 cell surface receptors, low density lipoprotein receptor-related protein-1 (LRP-1) and cluster of differentiation 82 (CD82), are expressed within the nucleus of MIO-M1 cells. Overall, these observations suggest that intracellular TIMP-1 is a target of proinflammatory and oxidative insults in the MGCs. Given the importance of the roles for MGCs in the retina, the functional implication of nuclear TIMP-1 and MMP-9 in MGCs is discussed.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Ophthalmology, Stanford University, Palo Alto, CA, United States of America
| | - Mengmei Zheng
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Cheryl Mae Craft
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Shinwu Jeong
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
5
|
Zhou B, Fang L, Dong Y, Yang J, Chen X, Zhang N, Zhu Y, Huang T. Mitochondrial quality control protects photoreceptors against oxidative stress in the H 2O 2-induced models of retinal degeneration diseases. Cell Death Dis 2021; 12:413. [PMID: 33879768 PMCID: PMC8058096 DOI: 10.1038/s41419-021-03660-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022]
Abstract
Retinal degeneration diseases (RDDs) are common and devastating eye diseases characterized by the degeneration of photoreceptors, which are highly associated with oxidative stress. Previous studies reported that mitochondrial dysfunction is associated with various neurodegenerative diseases. However, the role of mitochondrial proteostasis mainly regulated by mitophagy and mitochondrial unfolded protein response (mtUPR) in RDDs is unclear. We hypothesized that the mitochondrial proteostasis is neuroprotective against oxidative injury in RDDs. In this study, the data from our hydrogen peroxide (H2O2)-treated mouse retinal cone cell line (661w) model of RDDs showed that nicotinamide riboside (NR)-activated mitophagy increased the expression of LC3B II and PINK1, and promoted the co-localization of LC3 and mitochondria, as well as PINK1 and Parkin in the H2O2-treated 661w cells. However, the NR-induced mitophagy was remarkably reversed by chloroquine (CQ) and cyclosporine A (CsA), mitophagic inhibitors. In addition, doxycycline (DOX), an inducer of mtUPR, up-regulated the expression of HSP60 and CHOP, the key proteins of mtUPR. Activation of both mitophagy and mtUPR increased the cell viability and reduced the level of apoptosis and oxidative damage in the H2O2-treated 661w cells. Furthermore, both mitophagy and mtUPR played a protective effect on mitochondria by increasing mitochondrial membrane potential and maintaining mitochondrial mass. By contrast, the inhibition of mitophagy by CQ or CsA reversed the beneficial effect of mitophagy in the H2O2-treated 661w cells. Together, our study suggests that the mitophagy and mtUPR pathways may serve as new therapeutic targets to delay the progression of RDDs through enhancing mitochondrial proteostasis.
Collapse
Affiliation(s)
- Biting Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Lijun Fang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yanli Dong
- Qiqihaer Food and Drug Control Center, Qiqihaer, Heilongjiang, China
| | - Juhua Yang
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaole Chen
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Nanwen Zhang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Yihua Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Tianwen Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
- Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fuzhou, Fujian, China.
| |
Collapse
|
6
|
Marmoy OR, Kinsler VA, Henderson RH, Handley SE, Moore W, Thompson DA. Misaligned foveal morphology and sector retinal dysfunction in AKT1-mosaic Proteus syndrome. Doc Ophthalmol 2020; 142:119-126. [PMID: 32617723 DOI: 10.1007/s10633-020-09778-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Proteus syndrome arises as a result of a post-zygotic mosaic activating mutation in the AKT1 oncogene, causing a disproportionate overgrowth of affected tissues. A small number of ocular complications have been reported. We present the unique findings in a patient who had molecular confirmation of AKT1 mosaicism alongside fulfilling the clinical criteria for Proteus syndrome. METHODS Pattern electroretinography, visual evoked potentials and multifocal electroretinography testing were performed alongside detailed retinal imaging and clinical examination to detail the ophthalmic characteristics. RESULTS Electrophysiological findings characterised unilateral macular dysfunction alongside sector retinal dysfunction of the right eye. This was demonstrated through optical coherence tomography and ultra-wide-field imaging to be associated with a misaligned foveal morphology and sector retinal dysfunction extending into the temporal retina. CONCLUSION We propose this patient has asymmetric foveal development and concomitant sector retinal dysfunction as the result of the mosaic AKT1 mutation, either through disruption in the retinal PI3K-AKT1 signalling pathway or through mechanical distortion of ocular growth, resulting in disproportionate inner retinal development. The findings expand the ocular phenotype of Proteus syndrome and encourage early assessment to identify any incipient ocular abnormalities.
Collapse
Affiliation(s)
- Oliver R Marmoy
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK. .,Manchester Metropolitan University, Manchester, UK.
| | - Veronica A Kinsler
- Paediatric Dermatology, Great Ormond Street Hospital for Children, London, UK.,UCL-GOSH Institute of Child Health, University College London, London, UK
| | - Robert H Henderson
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK.,UCL-GOSH Institute of Child Health, University College London, London, UK
| | - Sian E Handley
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK.,UCL-GOSH Institute of Child Health, University College London, London, UK
| | - Will Moore
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK
| | - Dorothy A Thompson
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK.,UCL-GOSH Institute of Child Health, University College London, London, UK
| |
Collapse
|
7
|
Saccà SC, Vernazza S, Iorio EL, Tirendi S, Bassi AM, Gandolfi S, Izzotti A. Molecular changes in glaucomatous trabecular meshwork. Correlations with retinal ganglion cell death and novel strategies for neuroprotection. PROGRESS IN BRAIN RESEARCH 2020; 256:151-188. [PMID: 32958211 DOI: 10.1016/bs.pbr.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by retinal ganglion cell loss. Although significant advances in ophthalmologic knowledge and practice have been made, some glaucoma mechanisms are not yet understood, therefore, up to now there is no effective treatment able to ensure healing. Indeed, either pharmacological or surgical approaches to this disease aim in lowering intraocular pressure, which is considered the only modifiable risk factor. However, it is well known that several factors and metabolites are equally (if not more) involved in glaucoma. Oxidative stress, for instance, plays a pivotal role in both glaucoma onset and progression because it is responsible for the trabecular meshwork cell damage and, consequently, for intraocular pressure increase as well as for glaucomatous damage cascade. This review at first shows accurately the molecular-derived dysfunctions in antioxidant system and in mitochondria homeostasis which due to both oxidative stress and aging, lead to a chronic inflammation state, the trabecular meshwork damage as well as the glaucoma neurodegeneration. Therefore, the main molecular events triggered by oxidative stress up to the proapoptotic signals that promote the ganglion cell death have been highlighted. The second part of this review, instead, describes some of neuroprotective agents such as polyphenols or polyunsaturated fatty acids as possible therapeutic source against the propagation of glaucomatous damage.
Collapse
Affiliation(s)
- Sergio C Saccà
- Policlinico San Martino University Hospital, Department of Neuroscience and sense organs, Ophthalmology Unit, Genoa, Italy.
| | | | | | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Stefano Gandolfi
- Ophthalmology Unit, Department of Biological, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Alberto Izzotti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Mutagenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
8
|
Yu S, Mu Y, Zhang X, Li J, Lee C, Wang H. Molecular mechanisms underlying titanium dioxide nanoparticles (TiO 2NP) induced autophagy in mesenchymal stem cells (MSC). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:997-1008. [PMID: 31718501 DOI: 10.1080/15287394.2019.1688482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The bone marrow is one of the target tissues for titanium dioxide nanoparticles (TiO2NP) following environmental exposure. At present, the consequences of TiO2NP exposure in bone are not well known. The aim of this study was to investigate the effects of TiO2NP on mesenchymal stem cells (MSCs) and potential underlying mechanisms. Mesenchymal bone marrow-derived cells were cultured and treated with various concentrations of TiO2NP. Results showed that TiO2NP incubation produced cytotoxicity as evidenced by reduced cell viability. Using Western blotting TiO2NP was found to increase autophagy as determined by elevation in ratio of LC3-II from LC3-I without evidence of necrotic cell death as estimated by lactic dehydrogenase (LDH) level. TiO2NP produced a rise in intracellular reactive oxygen species (ROS) levels. The observed alterations in autophagy and oxidant stress were associated with upregulation of protein expression of p38, JNK, and ERK. Data indicate that TiO2NP-mediated decrease in MSC survival involves a complex series of events associated stimulation of mitogen-activated protein kinase (MAPK) pathway and consequent autophagy and oxidative damage.
Collapse
Affiliation(s)
- Shunbang Yu
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Yongping Mu
- Tumor Molecular Diagnostic Laboratory, Department of Clinical Laboratory Centre, The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xudong Zhang
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Jian Li
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, US
| | - Charles Lee
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Singapore
| | - He Wang
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| |
Collapse
|
9
|
Autophagy, lysosome dysfunction and mTOR inhibition in MNU-induced photoreceptor cell damage. Tissue Cell 2019; 61:98-108. [PMID: 31759414 DOI: 10.1016/j.tice.2019.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 01/03/2023]
Abstract
Progressive photoreceptor death is the main cause of retinal degeneration diseases. Determining the underlying mechanism of this process is essential for therapy improvement. Autophagy has long been considered to be involved in neuronal degeneration diseases, and the regulation of autophagy is thought to have potential implications for neurodegenerative disease therapies. However, whether autophagy is protective or destructive varies among diseases and is controversial. In the present study, we established an N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell damage model in vitro that faithfully replicated photoreceptor cell death in retinal degeneration diseases. Cell viability was tested by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays. Reactive oxygen species (ROS) levels were assessed through 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence. Autophagy was confirmed by observing autophagosomes using transmission electron microscopy (TEM). A lysosome tracker was used to identify acidic lysosomes in cells. We also measured the expression of some proteins related to autophagy, apoptosis and lysosomal degradation by western blot and immunofluorescence assays. We found that MNU could decrease photoreceptor cell viability in a time- and dose-dependent manner, and this change was accompanied by concomitant increases in ROS and the expression of the apoptosis-inducing protein cleaved caspase-3. Moreover, autophagy was activated by MNU treatment during this process. Inhibition of autophagy with 3-methyladenine accelerated cell damage. Lysosome dysfunction was confirmed by autophagosome enlargement and increased cathepsin expression, which was accompanied by mTOR dephosphorylation. In conclusion, autophagy was activated through inhibition of the PI3K/mTOR pathway in the context of MNU-induced photoreceptor cell death. Prolonged mTOR dephosphorylation and autophagy activation resulted in autophagic vacuole accumulation, as indicated by inefficient degradation in lysosomes, and further led to apoptosis.
Collapse
|
10
|
Reactive Oxygen Species-Mediated Damage of Retinal Neurons: Drug Development Targets for Therapies of Chronic Neurodegeneration of the Retina. Int J Mol Sci 2018; 19:ijms19113362. [PMID: 30373222 PMCID: PMC6274960 DOI: 10.3390/ijms19113362] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023] Open
Abstract
The significance of oxidative stress in the development of chronic neurodegenerative diseases of the retina has become increasingly apparent in recent years. Reactive oxygen species (ROS) are free radicals produced at low levels as a result of normal cellular metabolism that are ultimately metabolized and detoxified by endogenous and exogenous mechanisms. In the presence of oxidative cellular stress, ROS are produced in excess, resulting in cellular injury and death and ultimately leading to tissue and organ dysfunction. Recent studies have investigated the role of excess ROS in the pathogenesis and development of chronic neurodegenerative diseases of the retina including glaucoma, diabetic retinopathy, and age-related macular degeneration. Findings from these studies are promising insofar as they provide clear rationales for innovative treatment and prevention strategies of these prevalent and disabling diseases where currently therapeutic options are limited. Here, we briefly outline recent developments that have contributed to our understanding of the role of ROS in the pathogenesis of chronic neurodegenerative diseases of the retina. We then examine and analyze the peer-reviewed evidence in support of ROS as targets for therapy development in the area of chronic neurodegeneration of the retina.
Collapse
|
11
|
Shim MS, Kim KY, Bu JH, Nam HS, Jeong SW, Park TL, Ellisman MH, Weinreb RN, Ju WK. Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes. Cell Death Dis 2018; 9:285. [PMID: 29459737 PMCID: PMC5833440 DOI: 10.1038/s41419-017-0171-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/25/2022]
Abstract
Glaucoma is characterized by a progressive loss of retinal ganglion cells and their axons, but the underlying biological basis for the accompanying neurodegeneration is not known. Accumulating evidence indicates that structural and functional abnormalities of astrocytes within the optic nerve head (ONH) have a role. However, whether the activation of cyclic adenosine 3',5'-monophosphate (cAMP) signaling pathway is associated with astrocyte dysfunction in the ONH remains unknown. We report here that the cAMP/protein kinase A (PKA) pathway is critical to ONH astrocyte dysfunction, leading to caspase-3 activation and cell death via the AKT/Bim/Bax signaling pathway. Furthermore, elevated intracellular cAMP exacerbates vulnerability to oxidative stress in ONH astrocytes, and this may contribute to axonal damage in glaucomatous neurodegeneration. Inhibition of intracellular cAMP/PKA signaling activation protects ONH astrocytes by increasing AKT phosphorylation against oxidative stress. These results strongly indicate that activation of cAMP/PKA pathway has an important role in astrocyte dysfunction, and suggest that modulating cAMP/PKA pathway has therapeutic potential for glaucomatous ONH degeneration.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Keun-Young Kim
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Jung Hyun Bu
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Hye Seung Nam
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Seung Won Jeong
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Tae Lim Park
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Mark H Ellisman
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Robert N Weinreb
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Ruiz Lopez AM, Roche SL, Wyse Jackson AC, Moloney JN, Byrne AM, Cotter TG. Pro-survival redox signalling in progesterone-mediated retinal neuroprotection. Eur J Neurosci 2017; 46:1663-1672. [PMID: 28493650 DOI: 10.1111/ejn.13604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 01/05/2023]
Abstract
Retinitis pigmentosa (RP) is a group of hereditary retinal diseases, characterised by photoreceptor cell loss. Despite a substantial understanding of the mechanisms leading to cell death, an effective therapeutic strategy is sought. Our laboratory has previously demonstrated the neuroprotective properties of Norgestrel, a progesterone analogue, in the degenerating retina, mediated in part by the neurotrophic factor basic fibroblast growth factor (bFGF). In other retinal studies, we have also presented a pro-survival role for reactive oxygen species (ROS), downstream of bFGF. Thus, we hypothesized that Norgestrel utilises bFGF-driven ROS production to promote photoreceptor survival. Using the 661W photoreceptor-like cell line, we now show that Norgestrel, working through progesterone receptor membrane complex 1 (PGRMC1); generates an early burst of pro-survival bFGF-induced ROS. Using the rd10 mouse model of RP, we confirm that Norgestrel induces a similar early pro-survival increase in retinal ROS. Norgestrel-driven protection in the rd10 retina was attenuated in the presence of antioxidants. This study therefore presents an essential role for ROS signalling in Norgestrel-mediated neuroprotection in vitro and demonstrates that Norgestrel employs a similar pro-survival mechanism in the degenerating retina.
Collapse
Affiliation(s)
- Ana M Ruiz Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Alice C Wyse Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Jennifer N Moloney
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Fabiani C, Zulueta A, Bonezzi F, Casas J, Ghidoni R, Signorelli P, Caretti A. 2-Acetyl-5-tetrahydroxybutyl imidazole (THI) protects 661W cells against oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:741-751. [DOI: 10.1007/s00210-017-1374-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
|
14
|
Natoli R, Rutar M, Lu YZ, Chu-Tan JA, Chen Y, Saxena K, Madigan M, Valter K, Provis JM. The Role of Pyruvate in Protecting 661W Photoreceptor-Like Cells Against Light-Induced Cell Death. Curr Eye Res 2016; 41:1473-1481. [DOI: 10.3109/02713683.2016.1139725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Riccardo Natoli
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| | - Matt Rutar
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Yen-Zhen Lu
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Joshua A. Chu-Tan
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Yuwei Chen
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Kartik Saxena
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Michele Madigan
- School of Optometry and Vision Sciences, University of New South Wales, Sydney, Australia
- The Save Sight Institute, University of Sydney, Sydney, Australia
| | - Krisztina Valter
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| | - Jan M. Provis
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| |
Collapse
|
15
|
Tohari AM, Zhou X, Shu X. Protection against oxidative stress by vitamin D in cone cells. Cell Biochem Funct 2016; 34:82-94. [PMID: 26890033 DOI: 10.1002/cbf.3167] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/29/2022]
Abstract
Photoreceptor degeneration (PD) refers to a group of heterogeneous outer retinal dystrophies characterized by the death of photoreceptors. Both oxidative stress and inflammation are involved in the pathogenesis of PD. We investigate whether vitamin D has a potential for the treatment of PD by evaluating the anti-oxidative stress and anti-inflammatory properties of the active form of vitamin D3 , 1,α, 25-dihydroxyvitamin D3 , in a mouse cone cell line, 661W. Mouse cone cells were treated with H2 O2 or a mixture of H2 O2 and vitamin D; cell viability was determined. The production of reactive oxygen species (ROS) in treated and untreated cells was measured. The expression of key anti-oxidative stress and inflammatory genes in treated and untreated cells was determined. Treatment with vitamin D significantly increased cell viability and decreased ROS production in 661W cells under oxidative stress induced by H2 O2 . H2 O2 treatment in 661W cells can significantly down-regulate the expression of antioxidant genes and up-regulate the expression of neurotoxic cytokines. Vitamin D treatment significantly reversed these effects and restored the expression of antioxidant genes. Vitamin D treatment also can block H2 O2 induced oxidative damages. The data suggested that vitamin D may offer a therapeutic potential for patients with PD.
Collapse
Affiliation(s)
- Ali Mohammad Tohari
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK.,King Fahad Hospital, Jazan, Saudi Arabia
| | - Xinzhi Zhou
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
16
|
Wyse Jackson AC, Cotter TG. The synthetic progesterone Norgestrel is neuroprotective in stressed photoreceptor-like cells and retinal explants, mediating its effects via basic fibroblast growth factor, protein kinase A and glycogen synthase kinase 3β signalling. Eur J Neurosci 2016; 43:899-911. [PMID: 26750157 DOI: 10.1111/ejn.13166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/17/2015] [Accepted: 12/29/2015] [Indexed: 01/19/2023]
Abstract
The synthetic progesterone Norgestrel has been shown to have proven neuroprotective efficacy in two distinct models of retinitis pigmentosa: the rd10/rd10 (B6.CXBI-Pde6b(rd10)/J) mouse model and the Balb/c light-damage model. However, the cellular mechanism underlying this neuroprotection is still largely unknown. Therefore, this study aimed to examine the downstream signalling pathways associated with Norgestrel both in vitro and ex vivo. In this work, we identify the potential of Norgestrel to rescue stressed 661W photoreceptor-like cells and ex vivo retinal explants from cell death over 24 h. Norgestel is thought to work through an upregulation of neuroprotective basic fibroblast growth factor (bFGF). Analysis of 661W cells in vitro by real-time polymerase chain reaction (rt-PCR), enzyme-linked immunosorbent assay (ELISA) and Western blotting revealed an upregulation of bFGF in response to Norgestrel over 6 h. Specific siRNA knockdown of bFGF abrogated the protective properties of Norgestrel on damaged photoreceptors, thus highlighting the crucial importance of bFGF in Norgestrel-mediated protection. Furthermore, Norgestrel initiated a bFGF-dependent inactivation of glycogen synthase kinase 3β (GSK3β) through phosphorylation at serine 9. The effects of Norgestrel on GSK3β were dependent on protein kinase A (PKA) pathway activation. Specific inhibition of both the PKA and GSK3β pathways prevented Norgestrel-mediated neuroprotection of stressed photoreceptor cells in vitro. Involvement of the PKA pathway following Norgestrel treatment was also confirmed ex vivo. Therefore, these results indicate that the protective efficacy of Norgestrel is, at least in part, due to the bFGF-mediated activation of the PKA pathway, with subsequent inactivation of GSK3β.
Collapse
Affiliation(s)
- Alice C Wyse Jackson
- Biochemistry Department, Cell Development and Disease Laboratory, Bioscience Research Institute, University College Cork, College Road, Cork City Centre, Cork, Ireland
| | - Thomas G Cotter
- Biochemistry Department, Cell Development and Disease Laboratory, Bioscience Research Institute, University College Cork, College Road, Cork City Centre, Cork, Ireland
| |
Collapse
|
17
|
Corso L, Cavallero A, Baroni D, Garbati P, Prestipino G, Bisti S, Nobile M, Picco C. Saffron reduces ATP-induced retinal cytotoxicity by targeting P2X7 receptors. Purinergic Signal 2016; 12:161-74. [PMID: 26739703 DOI: 10.1007/s11302-015-9490-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/15/2015] [Indexed: 11/25/2022] Open
Abstract
P2X7-type purinergic receptors are distributed throughout the nervous system where they contribute to physiological and pathological functions. In the retina, this receptor is found in both inner and outer cells including microglia modulating signaling and health of retinal cells. It is involved in retinal neurodegenerative disorders such as retinitis pigmentosa and age-related macular degeneration (AMD). Experimental studies demonstrated that saffron protects photoreceptors from light-induced damage preserving both retinal morphology and visual function and improves retinal flicker sensitivity in AMD patients. To evaluate a possible interaction between saffron and P2X7 receptors (P2X7Rs), different cellular models and experimental approaches were used. We found that saffron positively influences the viability of mouse primary retinal cells and photoreceptor-derived 661W cells exposed to ATP, and reduced the ATP-induced intracellular calcium increase in 661W cells. Similar results were obtained on HEK cells transfected with recombinant rat P2X7R but not on cells transfected with rat P2X2R. Finally, patch-clamp experiments showed that saffron inhibited cationic currents in HEK-P2X7R cells. These results point out a novel mechanism through which saffron may exert its protective role in neurodegeneration and support the idea that P2X7-mediated calcium signaling may be a crucial therapeutic target in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lucia Corso
- National Research Council, Institute of Biophysics, Via De Marini 6, 16149, Genoa, Italy.,Department of Biotechnology and Applied clinical Science, DISCAB, University of L'Aquila, L'Aquila, Italy
| | - Anna Cavallero
- National Research Council, Institute of Biophysics, Via De Marini 6, 16149, Genoa, Italy
| | - Debora Baroni
- National Research Council, Institute of Biophysics, Via De Marini 6, 16149, Genoa, Italy
| | - Patrizia Garbati
- National Research Council, Institute of Biophysics, Via De Marini 6, 16149, Genoa, Italy
| | - Gianfranco Prestipino
- National Research Council, Institute of Biophysics, Via De Marini 6, 16149, Genoa, Italy
| | - Silvia Bisti
- Department of Biotechnology and Applied clinical Science, DISCAB, University of L'Aquila, L'Aquila, Italy
| | - Mario Nobile
- National Research Council, Institute of Biophysics, Via De Marini 6, 16149, Genoa, Italy
| | - Cristiana Picco
- National Research Council, Institute of Biophysics, Via De Marini 6, 16149, Genoa, Italy.
| |
Collapse
|
18
|
Rajala RV, Kanan Y, Anderson RE. Photoreceptor Neuroprotection: Regulation of Akt Activation Through Serine/Threonine Phosphatases, PHLPP and PHLPPL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:419-24. [DOI: 10.1007/978-3-319-17121-0_55] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Jackson ACW, Roche SL, Byrne AM, Ruiz-Lopez AM, Cotter TG. Progesterone receptor signalling in retinal photoreceptor neuroprotection. J Neurochem 2015; 136:63-77. [PMID: 26447367 DOI: 10.1111/jnc.13388] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 11/29/2022]
Abstract
'Norgestrel', a synthetic form of the female hormone progesterone has been identified as potential drug candidate for the treatment of the degenerative eye disease retinitis pigmentosa. However, to date, no work has looked at the compound's specific cellular target. Therefore, this study aimed to identify the receptor target of Norgestrel and begin to examine its potential mechanism of action in the retina. In this work, we identify and characterize the expression of progesterone receptors present in the C57 wild type and rd10 mouse model of retinitis pigmentosa. Classical progesterone receptors A and B (PR A/B), progesterone receptor membrane components 1 and 2 (PGRMC1, PGRMC2) and membrane progesterone receptors α, β and γ were found to be expressed. All receptors excluding PR A/B were also found in the 661W photoreceptor cell line. PGRMC1 is a key regulator of apoptosis and its expression is up-regulated in the degenerating rd10 mouse retina. Activated by Norgestrel through nuclear trafficking, siRNA knock down of PGRMC1 abrogated the protective properties of Norgestrel on damaged photoreceptors. Furthermore, specific inhibition of PGRMC1 by AG205 blocked Norgestrel-induced protection in stressed retinal explants. Therefore, we conclude that PGRMC1 is crucial to the neuroprotective effects of Norgestrel on stressed photoreceptors. The synthetic progestin 'Norgestrel' has been identified as a potential therapeutic for the treatment of Retinitis Pigmentosa, a degenerative eye disease. However, the mechanism behind this neuroprotection is currently unknown. In this work, we identify 'Progesterone Receptor Membrane Component 1' as the major progesterone receptor eliciting the protective effects of Norgestrel, both in vitro and ex vivo. This furthers our understanding of Norgestrel's molecular mechanism, which we hope will help bring Norgestrel one step closer to the clinic.
Collapse
Affiliation(s)
- Alice C Wyse Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Ana M Ruiz-Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
German OL, Agnolazza DL, Politi LE, Rotstein NP. Light, lipids and photoreceptor survival: live or let die? Photochem Photobiol Sci 2015. [PMID: 26204250 DOI: 10.1039/c5pp00194c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to its constant exposure to light and its high oxygen consumption the retina is highly sensitive to oxidative damage, which is a common factor in inducing the death of photoreceptors after light damage or in inherited retinal degenerations. The high content of docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, has been suggested to contribute to this sensitivity. DHA is crucial for developing and preserving normal visual function. However, further roles of DHA in the retina are still controversial. Current data support that it can tilt the scale either towards degeneration or survival of retinal cells. DHA peroxidation products can be deleterious to the retina and might lead to retinal degeneration. However, DHA has also been shown to act as, or to be the source of, a survival molecule that protects photoreceptors and retinal pigment epithelium cells from oxidative damage. We have established that DHA protects photoreceptors from oxidative stress-induced apoptosis and promotes their differentiation in vitro. DHA activates the retinoid X receptor (RXR) and the ERK/MAPK pathway, thus regulating the expression of anti and pro-apoptotic proteins. It also orchestrates a diversity of signaling pathways, modulating enzymatic pathways that control the sphingolipid metabolism and activate antioxidant defense mechanisms to promote photoreceptor survival and development. A deeper comprehension of DHA signaling pathways and context-dependent behavior is required to understand its dual functions in retinal physiology.
Collapse
Affiliation(s)
- Olga Lorena German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
21
|
Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle. Int J Biochem Cell Biol 2015; 62:72-9. [DOI: 10.1016/j.biocel.2015.02.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 11/17/2022]
|
22
|
Agca C, Boldt K, Gubler A, Meneau I, Corpet A, Samardzija M, Stucki M, Ueffing M, Grimm C. Expression of leukemia inhibitory factor in Müller glia cells is regulated by a redox-dependent mRNA stability mechanism. BMC Biol 2015; 13:30. [PMID: 25907681 PMCID: PMC4462110 DOI: 10.1186/s12915-015-0137-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
Background Photoreceptor degeneration is a main hallmark of many blinding diseases making protection of photoreceptors crucial to prevent vision loss. Thus, regulation of endogenous neuroprotective factors may be key for cell survival and attenuation of disease progression. Important neuroprotective factors in the retina include H2O2 generated by injured photoreceptors, and leukemia inhibitory factor (LIF) expressed in Müller glia cells in response to photoreceptor damage. Results We present evidence that H2O2 connects to the LIF response by inducing stabilization of Lif transcripts in Müller cells. This process was independent of active gene transcription and p38 MAPK, but relied on AU-rich elements (AREs), which we identified within the highly conserved Lif 3′UTR. Affinity purification combined with quantitative mass spectrometry identified several proteins that bound to these AREs. Among those, interleukin enhancer binding factor 3 (ILF3) was confirmed to participate in the redox-dependent Lif mRNA stabilization. Additionally we show that KH-type splicing regulatory protein (KHSRP) was crucial for maintaining basal Lif expression levels in non-stressed Müller cells. Conclusions Our results suggest that H2O2-induced redox signaling increases Lif transcript levels through ILF3 mediated mRNA stabilization. Generation of H2O2 by injured photoreceptors may thus enhance stability of Lif mRNA and therefore augment neuroprotective LIF signaling during degenerative conditions in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0137-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cavit Agca
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland. .,Present address: Department of Biomedicine, University Hospital Basel, Basel, 4031, Switzerland.
| | - Karsten Boldt
- Division of Experimental Ophthalmology and Medical Proteome Center, Centre for Ophthalmology, University of Tübingen, 72076, Tübingen, Germany.
| | - Andrea Gubler
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Isabelle Meneau
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Armelle Corpet
- Department of Gynecology, University of Zurich, Zurich, 8091, Switzerland. .,Present address: Center for Molecular and Cellular Physiology and Genetics, University Lyon I, Villeurbanne, France.
| | - Marijana Samardzija
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Zurich, 8091, Switzerland.
| | - Marius Ueffing
- Division of Experimental Ophthalmology and Medical Proteome Center, Centre for Ophthalmology, University of Tübingen, 72076, Tübingen, Germany.
| | - Christian Grimm
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, 8091, Switzerland. .,Neuroscience Center (ZNZ), University of Zurich, Zurich, 8091, Switzerland.
| |
Collapse
|
23
|
Li J, Wang JJ, Zhang SX. NADPH oxidase 4-derived H2O2 promotes aberrant retinal neovascularization via activation of VEGF receptor 2 pathway in oxygen-induced retinopathy. J Diabetes Res 2015; 2015:963289. [PMID: 25866826 PMCID: PMC4381975 DOI: 10.1155/2015/963289] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 01/23/2023] Open
Abstract
NADPH oxidase 4 (Nox4) is a major isoform of NADPH oxidase in retinal endothelial cells. Our previous study suggests that upregulation of Nox4 in retinal endothelial cells contributes to retinal vascular leakage in diabetes. In the current study, we investigated the role and mechanism of Nox4 in regulation of retinal neovascularization (NV), a hallmark of proliferative diabetic retinopathy (PDR), using a mouse model of oxygen-induced retinopathy (OIR). Our results confirmed that Nox4 was expressed predominantly in retinal vasculature of mouse retina. Retinal expression of Nox4 was markedly increased in OIR, in parallel with enhanced phosphorylation of ERK. In human retinal microvascular endothelial cells (HRECs), overexpression of Nox4 by adenovirus significantly increased extracellular H2O2 generation, resulting in intensified VEGFR2 activation and exacerbated angiogenesis upon VEGF stimulation. In contrast, silencing Nox4 expression or scavenging H2O2 by polyethylene glycol- (PEG-) conjugated catalase inhibited endothelial migration, tube formation, and VEGF-induced activation of VEGFR2 signaling. Importantly, knockdown of retinal Nox4 by adenovirus-delivered siRNA significantly reduced ERK activation and attenuated retinal NV formation in OIR. Taken together, our data indicate that Nox4 promotes retinal NV formation through H2O2/VEGFR2/ERK signaling pathway. Reducing retinal Nox4 expression may represent a promising therapeutic approach for neovascular retinal diseases such as PDR.
Collapse
Affiliation(s)
- Jingming Li
- The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 277 West Yanta Road, Xi'an, Shaanxi 710061, China
- Department of Medicine, Endocrinology and Diabetes, Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | - Joshua J. Wang
- Department of Medicine, Endocrinology and Diabetes, Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
- Department of Ophthalmology & Ira G. Ross Eye Institute, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- SUNY Eye Institute, Buffalo, NY 14214, USA
| | - Sarah X. Zhang
- Department of Medicine, Endocrinology and Diabetes, Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
- Department of Ophthalmology & Ira G. Ross Eye Institute, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- SUNY Eye Institute, Buffalo, NY 14214, USA
- *Sarah X. Zhang:
| |
Collapse
|
24
|
Brandes RP, Weissmann N, Schröder K. Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases. J Mol Cell Cardiol 2014; 73:70-9. [PMID: 24560815 DOI: 10.1016/j.yjmcc.2014.02.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 11/30/2022]
Abstract
The only known function of the Nox family of NADPH oxidases is the production of reactive oxygen species (ROS). Some Nox enzymes show high tissue-specific expression and the ROS locally produced are required for synthesis of hormones or tissue components. In the cardiovascular system, Nox enzymes are low abundant and function as redox-modulators. By reacting with thiols, nitric oxide (NO) or trace metals, Nox-derived ROS elicit a plethora of cellular responses required for physiological growth factor signaling and the induction and adaptation to pathological processes. The interactions of Nox-derived ROS with signaling elements in the cardiovascular system are highly diverse and will be detailed in this article, which is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".
Collapse
Affiliation(s)
- Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Germany.
| | - Norbert Weissmann
- Giessen University Lung Center, Justus-Liebig-Universität, Gießen, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Germany
| |
Collapse
|
25
|
Agca C, Grimm C. Leukemia inhibitory factor signaling in degenerating retinas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:389-94. [PMID: 24664722 DOI: 10.1007/978-1-4614-3209-8_49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Degeneration of cells in the retina is a hallmark of various inherited and acquired blinding diseases in humans. One of the most challenging problems to establish successful treatments for these diseases is to understand the molecular mechanisms that result in retinal degeneration and to identify endogenous rescue pathways which support cell survival. In many mouse models for retinal degeneration, expression of LIF in glial cells in response to a disease condition is crucial for the activation of an elaborate protective system. This mini review will summarize the findings that are related to LIF signaling and discuss the neuroprotective effects of LIF in different animal models.
Collapse
Affiliation(s)
- Cavit Agca
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland,
| | | |
Collapse
|
26
|
Affiliation(s)
- Neeraj Agarwal
- National Institutes of Health, National Eye Institute, Division of Extramural Research, Rockville, Maryland. E-mail:
| |
Collapse
|
27
|
Agca C, Gubler A, Traber G, Beck C, Imsand C, Ail D, Caprara C, Grimm C. p38 MAPK signaling acts upstream of LIF-dependent neuroprotection during photoreceptor degeneration. Cell Death Dis 2013; 4:e785. [PMID: 24008729 PMCID: PMC3789181 DOI: 10.1038/cddis.2013.323] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/09/2013] [Accepted: 07/15/2013] [Indexed: 12/31/2022]
Abstract
In many blinding diseases of the retina, loss of function and thus severe visual impairment results from apoptotic cell death of damaged photoreceptors. In an attempt to survive, injured photoreceptors generate survival signals to induce intercellular protective mechanisms that eventually may rescue photoreceptors from entering an apoptotic death pathway. One such endogenous survival pathway is controlled by leukemia inhibitory factor (LIF), which is produced by a subset of Muller glia cells in response to photoreceptor injury. In the absence of LIF, survival components are not activated and photoreceptor degeneration is accelerated. Although LIF is a crucial factor for photoreceptor survival, the detailed mechanism of its induction in the retina has not been elucidated. Here, we show that administration of tumor necrosis factor-alpha (TNF) was sufficient to fully upregulate Lif expression in Muller cells in vitro and the retina in vivo. Increased Lif expression depended on p38 mitogen-activated protein kinase (MAPK) since inhibition of its activity abolished Lif expression in vitro and in vivo. Inhibition of p38 MAPK activity reduced the Lif expression also in the model of light-induced retinal degeneration and resulted in increased cell death in the light-exposed retina. Thus, expression of Lif in the injured retina and activation of the endogenous survival pathway involve signaling through p38 MAPK.
Collapse
Affiliation(s)
- C Agca
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich 8091, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gonzalez-Ramos M, de Frutos S, Griera M, Luengo A, Olmos G, Rodriguez-Puyol D, Calleros L, Rodriguez-Puyol M. Integrin-linked kinase mediates the hydrogen peroxide-dependent transforming growth factor-β1 up-regulation. Free Radic Biol Med 2013; 61:416-27. [PMID: 23624332 DOI: 10.1016/j.freeradbiomed.2013.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/21/2013] [Accepted: 04/17/2013] [Indexed: 01/04/2023]
Abstract
Transforming growth factor type-β1 (TGF-β1) has been recognized as a central mediator in many pathological events related to extracellular matrix (ECM) proteins accumulation, where their locally increased expression has been implicated in the fibrosis process of numerous organs, including glomerular fibrosis in the kidney. We and others have reported the TGF-β1 synthesis regulation by reactive oxygen species (ROS), and moreover we also described the implication of integrin-linked kinase (ILK) in the AP-1-dependent TGF-β1 up-regulation. Thus, we propose here that hydrogen peroxide (H2O2)-dependent TGF-β1 regulation may be mediated by ILK activation. First we confirmed the increase in TGF-β1 expression in human mesangial cells (HMC) after treatment with H2O2 or with an alternative H2O2-generating system such as the glucose-oxidase enzyme (GOX). By using immunoblotting, immunofluorescence, and ELISA techniques, we demonstrate that extracellular H2O2 up-regulates TGF-β1 transcription, as well as increases TGF-β1 promoter activity. Furthermore, catalase-decreased intracellular H2O2 abolished TGF-β1 up-regulation. The use of pharmacological inhibitors as well as knockdown of ILK with small interfering RNA (siRNA) demonstrated the implication of a PI3K/ILK/AKT/ERK MAPK signaling pathway axis in the H2O2-induced TGF-β1 overexpression. Finally, we explored the physiological relevance of these findings by treating HMC with angiotensin II, a known stimuli of H2O2 synthesis. Our results confirm the relevance of previous findings after a more physiological stimulus. In summary, our results provide evidence that ILK activity changes may act as a mechanism in response to different stimuli such as H2O2 in the induced TGF-β1 up-regulation in pathological or even physiological conditions.
Collapse
Affiliation(s)
- M Gonzalez-Ramos
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain
| | - S de Frutos
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain
| | - M Griera
- IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain; Biomedical Research Unit Foundation, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - A Luengo
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain
| | - G Olmos
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain
| | - D Rodriguez-Puyol
- IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain; Department of Medicine, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; Nephrology Section, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - L Calleros
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain.
| | - M Rodriguez-Puyol
- Department of Physiology, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; IRSIN, Madrid, Spain; RedInRen (Instituto de Salud Carlos III), Madrid, Spain
| |
Collapse
|
29
|
|
30
|
Valero T, Moschopoulou G, Mayor-Lopez L, Kintzios S. Moderate superoxide production is an early promoter of mitochondrial biogenesis in differentiating N2a neuroblastoma cells. Neurochem Int 2012; 61:1333-43. [PMID: 23022608 DOI: 10.1016/j.neuint.2012.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 09/07/2012] [Accepted: 09/13/2012] [Indexed: 01/25/2023]
Abstract
Reactive oxygen species (ROS) have been widely considered as harmful for cell development and as promoters of cell aging by increasing oxidative stress. However, ROS have an important role in cell signaling and they have been demonstrated to be beneficial by triggering hormetic signals, which could protect the organism from later insults. In the present study, N2a murine neuroblastoma cells were used as a paradigm of cell-specific (neural) differentiation partly mediated by ROS. Differentiation was triggered by the established treatments of serum starvation, forskolin or dibutyryl cyclic AMP. A marked differentiation, expressed as the development of neurites, was detected by fixation and staining with coomassie brilliant blue after 48 h treatment. This was accompanied by an increase in mitochondrial mass detected by mitotracker green staining, an increased expression of the peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1-alpha (PGC-1α) and succinate dehydrogenase activity as detected by MTT. In line with these results, an increase in free radicals, specifically superoxide anion, was detected in differentiating cells by flow cytometry. Superoxide scavenging by MnTBAP and MAPK inhibition by PD98059 partially reversed differentiation and mitochondrial biogenesis. In this way, we demonstrated that mitochondrial biogenesis and differentiation are mediated by superoxide and MAPK cues. Our data suggest that differentiation and mitochondrial biogenesis in N2a cells are part of a hormetic response which is triggered by a modest increase of superoxide anion concentration within the mitochondria.
Collapse
Affiliation(s)
- T Valero
- Department of Physiology and Morphology, Faculty of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | | | | | | |
Collapse
|
31
|
Murakami Y, Ikeda Y, Yoshida N, Notomi S, Hisatomi T, Oka S, De Luca G, Yonemitsu Y, Bignami M, Nakabeppu Y, Ishibashi T. MutT homolog-1 attenuates oxidative DNA damage and delays photoreceptor cell death in inherited retinal degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1378-86. [PMID: 22841817 DOI: 10.1016/j.ajpath.2012.06.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 11/26/2022]
Abstract
Retinitis pigmentosa (RP) is a genetically heterogenous group of inherited retinal degenerative diseases resulting from photoreceptor cell death and affecting >1 million persons globally. Although oxidative stress has been implicated in the pathogenesis of RP, the mechanisms by which oxidative stress mediates photoreceptor cell death are largely unknown. Here, we show that oxidation of nucleic acids is a key component in the initiation of death-signaling pathways in rd10 mice, a model of RP. Accumulation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) increased in photoreceptor cells, and especially within their nuclei, in rd10 mice as well as in Royal College of Surgeons rats, another model of RP caused by different genetic mutations. Vitreous samples from humans with RP contained higher levels of 8-oxo-dG excreted than samples from nondegenerative controls. Transgenic overexpression of human MutT homolog-1, which hydrolyzes oxidized purine nucleoside triphosphates in the nucleotide pool, significantly attenuated 8-oxo-dG accumulation in nuclear DNA and photoreceptor cell death in rd10 mice, in addition to suppressing DNA single-strand break formation, poly(ADP-ribose) polymerase activation, and nuclear translocation of apoptosis-inducing factor. These findings indicate that oxidative DNA damage is an important process for the triggering of photoreceptor cell death in rd10 mice and suggest that stimulation of DNA repair enzymes may be a novel therapeutic approach to attenuate photoreceptor cell loss in RP.
Collapse
Affiliation(s)
- Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yao Y, Li R, Ma Y, Wang X, Li C, Zhang X, Ma R, Ding Z, Liu L. α-Lipoic acid increases tolerance of cardiomyoblasts to glucose/glucose oxidase-induced injury via ROS-dependent ERK1/2 activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:920-9. [DOI: 10.1016/j.bbamcr.2012.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/19/2012] [Accepted: 02/07/2012] [Indexed: 11/25/2022]
|
33
|
Doonan F, Groeger G, Cotter TG. Preventing retinal apoptosis--is there a common therapeutic theme? Exp Cell Res 2012; 318:1278-84. [PMID: 22366479 DOI: 10.1016/j.yexcr.2012.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 11/16/2022]
Abstract
There is an urgent need for therapies for retinal diseases; retinitis pigmentosa sufferers have no treatment options available and those targeted at other retinopathies have shown limited effectiveness. The process of programmed cell death or apoptosis although complex, remains a possible target for the treatment of retinal diseases. Having identified apoptosis in the vertebrate retina in populations of immature neurons as an essential part of development it was proposed that re-activation of these developmental cell death pathways might provide insight into the death mechanisms operating in retinal diseases. However, the discovery that numerous factors initiate and mediate the apoptotic cascade in mature photoreceptors has resulted in a relatively untargeted approach to examining and arresting apoptosis in the retina. In the last 5 years, mouse models have been treated with a diverse range of drugs or factors including anti-oxidants, growth factors, steroid hormones, calcium/calpain inhibitors and tetracycline antibiotics. Therefore to draw a unifying theme from these broad research areas is challenging. However, this review focusses on two targets which are currently under investigation, reactive oxygen species and mammalian target of rapamycin, drawing together the common themes of these research areas.
Collapse
Affiliation(s)
- Francesca Doonan
- Biochemistry Department, Biosciences Research Institute, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
34
|
Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: an emerging hallmark in health and diseases. J Pathol 2012; 226:380-93. [PMID: 21953325 DOI: 10.1002/path.3000] [Citation(s) in RCA: 417] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anoikis is a programmed cell death occurring upon cell detachment from the correct extracellular matrix, thus disrupting integrin ligation. It is a critical mechanism in preventing dysplastic cell growth or attachment to an inappropriate matrix. Anoikis prevents detached epithelial cells from colonizing elsewhere and is thus essential for tissue homeostasis and development. As anchorage-independent growth and epithelial-mesenchymal transition, two features associated with anoikis resistance, are crucial steps during tumour progression and metastatic spreading of cancer cells, anoikis deregulation has now evoked particular attention from the scientific community. The aim of this review is to analyse the molecular mechanisms governing both anoikis and anoikis resistance, focusing on their regulation in physiological processes, as well as in several diseases, including metastatic cancers, cardiovascular diseases and diabetes.
Collapse
Affiliation(s)
- M L Taddei
- Department of Biochemical Sciences, University of Florence, and Tumour Institute and Centre for Research, Transfer and High Education DenoTHE, Florence, Italy
| | | | | | | |
Collapse
|
35
|
Huang Q, Lan F, Zheng Z, Xie F, Han J, Dong L, Xie Y, Zheng F. Akt2 kinase suppresses glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-mediated apoptosis in ovarian cancer cells via phosphorylating GAPDH at threonine 237 and decreasing its nuclear translocation. J Biol Chem 2011; 286:42211-42220. [PMID: 21979951 DOI: 10.1074/jbc.m111.296905] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein kinase B (Akt) plays important roles in regulation of cell growth and survival, but while many aspects of its mechanism of action are known, there are potentially additional regulatory events that remain to be discovered. Here we detected a 36-kDa protein that was co-immunoprecipitated with protein kinase Bβ (Akt2) in OVCAR-3 ovarian cancer cells. The protein was identified to be glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by MALDI-TOF/TOF MS, and the interaction of Akt2 and GAPDH was verified by reverse immunoprecipitation. Our further study showed that Akt2 may suppress GAPDH-mediated apoptosis in ovarian cancer cells. Overexpression of GAPDH increased ovarian cancer cell apoptosis induced by H(2)O(2), which was inhibited by Akt2 overexpression and restored by the PI3K/Akt inhibitor wortmannin or Akt2 siRNA. Akt2 phosphorylated Thr-237 of GAPDH and decreased its nuclear translocation, an essential step for GAPDH-mediated apoptosis. The interaction between Akt2 and GAPDH may be important in ovarian cancer as immunohistochemical analysis of 10 normal and 30 cancerous ovarian tissues revealed that decreased nuclear expression of GAPDH correlated with activation (phosphorylation) of Akt2. In conclusion, our study suggests that activated Akt2 may increase ovarian cancer cell survival via inhibition of GAPDH-induced apoptosis. This effect of Akt2 is partly mediated by its phosphorylation of GAPDH at Thr-237, which results in the inhibition of GAPDH nuclear translocation.
Collapse
Affiliation(s)
- Qiaojia Huang
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China.
| | - Fenghua Lan
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Zhiyong Zheng
- Department of Pathology, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Feilai Xie
- Department of Pathology, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Junyong Han
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Lihong Dong
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Yanchuan Xie
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Feng Zheng
- Department of Nephrology, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| |
Collapse
|
36
|
Jin S, Zhou F, Katirai F, Li PL. Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 2011; 15:1043-83. [PMID: 21294649 PMCID: PMC3135227 DOI: 10.1089/ars.2010.3619] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases.
Collapse
Affiliation(s)
- Si Jin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | |
Collapse
|
37
|
Ivanovic I, Allen DT, Dighe R, Le YZ, Anderson RE, Rajala RVS. Phosphoinositide 3-kinase signaling in retinal rod photoreceptors. Invest Ophthalmol Vis Sci 2011; 52:6355-62. [PMID: 21730346 DOI: 10.1167/iovs.10-7138] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Phosphoinositide 3-kinase (PI3K) consists of a p110 catalytic protein and a p85α regulatory protein, required for the stabilization and localization of p110-PI3K activity. The biological significance of PI3K was investigated in vertebrate rod photoreceptors by deleting its regulatory p85α protein and examining its role in photoreceptor structure, function, and protein trafficking. METHODS Mice that expressed Cre recombinase in rods were bred to mice with a floxed p85α (pik3r1) regulatory subunit of PI3K to generate a conditional deletion of pik3r1 in rods. Functional and structural changes were determined by ERG and morphometric analysis, respectively. PI3K activity was measured in retinal homogenates immunoprecipitated with an anti-PY antibody. Akt activation was determined by Western blot analysis with a pAkt antibody. RESULTS Light-induced stress increased PI3K activity in retinal immunoprecipitates and phosphorylation of Akt. There was no effect of pik3r1 deletion on retinal structure. However, twin flash electroretinography revealed a slight delay in recovery kinetics in pik3r1 knockout (KO) mice compared with wild-type controls. The movement of arrestin in the pik3r1 KO mice was slower than that in the wild-type mouse retinas at 5 minutes of exposure to light. At 10 minutes of exposure, the ROS localization of arrestin was almost identical between the wild-type and pik3r1 KO mice. CONCLUSIONS The results provide the first direct evidence that rods use PI3K-generated phosphoinositides for photoreceptor function. The lack of phenotype in pik3r1 KO rod photoreceptors suggests a redundant role in controlling PIP(3) synthesis.
Collapse
Affiliation(s)
- Ivana Ivanovic
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|
38
|
Emery M, Schorderet DF, Roduit R. Acute hypoglycemia induces retinal cell death in mouse. PLoS One 2011; 6:e21586. [PMID: 21738719 PMCID: PMC3124528 DOI: 10.1371/journal.pone.0021586] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/06/2011] [Indexed: 12/30/2022] Open
Abstract
Background Glucose is the most important metabolic substrate of the retina and maintenance of normoglycemia is an essential challenge for diabetic patients. Glycemic excursions could lead to cardiovascular disease, nephropathy, neuropathy and retinopathy. A vast body of literature exists on hyperglycemia namely in the field of diabetic retinopathy, but very little is known about the deleterious effect of hypoglycemia. Therefore, we decided to study the role of acute hypoglycemia in mouse retina. Methodology/Principal Findings To test effects of hypoglycemia, we performed a 5-hour hyperinsulinemic/hypoglycemic clamp; to exclude an effect of insulin, we made a hyperinsulinemic/euglycemic clamp as control. We then isolated retinas from each group at different time-points after the clamp to analyze cells apoptosis and genes regulation. In parallel, we used 661W photoreceptor cells to confirm in vivo results. We showed herein that hypoglycemia induced retinal cell death in mouse via caspase 3 activation. We then tested the mRNA expression of glutathione transferase omega 1 (Gsto1) and glutathione peroxidase 3 (Gpx3), two genes involved in glutathione (GSH) homeostasis. The expression of both genes was up-regulated by low glucose, leading to a decrease of reduced glutathione (GSH). In vitro experiments confirmed the low-glucose induction of 661W cell death via superoxide production and activation of caspase 3, which was concomitant with a decrease of GSH content. Moreover, decrease of GSH content by inhibition with buthionine sulphoximine (BSO) at high glucose induced apoptosis, while complementation with extracellular glutathione ethyl ester (GSHee) at low glucose restored GSH level and reduced apoptosis. Conclusions/Significance We showed, for the first time, that acute insulin-induced hypoglycemia leads to caspase 3-dependant retinal cell death with a predominant role of GSH content.
Collapse
Affiliation(s)
- Martine Emery
- Institute for Research in Ophthalmology (IRO), Sion, Switzerland
- Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
| | - Daniel F. Schorderet
- Institute for Research in Ophthalmology (IRO), Sion, Switzerland
- Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Raphaël Roduit
- Institute for Research in Ophthalmology (IRO), Sion, Switzerland
- Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
39
|
Ivanovic I, Anderson RE, Le YZ, Fliesler SJ, Sherry DM, Rajala RVS. Deletion of the p85alpha regulatory subunit of phosphoinositide 3-kinase in cone photoreceptor cells results in cone photoreceptor degeneration. Invest Ophthalmol Vis Sci 2011; 52:3775-83. [PMID: 21398281 DOI: 10.1167/iovs.10-7139] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Downregulation of the retinal insulin/mTOR pathway in mouse models of retinitis pigmentosa is linked to cone cell death, which can be delayed by systemic administration of insulin. A classic survival kinase linking extracellular trophic/growth factors with intracellular antiapoptotic pathways is phosphoinositide 3-kinase (PI3K), which the authors have shown to protect rod photoreceptors from stress-induced cell death. The role of PI3K in cones was studied by conditional deletion of its p85α regulatory subunit. METHODS Mice expressing Cre recombinase in cones were bred to mice with a floxed pi3k gene encoding the p85α regulatory subunit of the PI3K and were back-crossed to ultimately generate offspring with cone-specific p85α knockout (cKO). Cre expression and cone-specific localization were confirmed by Western blot analysis and immunohistochemistry (IHC), respectively. Cone structural integrity was determined by IHC using peanut agglutinin and an M-opsin-specific antibody. Electroretinography (ERG) was used to assess rod and cone photoreceptor function. Retinal structure was examined by light and electron microscopy. RESULTS An age-related cone degeneration was found in cKO mice, evidenced by a reduction in photopic ERG amplitudes and loss of cone cells. By 12 months of age, approximately 78% of cones had died, and progressive disorganization of synaptic ultrastructure was noted in surviving cone terminals in cKO retinas. Rod viability was unaffected in p85α cKO mice. CONCLUSIONS The present study suggests that PI3K signaling pathway is essential for cone survival in the mouse retina.
Collapse
Affiliation(s)
- Ivana Ivanovic
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|
40
|
Wang X, Wang Z, Yao Y, Li J, Zhang X, Li C, Cheng Y, Ding G, Liu L, Ding Z. Essential role of ERK activation in neurite outgrowth induced by α-lipoic acid. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:827-38. [DOI: 10.1016/j.bbamcr.2011.01.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 01/29/2023]
|
41
|
Farrell SMJ, Groeger G, Bhatt L, Finnegan S, O’Brien CJ, Cotter TG. bFGF-mediated redox activation of the PI3K/Akt pathway in retinal photoreceptor cells. Eur J Neurosci 2011; 33:632-41. [DOI: 10.1111/j.1460-9568.2010.07559.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Sharma RD, Petare S, Shinde GB, Kalyan G, Reddy MVR. Novel drug designing rationale against Brugia malayi microfilariae using herbal extracts. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60204-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
43
|
Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway. Proc Natl Acad Sci U S A 2010; 107:17385-90. [PMID: 20855618 DOI: 10.1073/pnas.1003996107] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurons rely on their metabolic coupling with astrocytes to combat oxidative stress. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) appears important for astrocyte-dependent neuroprotection from oxidative insults. Indeed, Nrf2 activators are effective in stroke, Parkinson disease, and Huntington disease models. However, key endogenous signals that initiate adaptive neuroprotective cascades in astrocytes, including activation of Nrf2-mediated gene expression, remain unclear. Hydrogen peroxide (H(2)O(2)) plays an important role in cell signaling and is an attractive candidate mediator of adaptive responses in astrocytes. Here we determine (i) the significance of H(2)O(2) in promoting astrocyte-dependent neuroprotection from oxidative stress, and (ii) the relevance of H(2)O(2) in inducing astrocytic Nrf2 activation. To control the duration and level of cytoplasmic H(2)O(2) production in astrocytes cocultured with neurons, we heterologously expressed the H(2)O(2)-producing enzyme Rhodotorula gracilis D-amino acid oxidase (rgDAAO) selectively in astrocytes. Exposure of rgDAAO-astrocytes to D-alanine lead to the concentration-dependent generation of H(2)O(2). Seven hours of low-level H(2)O(2) production (∼3.7 nmol·min·mg protein) in astrocytes protected neurons from oxidative stress, but higher levels (∼130 nmol·min·mg protein) were neurotoxic. Neuroprotection occurred without direct neuronal exposure to astrocyte-derived H(2)O(2), suggesting a mechanism specific to astrocytic intracellular signaling. Nrf2 activation mimicked the effect of astrocytic H(2)O(2) yet H(2)O(2)-induced protection was independent of Nrf2. Astrocytic protein tyrosine phosphatase inhibition also protected neurons from oxidative death, representing a plausible mechanism for H(2)O(2)-induced neuroprotection. These findings demonstrate the utility of rgDAAO for spatially and temporally controlling intracellular H(2)O(2) concentrations to uncover unique astrocyte-dependent neuroprotective mechanisms.
Collapse
|
44
|
Finnegan S, Mackey AM, Cotter TG. A stress survival response in retinal cells mediated through inhibition of the serine/threonine phosphatase PP2A. Eur J Neurosci 2010; 32:322-34. [PMID: 20636478 DOI: 10.1111/j.1460-9568.2010.07301.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell survival signalling involving the PI3K/Akt survival pathway can be negatively regulated by several phosphatases including PP2A. When retinal-derived 661W cells were subjected to trophic factor deprivation this initiated a survival response through inhibition of the activity of PP2A and subsequent upregulation of the Erk and Akt survival pathways. We show this survival response via inhibition of PP2A activity was due in part to increased reactive oxygen species production when retinal cells were deprived of trophic factors. Inhibition of PP2A activity was mediated by a rapid and transient increase in phosphorylation at Tyr307, accompanied by an increase in demethylation and a decrease in the methylated form. Pre-treatment with N-acetyl-L-cysteine, which is involved in scavenging reactive oxygen species, prevented PP2A inhibition and subsequent upregulation of survival pathways. Pre-treatment with the Src family kinase inhibitor PP2 resulted in approximately 50% reduction in cellular levels of phospho-PP2A in trophic factor-deprived 661W cells, suggesting an Src tyrosine kinase had a role to play in this redox regulation of cell survival. We observed similar events in the rd10 mouse retina where there was an increased survival response prior to retinal cell death mediated through an increase in both phospho-PP2A and phospho-Gsk. Together, these results demonstrate that when retinal cells are stressed there is an initial struggle to survive, mediated through inhibition of PP2A and subsequent upregulation of survival pathways, and that these events occur simultaneously with production of reactive oxygen species, thus suggesting an important cell-signalling role for reactive oxygen species.
Collapse
Affiliation(s)
- Sorcha Finnegan
- Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
45
|
Kanan Y, Matsumoto H, Song H, Sokolov M, Anderson RE, Rajala RVS. Serine/threonine kinase akt activation regulates the activity of retinal serine/threonine phosphatases, PHLPP and PHLPPL. J Neurochem 2010; 113:477-88. [PMID: 20089132 DOI: 10.1111/j.1471-4159.2010.06609.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In our previous studies, we have shown that insulin receptor (IR) activation leads to the activation of phosphoinositide 3-kinase (PI3K) and Akt activation in rod photoreceptors. This pathway is functionally important for photoreceptor survival as deletion of IR and one of the isoforms of Akt (Akt2) resulted in stress-induced photoreceptor degeneration. However, the molecular mechanism of this degeneration is not known. Akt signaling is known to be regulated by the serine/threonine phosphatases, PH domain and leucine-rich repeat protein phosphatases (PHLPP) and PHLPP-like (PHLPPL). In this study, we characterized these two phosphatases in the retina and examined the role of IR, PI3K, and Akt signaling on the activity of PHLPP and PHLPPL. Most of the studies published on PHLPP and PHLPPL are directed toward Akt dephosphorylation; however, there are no studies available to date on how the enzyme activities of these phosphatases are regulated. We made a novel finding in this study that both PHLPP and PHLPPL activities were significantly decreased in the presence of insulin ex vivo. The insulin-induced decrease of phosphatase activities were PI3K-dependent as pre-treatment of ex vivo retinal cultures with LY294002 significantly reversed the insulin-induced inhibition. It has been shown previously that PHLPP and PHLPPL regulate the dephosphorylation of Akt isoforms, and our results demonstrate for the first time that retinal PHLPP and PHLPPL activities are under the control of the IR-activated PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yogita Kanan
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma city, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|
46
|
Pani G, Giannoni E, Galeotti T, Chiarugi P. Redox-based escape mechanism from death: the cancer lesson. Antioxid Redox Signal 2009; 11:2791-806. [PMID: 19686053 DOI: 10.1089/ars.2009.2739] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We review here current evidence on the role of reactive oxygen species (ROS) and of the intracellular redox state in governing crucial steps of the metastatic process, from cell detachment from the primary tumor to final colonization of the distant site. In particular, we discuss the redox-dependent aspects of cell glycolytic metabolism (Warburg effect), of cell juggling between different motility styles (epithelial-to-mesenchymal and mesenchymal-to-amoeboid transition), of cell resistance to anoikis and of cell interaction with the stromal components of the metastatic niche. Central to this overview is the concept that metastasis can be viewed as an integrated "escape program" triggered by redox changes and instrumental at avoiding oxidative stress within the primary tumor. In this novel perspective, metabolic, motility, and prosurvival choices of the cell along the entire metastatic process can be interpreted as exploiting redox-signaling cascades to monitor oxidative/reductive environmental cues and escape oxidative damage. We also propose that this theoretic framework be applied to "normal" evasion/invasion programs such as in inflammation and development. Furthermore, we suggest that the intimate connection between metastasis, inflammation, and stem cells results, at least in part, by the sharing of a common redox-dependent strategy for infiltration, survival, dissemination, and patterning.
Collapse
Affiliation(s)
- Giovambattista Pani
- Institute of General Pathology, Catholic University Medical School , Rome, Italy.
| | | | | | | |
Collapse
|
47
|
Abstract
Reactive oxygen species (ROS) were seen as destructive molecules, but recently, they have been shown also to act as second messengers in varying intracellular signaling pathways. This review concentrates on hydrogen peroxide (H2O2), as it is a more stable ROS, and delineates its role as a survival molecule. In the first part, the production of H2O2 through the NADPH oxidase (Nox) family is investigated. Through careful examination of Nox proteins and their regulation, it is determined how they respond to stress and how this can be prosurvival rather than prodeath. The pathways on which H2O2 acts to enable its prosurvival function are then examined in greater detail. The main survival pathways are kinase driven, and oxidation of cysteines in the active sites of various phosphatases can thus regulate those survival pathways. Regulation of transcription factors such as p53, NF-kappaB, and AP-1 also are reviewed. Finally, prodeath proteins such as caspases could be directly inhibited through their cysteine residues. A better understanding of the prosurvival role of H2O2 in cells, from the why and how it is generated to the various molecules it can affect, will allow more precise targeting of therapeutics to this pathway.
Collapse
Affiliation(s)
- Gillian Groeger
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork , Cork, Ireland
| | | | | |
Collapse
|
48
|
Abstract
Inositol pyrophosphates are involved in a variety of cellular functions, but the specific pathways and/or downstream targets remain poorly characterized. In the present study we use Saccharomyces cerevisiae mutants to examine the potential roles of inositol pyrophosphates in responding to cell damage caused by ROS (reactive oxygen species). Yeast lacking kcs1 [the S. cerevisiae IP6K (inositol hexakisphosphate kinase)] have greatly reduced IP7 (diphosphoinositol pentakisphosphate) and IP8 (bisdiphosphoinositol tetrakisphosphate) levels, and display increased resistance to cell death caused by H2O2, consistent with a sustained activation of DNA repair mechanisms controlled by the Rad53 pathway. Other Rad53-controlled functions, such as actin polymerization, appear unaffected by inositol pyrophosphates. Yeast lacking vip1 [the S. cerevisiae PP-IP5K (also known as IP7K, IP7 kinase)] accumulate large amounts of the inositol pyrophosphate IP7, but have no detectable IP8, indicating that this enzyme represents the physiological IP7 kinase. Similar to kcs1Delta yeast, vip1Delta cells showed an increased resistance to cell death caused by H2O2, indicating that it is probably the double-pyrophosphorylated form of IP8 [(PP)2-IP4] which mediates the H2O2 response. However, these inositol pyrophosphates are not involved in directly sensing DNA damage, as kcs1Delta cells are more responsive to DNA damage caused by phleomycin. We observe in vivo a rapid decrease in cellular inositol pyrophosphate levels following exposure to H2O2, and an inhibitory effect of H2O2 on the enzymatic activity of Kcs1 in vitro. Furthermore, parallel cysteine mutagenesis studies performed on mammalian IP6K1 are suggestive that the ROS signal might be transduced by the direct modification of this evolutionarily conserved class of enzymes.
Collapse
|
49
|
Walsh MM, Yi H, Friedman J, Cho KI, Tserentsoodol N, McKinnon S, Searle K, Yeh A, Ferreira PA. Gene and protein expression pilot profiling and biomarkers in an experimental mouse model of hypertensive glaucoma. Exp Biol Med (Maywood) 2009; 234:918-30. [PMID: 19491369 DOI: 10.3181/0811-rm-344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Glaucoma is a group of genetically heterogeneous neurodegenerative disorders causing the degeneration of the ganglion neurons of the retina. Increased intraocular pressure (IOP) is a hallmark risk factor promoting the death of ganglion neurons of the retina in glaucoma. Yet, the molecular processes underlying the degeneration of these neurons by increased IOP are not understood. To gain insight into the early molecular events and discover biomarkers induced by IOP, we performed gene and protein expression profiling to compare retinas of eyes with and without high IOP in a rodent model of experimental glaucoma. This pilot study found that the IOP-mediated changes in the transcription levels of a restricted set of genes implicated in peroxisomal and mitochondrial function, modulation of neuron survival and inflammatory processes, were also accompanied by changes in the levels of proteins encoded by the same genes. With the exception of the inflammatory markers, serum amyloid-A1 (SAA1) and serum amyloid-A2 (SAA2), the IOP-induced changes in protein expression were restricted to ganglion neurons of the retina and they were detected also in the vitreous, thus suggesting an early IOP-mediated loss of ganglion cell integrity. Interestingly, SAA1 and SAA2 were induced in retinal microglia cells, whereas they were reduced in sera of IOP-responsive mice. Hence, this study defines novel IOP-induced molecular processes, biomarkers and sources thereof, and it further validates the extension of the analyses herein reported to other genes modulated by IOP.
Collapse
Affiliation(s)
- Molly M Walsh
- Duke University Medical Center, Erwin Rd, DUEC 3802, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Groeger G, Mackey AM, Pettigrew CA, Bhatt L, Cotter TG. Stress-induced activation of Nox contributes to cell survival signalling via production of hydrogen peroxide. J Neurochem 2009; 109:1544-54. [DOI: 10.1111/j.1471-4159.2009.06081.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|