1
|
Oh YJ, Yon DK, Choi YS, Lee J, Yeo JH, Kim SS, Lee JM, Yeo SG. Induction of Nitric Oxide and Its Role in Facial Nerve Regeneration According to the Method of Facial Nerve Injury. Antioxidants (Basel) 2024; 13:741. [PMID: 38929179 PMCID: PMC11200877 DOI: 10.3390/antiox13060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Nitric oxide (NO) is an important molecule in cell communication that also plays an important role in many biological processes. Given the dual role of NO in nerve degeneration and regeneration after facial nerve injury, we sought to delve deeper into its role through a systematic literature review. A comprehensive review of the literature employing SCOPUS, PubMed, Cochrane Library, EMBASE, and Google Scholar databases was conducted to evaluate the induction and role of NO in neurodegeneration and regeneration after facial nerve injury. From the 20 papers ultimately reviewed, the central findings were that neuronal nitric oxide synthase(nNOS), endothelial nitric oxide synthase (eNOS), and induced nitric oxide synthase (iNOS) increased or decreased depending on the method of facial nerve damage, damaged area, harvested area, and animal age, and were correlated with degeneration and regeneration of the facial nerve. Research conducted on rats and mice demonstrated that NO, nNOS, eNOS, and iNOS play significant roles in nerve regeneration and degeneration. However, the relationship between nerve damage and NO could not be defined by a simple causal relationship. Instead, the involvement of NOS depends on the type of nerve cell, source of NO, timing, and location of expression, age of the target animal, and proximity of the damage location to the brainstem. Consequently, nNOS, eNOS, and iNOS expression levels and functions may vary significantly.
Collapse
Affiliation(s)
- Yeon Ju Oh
- Department of Medicine, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea;
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea;
- Department of Pediatrics, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea;
| | - Yong Sung Choi
- Department of Pediatrics, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea;
| | - Jinseok Lee
- Department of Biomedical Engineering, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Joon Hyung Yeo
- Public Health Center, Danyang-gun 27010, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Jae Min Lee
- Department of Otorhinolaryngology Head & Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea;
| | - Seung Geun Yeo
- Department of Otorhinolaryngology Head & Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea;
| |
Collapse
|
2
|
Jones TB, Mackey T, Juba AN, Amin K, Atyam A, McDole M, Yancy J, Thomas TC, Buhlman LM. Mild traumatic brain injury in Drosophila melanogaster alters reactive oxygen and nitrogen species in a sex-dependent manner. Exp Neurol 2024; 372:114621. [PMID: 38029809 PMCID: PMC10872660 DOI: 10.1016/j.expneurol.2023.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Traumatic brain injury (TBI) is an outside force causing a modification in brain function and/or structural brain pathology that upregulates brain inducible nitric oxide synthase (iNOS), instigating increased levels of nitric oxide activity which is implicated in secondary pathology leading to behavioral deficits (Hall et al., 2012; Garry et al., 2015; Kozlov et al., 2017). In mammals, TBI-induced NO production activates an immune response and potentiates metabolic crisis through mitochondrial dysfunction coupled with vascular dysregulation; however, the direct influence on pathology is complicated by the activation of numerous secondary cascades and activation of other reactive oxygen species. Drosophila TBI models have demonstrated key features of mammalian TBI, including temporary incapacitation, disorientation, motor deficits, activation of innate immunity (inflammation), and autophagy responses observed immediately after injury (Katzenberger et al., 2013; Barekat et al., 2016; Simon et al., 2017; Anderson et al., 2018; Buhlman et al., 2021b). We hypothesized that acute behavioral phenotypes would be associated with deficits in climbing behavior and increased oxidative stress. Because flies lack mammalian-like cardiovascular and adaptive immune systems, we were able to make our observations in the absence of vascular disruption and adaptive immune system interference in a system where highly targeted interventions can be rapidly evaluated. To demonstrate the induction of injury, ten-day-old transgenic flies received an injury of increasing angles from a modified high impact trauma (HIT) device where angle-dependent increases occurred for acute neurological behavior assessments and twenty-four-hour mortality, and survival was significantly decreased. Injury caused sex-dependent effects on climbing activity and measures of oxidative stress. Specifically, after a single 60-degree HIT, female flies exhibited significant impairments in climbing activity beyond that observed in male flies. We also found that several measures of oxidative stress, including Drosophila NOS (dNOS) expression, protein nitration, and hydrogen peroxide production were significantly decreased in female flies. Interestingly, protein nitration was also decreased in males, but surpassed sham levels with a more severe injury. We also observed decreased autophagy demand in vulnerable dopaminergic neurons in female, but not male flies. In addition, mitophagy initiation was decreased in females. Collectively, our data suggest that TBI in flies induces acute behavioral phenotypes and climbing deficits that are analogous to mammalian TBI. We also observed that various indices of oxidative stress, including dNOS expression, protein tyrosine nitration, and hydrogen peroxide levels, as well as basal levels of autophagy, are altered in response to injury, an effect that is more pronounced in female flies.
Collapse
Affiliation(s)
- T Bucky Jones
- College of Graduate Studies, Midwestern University, Glendale, AZ, USA; Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Tracy Mackey
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Amber N Juba
- College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Kush Amin
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Amruth Atyam
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Madison McDole
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Jarod Yancy
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Phoenix VA Health Care System, Phoenix, AZ, USA.
| | - Lori M Buhlman
- College of Graduate Studies, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
3
|
Iova OM, Marin GE, Lazar I, Stanescu I, Dogaru G, Nicula CA, Bulboacă AE. Nitric Oxide/Nitric Oxide Synthase System in the Pathogenesis of Neurodegenerative Disorders-An Overview. Antioxidants (Basel) 2023; 12:antiox12030753. [PMID: 36979000 PMCID: PMC10045816 DOI: 10.3390/antiox12030753] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Nitric oxide, a ubiquitous molecule found throughout the natural world, is a key molecule implicated in many central and benefic molecular pathways and has a well-established role in the function of the central nervous system, as numerous studies have previously shown. Dysregulation of its metabolism, mainly the upregulation of nitric oxide production, has been proposed as a trigger and/or aggravator for many neurological affections. Increasing evidence supports the implication of this molecule in prevalent neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, or amyotrophic lateral sclerosis. The mechanisms proposed for its neurotoxicity mainly center around the increased quantities of nitric oxide that are produced in the brain, their cause, and, most importantly, the pathological metabolic cascades created. These cascades lead to the formation of neuronal toxic substances that impair the neurons' function and structure on multiple levels. The purpose of this review is to present the main causes of increased pathological production, as well as the most important pathophysiological mechanisms triggered by nitric oxide, mechanisms that could help explain a part of the complex picture of neurodegenerative diseases and help develop targeted therapies.
Collapse
Affiliation(s)
- Olga-Maria Iova
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Gheorghe-Eduard Marin
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Izabella Lazar
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Stanescu
- Department of Neurology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Gabriela Dogaru
- Department of Physical Medicine and Rehabilitation, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Viilor Street, No. 46-50, 400347 Cluj-Napoca, Romania
| | - Cristina Ariadna Nicula
- Department of Ophthalmology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adriana Elena Bulboacă
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Jurcau A, Ardelean AI. Oxidative Stress in Ischemia/Reperfusion Injuries following Acute Ischemic Stroke. Biomedicines 2022; 10:biomedicines10030574. [PMID: 35327376 PMCID: PMC8945353 DOI: 10.3390/biomedicines10030574] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recanalization therapy is increasingly used in the treatment of acute ischemic stroke. However, in about one third of these patients, recanalization is followed by ischemia/reperfusion injuries, and clinically to worsening of the neurological status. Much research has focused on unraveling the involved mechanisms in order to prevent or efficiently treat these injuries. What we know so far is that oxidative stress and mitochondrial dysfunction are significantly involved in the pathogenesis of ischemia/reperfusion injury. However, despite promising results obtained in experimental research, clinical studies trying to interfere with the oxidative pathways have mostly failed. The current article discusses the main mechanisms leading to ischemia/reperfusion injuries, such as mitochondrial dysfunction, excitotoxicity, and oxidative stress, and reviews the clinical trials with antioxidant molecules highlighting recent developments and future strategies.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Department of Neurology, Clinical Municipal Hospital Oradea, Louis Pasteur Street nr 26, 410054 Oradea, Romania
- Correspondence: ; Tel.: +40-744-600-833
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Universitatii Street nr 1, 410087 Oradea, Romania;
- Department of Cardiology, Clinical Emergency County Hospital Oradea, Gh. Doja Street nr 65, 410169 Oradea, Romania
| |
Collapse
|
5
|
Choi JH, Poli S, Chen M, Nguyen TN, Saver JL, Matouk C, Pile-Spellman J. Selective Brain Hypothermia in Acute Ischemic Stroke: Reperfusion Without Reperfusion Injury. Front Neurol 2020; 11:594289. [PMID: 33281733 PMCID: PMC7691595 DOI: 10.3389/fneur.2020.594289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/15/2020] [Indexed: 01/19/2023] Open
Abstract
In acute ischemic stroke, early recanalization of the occluded artery is crucial for best outcome to be achieved. Recanalization aims at restoring blood flow to the ischemic tissue (reperfusion) and is achieved with pharmacological thrombolytic drugs, endovascular thrombectomy (EVT) devices, or both. The introduction of modern endovascular devices has led to tremendous anatomical and clinical success with rates of substantial reperfusion exceeding 80% and proven clinical benefit in patients with anterior circulation large vessel occlusions (LVOs). However, not every successful reperfusion procedure leads to the desired clinical outcome. In fact, the rate of non-disabled outcome at 3 months with current EVT treatment is ~1 out of 4. A constraint upon better outcomes is that reperfusion, though resolving ischemic stress, may not restore the anatomic structures and metabolic functions of ischemic tissue to their baseline states. In fact, ischemia triggers a complex cascade of destructive mechanisms that can sometimes be exacerbated rather than alleviated by reperfusion therapy. Such reperfusion injury may cause infarct progression, intracranial hemorrhage, and unfavorable outcome. Therapeutic hypothermia has been shown to have a favorable impact on the molecular elaboration of ischemic injury, but systemic hypothermia is limited by slow speed of attaining target temperatures and clinical complications. A novel approach is endovascular delivery of hypothermia to cool the affected brain tissue selectively and rapidly with tight local temperature control, features not available with systemic hypothermia devices. In this perspective article, we discuss the possible benefits of adjunctive selective endovascular brain hypothermia during interventional stroke treatment.
Collapse
Affiliation(s)
- Jae H. Choi
- Neurovascular Center, Neurological Surgery, P.C., Lake Success, NY, United States
- Hybernia Medical, LLC, New Rochelle, NY, United States
| | - Sven Poli
- Department of Neurology & Stroke, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Michael Chen
- Stroke Center, Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Thanh N. Nguyen
- Interventional Neurology/Neuroradiology, Boston University School of Medicine, Boston, MA, United States
| | - Jeffrey L. Saver
- Comprehensive Stroke Center and Department of Neurology, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Charles Matouk
- Neurovascular Surgery, Department of Neurosurgery, Yale University-New Haven Hospital, New Haven, CT, United States
| | - John Pile-Spellman
- Neurovascular Center, Neurological Surgery, P.C., Lake Success, NY, United States
- Hybernia Medical, LLC, New Rochelle, NY, United States
| |
Collapse
|
6
|
Kohama H, Kusunoki-Ii M, Kato K, Kato M, Kato S. Immunohistochemical and ultrastructural evidence for the pathogenesis of white matter degeneration in patients with panencephalopathic-type Creutzfeldt-Jakob disease: Inducible nitric oxide synthase overexpression in bizarre astrocytes. Neuropathology 2020; 40:319-327. [PMID: 32236982 DOI: 10.1111/neup.12646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 11/29/2022]
Abstract
Excessive production of nitric oxide (NO) due to the overinduction of inducible nitric oxide synthase (iNOS) has a severe cytotoxic effect, which may relate to the pathogenesis of neurodegenerative disorders. In this study, we report the novel finding that iNOS is overinduced in a large number of bizarre astrocytes in the white matter of patients with panencephalopathic (PE)-type Creutzfeldt-Jakob disease (CJD). This study was carried out on brain tissue from seven patients with PE-type CJD. As controls, 12 normal individuals and nine patients with cerebral infarction were examined. We identified a large number of bizarre astrocytes in the degenerative cerebral white matter in PE-type CJD. Using immunohistochemistry, only bizarre astrocytes in PE-type CJD showed strong immunoreactivity for both iNOS and superoxide dismutase 1 (SOD1). Ultrastructural examination demonstrated that these bizarre astrocytes contained many free polyribosome-like granules. No significant iNOS immunoreactivity was observed in either the astrocytes of patients with cerebral infarcts or in the normal controls. This study suggests that the iNOS-overexpressing astrocytes, especially iNOS-overexpressing bizarre astrocytes, could play an important role in the development of white matter lesions in PE-type CJD. Our data also suggest that the bizarre astrocytes could be protecting themselves from the cytotoxicity of NO by producing SOD1. These immunohistochemical findings are supported by the ultrastructural observation of numerous polyribosome granules restricted to the cytoplasm of these bizarre astrocytes.
Collapse
Affiliation(s)
- Hiroshi Kohama
- Division of Neuropathology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Masahiro Kusunoki-Ii
- Division of Neuropathology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kiyota Kato
- School of Medicine, Hiroshima University, Hiroshima, Japan
| | - Masako Kato
- Division of Pathology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Shinsuke Kato
- Division of Neuropathology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
7
|
Peng T, Jiang Y, Farhan M, Lazarovici P, Chen L, Zheng W. Anti-inflammatory Effects of Traditional Chinese Medicines on Preclinical in vivo Models of Brain Ischemia-Reperfusion-Injury: Prospects for Neuroprotective Drug Discovery and Therapy. Front Pharmacol 2019; 10:204. [PMID: 30930774 PMCID: PMC6423897 DOI: 10.3389/fphar.2019.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Acquired brain ischemia-and reperfusion-injury (IRI), including both Ischemic stroke (IS) and Traumatic Brain injury (TBI), is one of the most common causes of disability and death in adults and represents a major burden in both western and developing countries worldwide. China’s clinical neurological therapeutic experience in the use of traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, TCM formulations and decoction, in brain IRI diseases indicated a trend of significant improvement in patients’ neurological deficits, calling for blind, placebo-controlled and randomized clinical trials with careful meta-analysis evaluation. There are many TCMs in use for brain IRI therapy in China with significant therapeutic effects in preclinical studies using different brain IRI-animal. The basic hypothesis in this field claims that in order to avoid the toxicity and side effects of the complex TCM formulas, individual isolated and identified compounds that exhibited neuroprotective properties could be used as lead compounds for the development of novel drugs. China’s efforts in promoting TCMs have contributed to an explosive growth of the preclinical research dedicated to the isolation and identification of TCM-derived neuroprotective lead compounds. Tanshinone, is a typical example of TCM-derived lead compounds conferring neuroprotection toward IRI in animals with brain middle cerebral artery occlusion (MCAO) or TBI models. Recent reports show the significance of the inflammatory response accompanying brain IRI. This response appears to contribute to both primary and secondary ischemic pathology, and therefore anti-inflammatory strategies have become popular by targeting pro-inflammatory and anti-inflammatory cytokines, other inflammatory mediators, reactive oxygen species, nitric oxide, and several transcriptional factors. Here, we review recent selected studies and discuss further considerations for critical reevaluation of the neuroprotection hypothesis of TCMs in IRI therapy. Moreover, we will emphasize several TCM’s mechanisms of action and attempt to address the most promising compounds and the obstacles to be overcome before they will enter the clinic for IRI therapy. We hope that this review will further help in investigations of neuroprotective effects of novel molecular entities isolated from Chinese herbal medicines and will stimulate performance of clinical trials of Chinese herbal medicine-derived drugs in IRI patients.
Collapse
Affiliation(s)
- Tangming Peng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Yizhou Jiang
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Mohd Farhan
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Philip Lazarovici
- Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
8
|
Yi H, Huang G, Zhang K, Liu S, Xu W. HSP70 protects rats and hippocampal neurons from central nervous system oxygen toxicity by suppression of NO production and NF-κB activation. Exp Biol Med (Maywood) 2019; 243:770-779. [PMID: 29763367 DOI: 10.1177/1535370218773982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During diving, central nervous system oxygen toxicity may cause drowning or barotrauma, which has dramatically limited the working benefits of hyperbaric oxygen in underwater operations and clinical applications. The aim of this study is to understand the effects and the underlying mechanism of heat shock protein 70 on central nervous system oxygen toxicity and its mechanisms in vivo and in vitro. Rats were given geranylgeranylacetone (800 mg/kg) orally to induce hippocampal expression of heat shock protein 70 and then treated with hyperbaric oxygen. The time course of hippocampal heat shock protein 70 expression after geranylgeranylacetone administration was measured. Seizure latency and first electrical discharge were recorded to evaluate the effects of HSP70 on central nervous system oxygen toxicity. Effects of inhibitors of nitric oxide synthase and nuclear factor-κB on the seizure latencies and changes in nitric oxide, nitric oxide synthase, and nuclear factor-κB levels in the hippocampus tissues were examined. In cell experiments, hippocampal neurons were transfected with a virus vector carrying the heat shock protein 70 gene (H3445) before hyperbaric oxygen treatment. Cell viability, heat shock protein 70 expression, nitric oxide, nitric oxide synthase, and NF-κB levels in neurons were measured. The results showed that heat shock protein 70 expression significantly increased and peaked at 48 h after geranylgeranylacetone was given. Geranylgeranylacetone prolonged the first electrical discharge and seizure latencies, which was reversed by neuronal nitric oxide synthase, inducible nitric oxide synthase and NF-κB inhibitors. Nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels in the hippocampus were significantly increased after hyperbaric oxygen exposure, but reversed by geranylgeranylacetone, while heat shock protein 70 inhibitor quercetin could inhibit this effect of geranylgeranylacetone. In the in vitro study, heat shock protein 70-overexpression decreased the nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels as well as the cytoplasm/nucleus ratio of nuclear factor-κB and protected neurons from hyperbaric oxygen-induced cell injury. In conclusion, overexpression of heat shock protein 70 in hippocampal neurons may protect rats from central nervous system oxygen toxicity by suppression of neuronal nitric oxide synthase and inducible nitric oxide synthase-mediated nitric oxide production and translocation of nuclear factor-κB to nucleus. Impact statement Because the pathogenesis of central nervous system oxygen toxicity (CNS-OT) remains unclear, there are few interventions available. To develop an efficient strategy against CNS-OT, it is necessary to understand its pathogenesis and in particular, the relevant key factors involved. This study examined the protective effects of heat shock protein 70 (HSP70) on CNS-OT via in vivo and in vitro experiments. Our results indicated that overexpression of HSP70 in hippocampal neurons may protect rats from CNS-OT by suppression of nNOS and iNOS-mediated NO production and the activation of NF-κB. These findings contribute to clarification of the role of HSP70 in CNS-OT and provide us a potential novel target to prevent CNS-OT. Clarification of the involvement of NO, NOS and NF-κB provides new insights into the mechanism of CNS-OT and may help us to develop new approach against it by interfering these molecules.
Collapse
Affiliation(s)
- Hongjie Yi
- Department of Diving Medicine, Naval Medical University, Shanghai 200433, China
| | - Guoyang Huang
- Department of Diving Medicine, Naval Medical University, Shanghai 200433, China
| | - Kun Zhang
- Department of Diving Medicine, Naval Medical University, Shanghai 200433, China
| | - Shulin Liu
- Department of Aviation Medicine, Naval Medical University, Shanghai 200433, China
| | - Weigang Xu
- Department of Diving Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
9
|
Choi JH, Pile-Spellman J. Reperfusion Changes After Stroke and Practical Approaches for Neuroprotection. Neuroimaging Clin N Am 2019; 28:663-682. [PMID: 30322601 DOI: 10.1016/j.nic.2018.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reperfusion is the first line of care in a growing number of eligible acute ischemic stroke patients. Early reperfusion with thrombolytic drugs and endovascular mechanical devices is associated with improved outcome and lower mortality rates compared with natural history. Reperfusion is not without risk, however, and may result in reperfusion injury, which manifests in hemorrhagic transformation, brain edema, infarct progression, and neurologic worsening. In this article, the functional and structural changes and underlying molecular mechanisms of ischemia and reperfusion are reviewed. The pathways that lead to reperfusion injury and novel neuroprotective strategies with endogenous properties are discussed.
Collapse
Affiliation(s)
- Jae H Choi
- Center for Unruptured Brain Aneurysms, Neurological Surgery PC, 1991 Marcus Avenue, Suite 108, Lake Success, NY 11042, USA; Department of Neurology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; Hybernia Medical LLC, 626 RexCorp Plaza, Uniondale, NY 11556, USA.
| | - John Pile-Spellman
- Center for Unruptured Brain Aneurysms, Neurological Surgery PC, 1991 Marcus Avenue, Suite 108, Lake Success, NY 11042, USA; Hybernia Medical LLC, 626 RexCorp Plaza, Uniondale, NY 11556, USA
| |
Collapse
|
10
|
Huang YJ, Yuan YJ, Liu YX, Zhang MY, Zhang JG, Wang TC, Zhang LN, Hu YY, Li L, Xian XH, Qi J, Zhang M. Nitric Oxide Participates in the Brain Ischemic Tolerance Induced by Intermittent Hypobaric Hypoxia in the Hippocampal CA1 Subfield in Rats. Neurochem Res 2018; 43:1779-1790. [PMID: 29995175 DOI: 10.1007/s11064-018-2593-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/23/2018] [Accepted: 07/05/2018] [Indexed: 12/30/2022]
Abstract
Previous studies have shown that intermittent hypobaric hypoxia (IH) preconditioning protected neurons survival from brain ischemia. However, the mechanism remains to be elucidated. The present study explored the role of nitric oxide (NO) in the process by measuring the expression of NO synthase (NOS) and NO levels. Male Wistar rats (100) were randomly assigned into four groups: sham group, IH + sham group, ischemia group and IH + ischemia group. Rats for IH preconditioning were exposed to hypobaric hypoxia mimicking 5000 m high-altitude (PB = 404 mmHg, PO2 = 84 mmHg) 6 h/day, once daily for 28 days. Global brain ischemia was established by four-vessel occlusion that has been created by Pulsinelli. Rats were sacrificed at 7th day after the ischemia for neuropathological evaluation by thionin stain. In addition, the expression of neuronal NOS (nNOS), inducible NOS (iNOS), and NO content in the hippocampal CA1 subfield were measured at 2nd day and 7th day after the ischemia. Results revealed that global brain ischemia engendered delayed neuronal death (DND), both nNOS and iNOS expression up-regulated, and NO content increased in the hippocampal CA1 subfield. IH preconditioning reduced neuronal injury induced by the ischemia, and prevented the up-regulation of NOS expression and NO production. In addition, L-NAME + ischemia group was designed to detect whether depressing NO production could alleviate the DND. Pre-administration of L-NAME alleviated DND induced by the ischemia. These results suggest that IH preconditioning plays a protective role by inhibiting the over expression of NOS and NO content after brain ischemia.
Collapse
Affiliation(s)
- Ya-Jie Huang
- Undergraduate of Clinical Medicine, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Yu-Jia Yuan
- Undergraduate of Clinical Medicine, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Yi-Xian Liu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Meng-Yue Zhang
- Undergraduate of Clinical Medicine, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Jing-Ge Zhang
- Department of Pathophysiology, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
| | - Tian-Ci Wang
- Undergraduate of Clinical Medicine, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Li-Nan Zhang
- Department of Pathophysiology, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yu-Yan Hu
- Department of Pathophysiology, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Li Li
- Department of Science and Technology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, People's Republic of China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Jie Qi
- Department of Pathophysiology, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China. .,Aging and Cognition Neuroscience Laboratory of Hebei Province, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
11
|
NOS3 Inhibition Confers Post-Ischemic Protection to Young and Aging White Matter Integrity by Conserving Mitochondrial Dynamics and Miro-2 Levels. J Neurosci 2018; 38:6247-6266. [PMID: 29891729 DOI: 10.1523/jneurosci.3017-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 01/01/2023] Open
Abstract
White matter (WM) damage following a stroke underlies a majority of the neurological disability that is subsequently observed. Although ischemic injury mechanisms are age-dependent, conserving axonal mitochondria provides consistent post-ischemic protection to young and aging WM. Nitric oxide synthase (NOS) activation is a major cause of oxidative and mitochondrial injury in gray matter during ischemia; therefore, we used a pure WM tract, isolated male mouse optic nerve, to investigate whether NOS inhibition provides post-ischemic functional recovery by preserving mitochondria. We show that pan-NOS inhibition applied before oxygen-glucose deprivation (OGD) promotes functional recovery of young and aging axons and preserves WM cellular architecture. This protection correlates with reduced nitric oxide (NO) generation, restored glutathione production, preserved axonal mitochondria and oligodendrocytes, and preserved ATP levels. Pan-NOS inhibition provided post-ischemic protection to only young axons, whereas selective inhibition of NOS3 conferred post-ischemic protection to both young and aging axons. Concurrently, genetic deletion of NOS3 conferred long-lasting protection to young axons against ischemia. OGD upregulated NOS3 levels in astrocytes, and we show for the first time that inhibition of NOS3 generation in glial cells prevents axonal mitochondrial fission and restores mitochondrial motility to confer protection to axons by preserving Miro-2 levels. Interestingly, NOS1 inhibition exerted post-ischemic protection selectively to aging axons, which feature age-dependent mechanisms of oxidative injury in WM. Our study provides the first evidence that inhibition of glial NOS activity confers long-lasting benefits to WM function and structure and suggests caution in defining the role of NO in cerebral ischemia at vascular and cellular levels.SIGNIFICANCE STATEMENT White matter (WM) injury during stroke is manifested as the subsequent neurological disability in surviving patients. Aging primarily impacts CNS WM and mechanisms of ischemic WM injury change with age. Nitric oxide is involved in various mitochondrial functions and we propose that inhibition of glia-specific nitric oxide synthase (NOS) isoforms promotes axon function recovery by preserving mitochondrial structure, function, integrity, and motility. Using electrophysiology and three-dimensional electron microscopy, we show that NOS3 inhibition provides a common target to improve young and aging axon function, whereas NOS1 inhibition selectively protects aging axons when applied after injury. This study provides the first evidence that inhibition of glial cell NOS activity confers long-lasting benefits to WM structure and function.
Collapse
|
12
|
Hao L, Wei X, Guo P, Zhang G, Qi S. Neuroprotective Effects of Inhibiting Fyn S-Nitrosylation on Cerebral Ischemia/Reperfusion-Induced Damage to CA1 Hippocampal Neurons. Int J Mol Sci 2016; 17:ijms17071100. [PMID: 27420046 PMCID: PMC4964476 DOI: 10.3390/ijms17071100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/10/2016] [Accepted: 07/04/2016] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the effects of Fyn S-nitrosylation on brain damage. In vitro, Fyn could be S-nitrosylated by S-nitrosoglutathione (GSNO, an exogenous NO donor), and in vivo, endogenous NO synthesized by NO synthases (NOS) could enhance Fyn S-nitrosylation. Application of GSNO, 7-nitroindazole (7-NI, an inhibitor of neuronal NOS) and hydrogen maleate (MK-801, the N-methyl-d-aspartate receptor (NMDAR) antagonist) could decrease the S-nitrosylation and phosphorylation of Fyn induced by cerebral ischemia/reperfusion (I/R). Cresyl violet staining validated that these compounds exerted neuroprotective effects against the cerebral I/R-induced damage to hippocampal CA1 neurons. Taken together, in this study, we demonstrated that Fyn can be S-nitrosylated both in vitro and in vivo and that inhibiting S-nitrosylation can exert neuroprotective effects against cerebral I/R injury, potentially via NMDAR-mediated mechanisms. These findings may lead to a new field of inquiry to investigate the underlying pathogenesis of stroke and the development of novel treatment strategies.
Collapse
Affiliation(s)
- Lingyun Hao
- Research Center for Biochemistry and Molecular Biology, and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221002, China.
- Jiangsu Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221002, China.
| | - Xuewen Wei
- Research Center for Biochemistry and Molecular Biology, and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221002, China.
- Department of Laboratory Medicine, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| | - Peng Guo
- Research Center for Biochemistry and Molecular Biology, and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221002, China.
| | - Guangyi Zhang
- Research Center for Biochemistry and Molecular Biology, and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221002, China.
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology, and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
13
|
Abstract
All nervous system cell types can be induced with cytokines or bacterial products to make nitric oxide, at least in culture. The signaling pathways invoked by inducers that result in transcriptional activation of the nitric oxide synthase gene are becoming clear, and modulators of this induction have been discovered. Much suggestive and, recently, more definitive evidence has accumulated for induction of nitric oxide synthase in glial cells in vivo associated with viral infection, as well as in animal models of trauma, ischemia, and autoimmunity. Whether nitric oxide from this source contributes to or limits the attendant conditions is not yet clear. The Neuroscientist 2:90-99, 1996
Collapse
Affiliation(s)
| | - Dana Grzybicki
- Department of Pathology University of Iowa College of
Medicine Iowa City, Iowa
| |
Collapse
|
14
|
Immediate Remote Ischemic Postconditioning Reduces Brain Nitrotyrosine Formation in a Piglet Asphyxia Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5763743. [PMID: 27379176 PMCID: PMC4917706 DOI: 10.1155/2016/5763743] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/21/2016] [Accepted: 03/27/2016] [Indexed: 11/18/2022]
Abstract
Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention that could be administered as an alternative to cooling in cases of perinatal hypoxia-ischemia (HI). In the current study we hypothesized that RIPostC in the piglet model of birth asphyxia confers protection by reducing nitrosative stress and subsequent nitrotyrosine formation, as well as having an effect on glial immunoreactivity. Postnatal day 1 (P1) piglets underwent HI brain injury and were randomised to HI (control) or HI + RIPostC. Immunohistochemistry assessment 48 hours after HI revealed a significant decrease in brain nitrotyrosine deposits in the RIPostC-treated group (p = 0.02). This was accompanied by a significant increase in eNOS expression (p < 0.0001) and decrease in iNOS (p = 0.010), with no alteration in nNOS activity. Interestingly, RIPostC treatment was associated with a significant increase in GFAP (p = 0.002) and IBA1 (p = 0.006), markers of astroglial and microglial activity, respectively. The current study demonstrates a beneficial effect of RIPostC therapy in the preclinical piglet model of neonatal asphyxia, which appears to be mediated by modulation of nitrosative stress, despite glial activation.
Collapse
|
15
|
Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:232789. [PMID: 26379739 PMCID: PMC4561866 DOI: 10.1155/2015/232789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/20/2014] [Indexed: 12/11/2022]
Abstract
Antrodia camphorata (A. camphorata) is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO) rats. A selective occlusion of the middle cerebral artery (MCA) with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone or combined with aspirin (5 mg/kg/day). To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS), haem oxygenase-1 (HO-1), and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P < 0.001), iNOS (P < 0.001), and Bax (P < 0.01) in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day). Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P < 0.01). Moreover, treatment of A. camphorata significantly (P < 0.05) reduced fenton reaction-induced hydroxyl radical (OH•) formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH• signals.
Collapse
|
16
|
Khan M, Dhammu TS, Matsuda F, Singh AK, Singh I. Blocking a vicious cycle nNOS/peroxynitrite/AMPK by S-nitrosoglutathione: implication for stroke therapy. BMC Neurosci 2015; 16:42. [PMID: 26174015 PMCID: PMC4502912 DOI: 10.1186/s12868-015-0179-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/06/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stroke immediately sets into motion sustained excitotoxicity and calcium dysregulation, causing aberrant activity in neuronal nitric oxide synthase (nNOS) and an imbalance in the levels of nitric oxide (NO). Drugs targeting nNOS-originated toxicity may therefore reduce stroke-induced damage. Recently, we observed that a redox-modulating agent of the NO metabolome, S-nitrosoglutathione (GSNO), confers neurovascular protection by reducing the levels of peroxynitrite, a product of aberrant NOS activity. We therefore investigated whether GSNO-mediated neuroprotection and improved neurological functions depend on blocking nNOS/peroxynitrite-associated injurious mechanisms using a rat model of cerebral ischemia reperfusion (IR). RESULTS IR increased the activity of nNOS, the levels of neuronal peroxynitrite and phosphorylation at Ser(1412) of nNOS. GSNO treatment of IR animals decreased IR-activated nNOS activity and neuronal peroxynitrite levels by reducing nNOS phosphorylation at Ser(1412). The Ser(1412) phosphorylation is associated with increased nNOS activity. Supporting the notion that nNOS activity and peroxynitrite are deleterious following IR, inhibition of nNOS by its inhibitor 7-nitroindazole or reducing peroxynitrite by its scavenger FeTPPS decreased IR injury. GSNO also decreased the activation of AMP Kinase (AMPK) and its upstream kinase LKB1, both of which were activated in IR brain. AMPK has been implicated in nNOS activation via Ser(1412) phosphorylation. To determine whether AMPK activation is deleterious in the acute phase of IR, we treated animals after IR with AICAR (an AMPK activator) and compound c (an AMPK inhibitor). While AICAR potentiated, compound c reduced the IR injury. CONCLUSIONS Taken together, these results indicate an injurious nNOS/peroxynitrite/AMPK cycle following stroke, and GSNO treatment of IR inhibits this vicious cycle, resulting in neuroprotection and improved neurological function. GSNO is a natural component of the human body, and its exogenous administration to humans is not associated with any known side effects. Currently, the FDA-approved thrombolytic therapy suffers from a lack of neuronal protective activity. Because GSNO provides neuroprotection by ameliorating stroke's initial and causative injuries, it is a candidate of translational value for stroke therapy.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Fumiyo Matsuda
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA. .,School of Health Science, Kagoshima University, Kagoshima, Japan.
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA. .,Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
17
|
Sildenafil attenuates inflammation and oxidative stress in pelvic ganglia neurons after bilateral cavernosal nerve damage. Int J Mol Sci 2014; 15:17204-20. [PMID: 25264738 PMCID: PMC4227157 DOI: 10.3390/ijms151017204] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022] Open
Abstract
Erectile dysfunction is a common complication for patients undergoing surgeries for prostate, bladder, and colorectal cancers, due to damage of the nerves associated with the major pelvic ganglia (MPG). Functional re-innervation of target organs depends on the capacity of the neurons to survive and switch towards a regenerative phenotype. PDE5 inhibitors (PDE5i) have been successfully used in promoting the recovery of erectile function after cavernosal nerve damage (BCNR) by up-regulating the expression of neurotrophic factors in MPG. However, little is known about the effects of PDE5i on markers of neuronal damage and oxidative stress after BCNR. This study aimed to investigate the changes in gene and protein expression profiles of inflammatory, anti-inflammatory cytokines and oxidative stress related-pathways in MPG neurons after BCNR and subsequent treatment with sildenafil. Our results showed that BCNR in Fisher-344 rats promoted up-regulation of cytokines (interleukin- 1 (IL-1) β, IL-6, IL-10, transforming growth factor β 1 (TGFβ1), and oxidative stress factors (Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, Myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), TNF receptor superfamily member 5 (CD40) that were normalized by sildenafil treatment given in the drinking water. In summary, PDE5i can attenuate the production of damaging factors and can up-regulate the expression of beneficial factors in the MPG that may ameliorate neuropathic pain, promote neuroprotection, and favor nerve regeneration.
Collapse
|
18
|
Yen TL, Ong ET, Lin KH, Chang CC, Jayakumar T, Lin SC, Fong TH, Sheu JR. Potential advantages of Chinese medicine Taohong Siwu Decoction () combined with tissue-plasminogen activator for alleviating middle cerebral artery occlusion-induced embolic stroke in rats. Chin J Integr Med 2014. [PMID: 25253548 DOI: 10.1007/s11655-014-1847-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To investigate whether combination treatment with Taohong Siwu Decoction (, TSD) and recombinant tissue-type plasminogen activator (rt-PA) potentiate in reducing infarct volume and alleviate thromboembolic stroke in an in vivo rat model. METHOD Adult male Wistar rats were subjected to embolic middle cerebral artery occlusion (MCAO) and treated with rt-PA (4 and 8 mg/kg) alone (n=5), TSD [0.7 g/(kg·day)] alone (n=5), combination of rt-PA and TSD, 24 h after stroke. Rats were sacrificed at 14 days after treatment and lesion volumes were measured. To investigate the underlying mechanism of neuroprotective effect of the combination treatment, cleaved caspase-3, tumor necrosis factor alpha (TNF-α), hypoxia-inducible factor (HIF)-1α, and inducible nitric oxide synthase (iNOS) immunostaining were performed. RESULTS Combination treatment significantly reduced infarct volume of cerebral ischemic regions compared with treatment of rt-PA and TSD alone and that of the saline control group (P<0.01). A combined treatment of rt-PA (4 mg/kg) with TSD [0.7 g/(kg·day)] significantly increased cerebral blood flow in a time (100 and 120 min) dependent manner (P<0.05). Interestingly, despite treatment of rt-PA (4 mg/kg) alone significantly reduced the expressions of HIF-1α, TNF-α, and iNOS in ischemic regions, reduction of these expressions were more potentiated when combined with TSD (P<0.05). Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared with the MCAO group (P<0.01). CONCLUSIONS A combination of low-dose rt-PA and TSD after embolic stroke reduced infarct volume, improved cerebral blood flow and provided neuroprotection and these effects were associated with reduction of apoptosis and attenuation of HIF-1α, TNF-α and iNOS expression. These results provide a positive contribution to better understand the therapeutic value of the combination of TSD with rt-PA in ischemic stroke and may support further clinical evaluation.
Collapse
Affiliation(s)
- Ting-Lin Yen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan, 110, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Garcia-Bonilla L, Moore JM, Racchumi G, Zhou P, Butler JM, Iadecola C, Anrather J. Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:2531-7. [PMID: 25038255 DOI: 10.4049/jimmunol.1400918] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NO produced by inducible NO synthase (iNOS) contributes to ischemic brain injury, but the cell types expressing iNOS and mediating tissue damage have not been elucidated. To examine the relative contribution of iNOS in resident brain cells and peripheral leukocytes infiltrating the ischemic brain, we used bone marrow (BM) chimeric mice in which the middle cerebral artery was occluded and infarct volume was determined 3 d later. iNOS(-/-) mice engrafted with iNOS(+/+) BM exhibited larger infarcts (44 ± 2 mm(3); n = 13; mean ± SE) compared with autologous transplanted iNOS(-/-) mice (24 ± 3 mm(3); n = 10; p < 0.01), implicating blood-borne leukocytes in the damage. Furthermore, iNOS(+/+) mice transplanted with iNOS(-/-) BM had large infarcts (39 ± 6 mm(3); n = 13), similar to those of autologous transplanted iNOS(+/+) mice (39 ± 4 mm(3); n = 14), indicating the resident brain cells also play a role. Flow cytometry and cell sorting revealed that iNOS is highly expressed in neutrophils and endothelium but not microglia. Surprisingly, postischemic iNOS expression was enhanced in the endothelium of iNOS(+/+) mice transplanted with iNOS(-/-) BM and in leukocytes of iNOS(-/-) mice with iNOS(+/+) BM, suggesting that endothelial iNOS suppresses iNOS expression in leukocytes and vice versa. To provide independent evidence that neutrophils mediate brain injury, neutrophils were isolated and transferred to mice 24 h after stroke. Consistent with the result in chimeric mice, transfer of iNOS(+/+), but not iNOS(-/-), neutrophils into iNOS(-/-) mice increased infarct volume. The findings establish that iNOS in both neutrophils and endothelium mediates tissue damage and identify these cell types as putative therapeutic targets for stroke injury.
Collapse
Affiliation(s)
- Lidia Garcia-Bonilla
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021; and
| | - Jamie M Moore
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021; and
| | - Gianfranco Racchumi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021; and
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021; and
| | - Jason M Butler
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10021
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021; and
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021; and
| |
Collapse
|
20
|
Jiang Z, Li C, Arrick DM, Yang S, Baluna AE, Sun H. Role of nitric oxide synthases in early blood-brain barrier disruption following transient focal cerebral ischemia. PLoS One 2014; 9:e93134. [PMID: 24671193 PMCID: PMC3966853 DOI: 10.1371/journal.pone.0093134] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/28/2014] [Indexed: 12/29/2022] Open
Abstract
The role of nitric oxide synthases (NOSs) in early blood-brain barrier (BBB) disruption was determined using a new mouse model of transient focal cerebral ischemia. Ischemia was induced by ligating the middle cerebral artery (MCA) at its M2 segment and reperfusion was induced by releasing the ligation. The diameter alteration of the MCA, arterial anastomoses and collateral arteries were imaged and measured in real time. BBB disruption was assessed by Evans Blue (EB) and sodium fluorescein (Na-F) extravasation at 3 hours of reperfusion. The reperfusion produced an extensive vasodilation and a sustained hyperemia. Although expression of NOSs was not altered at 3 hours of reperfusion, L-NAME (a non-specific NOS inhibitor) abolished reperfusion-induced vasodilation/hyperemia and significantly reduced EB and Na-F extravasation. L-NIO (an endothelial NOS (eNOS) inhibitor) significantly attenuated cerebral vasodilation but not BBB disruption, whereas L-NPA and 7-NI (neuronal NOS (nNOS) inhibitors) significantly reduced BBB disruption but not cerebral vasodilation. In contrast, aminoguanidine (AG) (an inducible NOS (iNOS) inhibitor) had less effect on either cerebral vasodilation or BBB disruption. On the other hand, papaverine (PV) not only increased the vasodilation/hyperemia but also significantly reduced BBB disruption. Combined treatment with L-NAME and PV preserved the vasodilation/hyperemia and significantly reduced BBB disruption. Our findings suggest that nNOS may play a major role in early BBB disruption following transient focal cerebral ischemia via a hyperemia-independent mechanism.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Chun Li
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Denise M Arrick
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Shu Yang
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Alexandra E Baluna
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Hong Sun
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| |
Collapse
|
21
|
Bhalala US, Koehler RC, Kannan S. Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front Pediatr 2014; 2:144. [PMID: 25642419 PMCID: PMC4294124 DOI: 10.3389/fped.2014.00144] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022] Open
Abstract
Hypoxic-ischemic (HI) injury to developing brain results from birth asphyxia in neonates and from cardiac arrest in infants and children. It is associated with varying degrees of neurologic sequelae, depending upon the severity and length of HI. Global HI triggers a series of cellular and biochemical pathways that lead to neuronal injury. One of the key cellular pathways of neuronal injury is inflammation. The inflammatory cascade comprises activation and migration of microglia - the so-called "brain macrophages," infiltration of peripheral macrophages into the brain, and release of cytotoxic and proinflammatory cytokines. In this article, we review the inflammatory and immune mechanisms of secondary neuronal injury after global HI injury to developing brain. Specifically, we highlight the current literature on microglial activation in relation to neuronal injury, proinflammatory and anti-inflammatory/restorative pathways, the role of peripheral immune cells, and the potential use of immunomodulators as neuroprotective compounds.
Collapse
Affiliation(s)
- Utpal S Bhalala
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Raymond C Koehler
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Sujatha Kannan
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
22
|
Kurosaki R, Muramatsu Y, Kato H, Araki T. Protective effect of pitavastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, on ischemia-induced neuronal damage. Neurol Res 2013; 26:684-91. [PMID: 15327760 DOI: 10.1179/016164104225014102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We investigated the neuroprotective effects of a novel 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor (pitavastatin) on ischemic neuronal damage in gerbils using immunohistochemistry. The animals were allowed to survive for 14 days after 5 min of ischemia induced by bilateral occlusion of the common carotid arteries. Five days after ischemia, severe neuronal cell loss was observed in the hippocampal CA1 sector. Prophylactic treatment with pitavastatin dose-dependently prevented the hippocampal CA1 neuronal cell loss 5 days after ischemia. Immunohistochemical study did not show the change of nNOS and iNOS expression in the hippocampus except for, in a few regions, up to 1 day after ischemia. Thereafter, the expression of iNOS was observed in the hippocampal CA1 sector 5 and 14 days after ischemia. In contrast, the expression of nNOS and eNOS gradually decreased in the hippocampal CA1 sector up to 14 days after ischemia. Prophylactic treatment with pitavastatin also prevented the expression of iNOS and the decrease of eNOS expression and the number of nNOS-positive cells in the hippocampal CA1 sector 5 days after ischemia. However, prophylactic treatment with pitavastatin at a dose of 10 mg kg(-1) did not change the immunoreactivity of iNOS and nNOS in the hippocampus at an early phase after ischemia. In contrast, this drug prevented the reduction of eNOS immunoreactivity in the hippocampal CA1 neurons at an early phase after ischemia. These findings demonstrate that the HMG-CoA reductase inhibitor pitavastatin can protect hippocampal CA1 neurons after transient forebrain ischemia through up-regulation of eNOS expression in this region. Thus pharmacological modulation of eNOS expression may offer a novel therapeutic strategy for cerebral ischemic stroke.
Collapse
Affiliation(s)
- R Kurosaki
- Department of Drug Metabolism and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, University of Tokushima, Tokushima, Japan
| | | | | | | |
Collapse
|
23
|
Hinokitiol, a natural tropolone derivative, offers neuroprotection from thromboembolic stroke in vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:840487. [PMID: 24285977 PMCID: PMC3826376 DOI: 10.1155/2013/840487] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/09/2013] [Indexed: 11/17/2022]
Abstract
Hinokitiol (β-thujaplicin), a tropolone-related compound found in the heartwood cupressaceous plants, is widely used in hair tonics, tooth pastes, cosmetics, and food as an antimicrobial agent. Increasing evidence has confirmed that hinokitiol exhibits anticancer activity in a variety of cancers through inhibition of cell proliferation. In the present study, we have investigated the neuroprotective effect and mechanisms of hinokitiol in rats against middle cerebral artery occlusion (MCAO)-induced thromboembolic stroke. Treatment with hinokitiol (0.2 and 0.5 mg/kg; intraperitoneally) 30 min before MCAO dose dependently attenuated cerebral ischemia and improved neurobehavioral deficits in cerebral ischemic rats. Intraperitoneal administration of hinokitiol significantly reduced infarct size compared to that in control rats. MCAO-induced focal cerebral ischemia was associated with increased expressions of hypoxia-inducible factor (HIF)-1α, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and active caspase-3 in ischemic regions. However, these expressions were obviously inhibited by hinokitiol (0.2 and 0.5 mg/kg) treatment. This study demonstrates for the first time that in addition to being originally considered as an agent against microbes and variety of cancers, hinokitiol possesses potent neuroprotective activity. This activity is mediated, at least in part, by inhibition of inflammatory responses (i.e., HIF-1α, iNOS expression) and apoptosis (i.e., TNF-α, active caspase-3), resulting in a reduction of infarct volume and improvement in neurobehavior in rats with cerebral ischemia. Therefore, the therapeutic potential of hinokitiol may lead to novel role for treatment or prevention of ischemia/reperfusion injury-related disorders.
Collapse
|
24
|
Novel multitarget ligand ITH33/IQM9.21 provides neuroprotection in in vitro and in vivo models related to brain ischemia. Neuropharmacology 2013; 67:403-11. [DOI: 10.1016/j.neuropharm.2012.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 01/05/2023]
|
25
|
Chen XM, Chen HS, Xu MJ, Shen JG. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury. Acta Pharmacol Sin 2013; 34:67-77. [PMID: 22842734 DOI: 10.1038/aps.2012.82] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and peroxynitrite (ONOO(-)), play important roles in the process of cerebral ischemia-reperfusion injury. Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOO(-)) in ischemic brain, which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage. There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage. Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury. Herein, we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONOO(-) to treat ischemic stroke. We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemia-reperfusion injury.
Collapse
|
26
|
Chen WF, Chakraborty C, Sung CS, Feng CW, Jean YH, Lin YY, Hung HC, Huang TY, Huang SY, Su TM, Sung PJ, Sheu JH, Wen ZH. Neuroprotection by marine-derived compound, 11-dehydrosinulariolide, in an in vitro Parkinson’s model: a promising candidate for the treatment of Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:265-75. [DOI: 10.1007/s00210-011-0710-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 11/02/2011] [Indexed: 12/11/2022]
|
27
|
Hugyecz M, Mracskó E, Hertelendy P, Farkas E, Domoki F, Bari F. Hydrogen supplemented air inhalation reduces changes of prooxidant enzyme and gap junction protein levels after transient global cerebral ischemia in the rat hippocampus. Brain Res 2011; 1404:31-8. [PMID: 21718970 DOI: 10.1016/j.brainres.2011.05.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 01/23/2023]
Abstract
Transient global cerebral ischemia (TGCI) occurs during acute severe hypotension depriving the brain of oxygen and glucose for a short period of time. During reperfusion, several mechanisms can induce secondary neuronal damage, including the increased production of reactive oxygen species (ROS). Hydrogen gas-enriched air inhalation is a neuroprotective approach with proven antioxidant potential, which has not yet been examined in TGCI. Accordingly, we set out to describe the effect of inhalation of 2.1% hydrogen supplemented room air (H(2)-RA) in comparison with a well studied neuroprotective agent, rosiglitazone (RSG) in a TGCI rat model. Male Wistar rats were exposed to TGCI (n=26) or sham operation (n=26), while a third group served as intact control (naive, n=5). The operated groups were further divided into non-treated, H(2)-RA, RSG (6 mg/kg i.v.) and vehicle treated animals. Tissue samples from the hippocampus and frontal cortex were taken 3 days following surgery. Western blot analysis was applied to determine the expressions of cyclooxygenase-2 (COX-2), neuronal and endothelial nitric oxide synthase (nNOS and eNOS, respectively), manganese superoxide dismutase (MnSOD) and glial connexin proteins: connexin 30 and connexin 43. The expressions of COX-2, and connexin proteins were upregulated, while nNOS was downregulated 3 days after TGCI. Both RSG and H(2)-RA prevented the changes of enzyme and connexin levels. Considering the lack of harmful side effects, inhalation of H(2)-RA can be a promising approach to reduce neuronal damage after TGCI.
Collapse
Affiliation(s)
- Marietta Hugyecz
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Dóm tér 10, H-6720, Hungary
| | | | | | | | | | | |
Collapse
|
28
|
KOIZUMI H, FUJISAWA H, SUEHIRO E, SHIRAO S, SUZUKI M. Neuroprotective Effects of Ebselen Following Forebrain Ischemia: Involvement of Glutamate and Nitric Oxide. Neurol Med Chir (Tokyo) 2011; 51:337-43. [DOI: 10.2176/nmc.51.337] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hiroyasu KOIZUMI
- Department of Neurosurgery, Yamaguchi University School of Medicine
| | | | - Eiichi SUEHIRO
- Department of Neurosurgery, Yamaguchi University School of Medicine
| | - Satoshi SHIRAO
- Department of Neurosurgery, Yamaguchi University School of Medicine
| | - Michiyasu SUZUKI
- Department of Neurosurgery, Yamaguchi University School of Medicine
| |
Collapse
|
29
|
Possible involvement of NO/NOS signaling in hippocampal amyloid-β production induced by transient focal cerebral ischemia in aged rats. Neurosci Lett 2010; 470:106-10. [DOI: 10.1016/j.neulet.2009.12.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/13/2009] [Accepted: 12/22/2009] [Indexed: 11/22/2022]
|
30
|
Smit AL, Stokroos RJ, Litjens SGH, Kremer B, Kramer BW. Potential role for lipopolysaccharide in congenital sensorineural hearing loss. J Med Microbiol 2010; 59:377-383. [PMID: 20093374 DOI: 10.1099/jmm.0.015792-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Congenital sensorineural hearing loss (SNHL) is common. In the Western world, the incidence is 1-3 per 1000 live births. The aetiology encompasses genetic and non-genetic factors accounting for 55 % and 45 % of cases, respectively. Reports that describe the contribution of intrauterine infection to the occurrence of congenital SNHL are limited, and comparative analysis of the different pathogens is lacking. Lipopolysaccharide (LPS), a product of bacteriolysis, has been demonstrated to be associated with inner ear damage in experimental studies. To elucidate the potential role of this toxin in congenital SNHL and to identify the pathogenesis and transmission routes, we reviewed the literature. We speculate that different routes of exposure to LPS in utero may result in congenital inner ear damage.
Collapse
Affiliation(s)
- A L Smit
- Department of Otorhinolaryngology/Head and NeckSurgery, Maastricht University Medical Centre, PO Box 5800, Maastricht, TheNetherlands
| | - R J Stokroos
- Department of Otorhinolaryngology/Head and NeckSurgery, Maastricht University Medical Centre, PO Box 5800, Maastricht, TheNetherlands
| | - S G H Litjens
- Faculty of Health, Medicine and Life Sciences, Universityof Maastricht, PO Box 616, Maastricht, The Netherlands
| | - B Kremer
- School of Oncology and Developmental Biology, Universityof Maastricht, PO Box 5800, Maastricht, The Netherlands.,Department of Otorhinolaryngology/Head and NeckSurgery, Maastricht University Medical Centre, PO Box 5800, Maastricht, TheNetherlands
| | - B W Kramer
- Department of Pediatrics, Maastricht University MedicalCentre, PO Box 5800, Maastricht, The Netherlands.,School of Oncology and Developmental Biology, Universityof Maastricht, PO Box 5800, Maastricht, The Netherlands
| |
Collapse
|
31
|
Ibolja Cernak, Zhengguo Wang, Jianx. Cognitive deficits following blast injury-induced neurotrauma: possible involvement of nitric oxide. Brain Inj 2009. [DOI: 10.1080/02699050119009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
He S, Yang J, Wu B, Pan Y, Wan H, Wang Y, Du Y, Wang S. Neuroprotective effect of parthenocissin A, a natural antioxidant and free radical scavenger, in focal cerebral ischemia of rats. Phytother Res 2009; 24 Suppl 1:S63-70. [DOI: 10.1002/ptr.2904] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
González-Hernández T, Afonso-Oramas D, Cruz-Muros I. Phenotype, compartmental organization and differential vulnerability of nigral dopaminergic neurons. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:21-37. [PMID: 20411765 DOI: 10.1007/978-3-211-92660-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The degeneration of nigral dopaminergic (DA-) neurons is the histopathologic hallmark of Parkinson's disease (PD), but not all nigral DA-cells show the same susceptibility to degeneration. This starts in DA-cells in the ventrolateral and caudal regions of the susbtantia nigra (SN) and progresses to DA-cells in the dorsomedial and rostral regions of the SN and the ventral tegmental area, where many neurons remain intact until the final stages of the disease. This fact indicates a relationship between the topographic distribution of midbrain DA-cells and their differential vulnerability, and the possibility that this differential vulnerability is associated with phenotypic differences between different subpopulations of nigral DA-cells. Studies carried out during the last two decades have contributed to establishing the existence of different compartments of nigral DA-cells according to their neurochemical profile, and a possible relationship between the expression of some factors and the relative vulnerability or resistance of DA-cell subpopulations to degeneration. These aspects are reviewed and discussed here.
Collapse
Affiliation(s)
- Tomás González-Hernández
- Department of Anatomy, Faculty of Medicine, University of La Laguna, 38071, La Laguna, Tenerife, Spain.
| | | | | |
Collapse
|
34
|
Lestaevel P, Romero E, Dhieux B, Ben Soussan H, Berradi H, Dublineau I, Voisin P, Gourmelon P. Different pattern of brain pro-/anti-oxidant activity between depleted and enriched uranium in chronically exposed rats. Toxicology 2008; 258:1-9. [PMID: 19154773 DOI: 10.1016/j.tox.2008.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 02/01/2023]
Abstract
Uranium is not only a heavy metal but also an alpha particle emitter. The main toxicity of uranium is expected to be due to chemiotoxicity rather than to radiotoxicity. Some studies have demonstrated that uranium induced some neurological disturbances, but without clear explanations. A possible mechanism of this neurotoxicity could be the oxidative stress induced by reactive oxygen species imbalance. The aim of the present study was to determine whether a chronic ingestion of uranium induced anti-oxidative defence mechanisms in the brain of rats. Rats received depleted (DU) or 4% enriched (EU) uranyl nitrate in the drinking water at 2mg(-1)kg(-1)day(-1) for 9 months. Cerebral cortex analyses were made by measuring mRNA and protein levels and enzymatic activities. Lipid peroxidation, an oxidative stress marker, was significantly enhanced after EU exposure, but not after DU. The gene expression or activity of the main antioxidant enzymes, i.e. superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), increased significantly after chronic exposure to DU. On the contrary, oral EU administration induced a decrease of these antioxidant enzymes. The NO-ergic pathway was almost not perturbed by DU or EU exposure. Finally, DU exposure increased significantly the transporters (Divalent-Metal-Transporter1; DMT1), the storage molecule (ferritin) and the ferroxidase enzyme (ceruloplasmin), but not EU. These results illustrate that oxidative stress plays a key role in the mechanism of uranium neurotoxicity. They showed that chronic exposure to DU, but not EU, seems to induce an increase of several antioxidant agents in order to counteract the oxidative stress. Finally, these results demonstrate the importance of the double toxicity, chemical and radiological, of uranium.
Collapse
Affiliation(s)
- P Lestaevel
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de RadioToxicologie Expérimentale. IRSN, Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Dohare P, Garg P, sharma U, Jagannathan NR, Ray M. Neuroprotective efficacy and therapeutic window of curcuma oil: in rat embolic stroke model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2008; 8:55. [PMID: 18826584 PMCID: PMC2573880 DOI: 10.1186/1472-6882-8-55] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 09/30/2008] [Indexed: 01/08/2023]
Abstract
BACKGROUND Among the naturally occurring compounds, turmeric from the dried rhizome of the plant Curcuma longa has long been used extensively as a condiment and a household remedy all over Southeast Asia. Turmeric contains essential oil, yellow pigments (curcuminoids), starch and oleoresin. The present study was designed for investigating the neuroprotective efficacy and the time window for effective therapeutic use of Curcuma oil (C. oil). METHOD In the present study, the effect of post ischemic treatment of C.oil after ischemia induced by occlusion of the middle cerebral artery in the rat was observed. C.oil (500 mg/kg body wt) was given 4 hrs post ischemia. The significant effect on lesion size as visualized by using diffusion-weighted magnetic resonance imaging and neuroscore was still evident when treatment was started 4 hours after insult. Animals were assessed for behavioral deficit scores after 5 and 24 hours of ischemia. Subsequently, the rats were sacrificed for evaluation of infarct and edema volumes and other parameters. RESULTS C.oil ameliorated the ischemia induced neurological functional deficits and the infarct and edema volumes measured after 5 and 24 hrs of ischemia. After 24 hrs, immunohistochemical and Western blot analysis demonstrated that the expression of iNOS, cytochrome c and Bax/Bcl-2 were altered after the insult, and antagonized by treatment with C.oil. C.oil significantly reduced nitrosative stress, tended to correct the decreased mitochondrial membrane potential, and also affected caspase-3 activation finally apoptosis. CONCLUSION Here we demonstrated that iNOS-derived NO produced during ischemic injury was crucial for the up-regulation of ischemic injury targets. C.oil down-regulates these targets this coincided with an increased survival rate of neurons.
Collapse
|
36
|
Cipriani S, Bizzoco E, Gianfriddo M, Melani A, Vannucchi M, Pedata F. Adenosine A2A receptor antagonism increases nNOS-immunoreactive neurons in the striatum of Huntington transgenic mice. Exp Neurol 2008; 213:163-70. [DOI: 10.1016/j.expneurol.2008.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/16/2008] [Accepted: 05/20/2008] [Indexed: 11/29/2022]
|
37
|
Pamenter ME, Hogg DW, Buck LT. Endogenous reductions inN-methyl-d-aspartate receptor activity inhibit nitric oxide production in the anoxic freshwater turtle cortex. FEBS Lett 2008; 582:1738-42. [DOI: 10.1016/j.febslet.2008.04.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/21/2008] [Accepted: 04/23/2008] [Indexed: 11/15/2022]
|
38
|
Prüss H, Prass K, Ghaeni L, Milosevic M, Muselmann C, Freyer D, Royl G, Reuter U, Baeva N, Dirnagl U, Meisel A, Priller J. Inducible nitric oxide synthase does not mediate brain damage after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2008; 28:526-39. [PMID: 17851454 DOI: 10.1038/sj.jcbfm.9600550] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitric oxide produced by the inducible nitric oxide synthase (iNOS) is believed to participate in the pathogenic events after cerebral ischemia. In this study, we examined the expression of iNOS in the brain after transient focal cerebral ischemia in mice. We detected differential expression of exons 2 and 3 of iNOS mRNA (16-fold upregulation at 24 to 72 h after middle cerebral artery occlusion, MCAO) compared with exons 6 to 8, 12 to 14, 21 to 22, and 26 to 27 (2- to 5-fold upregulation after 72 and 96 h), which would be compatible with alternative splicing. Expression levels of iNOS mRNA were too low for detection by the Northern blot analysis. Using specific antibodies, we did not detect any iNOS immunoreactivity in the mouse brain 1 to 5 days after MCAO, although we detected iNOS immunoreactivity in the lungs of mice with stroke-associated pneumonia, and in mouse and rat dura mater after lipopolysaccharide administration. In chimeric iNOS-deficient mice transplanted with wild-type bone marrow (BM) cells expressing the green fluorescent protein (GFP) or in wild-type mice transplanted with GFP(+) iNOS-deficient BM cells, no expression of iNOS was detected in GFP(+) leukocytes invading the ischemic brain or in resident brain cells. Moreover, both experimental groups did not show any differences in infarct size. Analysis of three different strains of iNOS-deficient mice and wild-type controls confirmed that infarct size was independent of iNOS deletion, but strongly confounded by the genetic background of mouse strains. In conclusion, our data suggest that iNOS is not a universal mediator of brain damage after cerebral ischemia.
Collapse
Affiliation(s)
- Harald Prüss
- Department of Experimental Neurology, Center for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yoshikawa T, Akiyoshi Y, Susumu T, Tokado H, Fukuzaki K, Nagata R, Samukawa K, Iwao H, Kito G. Ginsenoside Rb1 Reduces Neurodegeneration in the Peri-infarct Area of a Thromboembolic Stroke Model in Non-human Primates. J Pharmacol Sci 2008; 107:32-40. [DOI: 10.1254/jphs.fp0071297] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Aschner J, Aschner M. Methylmercury Neurotoxicity: Exploring Potential Novel Targets. THE OPEN TOXICOLOGY JOURNAL 2007; 1:1-9. [PMID: 31178939 PMCID: PMC6555406 DOI: 10.2174/1874340400701010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mechanistic studies on the effects of MeHg in the central nervous system (CNS) have been limited to morphology, substrate uptake and macromolecular synthesis, differentiation, and changes in gene expression during development and adulthood, but its primary site of action has yet to be identified. Proper functioning of the nitric oxide synthase (NOS)-cyclic GMP and the cyclooxygenase (COX)-prostaglandin (PG) signaling pathways in the CNS depend on post-translational modifications of key enzymes by chaperone proteins. The ability of MeHg to alter or inhibit chaperone-client protein interactions is hitherto unexplored, and potentially offers an upstream unifying mechanism for the plethora of MeHg effects, ranging from reactive species generation (ROS) generation, mitochondrial dysfunction, changes in redox potential, macromolecule synthesis, and cell swelling. In view of the prominent function of astrocytes in the maintenance of the extracellular milieu and their critical role in mediating MeHg neurotoxicity, they afford a relevant and well-established experimental model. The present review is predicated on (a) the remarkable affinity of mercurials for the anionic form of sulfhydryl (-SH) groups, (b) the essential role of thiols in protein biochemistry, and (c) the role of molecular chaperone proteins, such as heat shock protein 90 (Hsp90) in the regulation of protein redox status by facilitating the formation and breakage of disulfide bridges. We offer potential sites where MeHg may interfere with cellular homeostasis and advance a novel mechanistic model for MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- J.L. Aschner
- Department of Pediatrics and the Kennedy Center for Research on Human Development
| | - M. Aschner
- Department of Pediatrics and the Kennedy Center for Research on Human Development
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
41
|
Conti A, Miscusi M, Cardali S, Germanò A, Suzuki H, Cuzzocrea S, Tomasello F. Nitric oxide in the injured spinal cord: synthases cross-talk, oxidative stress and inflammation. ACTA ACUST UNITED AC 2007; 54:205-18. [PMID: 17500094 DOI: 10.1016/j.brainresrev.2007.01.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a unique informational molecule involved in a variety of physiological processes in the central nervous system (SNS). It has been demonstrated that it can exert both protective and detrimental effects in several diseases states of the CNS, including spinal cord injury (SCI). The effects of NO on the spinal cord depend on several factors such as: concentration of produced NO, activity of different synthase isoforms, cellular source of production and time of release. Basically, it has been shown that low NO concentrations may play a role in physiologic processes, whereas large amounts of NO may be detrimental by increasing oxidative stress. However, this does not explain all the discrepancies evidenced studying the effects of NO in SCI models. The analysis of the different synthase isoforms, of their temporal profile of activation and cellular source has shed light on this topic. Two post-injury time intervals can be defined with reference to the NO production: immediately after injury and several hours-to-days later. The initial immediate peak of NO production after injury is due to the up-regulation of the neuronal NO synthase (nNOS) in resident spinal cord cells. The late peak is due primarily to the activity of inducible NOS (nNOS) produced by inflammatory infiltrating cells. High NO levels produced by up-regulated nNOS and iNOS are neurotoxic; the down-regulation of nNOS corresponds temporally to the expression of iNOS. On the bases of the evidence, therapeutic approaches should be aimed: (1) to reduce the NO-elicited damage by inhibition of specific synthases according to the temporal profile of activation; (2) by maintaining physiologic amount of NO to keep the induction of iNOS.
Collapse
Affiliation(s)
- Alfredo Conti
- Department of Neuroscience, University of Messina, Policlinico Universitario, Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Vannucchi MG, Bizzoco E, Corsani L, Gianfriddo M, Pedata F, Faussone-Pellegrini MS. Relationships between neurons expressing neuronal nitric oxide synthase, degree of microglia activation and animal survival. A study in the rat cortex after transient ischemia. Brain Res 2007; 1132:218-27. [PMID: 17182010 DOI: 10.1016/j.brainres.2006.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 11/28/2022]
Abstract
The focal ischemia obtained in an animal model of middle cerebral artery occlusion (MCAo) causes the "core" of damage in the striatum and the "penumbra" of damage in the fronto-parietal cortex. The latter is mainly functionally affected and shows changes in nNOS and iNOS expression during the acute phase of ischemia. With the aim to study possible relationships between these changes and the affection entity during the animal recovery, we investigated from 24 up to 144 h after reperfusion the expression and content of these two NOS isoforms in the neurons and microglia and the degree of microglia reactivity in the fronto-parietal cortices of rats undertaken to transient MCAo. Evaluation of motor-sensory performances and survival allowed dividing the animals into two groups. Immunohistochemistry, western blot and quantitative analysis demonstrated, both in the ischemic and contralateral cortex of the rats with longer survival, wellness and significantly increased number of the nNOS-IR neurons at 24 h and moderately activated microglia up to 144 h. In the rats not recovering, injured and significantly decreased nNOS-IR neurons, intensely activated microglia and appearance of iNOS-IR were seen at all time points. In conclusion, since the recovery occurs when nNOS-IR neurons are greatly increased, we presume nNOS protect the tissue likely controlling the passage from the state of reactive to that of activated microglia. Moreover, the morphological signs of wellness and the two-fold increase in number of the nNOS-IR neurons appear to be characteristic of the "penumbra" area and could explain why this region is mainly functionally affected.
Collapse
Affiliation(s)
- Maria Giuliana Vannucchi
- Department of Anatomy, Histology and Forensic Medicine, Section of Histology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
44
|
Abstract
This chapter will discuss the current knowledge of the contribution of systemic and local inflammation in acute and sub-chronic stages of experimental stroke in both the adult and neonate. It will review the role of specific cell types and interactions among blood cells, endothelium, glia, microglia, the extracellular matrix and neurons - cumulatively called "neurovascular unit" - in stroke induction and evolution. Intracellular inflammatory signaling pathways such as nuclear factor kappa beta and mitogen-activated protein kinases, and mediators produced by inflammatory cells such as cytokines, chemokines, reactive oxygen species and arachidonic acid metabolites, as well as the modifying role of age on these mechanisms, will be reviewed as well as the potential for therapy in stroke and hypoxic-ischemic injury.
Collapse
|
45
|
Wang X. Investigational anti-inflammatory agents for the treatment of ischaemic brain injury. Expert Opin Investig Drugs 2006; 14:393-409. [PMID: 15882116 DOI: 10.1517/13543784.14.4.393] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stroke is the third leading cause of death and the leading cause of disability in Western countries. To date, only approximately 2% of stroke patients are eligible for thrombolysis treatment with recombinant tissue plasminogen activator. The very limited options available for stroke treatment and recent disappointing clinical trials in stroke call for novel therapeutic approaches. Inflammation represents one of the key pathophysiological mechanisms for the progression of ischaemic stroke. Recent advances in preclinical models of stroke using investigational small molecular antagonists, neutralising antibodies/proteins or genetically altered gene functions against various inflammatory mediators suggest a great therapeutic potential of anti-inflammation for ischaemic stroke. The scope of the present review is to update the evidence for a role of inflammatory pathways in stroke and to summarise the investigational drugs currently available both in preclinical and clinical development for potential treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Xinkang Wang
- Bristol-Myers Squibb Company, Discovery Biology, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA.
| |
Collapse
|
46
|
Hamby ME, Hewett JA, Hewett SJ. TGF-beta1 potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2. Glia 2006; 54:566-77. [PMID: 16921522 DOI: 10.1002/glia.20411] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Both transforming growth factor-beta1 (TGF-beta1) and nitric oxide synthase-2 (NOS-2) are upregulated under various neuropathological states. Evidence suggests that TGF-beta1 can either attenuate or augment NOS-2 expression, with the prevailing effect dependent on the experimental paradigm employed and the cell-type under study. The purpose of the present study was to determine the effect of TGF-beta1 on astrocytic NOS-2 expression. In purified astrocyte cultures, TGF-beta1 alone did not induce NOS-2 or NO production. However, NO production induced by lipopolysaccharide (LPS) plus IFNgamma was enhanced by TGF-beta1 in a concentration-dependent manner between 10 and 1,000 pg/mL. The presence of IFNgamma was not necessary for this effect to occur, as TGF-beta1 enhanced NO production induced by LPS in a similar fashion. In cultures stimulated with LPS plus IFNgamma, the enhancement of NO production by TGF-beta1 was associated with a corresponding increase in NOS-2 mRNA and protein expression. Interestingly, immunocytochemical assessment of NOS-2 protein expression demonstrated that TGF-beta1 augmented astrocytic NO production, specifically by increasing the pool of astrocytes capable of expressing NOS-2 induced by either LPS (approximately threefold) or LPS plus IFNgamma (approximately sevenfold). In a broader sense, our results suggest that TGF-beta1 recruits a latent population of astrocytes to respond to stimulation by pro-inflammatory mediators.
Collapse
Affiliation(s)
- Mary E Hamby
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | |
Collapse
|
47
|
Schimchowitsch S, Cassel JC. Polyamine and aminoguanidine treatments to promote structural and functional recovery in the adult mammalian brain after injury: a brief literature review and preliminary data about their combined administration. ACTA ACUST UNITED AC 2006; 99:221-31. [PMID: 16646157 DOI: 10.1016/j.jphysparis.2005.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The regeneration potential of the adult mammalian central nervous system (CNS) is very modest, due to, among other factors, the presence of either a glial scar, or myelin-associated regeneration inhibitors such as Nogo-A, MAG and OMgp, which all interact with the same receptor (NgR). After a brief review of the key proteins (Rho and PKC) implicated in NgR-mediated signalling cascades, we will tackle the implications of cAMP and Arginase I in overcoming myelin growth-inhibitory influence, and then will focus on the effects of polyamines and aminoguanidine to propose (and to briefly support this proposal by our own preliminary data) that their association might be a potent way to enable functionally-relevant regeneration in the adult mammalian CNS.
Collapse
Affiliation(s)
- Sarah Schimchowitsch
- Laboratoire de Neurosciences Comportementales et Cognitives, UMR 7521 CNRS--Université Louis Pasteur, IFR 37 Neurosciences, Strasbourg, France
| | | |
Collapse
|
48
|
Himeda T, Kadoguchi N, Kamiyama Y, Kato H, Maegawa H, Araki T. Neuroprotective effect of arundic acid, an astrocyte-modulating agent, in mouse brain against MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity. Neuropharmacology 2006; 50:329-44. [PMID: 16303147 DOI: 10.1016/j.neuropharm.2005.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 09/01/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes the damage of dopaminergic neurons as seen in Parkinson's disease. Oxidative stress has been as one of several pathogenic hypotheses for Parkinson's disease. Here we investigated whether arundic acid, an astrocyte-modulating agent, can protect against alterations of nitric oxide synthase (NOS) and superoxide dismutase (SOD) expression on MPTP neurotoxicity in mice, utilizing an immunohistochemistry. For this purpose, anti-tyrosine hydroxylase (TH) antibody, anti-dopamine transporter (DAT) antibody, anti-Cu/Zn-SOD antibody, anti-Mn-SOD antibody, anti-nNOS antibody, anti-eNOS antibody and anti-iNOS antibody were used. The present study showed that the arundic acid had a protective effect against MPTP-induced neuronal damage in the striatum and substantia nigra of mice. The protective effect may be, at least in part, caused by the reductions of the levels of reactive nitrogen (RNS) and oxygen species (ROS) against MPTP neurotoxicity. These results suggest that the pharmacological modulation of astrocyte may offer a novel therapeutic strategy for the treatment of Parkinson's disease. Furthermore, our results provide further evidence that a combination of nNOS inhibitors, iNOS inhibitors and free radical scavengers may be effective in the treatment of neurodegenerative diseases. Thus our present results provide valuable information for the pathogenesis of degeneration of the nigrostriatal dopaminergic neuronal pathway.
Collapse
Affiliation(s)
- Toshiki Himeda
- Department of Drug Metabolism and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Dingman A, Lee SY, Derugin N, Wendland MF, Vexler ZS. Aminoguanidine inhibits caspase-3 and calpain activation without affecting microglial activation following neonatal transient cerebral ischemia. J Neurochem 2006; 96:1467-79. [PMID: 16464234 DOI: 10.1111/j.1471-4159.2006.03672.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Microglial cells, the resident macrophages of the CNS, can be both beneficial and detrimental to the brain. These cells play a central role as mediators of neuroinflammation associated with many neurodegenerative states, including cerebral ischemia. Because microglial cells are both a major source of inducible nitric oxide synthase (iNOS)/nitric oxide (NO) production locally in the injured brain and are activated by NO-mediated injury, we tested whether iNOS inhibition reduces microglial activation and ischemic injury in a neonatal focal ischemia-reperfusion model. Post-natal day 7 rats were subjected to a 2 h transient middle cerebral artery (MCA) occlusion. Pups with confirmed injury on diffusion-weighted magnetic resonance imaging (MRI) during occlusion were administered 300 mg/kg/dose aminoguanidine (AG) or vehicle at 0, 4 and 18 h after reperfusion, and animals were killed at 24 or 72 h post-reperfusion. The effect of AG on microglial activation as judged by the acquisition of ED1 immunoreactivity and proliferation of ED1-positive cells, on activation of cell death pathways and on injury volume, was determined. The study shows that while AG attenuates caspase 3 and calpain activation in the injured tissue, treatment does not affect the rapidly occurring activation and proliferation of microglia following transient MCA occlusion in the immature rat, or reduce injury size.
Collapse
Affiliation(s)
- Andra Dingman
- Department of Neurology, University of California San Francisco, California 94143-0663, USA
| | | | | | | | | |
Collapse
|
50
|
Ko SY, Kang S, Chang YS, Park EA, Park WS. Effects of NG-monomethyl-L-arginine and L-arginine on cerebral hemodynamics and energy metabolism during reoxygenation-reperfusion after cerebral hypoxia-ischemia in newborn piglets. KOREAN JOURNAL OF PEDIATRICS 2006. [DOI: 10.3345/kjp.2006.49.3.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sun Young Ko
- Department of Pediatrics, Samsung Cheil Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Ae Park
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|