1
|
Hu Y, Li C, Hu M, Zhang Z, Fu R, Tang X, Wu T. Allosteric Nucleic Acid Enzyme: A Versatile Stimuli-Responsive Tool for Molecular Computing and Biosensing Nanodevices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300207. [PMID: 36978231 DOI: 10.1002/smll.202300207] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Allostery is a naturally occurring mechanism in which effector binding induces the modulation and fine control of a related biomolecule function. Deoxyribozyme (DNAzyme) with catalytic activity and substrate recognition ability is ideal to be regulated by allosteric strategies. However, the current regulations frequently confront various obstacles, such as severe activity decay, signal leakage, and limited effectors. In this work, a rational regulation strategy for developing versatile effectors-responsive allosteric nucleic acid enzyme (ANAzyme) by introducing an allosteric domain in response to diverse effectors is established. The enzyme-like activity of this re-engineered ANAzyme can be modulated in a more predictable and fine way compared with the previous DNAzyme regulation strategies. Based on the allosteric strategy, the construction of allosterically coregulatory nanodevices and a series of basic logic gates and logic circuits are achieved, demonstrating that the proposed ANAzyme-regulated strategy showed great potential in molecular computing. Given these facts, the rational design of ANAzyme with the allosteric domain presented here can expand the available toolbox to develop a variety of stimuli-responsive allosteric DNA materials, including molecular machines, computing systems, biosensing platforms, and gene-silencing tools.
Collapse
Affiliation(s)
- Yuqiang Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Changjiang Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Minghao Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Zhen Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Ruolan Fu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| |
Collapse
|
2
|
Zhang P, Qin K, Lopez A, Li Z, Liu J. General Label-Free Fluorescent Aptamer Binding Assay Using Cationic Conjugated Polymers. Anal Chem 2022; 94:15456-15463. [DOI: 10.1021/acs.analchem.2c03564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pengbo Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Ke Qin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Anand Lopez
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Harding BI, Pollak NM, Stefanovic D, Macdonald J. Complexing deoxyribozymes with RNA aptamers for detection of the small molecule theophylline. Biosens Bioelectron 2022; 198:113774. [PMID: 34823962 DOI: 10.1016/j.bios.2021.113774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/17/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022]
Abstract
Biointegrative information processing systems offer a great advantage to autonomous biodevices, as their capacity for biological computation provides the ability to sense the state of more complex environments and better integrate with downstream biological regulation systems. Deoxyribozymes (DNAzymes) and aptamers are of interest to such computational biosensing systems due to the enzymatic properties of DNAzymes and the ligand-inducible conformational structures of aptamers. Herein, we describe a novel method for providing ligand-responsive allosteric control to a DNAzyme using an RNA aptamer. We designed a NOT-logic-compliant E6 DNAzyme to be complementary to an RNA aptamer targeting theophylline, such that the aptamer competitively interacted with either theophylline or the DNAzyme, and disabled the DNAzyme only when theophylline concentration was below a given threshold. Out of our seven designed "complexing aptazymes," three demonstrated effective theophylline-responsive allosteric regulation (2.84 ± 3.75%, 4.97 ± 2.92%, and 8.91 ± 4.19% activity in the absence of theophylline; 46.29 ± 3.36%, 50.70 ± 10.15%, and 61.26 ± 6.18% activity in the presence of theophylline). Moreover, the same three complexing aptazymes also demonstrated the ability to semi-quantitatively determine the concentration of theophylline present in solution, successfully discriminating between therapeutically ineffective (<20 μM), safe (20-100 μM), and toxic (>100 μM) theophylline concentrations. Our method of using an RNA aptamer for ligand-responsive allosteric control of a DNAzyme expands the way aptamers can be configured for biosensing, and suggests a pathway for embedding DNAzymes to provide enhanced information processing and control of biological systems.
Collapse
Affiliation(s)
- Bradley I Harding
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Nina M Pollak
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Canberra, Australian Capital Territory, 2601, Australia
| | - Darko Stefanovic
- Department of Computer Science, University of New Mexico, Albuquerque, NM, 87131, United States; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, United States; Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, United States
| | - Joanne Macdonald
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia.
| |
Collapse
|
4
|
Novel Aptamer-Based Small-Molecule Drug Screening Assay to Identify Potential Sclerostin Inhibitors against Osteoporosis. Int J Mol Sci 2021; 22:ijms22158320. [PMID: 34361085 PMCID: PMC8348959 DOI: 10.3390/ijms22158320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
A novel aptamer-based competitive drug screening platform for osteoporosis was devised in which fluorescence-labeled, sclerostin-specific aptamers compete with compounds from selected chemical libraries for the binding of immobilized recombinant human sclerostin to achieve high-throughput screening for potential small-molecule sclerostin inhibitors and to facilitate drug repurposing and drug discovery. Of the 96 selected inhibitors and FDA-approved drugs, six were shown to result in a significant decrease in the fluorescence intensity of the aptamer, suggesting a higher affinity toward sclerostin compared with that of the aptamer. The targets of these potential sclerostin inhibitors were correlated to lipid or bone metabolism, and several of the compounds have already been shown to be potential osteogenic activators, indicating that the aptamer-based competitive drug screening assay offered a potentially reliable strategy for the discovery of target-specific new drugs. The six potential sclerostin inhibitors suppressed the level of both intracellular and/or extracellular sclerostin in mouse osteocyte IDG-SW3 and increased alkaline phosphatase activity in IDG-SW3 cells, human bone marrow-derived mesenchymal stem cells and human fetal osteoblasts hFOB1.19. Potential small-molecule drug candidates obtained in this study are expected to provide new therapeutics for osteoporosis as well as insights into the structure-activity relationship of sclerostin inhibitors for rational drug design.
Collapse
|
5
|
Sorrentino D, Ranallo S, Ricci F. Rational Control of the Activity of a Cu 2+-Dependent DNAzyme by Re-engineering Purely Entropic Intrinsically Disordered Domains. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9300-9305. [PMID: 33001621 DOI: 10.1021/acsami.0c09472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The function and activity of many proteins is finely controlled by the modulation of the entropic contribution of intrinsically disordered domains that are not directly involved in any recognition event. Inspired by this mechanism, we demonstrate here that we could finely regulate the catalytic activity of a model DNAzyme (i.e., a synthetic DNA sequence with enzyme-like properties) by rationally introducing intrinsically disordered nucleic acid portions in its original sequence. More specifically, we have re-engineered here the well-characterized Cu2+-dependent DNAzyme that catalyzes a self-cleavage reaction by introducing a poly(T) linker domain in its sequence. The linker is not directly involved in the recognition event and connects the two domains that fold to form the catalytic core. We demonstrate that the enzyme-like activity of this re-engineered DNAzyme can be modulated in a predictable and fine way by changing the length, and thus entropy, of such a linker domain. Given these attributes, the rational design of intrinsically disordered domains could expand the available toolbox to achieve a control of the activity of DNAzymes and, in analogy, ribozymes through a purely entropic contribution.
Collapse
Affiliation(s)
- Daniela Sorrentino
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Simona Ranallo
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Francesco Ricci
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
6
|
Nguyen PDM, Zheng J, Gremminger TJ, Qiu L, Zhang D, Tuske S, Lange MJ, Griffin PR, Arnold E, Chen SJ, Zou X, Heng X, Burke DH. Binding interface and impact on protease cleavage for an RNA aptamer to HIV-1 reverse transcriptase. Nucleic Acids Res 2020; 48:2709-2722. [PMID: 31943114 PMCID: PMC7049723 DOI: 10.1093/nar/gkz1224] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022] Open
Abstract
RNA aptamers that bind HIV-1 reverse transcriptase (RT) inhibit RT in enzymatic and viral replication assays. Some aptamers inhibit RT from only a few viral clades, while others show broad-spectrum inhibition. Biophysical determinants of recognition specificity are poorly understood. We investigated the interface between HIV-1 RT and a broad–spectrum UCAA-family aptamer. SAR and hydroxyl radical probing identified aptamer structural elements critical for inhibition and established the role of signature UCAA bulge motif in RT-aptamer interaction. HDX footprinting on RT ± aptamer shows strong contacts with both subunits, especially near the C-terminus of p51. Alanine scanning revealed decreased inhibition by the aptamer for mutants P420A, L422A and K424A. 2D proton nuclear magnetic resonance and SAXS data provided constraints on the solution structure of the aptamer and enable computational modeling of the docked complex with RT. Surprisingly, the aptamer enhanced proteolytic cleavage of precursor p66/p66 by HIV-1 protease, suggesting that it stabilizes the productive conformation to allow maturation. These results illuminate features at the RT-aptamer interface that govern recognition specificity by a broad-spectrum antiviral aptamer, and they open new possibilities for accelerating RT maturation and interfering with viral replication.
Collapse
Affiliation(s)
- Phuong D M Nguyen
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University Missouri, Columbia, MO 65211, USA
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Liming Qiu
- Dalton Cardiovascular Research Center, University Missouri, Columbia, MO 65211, USA
| | - Dong Zhang
- Department of Physics and Astronomy, University Missouri, Columbia, MO 65211, USA
| | - Steve Tuske
- Center for Advanced Biotechnology & Medicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Margaret J Lange
- Department of Molecular Microbiology & Immunology, University Missouri, Columbia, MO 65211, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology & Medicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shi-Jie Chen
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Department of Physics and Astronomy, University Missouri, Columbia, MO 65211, USA.,MU Institute for Data Science and Informatics, University Missouri, Columbia, MO 65211, USA
| | - Xiaoqin Zou
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Dalton Cardiovascular Research Center, University Missouri, Columbia, MO 65211, USA.,Department of Physics and Astronomy, University Missouri, Columbia, MO 65211, USA.,MU Institute for Data Science and Informatics, University Missouri, Columbia, MO 65211, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Donald H Burke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University Missouri, Columbia, MO 65211, USA.,Department of Molecular Microbiology & Immunology, University Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol Adv 2019; 37:107452. [DOI: 10.1016/j.biotechadv.2019.107452] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
|
8
|
Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev 2019; 48:1390-1419. [PMID: 30707214 DOI: 10.1039/c8cs00880a] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nucleic acid aptamers are single stranded DNA or RNA sequences that specifically bind a cognate ligand. In addition to their widespread use as stand-alone affinity binding reagents in analytical chemistry, aptamers have been engineered into a variety of ligand-specific biosensors, termed aptasensors. One of the most common aptasensor formats is the duplexed aptamer (DA). As defined herein, DAs are aptasensors containing two nucleic acid elements coupled via Watson-Crick base pairing: (i) an aptamer sequence, which serves as a ligand-specific receptor, and (ii) an aptamer-complementary element (ACE), such as a short DNA oligonucleotide, which is designed to hybridize to the aptamer. The ACE competes with ligand binding, such that DAs generate a signal upon ligand-dependent ACE-aptamer dehybridization. DAs possess intrinsic advantages over other aptasensor designs. For example, DA biosensing designs generalize across DNA and RNA aptamers, DAs are compatible with many readout methods, and DAs are inherently tunable on the basis of nucleic acid hybridization. However, despite their utility and popularity, DAs have not been well defined in the literature, leading to confusion over the differences between DAs and other aptasensor formats. In this review, we introduce a framework for DAs based on ACEs, and use this framework to distinguish DAs from other aptasensor formats and to categorize cis- and trans-DA designs. We then explore the ligand binding dynamics and chemical properties that underpin DA systems, which fall under conformational selection and induced fit models, and which mirror classical SN1 and SN2 models of nucleophilic substitution reactions. We further review a variety of in vitro and in vivo applications of DAs in the chemical and biological sciences, including riboswitches and riboregulators. Finally, we present future directions of DAs as ligand-responsive nucleic acids. Owing to their tractability, versatility and ease of engineering, DA biosensors bear a great potential for the development of new applications and technologies in fields ranging from analytical chemistry and mechanistic modeling to medicine and synthetic biology.
Collapse
Affiliation(s)
- Jeffrey D Munzar
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
9
|
Rossetti M, Ranallo S, Idili A, Palleschi G, Porchetta A, Ricci F. Allosteric DNA nanoswitches for controlled release of a molecular cargo triggered by biological inputs. Chem Sci 2016; 8:914-920. [PMID: 28572901 PMCID: PMC5452262 DOI: 10.1039/c6sc03404g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
A rationally designed new class of DNA-based nanoswitches allosterically regulated by specific biological targets, antibodies and transcription factors, can load and release a molecular cargo in a controlled fashion.
Here we demonstrate the rational design of a new class of DNA-based nanoswitches which are allosterically regulated by specific biological targets, antibodies and transcription factors, and are able to load and release a molecular cargo (i.e. doxorubicin) in a controlled fashion. In our first model system we rationally designed a stem-loop DNA-nanoswitch that adopts two mutually exclusive conformations: a “Load” conformation containing a doxorubicin-intercalating domain and a “Release” conformation containing a duplex portion recognized by a specific transcription-factor (here Tata Binding Protein). The binding of the transcription factor pushes this conformational equilibrium towards the “Release” state thus leading to doxorubicin release from the nanoswitch. In our second model system we designed a similar stem-loop DNA-nanoswitch for which conformational change and subsequent doxorubicin release can be triggered by a specific antibody. Our approach augments the current tool kit of smart drug release mechanisms regulated by different biological inputs.
Collapse
Affiliation(s)
- Marianna Rossetti
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Simona Ranallo
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Andrea Idili
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Giuseppe Palleschi
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Alessandro Porchetta
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Francesco Ricci
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| |
Collapse
|
10
|
Felletti M, Hartig JS. Ligand-dependent ribozymes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27687155 DOI: 10.1002/wrna.1395] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/12/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
The discovery of catalytic RNA (ribozymes) more than 30 years ago significantly widened the horizon of RNA-based functions in natural systems. Similarly to the activity of protein enzymes that are often modulated by the presence of an interaction partner, some examples of naturally occurring ribozymes are influenced by ligands that can either act as cofactors or allosteric modulators. Recent discoveries of new and widespread ribozyme motifs in many different genetic contexts point toward the existence of further ligand-dependent RNA catalysts. In addition to the presence of ligand-dependent ribozymes in nature, researchers have engineered ligand dependency into natural and artificial ribozymes. Because RNA functions can often be assembled in a truly modular way, many different systems have been obtained utilizing different ligand-sensing domains and ribozyme activities in diverse applications. We summarize the occurrence of ligand-dependent ribozymes in nature and the many examples realized by researchers that engineered ligand-dependent catalytic RNA motifs. We will also highlight methods for obtaining ligand dependency as well as discuss the many interesting applications of ligand-controlled catalytic RNAs. WIREs RNA 2017, 8:e1395. doi: 10.1002/wrna.1395 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michele Felletti
- Department of Chemistry and Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry and Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
11
|
Guccione M, Ettari R, Taliani S, Da Settimo F, Zappalà M, Grasso S. G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitors: Current Trends and Future Perspectives. J Med Chem 2016; 59:9277-9294. [PMID: 27362616 DOI: 10.1021/acs.jmedchem.5b01939] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
G-protein-coupled receptor kinase 2 (GRK2) is a G-protein-coupled receptor kinase that is ubiquitously expressed in many tissues and regulates various intracellular mechanisms. The up- or down-regulation of GRK2 correlates with several pathological disorders. GRK2 plays an important role in the maintenance of heart structure and function; thus, this kinase is involved in many cardiovascular diseases. GRK2 up-regulation can worsen cardiac ischemia; furthermore, increased kinase levels occur during the early stages of heart failure and in hypertensive subjects. GRK2 up-regulation can lead to changes in the insulin signaling cascade, which can translate to insulin resistance. Increased GRK2 levels also correlate with the degree of cognitive impairment that is typically observed in Alzheimer's disease. This article reviews the most potent and selective GRK2 inhibitors that have been developed. We focus on their mechanism of action, inhibition profile, and structure-activity relationships to provide insight into the further development of GRK2 inhibitors as drug candidates.
Collapse
Affiliation(s)
- Manuela Guccione
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Roberta Ettari
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Sabrina Taliani
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Maria Zappalà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Silvana Grasso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
12
|
Adornetto G, Porchetta A, Palleschi G, Plaxco KW, Ricci F. A general approach to the design of allosteric, transcription factor-regulated DNAzymes. Chem Sci 2015; 6:3692-3696. [PMID: 28706715 PMCID: PMC5496187 DOI: 10.1039/c5sc00228a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/09/2015] [Indexed: 12/26/2022] Open
Abstract
Here we explore a general strategy for the rational design of nucleic acid catalysts that can be allosterically activated by specific nucleic-acid binding proteins. To demonstrate this we have combined a catalytic DNAzyme sequence and the consensus sequence recognized by specific transcription factors to create a construct exhibiting two low-energy conformations: a more stable conformation lacking catalytic activity and lacking the transcription factor binding site, and a less stable conformation that is both catalytically active and competent to bind the transcription factor. The presence of the target transcription factor pushes the equilibrium between these states towards the latter conformation, concomitantly activating catalysis. To demonstrate this we have designed and characterized two peroxidase-like DNAzymes whose activities are triggered upon binding either TATA binding protein or the microphthalmia-associated transcription factor. Our approach augments the current tool kit for the allosteric control of DNAzymes and ribozymes and, because transcription factors control many key biological functions, could have important clinical and diagnostic applications.
Collapse
Affiliation(s)
- G Adornetto
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
| | - A Porchetta
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
- Consorzio Interuniversitario Biostrutture e Biosistemi "INBB" , Rome 00136 , Italy
| | - G Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
- Consorzio Interuniversitario Biostrutture e Biosistemi "INBB" , Rome 00136 , Italy
| | - K W Plaxco
- Department of Chemistry and Biochemistry , University of California Santa Barbara , Santa Barbara , California 93106 , USA
- Center for Bioengineering , University of California Santa Barbara , Santa Barbara , California 93106 , USA
| | - F Ricci
- Dipartimento di Scienze e Tecnologie Chimiche University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy .
- Consorzio Interuniversitario Biostrutture e Biosistemi "INBB" , Rome 00136 , Italy
| |
Collapse
|
13
|
A general design strategy for protein-responsive riboswitches in mammalian cells. Nat Methods 2014; 11:1154-60. [DOI: 10.1038/nmeth.3136] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/29/2014] [Indexed: 11/09/2022]
|
14
|
Oishi M, Nakao S, Kato D. Enzyme-free fluorescent-amplified aptasensors based on target-responsive DNA strand displacement via toehold-mediated click chemical ligation. Chem Commun (Camb) 2014; 50:991-3. [PMID: 24306006 DOI: 10.1039/c3cc48064j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new target-responsive DNA strand displacement system via toehold-mediated click chemical ligation was designed and prepared for enzyme-free fluorescent-amplified aptasensors. The aptasensors significantly amplified fluorescent signals in response to targets based on target recycling processes.
Collapse
Affiliation(s)
- Motoi Oishi
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan.
| | | | | |
Collapse
|
15
|
Moshiri H, Mehta V, Salavati R. RNA catalyst as a reporter for screening drugs against RNA editing in trypanosomes. J Vis Exp 2014. [PMID: 25079143 DOI: 10.3791/51712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Substantial progress has been made in determining the mechanism of mitochondrial RNA editing in trypanosomes. Similarly, considerable progress has been made in identifying the components of the editosome complex that catalyze RNA editing. However, it is still not clear how those proteins work together. Chemical compounds obtained from a high-throughput screen against the editosome may block or affect one or more steps in the editing cycle. Therefore, the identification of new chemical compounds will generate valuable molecular probes for dissecting the editosome function and assembly. In previous studies, in vitro editing assays were carried out using radio-labeled RNA. These assays are time consuming, inefficient and unsuitable for high-throughput purposes. Here, a homogenous fluorescence-based "mix and measure" hammerhead ribozyme in vitro reporter assay to monitor RNA editing, is presented. Only as a consequence of RNA editing of the hammerhead ribozyme a fluorescence resonance energy transfer (FRET) oligoribonucleotide substrate undergoes cleavage. This in turn results in separation of the fluorophore from the quencher thereby producing a signal. In contrast, when the editosome function is inhibited, the fluorescence signal will be quenched. This is a highly sensitive and simple assay that should be generally applicable to monitor in vitro RNA editing or high throughput screening of chemicals that can inhibit the editosome function.
Collapse
Affiliation(s)
- Houtan Moshiri
- Department of Biochemistry, McGill University; Institute of Parasitology, McGill University
| | - Vaibhav Mehta
- Department of Biochemistry, McGill University; Institute of Parasitology, McGill University
| | - Reza Salavati
- Department of Biochemistry, McGill University; Institute of Parasitology, McGill University; McGill Centre for Bioinformatics, McGill University;
| |
Collapse
|
16
|
Xu D, Chatakonda VK, Kourtidis A, Conklin DS, Shi H. In search of novel drug target sites on estrogen receptors using RNA aptamers. Nucleic Acid Ther 2014; 24:226-38. [PMID: 24588102 DOI: 10.1089/nat.2013.0474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Estrogen receptor α (ERα) is a well-validated drug target for a majority of breast cancers. But the target sites on this receptor are far from exhaustively defined. Almost all ER antagonists in clinical use function by binding to the ligand-binding pocket to occlude agonist access. Resistance to this type of drugs may develop over time, not caused by the change of ERα itself, but by changes in ER associated proteins. This observation is fueling the development of reagents that downregulate ER activity through novel binding sites. However, it is challenging to find general ER antagonists that act independently from other known ER ligands. In this report, we describe the utility of RNA aptamers in the search for new drug target sites on ERα. We have identified three high affinity aptamers and characterized one of them in detail. This aptamer interacted with ERα in a way not affected by the presence or absence of either the steroidal ligands or the estrogen response DNA elements, and effectively inhibited ER-mediated transcriptional activation in a breast cancer cell line. Serving as a novel drug lead, it may also be used to guide the rational chemical synthesis of small molecule drugs or to perform screens of small molecule libraries for those that are able to displace the aptamer from its binding site.
Collapse
Affiliation(s)
- Daiying Xu
- 1 Department of Biological Sciences, University at Albany, State University of New York , Albany, New York
| | | | | | | | | |
Collapse
|
17
|
Generation and selection of ribozyme variants with potential application in protein engineering and synthetic biology. Appl Microbiol Biotechnol 2014; 98:3389-99. [DOI: 10.1007/s00253-014-5528-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/22/2022]
|
18
|
Nakao S, Oishi M. Rational Design of a Fluorescence-amplified Aptasensor Based on Enzyme-assisted Target Recycling Strategy. CHEM LETT 2013. [DOI: 10.1246/cl.130439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shingo Nakao
- Division of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba
| | - Motoi Oishi
- Division of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
19
|
Song W, Strack RL, Jaffrey SR. Imaging bacterial protein expression using genetically encoded RNA sensors. Nat Methods 2013; 10:873-5. [PMID: 23872791 PMCID: PMC3758421 DOI: 10.1038/nmeth.2568] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/14/2013] [Indexed: 11/30/2022]
Abstract
We show that the difficulties in imaging the dynamics of protein expression in live bacterial cells can be overcome using fluorescent sensors based on Spinach, an RNA that activates the fluorescence of a small-molecule fluorophore. These RNAs selectively bind target proteins, and exhibit fluorescence increases that enable protein expression to be imaged in living cells. These sensors provide a general strategy to image protein expression in single bacteria in real-time.
Collapse
Affiliation(s)
- Wenjiao Song
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York, USA
| | | | | |
Collapse
|
20
|
Specific interactions between adenosine and streptavidin/avidin. Bioorg Med Chem Lett 2012; 22:7052-5. [PMID: 23084893 DOI: 10.1016/j.bmcl.2012.09.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/18/2012] [Accepted: 09/25/2012] [Indexed: 11/22/2022]
Abstract
The screening of ligands against proteins plays important role in drug discovery and biological research. Using a dye labelled Streptavidin binding aptamer (SBA) as a competitive reporter probe, we found that adenosine bound to streptavidin specifically. Fluorescence spectral analysis showed that adenosine bound to both avidin and streptavidin with the K(ds) in the range of 0.1-0.2 mM, and these bindings can be blocked by biotin. Although streptavidin and avidin are well-known and widely used in bioanalysis, their biological role is still a riddle so far. Since adenosine is a ubiquitous physiological regulator present in cells, our finding provides new clues for the understanding of the functions of both proteins.
Collapse
|
21
|
Mondragon E, Maher L. An Ace in the Hole... Structure 2012; 20:1285-6. [DOI: 10.1016/j.str.2012.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Abstract
Aptamers comprise a range of molecular recognition scaffolds that can be engineered to bind to a legion of different proteins and other targets with excellent specificity and affinity. Because these non-natural oligonucleotides are accessible entirely synthetically, aptamers can be equipped with all sorts of reporter groups and can be coupled to many different carriers, surfaces, nanoparticles, or other biomolecules. They can be used in a highly modular fashion and often recognize their targets by a mechanism in which the aptamer undergoes considerable structural rearrangement, which can be exploited for transducing a binding event into a signal. As a consequence, aptamers have been adapted to a huge variety of "read-out configurations" and are increasingly used as capture agents in many different bioanalytical methods. But despite considerable success with these applications, many remaining challenges must still be overcome for the more widespread incorporation of aptasensors in clinical and environmental biosensing and diagnostics to take place. Some particularly noteworthy progress on this front is currently being made with aptasensor configurations that can be used for the multiplexed sensing of many analytes in parallel. In this Account, we describe some of the concepts involved in transducing the binding of a ligand into a signal through various physico-chemical interactions. Research in this area usually involves the combination of the molecular biology of proteins and nucleic acids with biotechnology, synthetic chemistry, physical chemistry, and surface physics. We begin with a brief introduction of the properties and characteristics that qualify aptamers as capture agents for many different analytes and their suitability as highly versatile biosensor components. We then address approaches that apply to surface acoustic wave configurations, drawing largely from our own contributions to aptasensor development, before moving on to describe previous and recent progress in multiplexed aptasensors. Obtaining proteome-wide profiles in cells, organs, organisms, or full populations requires the ability to accurately measure many different analytes in small sample volumes over a broad dynamic range. Multiplexed sensing is an invaluable tool in this endeavor. We discuss what we consider the biggest obstacles to the broader clinical use of aptasensor-based diagnostics and our perspective on how they can be surmounted. Finally,we explore the tremendous potential of aptamer-based sensors that can specifically discriminate between diseased and healthy cells. Progress in these areas will greatly expand the range of aptasensor applications, leading to enhanced diagnosis of diseases in clinical practice and, ultimately, improved patient care.
Collapse
Affiliation(s)
- Michael Famulok
- LIMES Institute, Chemical Biology and Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Günter Mayer
- LIMES Institute, Chemical Biology and Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| |
Collapse
|
23
|
|
24
|
Abstract
Aptamers are useful for allosteric regulation because they are nucleic acid-based structures in which ligand binding induces conformational changes that may alter the function of a connected oligonucleotide at a distant site. Through this approach, a specific input is efficiently converted into an altered output. This property makes these biomolecules ideally suited to function as sensors or switches in biochemical assays or inside living cells. The ability to select oligonucleotide-based recognition elements in vitro in combination with the availability of nucleic acids with enzymatic activity has led to the development of a wide range of engineered allosteric aptasensors and aptazymes. Here, we discuss recent progress in the screening, design and diversity of these conformational switching oligonucleotides. We cover their application in vitro and for regulating gene expression in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Jan L Vinkenborg
- Life & Medical Sciences Institute, Chemical Biology & Medicinal Chemistry Unit, Laboratory of Chemical Biology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | | |
Collapse
|
25
|
Niebel B, Lentz C, Pofahl M, Mayer G, Hoerauf A, Pfarr KM, Famulok M. ADLOC: an aptamer-displacement assay based on luminescent oxygen channeling. Chemistry 2010; 16:11100-7. [PMID: 20690121 DOI: 10.1002/chem.201001192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Functional nucleic acids, such as aptamers and allosteric ribozymes, can sense their ligands specifically, thereby undergoing structural alterations that can be converted into a detectable signal. The direct coupling of molecular recognition to signal generation enables the production of versatile reporters that can be applied as molecular probes for various purposes, including high-throughput screening. Here we describe an unprecedented type of a nucleic acid-based sensor system and show that it is amenable to high-throughput screening (HTS) applications. The approach detects the displacement of an aptamer from its bound protein partner by means of luminescent oxygen channeling. In a proof-of-principle study we demonstrate that the format is feasible for efficient identification of small drug-like molecules that bind to a protein target, in this case to the Sec7 domain of cytohesin. We extended the approach to a new cytohesin-specific single chain DNA aptamer, C10.41, which exhibits a similar binding behavior to cytohesins but has the advantage of being more stable and easier to synthesize and to modify than the RNA-aptamer M69. The results obtained with both aptamers indicate the general suitability of the aptamer-displacement assay based on luminescent oxygen channelling (ADLOC) for HTS. We also analyzed the potential for false positive hits and identified from a library of 18,000 drug-like small molecules two compounds as strong singlet-oxygen quenchers. With full automation and the use of commercially available plate readers, we estimate that the ADLOC-based assay described here could be used to screen at least 100,000 compounds per day.
Collapse
Affiliation(s)
- Björn Niebel
- Life and Medical Sciences (LIMES) Institute, Chemical Biology and Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Aptamers are DNA or RNA oligonucleotides that can bind with high affinity and specificity to a wide range of targets such as proteins, metal ions or pathogenic microorganisms. Soluble aptamers and aptazymes have been used as sensing elements for developing homogeneous assays in a solution phase, the whole sensing process being carried out in a homogeneous solution. Contrary to most conventional heterogeneous assays that are time-consuming and labor-intensive, aptamer-based homogeneous assays are simple, easy-to-perform, rapid and do not require immobilization nor washing steps. To our knowledge, this review is the first entirely dedicated to aptamer-based homogeneous assays. Optical detection appears as the most developed technique. Colorimetry represents the simplest sensing mode that occupies a very important position among aptamer-based assays, involving gold nanoparticle aggregation (with unmodified or aptamer-modified gold NPs), the formation of HRP-mimicking DNAzyme with hemin, dye displacement or interactions with a cationic polymer. Fluorescence that is highly sensitive offers the most developed detection mode. Aptamers can be labeled or not, to give rise to turn-on or usually less sensitive turn-off fluorescent assays. Newly reported and thus less developed non-conventional magnetic resonance imaging (MRI) and electrochemistry also recently appeared in the literature, thrombin still remains the main detected target. Homogeneous assays based on aptazyme, an aptamer sequence connected to a known ribozyme motif, are also described in this review, involving optical detection, by colorimetry or fluorescence.
Collapse
Affiliation(s)
- Audrey Sassolas
- CNRS, UMR 5246, ICBMS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Université Lyon 1, Bât CPE, 43 boulevard du 11 novembre 1918, Villeurbanne, F-69622, France
| | | | | |
Collapse
|
27
|
Gutsmiedl K, Fazio D, Carell T. High-density DNA functionalization by a combination of Cu-catalyzed and cu-free click chemistry. Chemistry 2010; 16:6877-83. [PMID: 20458711 DOI: 10.1002/chem.201000363] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the regioselective Cu-free click modification of styrene functionalized DNA with nitrile oxides. A series of modified oligodeoxynucleotides (nine base pairs) was prepared with increasing styrene density. 1,3-Dipolar cycloaddition with nitrile oxides allows the high density functionalization of the styrene modified DNA directly on the DNA solid support and in solution. This click reaction proceeds smoothly even directly in the DNA synthesizer and gives exclusively 3,5-disubstituted isoxazolines. Additionally, PCR products (300 and 900 base pairs) were synthesized with a styrene triphosphate and KOD XL polymerase. The click reaction on the highly modified PCR fragments allows functionalization of hundreds of styrene units on these large DNA fragments simultaneously. Even sequential Cu-free and Cu-catalyzed click reaction of PCR amplicons containing styrene and alkyne carrying nucleobases was achieved. This new approach towards high-density functionalization of DNA is simple, modular, and efficient.
Collapse
Affiliation(s)
- Katrin Gutsmiedl
- Department of Chemistry, Center for Integrated Protein Science (CiPSM), Butenandtstrasse 5-13, 81377 Munich, Germany
| | | | | |
Collapse
|
28
|
Li X, Xia J, Li W, Zhang S. Multianalyte electrochemical biosensor based on aptamer- and nanoparticle-integrated bio-barcode amplification. Chem Asian J 2010; 5:294-300. [PMID: 20013991 DOI: 10.1002/asia.200900217] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the present work, a signal-on electrochemical sensing strategy for the simultaneous detection of adenosine and thrombin is developed based on switching structures of aptamers. An Au electrode as the sensing surface is modified with two kinds of thiolated capture probes complementary to the linker DNA that contains either an adenosine aptamer or thrombin aptamer. The capture probes hybridize with their corresponding linker DNA, which has prehybridized with the reporter DNA loaded onto the gold nanoparticles (AuNPs). The AuNP contained two kinds of bio-barcode DNA: one is complementary to the linker DNA (reporter), whereas the other is not (signal) and is tagged with different metal sulfide nanoparticles. Thus a "sandwich-type" sensing interface is fabricated for adenosine and thrombin. With the introduction of adenosine and thrombin, the aptamer parts bind with their targets and fold to form the complex structures. As a result, the bio-barcoded AuNPs are released into solution. The metal sulfide nanoparticles are measured by anodic stripping voltammetry (ASV), and the concentrations of adenosine and thrombin are proportional to the signal of either metal ion. With the dual amplification of the bio-barcoded AuNP and the preconcentration of metal ions through ASV technology, detection limits as low as 6.6 x 10(-12) M for adenosine and 1.0 x 10(-12) M for thrombin are achieved. The sensor exhibits excellent selectivity and detectability in biological samples.
Collapse
Affiliation(s)
- Xuemei Li
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Michael Famulok
- LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
30
|
|
31
|
Mayer G, Faulhammer D, Grättinger M, Fessele S, Blind M. A RNA-based approach towards small-molecule inhibitors. Chembiochem 2009; 10:1993-6. [PMID: 19575374 DOI: 10.1002/cbic.200900325] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Günter Mayer
- LIMES, University of Bonn, c/o Kekulé-Institut für Org. Chemie und Biochemie, 53121 Bonn (Germany).
| | | | | | | | | |
Collapse
|
32
|
Wang H, Kim Y, Liu H, Zhu Z, Bamrungsap S, Tan W. Engineering a Unimolecular DNA-Catalytic Probe for Single Lead Ion Monitoring. J Am Chem Soc 2009; 131:8221-6. [DOI: 10.1021/ja901132y] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Wang
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200
| | - Youngmi Kim
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200
| | - Haipeng Liu
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200
| | - Zhi Zhu
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200
| | - Suwussa Bamrungsap
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200
| | - Weihong Tan
- Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and Center for Research at the Bio/nano Interface, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200
| |
Collapse
|
33
|
Elbaz J, Moshe M, Shlyahovsky B, Willner I. Cooperative multicomponent self-assembly of nucleic acid structures for the activation of DNAzyme cascades: a paradigm for DNA sensors and aptasensors. Chemistry 2009; 15:3411-8. [PMID: 19206117 DOI: 10.1002/chem.200802004] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The activation of a DNAzyme cascade by the cooperative self-assembly of multicomponent nucleic acid structures is suggested as a method for the amplified sensing of DNA, or the specific substrates of aptamers. According to one configuration, the DNA analyte 1 is detected by two tailored nucleic acids 2 and 3 that form a multicomponent supramolecular structure with a ribonucleobase-containing quasi-circular DNA 4, but only upon the concomitant hybridization with 1. The resulting supramolecular nucleic acid structure includes the Mg(2+)-dependent DNAzyme that cleaves the ribonucleobase site of 4. The cleavage of the quasi-circular DNA 4 results in the fragmentation of the supramolecular structure and the release of two horseradish peroxidase (HRP) mimicking units that were incorporated in the blocked quasi-circular DNA 4. The HRP-mimicking DNAzyme catalyzed the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS(2-)) by H(2)O(2) to ABTS(*-), and the product provided the colorimetric readout signal for the analyzed DNA. The method enabled the analysis of DNA with a detection limit of 1 x 10(-12) M. Similarly, an analogous DNAzyme cascade was activated by the low-molecular-weight substrates, adenosine triphosphate (ATP) or cocaine. This was induced by the self-assembly of nucleic acids that included fragments of the respective aptamers and the Mg(2+)-dependent DNAzyme. Furthermore, nucleic acids consisting of fragments of the aptamers against ATP or cocaine and fragments of the HRP-mimicking DNAzyme self-assemble, in the presence of the respective substrates, to the active DNAzyme structure that catalyzes the oxidation of ABTS(2-) by H(2)O(2) to form the colored product ABTS(*-). The resulting product provided the readout signal for the recognition events. The cooperative interaction in the formation of the supramolecular nucleic acid assemblies and the activation of the DNAzymes are discussed.
Collapse
Affiliation(s)
- Johann Elbaz
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|
34
|
Abstract
Aptamers are small single-stranded nucleic acids that fold into a well-defined three-dimensional structure. They show a high affinity and specificity for their target molecules and inhibit their biological functions. Aptamers belong to the nucleic acids family and can be synthesized by chemical or enzymatic procedures, or a combination of the two. They can, therefore, be considered as both chemical and biological substances. This Review summarizes the most convenient approaches to their preparation and new developments in the field of aptamers. The application of aptamers in chemical biology is also discussed.
Collapse
Affiliation(s)
- Günter Mayer
- Life and Medical Sciences, Prog. Unit Chemical Biology and Medicinal Chemistry, University of Bonn c/o Kekulé-Institute for Organic Chemistry and Biochemistry, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
35
|
Abstract
Aptamers are single-stranded nucleic acids or peptides that can bind target molecules with high affinity and specificity. The conformation of an aptamer usually changes upon binding to its target analyte, and this property has been used in a wide variety of sensing applications, including detections based on fluorescence, electrochemistry, mass, or color change. Because native nucleic acids do not possess signaling moieties required for most detection methods, aptamer sensors usually involve labeling of external signaling groups. Among the many kinds of labels, inorganic nanoparticles are emerging as highly attractive candidates because some of their unique properties. Here, we describe protocols for the preparation of aptamer-linked gold nanoparticles (AuNPs) that undergo fast disassembly into red dispersed nanoparticles upon binding of target analytes. This method has been proven to be generally applicable for colorimetric sensing of a broad range of analytes. The sample protocols have also been successfully applied to quantum dots and magnetic nanoparticles. Finally, to increase the user friendliness of the method, the sensors have been converted into simple dipstick tests using lateral flow devices.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
36
|
Affiliation(s)
- Juewen Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
37
|
Wieland M, Gfell M, Hartig JS. Expanded hammerhead ribozymes containing addressable three-way junctions. RNA (NEW YORK, N.Y.) 2009; 15:968-76. [PMID: 19304923 PMCID: PMC2673082 DOI: 10.1261/rna.1220309] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 01/31/2009] [Indexed: 05/27/2023]
Abstract
Recently, hammerhead ribozyme (HHR) motifs have been utilized as powerful tools for gene regulation. Here we present a novel design of expanded full-length HHRs that allows attaching additional functionalities to the ribozyme. These features allowed us to construct a very efficient artificial riboswitch in bacteria. Following the design of naturally occurring three-way junctions we attached an additional helix (IV) to stem I of the HHR while maintaining very fast cleavage rates. We found that the cleavage activity strongly depends on the exact design of the junction site. Incorporation of the novel ribozyme scaffold into a bacterial mRNA allowed the control of gene expression mediated by autocatalytic cleavage of the ribozyme. Appending an aptamer to the newly introduced stem enabled the identification of very powerful theophylline-inducible RNA switches by in vivo screening. Further investigations revealed a cascading system operating beyond the ribozyme-dependent mechanism. In conclusion, we extended the hammerhead toolbox for synthetic biology applications by providing an additional position for the attachment of regulatory modules for in vivo control of gene expression.
Collapse
Affiliation(s)
- Markus Wieland
- Department of Chemistry and Konstanz Research School of Chemical Biology (KoRS-CB), University of Konstanz, D-78457 Konstanz, Germany
| | | | | |
Collapse
|
38
|
|
39
|
Moshe M, Elbaz J, Willner I. Sensing of UO22+ and design of logic gates by the application of supramolecular constructs of ion-dependent DNAzymes. NANO LETTERS 2009; 9:1196-1200. [PMID: 19199475 DOI: 10.1021/nl803887y] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Supramolecular constructs composed of ion-dependent DNAzymes and their substrates were used to develop DNAzyme cascades that enabled the sensitive detection of UO22+ or the activation of logic gate operations. The supramolecular complex between the UO22+-dependent DNAzyme and its substrate leads, in the presence of UO22+, to the cleavage of the substrate and to the release of the HRP-mimicking DNAzyme that enables the optical analysis of UO22+ (detection limit 1 x 10-9 M). Similarly, supramolecular complexes between the Mg2+- and UO22+-dependent DNAzymes and tailored substrates enables the design of the "OR" and "AND" logic gates, using Mg2+ and UO22+ as inputs.
Collapse
Affiliation(s)
- Michal Moshe
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
40
|
Autocatalytic aptazymes enable ligand-dependent exponential amplification of RNA. Nat Biotechnol 2009; 27:288-92. [PMID: 19234448 PMCID: PMC2695811 DOI: 10.1038/nbt.1528] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/30/2009] [Indexed: 01/03/2023]
Abstract
RNA enzymes have been developed that undergo self-sustained replication at a constant temperature in the absence of proteins1. These RNA molecules amplify exponentially through a cross-replicative process, whereby two enzymes catalyze each other’s synthesis by joining component oligonucleotides. Other RNA enzymes have been made to operate in a ligand-dependent manner by combining a catalytic domain with a ligand-binding domain (aptamer) to provide an “aptazyme”2,3. The principle of ligand-dependent RNA catalysis now has been extended to the cross-replicating RNA enzymes so that exponential amplification occurs in the presence, but not the absence, of the cognate ligand. The exponential growth rate of the RNA depends on the concentration of the ligand, enabling one to determine the concentration of ligand in a sample. This process is analogous to quantitative PCR (qPCR), but can be generalized to a wide variety of targets, including proteins and small molecules that are relevant to medical diagnostics and environmental monitoring.
Collapse
|
41
|
Yamazaki S, Famulok M. Screening of novel inhibitors of HIV-1 reverse transcriptase with a reporter ribozyme assay. Methods Mol Biol 2009; 535:187-199. [PMID: 19377995 DOI: 10.1007/978-1-59745-557-2_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
"Highly active anti-retroviral therapy (HAART)" is currently the standard treatment for human immunodeficiency virus (HIV). This treatment consists of a cocktail of two reverse transcriptase (RT) inhibitors and a protease inhibitor. Despite the success of this regimen, there is a continuing need for innovative drug to overcome problems with tolerability and the emergence of viral resistance. The present protocol describes a novel strategy to rapidly screening a new class of small molecule HIV-1 RT inhibitors, which bind to the primer/template binding site of RT, as yet an unexplored site for small molecule interference on this target. The assay is based on aptamer-displacement which is visualized by applying a rationally designed HIV-1 RT responsive ribozyme. The handiness of the assay procedure permits automation, compatible with high-throughput screening (HTS). Subsequently, the identified hit compounds have been evaluated by an in vitro enzymatic assay to test the inhibitory potential. The strategy provides a powerful and efficient screening format for site-directed inhibitors with biological activity.
Collapse
Affiliation(s)
- Satoko Yamazaki
- Life and Medical Sciences, University of Bonn, Bonn, Germany
| | | |
Collapse
|
42
|
Elbaz J, Tel-Vered R, Freeman R, Yildiz H, Willner I. Switchable Motion of DNA on Solid Supports. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Elbaz J, Tel-Vered R, Freeman R, Yildiz H, Willner I. Switchable Motion of DNA on Solid Supports. Angew Chem Int Ed Engl 2008; 48:133-7. [DOI: 10.1002/anie.200802905] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Wieland M, Hartig JS. Artificial riboswitches: synthetic mRNA-based regulators of gene expression. Chembiochem 2008; 9:1873-8. [PMID: 18604832 DOI: 10.1002/cbic.200800154] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Markus Wieland
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | |
Collapse
|
45
|
Displacement of protein-bound aptamers with small molecules screened by fluorescence polarization. Nat Protoc 2008; 3:579-87. [PMID: 18388939 DOI: 10.1038/nprot.2008.15] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small molecule inhibitors of proteins are invaluable tools in research and as starting points for drug development. However, their screening can be tedious, as most screening methods have to be tailored to the corresponding drug target. Here, we describe a detailed protocol for a modular and generally applicable assay for the identification of small organic compounds that displace an aptamer complexed to its target protein. The method relies on fluorescence-labeled aptamers and the increase of fluorescence polarization upon their binding to the target protein. The assay has high Z'-factors, making it compatible with high-throughput screening. It allows easy automation, making fluorescence readout the time-limiting step. As aptamers can be generated for virtually any protein target, the assay allows identification of small molecule inhibitors for targets or individual protein domains for which no functional screen is available. We provide the step-by-step protocol to screen for antagonists of the cytohesin class of small guanosine exchange factors.
Collapse
|
46
|
Furchak JRW, Yang P, Jennings C, Walter NG, Kennedy RT. Assay for glucosamine 6-phosphate using a ligand-activated ribozyme with fluorescence resonance energy transfer or CE-laser-induced fluorescence detection. Anal Chem 2008; 80:8195-201. [PMID: 18842060 DOI: 10.1021/ac801410k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A naturally occurring aptazyme, the glmS ribozyme, is adapted to an assay for glucosamine 6-phosphate, an effector molecule for the aptazyme. In the assay, binding of analyte allosterically activates aptazyme to cleave a fluorescently labeled oligonucleotide substrate. The extent of reaction, and hence analyte concentration, is detected by either fluorescence resonance energy transfer (FRET) or capillary electrophoresis with laser-induced fluorescence (CE-LIF). With FRET, assay signal is the rate of increase in FRET in presence of analyte. With CE-LIF, the assay signal is the peak height of cleavage product formed after a fixed incubation time. The assay has a linear response up to 100 (CE-LIF) or 500 microM (FRET) and detection limit of approximately 500 nM for glucosamine 6-phosphate under single-turnover conditions. When substrate is present in excess of the aptazyme, it is possible to amplify the signal by multiple turnovers to achieve a 13-fold improvement in sensitivity and detection limit of 50 nM. Successful signal amplification requires a temperature cycle to alternately dissociate cleaved substrate and allow fresh substrate to bind aptazyme. The results show that aptazymes have potential utility as analytical reagents for quantification of effector molecules.
Collapse
Affiliation(s)
- Jennifer R W Furchak
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | |
Collapse
|
47
|
Mir M, Jenkins ATA, Katakis I. Ultrasensitive detection based on an aptamer beacon electron transfer chain. Electrochem commun 2008. [DOI: 10.1016/j.elecom.2008.04.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Abstract
The characterization of molecular interactions is a central task in modern life sciences. Applications such as drug screening in pharmaceutics or the elucidation of biomolecular interactions in molecular biology rely on efficient methods to search for interacting partners. Here, we describe a novel technique that utilizes hammerhead ribozymes to signal molecular interactions. The ribozyme is modified by a domain that specifically binds to a target molecule such as a protein. Upon binding of the target, the catalytic activity of the ribozyme is changed, allowing for detection of the presence as well as the occurrence of interactions of the targeted ligand. The assay can be performed in high-throughput format by employing double-labeled ribozyme substrates, hence being well suited for drug-screening applications. The detection proceeds rapidly and in real-time. Moreover, the technique neither requires labeling of the target molecule nor the potential interaction partners or analytes since an indirect readout is facilitated by switching the catalytic activity of a reporter ribozyme. The assay can be utilized to sense a broad variety of biomolecular interactions, and is very sensitive due to signal amplification by the ribozyme reaction.
Collapse
|
49
|
Wieland M, Hartig JS. Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem Int Ed Engl 2008; 47:2604-7. [PMID: 18270990 DOI: 10.1002/anie.200703700] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Markus Wieland
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | |
Collapse
|
50
|
Wieland M, Hartig J. Ein Aptazym-Design für die RNA-basierte Schaltung der Genexpression in Bakterien. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200703700] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|