1
|
Mymoona P, Shibu ES, Jeyabharathi C. Adsorbed Carbon Monoxide-Enabled Self-Terminated Au-Grafting on Pt 6 Nanoclusters for Enhanced Methanol Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401998. [PMID: 38973636 DOI: 10.1002/smll.202401998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/15/2024] [Indexed: 07/09/2024]
Abstract
The study presents the first example of an adsorbed carbon monoxide (CO) enabled self-terminated Au-grafting on triphenylphosphine (PPh3) stabilized Pt6 nanoclusters (NCs) (Pt6 (PPh3)4Cl5 NCs or Pt6 NCs). Adsorbed PPh3 ligands weaken the Pt-CO bond enabling the self-terminated Au-grafting on Pt6 NCs. The Au-grafted Pt6 NCs exhibit enhanced methanol electrooxidation (MOR) in acidic solutions. The surface is composed of a PtAu ensemble exhibiting enhanced MOR and CO tolerance due to the synergistic interaction of Pt with Au and PPh3. The hydrogen underpotential deposition (H-UPD) signal from a CO-covered surface reveals the existence of free-Pt sites on the PtAu ensemble causing higher MOR reactivity. The Au and PPh3 ensure electrocatalytic activity of the NCs, depriving of them at anodic potentials results in "a death-valley" trend.
Collapse
Affiliation(s)
- Paloli Mymoona
- Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Edakkattuparambil Sidharth Shibu
- Smart Materials Lab, Department of Nanoscience and Technology (DNST), University of Calicut (UoC), Malappuram, Kerala, 673635, India
| | - Chinnaiah Jeyabharathi
- Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Sera M, Hossain S, Yoshikawa S, Takemae K, Ikeda A, Tanaka T, Kosaka T, Niihori Y, Kawawaki T, Negishi Y. Atomically Precise Au 24Pt(thiolate) 12(dithiolate) 3 Nanoclusters with Excellent Electrocatalytic Hydrogen Evolution Reactivity. J Am Chem Soc 2024; 146:29684-29693. [PMID: 39405364 DOI: 10.1021/jacs.4c10868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
[Au24Pt(C6)18]0 (C6 = 1-hexanethiolate) is twice as active as commercial Pt nanoparticles in promoting the electrocatalytic hydrogen evolution reaction (HER), thereby attracting attention as new HER catalysts with well-controlled geometric structures. In this study, we succeeded in synthesizing two new Au-Pt alloy nanoclusters, namely, [Au24Pt(TBBT)12(TDT)3]0 (TBBT = 4-tert-butylbenzenethiolate; TDT = thiodithiolate) and [Au24Pt(TBBT)12(PDT)3]0 (PDT = 1,3-propanedithiolate), by exchanging all the ligands of [Au24Pt(PET)18]0 (PET = 2-phenylethanethiolate) with mono- or dithiolates. Although [Au24Pt(TBBT)12(TDT)3]0 was synthesized serendipitously, a similar cluster, [Au24Pt(TBBT)12(PDT)3]0, was subsequently obtained by selecting the appropriate reaction conditions and optimal combination of thiolate and dithiolate ligands. Single crystal X-ray diffraction analyses revealed that the lengths and orientations of -Au(I)-SR-Au(I)- staples in [Au24Pt(TBBT)12(TDT)3]0 and [Au24Pt(TBBT)12(PDT)3]0 were different from those in [Au24Pt(C6)18]0, [Au24Pt(PET)18]0, and [Au24Pt(TBBT)18]0, and these subtle differences were reflected in the geometric and electronic structures as well as the HER activities of [Au24Pt(TBBT)12(TDT)3]0 and [Au24Pt(TBBT)12(PDT)3]0. Accordingly, the HER activities of products [Au24Pt(TBBT)12(TDT)3]0 and [Au24Pt(TBBT)12(PDT)3]0 were, respectively, 3.5 and 4.9 times higher than those of [Au24Pt(C6)18]0 and [Au24Pt(TBBT)18]0.
Collapse
Affiliation(s)
- Miyu Sera
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sara Yoshikawa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kana Takemae
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Ayaka Ikeda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tomoya Tanaka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Taiga Kosaka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshiki Niihori
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
3
|
Qian J, Yang Z, Lyu J, Yao Q, Xie J. Molecular Interactions in Atomically Precise Metal Nanoclusters. PRECISION CHEMISTRY 2024; 2:495-517. [PMID: 39483272 PMCID: PMC11522999 DOI: 10.1021/prechem.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 11/03/2024]
Abstract
For nanochemistry, precise manipulation of nanoscale structures and the accompanying chemical properties at atomic precision is one of the greatest challenges today. The scientific community strives to develop and design customized nanomaterials, while molecular interactions often serve as key tools or probes for this atomically precise undertaking. In this Perspective, metal nanoclusters, especially gold nanoclusters, serve as a good platform for understanding such nanoscale interactions. These nanoclusters often have a core size of about 2 nm, a defined number of core metal atoms, and protecting ligands with known crystal structure. The atomically precise structure of metal nanoclusters allows us to discuss how the molecular interactions facilitate the systematic modification and functionalization of nanoclusters from their inner core, through the ligand shell, to the external assembly. Interestingly, the atomic packing structure of the nanocluster core can be affected by forces on the surface. After discussing the core structure, we examine various atomic-level strategies to enhance their photoluminescent quantum yield and improve nanoclusters' catalytic performance. Beyond the single cluster level, various attractive or repulsive molecular interactions have been employed to engineer the self-assembly behavior and thus packing morphology of metal nanoclusters. The methodological and fundamental insights systemized in this review should be useful for customizing the cluster structure and assembly patterns at the atomic level.
Collapse
Affiliation(s)
- Jing Qian
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhucheng Yang
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jingkuan Lyu
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiaofeng Yao
- Key
Laboratory of Organic Integrated Circuits, Ministry of Education &
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department
of Chemistry, School of Science, Tianjin
University, Tianjin 300072, P.R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
| | - Jianping Xie
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
4
|
Hirayama D, Kawawaki T, Oguchi S, Ogano M, Kon N, Yasuda T, Higami A, Negishi Y. Ultrafine Rhodium-Chromium Mixed-Oxide Cocatalyst with Facet-Selective Loading for Excellent Photocatalytic Water Splitting. J Am Chem Soc 2024; 146:26808-26818. [PMID: 39311751 DOI: 10.1021/jacs.4c07351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The development of water-splitting photocatalysts capable of generating green hydrogen (H2) from water and sunlight is crucial for achieving carbon neutrality. Further enhancement of the photocatalytic water-splitting activity is essential to realizing this objective. Photocatalysts with specific exposed crystal facets can facilitate efficient charge separation of electrons/holes, thereby achieving high activity for water splitting. However, there have been no reports of ultrafine (∼1 nm) cocatalysts being loaded onto specific crystal facets of photocatalysts, despite cocatalysts being the actual reaction sites for water splitting. This study establishes a novel method for achieving facet-selective loading of ultrafine H2-evolution cocatalysts onto the {100} facets, which are the H2-evolution facets, of a strontium titanate photocatalyst. The resulting photocatalyst exhibits the highest apparent quantum yield achieved to date for strontium titanate. This research holds the potential to further improve various types of advanced photocatalysts and is expected to accelerate the transition to carbon neutrality.
Collapse
Affiliation(s)
- Daisuke Hirayama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Carbon Value Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sota Oguchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Mai Ogano
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Naochika Kon
- Innovation Center, Mitsubishi Materials Corporation, 1002-14, Mukohyama, Naka-shi, Ibaraki 311-0102, Japan
| | - Tomohiro Yasuda
- Innovation Center, Mitsubishi Materials Corporation, 1002-14, Mukohyama, Naka-shi, Ibaraki 311-0102, Japan
| | - Akihiro Higami
- Innovation Center, Mitsubishi Materials Corporation, 1002-14, Mukohyama, Naka-shi, Ibaraki 311-0102, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Carbon Value Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
5
|
Zhu X, Zhu P, Cong X, Ma G, Tang Q, Wang L, Tang Z. Atomically precise alkynyl-protected Ag 19Cu 2 nanoclusters: synthesis, structure analysis, and electrocatalytic CO 2 reduction application. NANOSCALE 2024; 16:16952-16957. [PMID: 39207260 DOI: 10.1039/d4nr02702g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We report the synthesis, structure analysis, and electrocatalytic CO2 reduction application of Ag19Cu2(CCArF)12(PPh3)6Cl6 (abbreviated as Ag19Cu2, CCArF: 3,5-bis(trifluoromethyl)phenylacetylene) nanoclusters. Ag19Cu2 has characteristic absorbance features and is a superatomic cluster with 2 free valence electrons. Single-crystal X-ray diffraction (SC-XRD) revealed that the metal core of Ag19Cu2 is composed of an Ag11Cu2 icosahedron connected by two Ag4 tetrahedra at the two terminals of the Cu-Ag-Cu axis. Notably, Ag19Cu2 exhibited excellent catalytic performance in the electrochemical CO2 reduction reaction (eCO2RR), manifested by a high CO faradaic efficiency of 95.26% and a large CO current density of 257.2 mA cm-2 at -1.3 V. In addition. Ag19Cu2 showed robust long-term stability, with no significant drop in current density and FECO after 14 h of continuous operation. Density functional theory (DFT) calculations disclosed that the high selectivity of Ag19Cu2 for CO in the eCO2RR process is due to the shedding of the -CCArF ligand from the Ag atom at the very center of the Ag4 unit, exposing the active site. This study enriches the potpourri of alkynyl-protected bimetallic nanoclusters and also highlights the great advantages of using atomically precise metal nanoclusters to probe the atomic-level structure-performance relationship in the catalytic field.
Collapse
Affiliation(s)
- Xin Zhu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Pan Zhu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Xuzi Cong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, China.
| | - Guanyu Ma
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Qing Tang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, China.
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, Heilongjiang University, Harbin, 150001, China
| |
Collapse
|
6
|
Huang X, Xiao Y, Li Y, Han Q, Fang W, He L, Tian F, Chen R. Understanding the Roles of Thiophenol-Ligated Ag-Based Nanoclusters on TiO 2 during the Catalytic Hydrogenation of Nitroarenes. Inorg Chem 2024; 63:17176-17187. [PMID: 39222386 DOI: 10.1021/acs.inorgchem.4c02878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Elucidating the correlations between the core structure of atomically precise nanoclusters and their catalytic activities is fundamentalfor exploring highly efficient nanocatalysts. Herein, a series of Ag-based nanoclusters protected by 2,4-dimethylphenylthiophenol (specifically Ag4Pd2(SPhMe2)8 and Ag24M(SPhMe2)18 where M = Ag, Pd, and Pt) were synthesized and deposited on TiO2 supports as heterogeneous catalysts for the selective hydrogenation of nitroarenes with NaBH4 as the reductant. It was found that Ag4Pd2(SPhMe2)8 could spontaneously lose its ligands during catalysis, leading to the formation of polydispersed AgPd nanoparticles. This transformation endows the system with extraordinary activity for driving the hydrogenation of nitroarenes. However, the Ag24M (M = Ag, Pd, and Pt) systems, maintain their core structures during catalysis. They follow the generally reported ligand-mediated hydride-involved process, with catalytic activities depending on the central atom (Pt > Pd > Ag), which affects the hydride transferred from the nanoclusters to the reactant to regulate the catalysis.
Collapse
Affiliation(s)
- Xiaofei Huang
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yutong Xiao
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 230031, PR China
| | - Yulin Li
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qingwen Han
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, PR China
| | - Wanggang Fang
- Hefei General Machinery Research Institute Co., Ltd., Hefei 230031, PR China
| | - Liqing He
- Hefei General Machinery Research Institute Co., Ltd., Hefei 230031, PR China
| | - Fan Tian
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Rong Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| |
Collapse
|
7
|
Lu J, Tang K, Qi G, Juan C, Xu J, Cai Z, Li D, Cai X, Liu X, Chen M, Ding W, Zhu Y. Exclusive catalytic hydrogenation of nitrobenzene toward p-aminophenol over atomically precise Au 36(SR) 24 clusters. Chem Sci 2024:d4sc05018e. [PMID: 39268203 PMCID: PMC11388094 DOI: 10.1039/d4sc05018e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Despite the advances in devising green methodologies for selective hydrogenation of nitrobenzene toward p-aminophenol, it is still difficult to realize p-aminophenol as the exclusive product in heterogeneous metal catalysis, as the excessive hydrogenation of nitrobenzene usually results in the aniline byproduct. Herein we report that a metal cluster containing 36 gold atoms capped by 24 thiolate ligands provides a unique pathway for nitrobenzene hydrogenation to achieve a p-aminophenol selectivity of ∼100%. The gold cluster can efficiently suppress the over-hydrogenation of amino groups via hydroxyl rearrangement with the aid of water and sequentially the proton transfer promoted by acid toward p-aminophenol. More notably, remarkable catalytic performances can be extended to clusters with similar structures such as Au28(SR)20 and Au44(SR)28, where only an atomic layer change of 2.1 Å thickness in the Au36(SR)24 cluster can tailor the proton affinity for the amino group of the key intermediate phenylhydroxylamine, thereby altering the activity while the p-aminophenol selectivity remained.
Collapse
Affiliation(s)
- Jinzhi Lu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Kun Tang
- School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Guodong Qi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences Wuhan 430071 China
| | - Chao Juan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences Wuhan 430071 China
| | - Zhenfeng Cai
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Dan Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiao Cai
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Xu Liu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Mingyang Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Weiping Ding
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Yan Zhu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| |
Collapse
|
8
|
Tasaka Y, Suyama M, Ito S, Koyasu K, Kappes M, Maran F, Tsukuda T. Gas-Phase Anion Photoelectron Spectroscopy of Alkanethiolate-Protected PtAu 12 Superatoms: Charging Energy in Vacuum vs Solution. Angew Chem Int Ed Engl 2024; 63:e202408335. [PMID: 38884179 DOI: 10.1002/anie.202408335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
The charging behavior of molecular Au clusters protected by alkanethiolate (SCnH2n+1=SCn) is, under electrochemical conditions, significantly affected by the penetration of solvents and electrolytes into the SCn layer. In this study, we estimated the charging energy EC(n) associated with [PtAu24(SCn)18]-+e-→[PtAu24(SCn)18]2- (n=4, 8, 12, and 16) in vacuum using mass-selected gas-phase anion photoelectron spectroscopy of [PtAu24(SCn)18]z (z=-1 and -2). The EC(n) values of PtAu24(SCn)18 in vacuum are significantly larger than those in solution and decrease with n in contrast to the behavior reported for Au25(SCn)18 in solution. The effective relative permittivity (ϵm*) of the SCn layer in vacuum is estimated to be 2.3-2.0 based on the double-concentric-capacitor model. Much smaller ϵm* values in vacuum than those in solution are explained by the absence of solvent/electrolyte penetration into the monolayer. The gradual decrease of ϵm* with n is ascribed to the appearance of an exposed surface region due to the bundle formation of long alkyl chains.
Collapse
Affiliation(s)
- Yuriko Tasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku., Tokyo, 113-0033, Japan
| | - Megumi Suyama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku., Tokyo, 113-0033, Japan
| | - Shun Ito
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku., Tokyo, 113-0033, Japan
| | - Kiichirou Koyasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku., Tokyo, 113-0033, Japan
| | - Manfred Kappes
- Institute of Physical Chemistry II, Karlsruher Institute of Technology, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Flavio Maran
- Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut, 06269, USA
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku., Tokyo, 113-0033, Japan
| |
Collapse
|
9
|
Su S, Zhou Y, Xiong L, Jin S, Du Y, Zhu M. Structure-Activity Relationships of the Structural Analogs Au 8Cu 1 and Au 8Ag 1 in the Electrocatalytic CO 2 Reduction Reaction. Angew Chem Int Ed Engl 2024; 63:e202404629. [PMID: 38845560 DOI: 10.1002/anie.202404629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 07/23/2024]
Abstract
Owing to the significant attention directed toward alloy metal nanoclusters, it is crucial to explore the relationship between their structures and their performance during the electrocatalytic CO2 reduction reaction (eCO2RR) and discover potential synergistic effects for the design of novel functional nanoclusters. However, a lack of suitable analogs makes this investigation challenging. In this study, we synthesized a well-defined pair of structural analogs, [Au8Cu1(SAdm)4(Dppm)3Cl]2+ and [Au8Ag1(SAdm)4(Dppm)3Cl]2+ (Au8Cu1 and Au8Ag1, respectively), and characterized them. Single-crystal X-ray diffraction analysis revealed that Au8M1 (M=Cu/Ag) consists of a tetrahedral Au3M1 core capped by three (Dppm)Au staples, one Au2(SR)3 staple, one lone SR ligand, and a terminal Cl ligand. Ag and Cu were doped at the same site in the Au8M1 nanoclusters, which has rarely been reported. Au8Cu1 exhibited a significantly higher CO Faradaic efficiency (FECO; ~82.2 %) during eCO2RR than that of Au8Ag1 (FECO; ~33.1 %). Density functional theory calculations demonstrated that *COOH is the key intermediate in the reduction of CO2 to CO. The formation of *COOH on Au8Cu1 is more thermodynamically stable than on Au8Ag1, and Au8Cu1 shows a smaller *CO formation energy than that on Au8Ag1, which promotes the reduction of CO2. We believe that the structural analogs Au8Cu1 and Au8Ag1 offer a suitable template for the in-depth investigation of structure-property correlations at the atomic level.
Collapse
Affiliation(s)
- Shangyu Su
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Yanting Zhou
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Lin Xiong
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422000, PR China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Yuanxin Du
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
- Anhui Tongyuan Environment Energy Saving Co., Ltd., Hefei, 230041, China
| |
Collapse
|
10
|
Song T, Cai X, Zhu Y. Hydrogen production catalysed by atomically precise metal clusters. NANOSCALE 2024; 16:13834-13846. [PMID: 38979742 DOI: 10.1039/d4nr01835d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Atomically precise metal clusters that possess the exact atom number, definitive composition, and tunable geometric and electronic structures have emerged as ideal model catalysts for many important chemical processes. Recently, metal clusters have been widely used as excellent catalysts for hydrogen production to explore the relationship between the structure and catalytic properties at the atomic level. In this review, we systematically summarize the significant developments concerning metal clusters as electrocatalysts and photocatalysts for hydrogen generation. This review also puts forward the challenges and perspectives of atomically precise metal clusters in electrocatalysis and photocatalysis in the hope of providing a valuable reference for the rational design of high-performance catalysts for hydrogen production.
Collapse
Affiliation(s)
- Tongxin Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
11
|
Mymoona P, Rival JV, Nonappa, Shibu ES, Jeyabharathi C. Platinum-Grafted Twenty-Five Atom Gold Nanoclusters for Robust Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308610. [PMID: 38128011 DOI: 10.1002/smll.202308610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Indexed: 12/23/2023]
Abstract
A robust hydrogen evolution is demonstrated from Au25(PET)18]- nanoclusters (PET = 2-phenylethanethiol) grafted with minimal platinum atoms. The fabrication involves an electrochemical activation of nanoclusters by partial removal of thiols, without affecting the metallic core, which exposes Au-sites adsorbed with hydrogen and enables an electroless grafting of platinum. The exposed Au-sites feature the (111)-facet of the fcc-Au25 nanoclusters as assessed through lead underpotential deposition. The electrochemically activated nanoclusters (without Pt loading) show better electrocatalytic reactivity toward hydrogen evolution reaction than the pristine nanoclusters in an acidic medium. The platinum-grafted nanocluster outperformed with a lower overpotential of 0.117 V vs RHE (RHE = Reversible Hydrogen Electrode) compared to electrochemically activated nanoclusters (0.353 V vs RHE ) at 10 mA cm-2 and is comparable with commercial Pt/C. The electrochemically activated nanoclusters show better reactivity at higher current density owing to the ease of hydrogen release from the active sites. The modified nanoclusters show unique supramolecular self-assembly characteristics as observed in electron microscopy and tomography due to the possible metallophilic interactions. These results suggest that the post-surface modification of nanoclusters will be an ideal tool to address the sustainable production of green hydrogen.
Collapse
Affiliation(s)
- Paloli Mymoona
- Electroplating and Metal Finishing Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology (DNST), University of Calicut (UOC), Malappuram, Kerala, 673635, India
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Edakkattuparambil Sidharth Shibu
- Smart Materials Lab, Department of Nanoscience and Technology (DNST), University of Calicut (UOC), Malappuram, Kerala, 673635, India
| | - Chinnaiah Jeyabharathi
- Electroplating and Metal Finishing Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
12
|
Guo Q, Su Z, Xiang D, Yu B, Wang D, Fan Y, Zheng F, Chen W. Fabrication of six-atom Pd clusters regulated with different short ligands and their surface structure-dependent catalytic activities. J Colloid Interface Sci 2024; 662:242-249. [PMID: 38350347 DOI: 10.1016/j.jcis.2024.02.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/13/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
As model catalysts, it is necessary to study the relationship between the structure and properties of ultra-small metal nanoclusters (MNCs) and to reduce their steric hindrance as much as possible, e.g. preparing ultrasmall MNCs protected by ultra-short ligands. However, it is challenging to attain various MNCs with the same cores but different surface stabilizing ligands. Additionally, shortening the chains of protecting ligands will lead to larger MNC cores. Here, four different Pd NCs (Pd6(SC4H9)12, Pd6(SC8H17)12, Pd6(SC6(C2)H17)12 and Pd6(SC6H13)12) were successfully synthesized by a slow synthesis process. All these clusters consist of six Pd atoms and are stabilized by 12 thiols with different chain lengths and steric hindrance. The catalytic properties of the as-prepared Pd6 NCs were evaluated using the catalytic reduction of p-nitroaniline to p-phenylenediamine as a model reaction. The outcomes indicated that shortening the chain length of the protecting thiols could enhance the catalytic activity of the Pd6 NCs. Notably, stable and active ultra-small Pd6 clusters stabilized by ultra-short ligands (HSC4H9) were successfully synthesized. Although the performance of Pd6(SC4H9)12 clusters protected by the ultra-short thiols is lower than that of commercial palladium on carbon (Pd/C), they display higher stability. Interestingly, the activity of Pd6 NCs protected by ethyl-branched alkane thiols is also better than that of Pd6 NCs protected by the alkane thiol ligands with the same chain length or the same number of carbon numbers. This work provides clear evidence that the catalytic activity of atomically precise MNCs can be controlled by regulating the surface stabilizing ligands.
Collapse
Affiliation(s)
- Qian Guo
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ziyun Su
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dong Xiang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou 510006, China
| | - Beirong Yu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Di Wang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Youjun Fan
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fuqin Zheng
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Wei Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
13
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Pan X, Yao Y, Zhang M, Yuan X, Yao Q, Hu W. Enzyme-mimic catalytic activities and biomedical applications of noble metal nanoclusters. NANOSCALE 2024; 16:8196-8215. [PMID: 38572762 DOI: 10.1039/d4nr00282b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Noble metal (e.g., Au and Ag) nanoclusters (NCs), which exhibit structural complexity and hierarchy comparable to those of natural proteins, have been increasingly pursued in artificial enzyme research. The protein-like structure of metal NCs not only ensures enzyme-mimic catalytic activity, including peroxidase-, catalase-, and superoxide dismutase-mimic activities, but also affords an unprecedented opportunity to correlate the catalytic performance with the cluster structure at the molecular or atomic levels. In this review, we aim to summarize the recent progress in programming and demystify the enzyme-mimic catalytic activity of metal NCs, presenting the state-of-the-art understandings of the structure-property relationship of metal NC-based artificial enzymes. By leveraging on a concise anatomy of the hierarchical structure of noble metal NCs, we manage to unravel the structural origin of the catalytic performance of metal NCs. Noteworthily, it has been proven that the surface ligands and metal-ligand interface of metal NCs are instrumental in influencing enzyme-mimic catalytic activities. In addition to the structure-property correlation, we also discuss the synthetic methodologies feasible to tailoring the cluster structure at the atomic level. Prior to the closure of this review with our perspectives in noble metal NC-based artificial enzymes, we also exemplify the biomedical applications based on the enzyme-mimic catalysis of metal NCs with the theranostics of kidney injury, brain inflammation, and tumors. The fundamental and methodological advancements delineated in this review would be conducive to further development of metal NCs as an alternative family of artificial enzymes.
Collapse
Affiliation(s)
- Xinxin Pan
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yidan Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Manxi Zhang
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
15
|
Chiu TH, Liao JH, Silalahi RPB, Pillay MN, Liu CW. Hydride-doped coinage metal superatoms and their catalytic applications. NANOSCALE HORIZONS 2024; 9:675-692. [PMID: 38507282 DOI: 10.1039/d4nh00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Superatomic constructs have been identified as a critical component of future technologies. The isolation of coinage metal superatoms relies on partially reducing metallic frameworks to accommodate the mixed valent state required to generate a superatom. Controlling this reduction requires careful consideration in reducing the agent, temperature, and the ligand that directs the self-assembly process. Hydride-based reducing agents dominate the synthetic wet chemical routes to coinage metal clusters. However, within this category, a unique subset of superatoms that retain a hydride/s within the nanocluster post-reduction have emerged. These stable constructs have only recently been characterized in the solid state and have highly unique structural features and properties. The difficulty in identifying the position of hydrides in electron-rich metallic constructs requires the combination and correlation of several analytical methods, including ESI-MS, NMR, SCXRD, and DFT. This text highlights the importance of NMR in detecting hydride environments in these superatomic systems. Added to the complexity of these systems is the dual nature of the hydride, which can act as metallic hydrogen in some cases, resulting in entirely different physical properties. This review includes all hydride-doped superatomic nanoclusters emphasizing synthesis, structure, and catalytic potential.
Collapse
Affiliation(s)
- Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Michael N Pillay
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|
16
|
Masuda S, Sakamoto K, Tsukuda T. Atomically precise Au and Ag nanoclusters doped with a single atom as model alloy catalysts. NANOSCALE 2024; 16:4514-4528. [PMID: 38294320 DOI: 10.1039/d3nr05857c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gold and silver nanoclusters (NCs) composed of <200 atoms are novel catalysts because their catalytic properties differ significantly from those of the corresponding bulk surface and can be dramatically tuned by the size (number of atoms). Doping with other metals is a promising approach for improving the catalytic performance of Au and Ag NCs. However, elucidation of the origin of the doping effects and optimization of the catalytic performance are hampered by the technical challenge of controlling the number and location of the dopants. In this regard, atomically precise Au or Ag (Au/Ag) NCs protected by ligands or polymers have recently emerged as an ideal platform because they allow regioselective substitution of single Au/Ag constituent atoms while retaining the size and morphology of the NC. Heterogeneous Au/Ag NC catalysts doped with a single atom can also be prepared by controlled calcination of ligand-protected NCs on solid supports. Comparison of thermal catalysis, electrocatalysis, and photocatalysis between the single-atom-doped and undoped Au/Ag NCs has revealed that the single-atom doping effect can be attributed to an electronic or geometric origin, depending on the dopant element and position. This minireview summarizes the recent progress of the synthesis and catalytic application of single-atom-doped, atomically precise Au/Ag NC catalysts and provides future prospects for the rational development of active and selective metal NC catalysts.
Collapse
Affiliation(s)
- Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kosuke Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
17
|
Han SM, Song S, Yi H, Sim E, Lee D. Synthesis of RhH-doped Au-Ag alloy nanoclusters and dopant evolution. NANOSCALE 2024; 16:4851-4857. [PMID: 38314888 DOI: 10.1039/d3nr05654f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Doping atomically precise metal nanoclusters (NCs) with heterometals is a powerful method for tuning the physicochemical properties of the original NCs at the atomic level. While the heterometals incorporated into metal NCs are limited to group 10-12 metals with closed d-shells, the doping of open d-shell metals remains largely unexplored. Herein, we report the synthesis of Rh-doped Au-Ag alloy NCs by a metal-exchange reaction of [RhHAg24(SPhMe2)18]2- NCs with an Au-thiolate complex. Combined experimental and theoretical structural studies revealed that the synthesized product is a dianionic [RhHAuxAg24-x(SPhMe2)18]2- NC (x = 8-12), consisting of RhH dopant, Au-rich kernel, and Ag-thiolate staple motifs, with the superatomic 8-electron configuration (1S21P6). Under aerobic conditions, the synthesized NCs underwent kernel evolution to generate a 6-electron [RhAuxAg24-x(SPhMe2)18]1- NC (1S21P4), which was initiated by the desorption of hydride from the kernel. Structural analysis of the [RhHAuxAg24-x(SPhMe2)18]2- NC suggests that the kernel evolution is induced by the change in chemical bonds surrounding the hydride in the Au-rich kernel.
Collapse
Affiliation(s)
- Sang Myeong Han
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Suhwan Song
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hanseok Yi
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Eunji Sim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Dongil Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
18
|
Zhang B, Xia C, Hu J, Sheng H, Zhu M. Structure control and evolution of atomically precise gold clusters as heterogeneous precatalysts. NANOSCALE 2024; 16:1526-1538. [PMID: 38168796 DOI: 10.1039/d3nr05460h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Metal clusters have distinct features from single atom and nanoparticle (>1 nm) catalysts, making them effective catalysts for various heterogeneous reactions. Nevertheless, the ambiguity and complexity of the catalyst structure preclude in-depth mechanistic studies. The evolution of metal species during synthesis and reaction processes represents another challenge. One effective solution is to precisely control the structure of the metal cluster, thus offering a well-defined pre-catalyst. The well-defined chemical formula and configurations make atomically precise metal nanoclusters optimal choices. To fabricate an atomically precise metal nanocluster-based heterogeneous catalyst with enhanced performance, careful structural design of both the nanocluster and support material, an effective assembling technique, and a pre-treatment method for these hybrids need to be developed. In this review, we summarize recent advances in in the development of heterogeneous catalysts using atomically precise gold and alloy gold nanoclusters as precursors. We will begin with a brief introduction to the structural properties of atomically precise nanoclusters and structure determination of cluster/support hybrids. We will then introduce heterogeneous catalysts prepared from medium size (tens to hundreds of metal atoms) and low nuclearity nanoclusters. We will illustrate how ligand modification, support-cluster interaction, hybrid fabrication, and heteroatom (Pt, Pd Ag, Cu, Cd, Fe) introduction affect the structural properties and pretreatment/reaction-induced structural evolution of gold nanocluster pre-catalysts. Lastly, we will highlight the synthetic method of NCs@MOF hybrids and their effectiveness in circumventing the adverse cluster structural evolution. These findings are expected to shed light on the structure-activity relationship studies and future catalyst design strategies using atomically precise metal nanocluster pre-catalysts.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Chengcheng Xia
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Jinhui Hu
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Hongting Sheng
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Manzhou Zhu
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| |
Collapse
|
19
|
Devi A, Minhas H, Sahoo L, Rashi, Gratious S, Das A, Mandal S, Pathak B, Patra A. Insights of the efficient hydrogen evolution reaction performance in bimetallic Au 4Cu 2 nanoclusters. NANOSCALE 2024; 16:1758-1769. [PMID: 38167690 DOI: 10.1039/d3nr05445d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The design of efficient electrocatalysts for improving hydrogen evolution reaction (HER) performance using atomically precise metal nanoclusters (NCs) is an emerging area of research. Here, we have studied the HER electrocatalytic performance of monometallic Cu6 and Au6 nanoclusters and bimetallic Au4Cu2 nanoclusters. A bimetallic Au4Cu2/MoS2 composite exhibits excellent HER catalytic activity with an overpotential (η10) of 155 mV vs. reversible hydrogen electrode observed at 10 mA cm-2 current density. The improved HER performance in Au4Cu2 is due to the increased electrochemically active surface area (ECSA), and Au4Cu2 NCs exhibits better stability than Cu6 and Au6 systems and bare MoS2. This augmentation offers a greater number of active sites for the favorable adsorption of reaction intermediates. Furthermore, by employing X-ray photoelectron spectroscopy (XPS) and Raman analysis, the kinetics of HER in the Au4Cu2/MoS2 composite were elucidated, attributing the favorable performance to better electronic interactions occurring at the interface between Au4Cu2 NCs and the MoS2 substrate. Theoretical analysis reveals that the inherent catalytic enhancement in Au4Cu2/MoS2 is due to favorable H atom adsorption over it and the smallest ΔGH* value. The downshift in the d-band of the Au4Cu2/MoS2 composite influences the binding energy of intermediate catalytic species. This new catalyst sheds light on the structure-property relationship for improving electrocatalytic performance at the atomic level.
Collapse
Affiliation(s)
- Aarti Devi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 14036, India
| | - Harpriya Minhas
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India.
| | - Lipipuspa Sahoo
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 14036, India
| | - Rashi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 14036, India
| | - Saniya Gratious
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala-695551, India
| | - Amitabha Das
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India.
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala-695551, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India.
| | - Amitava Patra
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 14036, India
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
20
|
Mishra A, Mishra GK, Anamika, Singh N, Kant R, Kumar K. The rigidity and chelation effect of ligands on the hydrogen evolution reaction catalyzed by Ni(II) complexes. Dalton Trans 2024; 53:1680-1690. [PMID: 38167900 DOI: 10.1039/d3dt03932c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
With increasing interest in nickel-based electrocatalysts, three heteroleptic Ni(II) dithiolate complexes with the general formula [Ni(II)L(L')2] (1-3), L = 2-(methylene-1,1'-dithiolato)-5,5'-dimethylcyclohexane-1,3-dione and L' = triphenylphosphine (1), 1,1'-bis(diphenylphosphino)ferrocene (DPPF) (2), and 1,2-bis(diphenylphosphino)ethane (DPPE) (3), have been synthesized and characterized by various spectroscopic techniques (UV-vis, IR, 1H, and 31P{1H} NMR) as well as the electrochemical method. The molecular structure of complex 2 has also been determined by single-crystal X-ray crystallography. The crystal structure of complex 2 reveals a distorted square planar geometry around the nickel metal ion with a NiP2S2 core. The cyclic voltammograms reveal a small difference in the redox properties of complexes (ΔE° = 130 mV) while the difference in the catalytic half-wave potential becomes substantial (ΔEcat/2 = 670 mV) in the presence of 15 mM CF3COOH. The common S^S-dithiolate ligand provides stability, while the rigidity effect of other ligands (DPPE (3) > DPPF (2) > PPh3 (1)) regulates the formation of the transition state, resulting in the NiIII-H intermediate in the order of 1 > 2 > 3. The foot-of-the-wave analysis supports the widely accepted ECEC mechanism for Ni-based complexes with the first protonation step as a rate-determining step. The electrocatalytic proton reduction activity follows in the order of complex 1 > 2 > 3. The comparatively lower overpotential and higher turnover frequency of complex 1 are attributed to the flexibility of the PPh3 ligand, which favours the easy formation of a transition state.
Collapse
Affiliation(s)
- Anjali Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | | | - Anamika
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Nanhai Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Rama Kant
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Kamlesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
21
|
Sun K, Fu Y, Sekine T, Mabuchi H, Hossain S, Zhang Q, Liu D, Das S, He D, Negishi Y. Metal Nanoclusters as a Superior Polysulfides Immobilizer toward Highly Stable Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304210. [PMID: 37626458 DOI: 10.1002/smll.202304210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Indexed: 08/27/2023]
Abstract
Due to their high designability, unique geometric and electronic structures, and surface coordination chemistry, atomically precise metal nanoclusters are an emerging class of functional nanomaterials at the forefront of materials research. However, the current research on metal nanoclusters is mainly fundamental, and their practical applications are still uncharted. The surface binding properties and redox activity of Au24 Pt(PET)18 (PET: phenylethanethiolate, SCH2 CH2 Ph) nanoclusters are herein harnessed as an high-efficiency electrocatalyst for the anchoring and rapid conversion of lithium polysulfides in lithium-sulfur batteries (LSBs). Au24 Pt(PET)18 @G composites are prepared by using the large specific surface area, high porosity, and conductive network of graphene (G) for the construction of battery separator that can inhibit polysulfide shuttle and accelerate electrochemical kinetics. Resultantly, the LSB using a Au24 Pt(PET)18 @G-based separator presents a high reversible specific capacity of 1535.4 mA h g-1 for the first cycle at 0.2 A g-1 and a rate capability of 887 mA h g-1 at 5 A g-1 . After 1000 cycles at 5 A g-1 , the capacity is 558.5 mA h g-1 . This study is a significant step toward the application of metal nanoclusters as optimal electrocatalysts for LSBs and other sustainable energy storage systems.
Collapse
Affiliation(s)
- Kai Sun
- School of Materials and Energy, and LONGi, Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yujun Fu
- School of Materials and Energy, and LONGi, Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Taishu Sekine
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Qiang Zhang
- School of Materials and Energy, and LONGi, Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Dequan Liu
- School of Materials and Energy, and LONGi, Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Saikat Das
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Deyan He
- School of Materials and Energy, and LONGi, Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
22
|
Brocha Silalahi RP, Liang H, Jo Y, Liao JH, Chiu TH, Wu YY, Wang X, Kahlal S, Wang Q, Choi W, Lee D, Saillard JY, Liu CW. Hydride-Containing Pt-doped Cu-rich Nanoclusters: Synthesis, Structure, and Electrocatalytic Hydrogen Evolution. Chemistry 2023:e202303755. [PMID: 38149882 DOI: 10.1002/chem.202303755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 12/28/2023]
Abstract
A structurally precise hydride-containing Pt-doped Cu-rich nanocluster [PtH2 Cu14 {S2 P(Oi Pr)2 }6 (CCPh)6 ] (1) has been synthesized. It consists of a bicapped icosahedral Cu14 cage that encapsulates a linear PtH2 unit. Upon the addition of two equivalents of CF3 COOH to 1, two hydrido clusters are isolated. These clusters are [PtHCu11 {S2 P(Oi Pr)2 }6 (CCPh)4 ] (2), which is a vertex-missing Cu11 cuboctahedron encaging a PtH moiety, and [PtH2 Cu11 {S2 P(Oi Pr)2 }6 (CCPh)3 ] (3), a distorted 3,3,4,4,4-pentacapped trigonal prismatic Cu11 cage enclosing a PtH2 unit. The electronic structure of 2, analyzed by Density Functional Theory, is a 2e superatom. The electrocatalytic activities of 1-3 for hydrogen evolution reaction (HER) were compared. Notably, Cluster 2 exhibited an exceptionally excellent HER activity within metal nanoclusters, with an onset potential of -0.03 V (at 10 mA cm-2 ), a Tafel slope of 39 mV dec-1 , and consistent HER activity throughout 3000 cycles in 0.5 M H2 SO4 . Our study suggests that the accessible central Pt site plays a crucial role in the remarkable HER activity and may provide valuable insights for establishing correlations between catalyst structure and HER activity.
Collapse
Affiliation(s)
- Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 97401, Taiwan R. O. C
| | - Hao Liang
- Univ Rennes CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Yongsung Jo
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 97401, Taiwan R. O. C
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 97401, Taiwan R. O. C
| | - Ying-Yann Wu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 97401, Taiwan R. O. C
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States
| | - Samia Kahlal
- Univ Rennes CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Qi Wang
- Univ Rennes CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Woojun Choi
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dongil Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 97401, Taiwan R. O. C
| |
Collapse
|
23
|
Kawawaki T, Negishi Y. Elucidation of the electronic structures of thiolate-protected gold nanoclusters by electrochemical measurements. Dalton Trans 2023; 52:15152-15167. [PMID: 37712891 DOI: 10.1039/d3dt02005c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Metal nanoclusters (NCs) with sizes of approximately 2 nm or less have different physical/chemical properties from those of the bulk metals owing to quantum size effects. Metal NCs, which can be size-controlled and heterometal doped at atomic accuracy, are expected to be the next generation of important materials, and new metal NCs are reported regularly. However, compared with conventional materials such as metal complexes and relatively large metal nanoparticles (>2 nm), these metal NCs are still underdeveloped in terms of evaluation and establishment of application methods. Electrochemical measurements are one of the most widely used methods for synthesis, application, and characterisation of metal NCs. This review summarizes the basic knowledge of the electrochemistry and experimental techniques, and provides examples of the reported electronic states of thiolate-protected gold NCs elucidated by electrochemical approaches. It is expected that this review will provide useful information for researchers starting to study metal NCs.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
24
|
Wang L, Chen L, Qin L, Liu Y, Tang Z. Alkynyl-protected Ag 20 Rh 2 Nanocluster with Atomic Precision: Structure Analysis and Tri-functionality Catalytic Application. Chem Asian J 2023; 18:e202300685. [PMID: 37622415 DOI: 10.1002/asia.202300685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/26/2023]
Abstract
We report the overall structure and trifunctionality catalytic application of an atomically precise alloy nanocluster of Ag20 Rh2 (C≡C-t Bu)16 (CF3 CO2 )6 (H2 O)2 (abbreviated as Ag20 Rh2 hereafter). Ag20 Rh2 has a twisted rod-like structure, where a Ag4 @Rh2 kernel is connected by two twisted Ag8 cubes on two sides. Ag20 Rh2 is a superatomic cluster with four free valence electrons, and it has characteristic absorbance feature. Interestingly, Ag20 Rh2 exhibited superior catalytic performance than the larger AgRh nanoparticle counterparts in electrochemical hydrogen evolution reaction (HER), reduction of 4-nitrophenol, and the methyl orange degradation reaction. Such intriguing catalytic properties are attributed to the more exposed active sites from the ultrasmall nanoclusters than relatively large nanoparticles. This study not only enriches the family member of alkynyl-protected AgRh nanoclusters with atomic precision, but also highlights the great advantages of employing nanoclusters as efficient catalysts for multiple functionalities.
Collapse
Affiliation(s)
- Lei Wang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Leyi Chen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Lubing Qin
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yonggang Liu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| |
Collapse
|
25
|
Xu Z, Dong H, Gu W, He Z, Jin F, Wang C, You Q, Li J, Deng H, Liao L, Chen D, Yang J, Wu Z. Lattice Compression Revealed at the ≈1 nm Scale. Angew Chem Int Ed Engl 2023; 62:e202308441. [PMID: 37428452 DOI: 10.1002/anie.202308441] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Lattice tuning at the ≈1 nm scale is fascinating and challenging; for instance, lattice compression at such a minuscule scale has not been observed. The lattice compression might also bring about some unusual properties, which waits to be verified. Through ligand induction, we herein achieve the lattice compression in a ≈1 nm gold nanocluster for the first time, as detected by the single-crystal X-ray crystallography. In a freshly synthesized Au52 (CHT)28 (CHT=S-c-C6 H11 ) nanocluster, the lattice distance of the (110) facet is found to be compressed from 4.51 to 3.58 Å at the near end. However, the lattice distances of the (111) and (100) facets show no change in different positions. The lattice-compressed nanocluster exhibits superior electrocatalytic activity for the CO2 reduction reaction (CO2 RR) compared to that exhibited by the same-sized Au52 (TBBT)32 (TBBT=4-tert-butyl-benzenethiolate) nanocluster and larger Au nanocrystals without lattice variation, indicating that lattice tuning is an efficient method for tailoring the properties of metal nanoclusters. Further theoretical calculations explain the high CO2 RR performance of the lattice-compressed Au52 (CHT)28 and provide a correlation between its structure and catalytic activity.
Collapse
Grants
- 21829501, 21925303, 21771186, 22075290, 22075291, 22272179, 21222301, 21171170, and 21528303 Natural Science Foundation of China
- BJPY2019A02 CASHIPS Director's Fund
- MPCS-2021-A-05 State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences
- 2020HSC-CIP005, 2022HSC-CIP018 the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology
- CAS/SAFEA International Partnership Program for Creative Research Teams
Collapse
Affiliation(s)
- Ziwei Xu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongwei Dong
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhen He
- Department of Chemistry, City University of Hong Kong and Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), Hong Kong, 999077, P. R. China
| | - Fengming Jin
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Chengming Wang
- Instruments' Center for Physical Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Dong Chen
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
26
|
Shen H, Zhu Q, Xu J, Ni K, Wei X, Du Y, Gao S, Kang X, Zhu M. Stepwise construction of Ag 29 nanocluster-based hydrogen evolution electrocatalysts. NANOSCALE 2023; 15:14941-14948. [PMID: 37655628 DOI: 10.1039/d3nr03537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Although several silver-based nanoclusters have been controllably prepared and structurally determined, their electrochemical catalytic performances have been relatively unexplored (or showed relatively weak ability towards electro-catalysis). In this work, we accomplished the step-by-step enhancement of the electrocatalytic hydrogen evolution reaction (HER) efficiency based on an Ag29 cluster template. A combination of atomically precise operations, including the kernel alloying, ligand engineering, and surface activation, was exploited to produce a highly efficient Pt1Ag28-BTT-Mn(10) nano-catalyst towards HER, derived from both experimental characterization and theoretical modelling. The precision characteristic of the Ag29-based cluster system enables us to understanding the correlations between nanocluster structures and HER performances at the atomic level. Overall, the findings of this work will hopefully provide more opportunities for the customization of new cluster-based nano-catalysts with enhanced electrocatalytic capacities.
Collapse
Affiliation(s)
- Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Qingtao Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Jiawei Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Kun Ni
- CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering & iChEM, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Yuanxin Du
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China.
| | - Shan Gao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| |
Collapse
|
27
|
Ruan C, Xiang H, Yan H, Deng Y, Zhao Y, Xu CQ, Li J, Yao C. Au 16 Cd 16 (SC 6 H 11 ) 20 : A Glance at Structure-Property Relationship. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2305056. [PMID: 37632298 DOI: 10.1002/smll.202305056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/23/2023] [Indexed: 08/27/2023]
Abstract
Doping Cd atom(s) into gold clusters is very promising in both theoretical study and practical applications. However, it has long been a challenge to synthesize heavily Cd-doped AuCd bimetallic clusters and thereby reveal their structure-property correlations. Herein a novel AuCd bimetallic cluster: Au16 Cd16 (SC6 H11 )20 (SC6 H11 denotes deprotonated cyclohexanethiol) with a Cd to Au atomic ratio of 1:1 is reported. The precise structure of the cluster determined by single crystal X-ray diffraction demonstrates that it has a unique hexatetrahedron Au14 core and a distinctive shell. Intriguingly, due to the special protecting motifs, the cluster exhibits high stability in various conditions studied, indicating that the geometric structure is crucial in determining the stability of the cluster. Most importantly, the photothermal property of the cluster has been investigated in comparison with those of M13 -kernel (M denotes metal atoms) clusters, and the results imply that the compactness and the Cd atom doping of the core play important roles in dictating the photothermal effect of the cluster. The authors believe that this work will provide some ideas for the rational design of clusters with high stability and excellent photothermal property.
Collapse
Affiliation(s)
- Chenhao Ruan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE) and Ningbo Institute of NPU, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Huixin Xiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE) and Ningbo Institute of NPU, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Hao Yan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE) and Ningbo Institute of NPU, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yuanxin Deng
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou, 350117, China
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Chuanhao Yao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE) and Ningbo Institute of NPU, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou, 350117, China
| |
Collapse
|
28
|
Chaudhuri S, Logsdail AJ, Maurer RJ. Stability of Single Gold Atoms on Defective and Doped Diamond Surfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:16187-16203. [PMID: 37609382 PMCID: PMC10440818 DOI: 10.1021/acs.jpcc.3c03900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Indexed: 08/24/2023]
Abstract
Polycrystalline boron-doped diamond (BDD) is widely used as a working electrode material in electrochemistry, and its properties, such as its stability, make it an appealing support material for nanostructures in electrocatalytic applications. Recent experiments have shown that electrodeposition can lead to the creation of stable small nanoclusters and even single gold adatoms on the BDD surfaces. We investigate the adsorption energy and kinetic stability of single gold atoms adsorbed onto an atomistic model of BDD surfaces by using density functional theory. The surface model is constructed using hybrid quantum mechanics/molecular mechanics embedding techniques and is based on an oxygen-terminated diamond (110) surface. We use the hybrid quantum mechanics/molecular mechanics method to assess the ability of different density functional approximations to predict the adsorption structure, energy, and barrier for diffusion on pristine and defective surfaces. We find that surface defects (vacancies and surface dopants) strongly anchor adatoms on vacancy sites. We further investigated the thermal stability of gold adatoms, which reveals high barriers associated with lateral diffusion away from the vacancy site. The result provides an explanation for the high stability of experimentally imaged single gold adatoms on BDD and a starting point to investigate the early stages of nucleation during metal surface deposition.
Collapse
Affiliation(s)
- Shayantan Chaudhuri
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Centre
for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Andrew J. Logsdail
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United
Kingdom
| | - Reinhard J. Maurer
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department
of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
29
|
Chiu TH, Liao JH, Wu YY, Chen JY, Chen YJ, Wang X, Kahlal S, Saillard JY, Liu CW. Hydride Doping Effects on the Structure and Properties of Eight-Electron Rh/Ag Superatoms: The [RhH x@Ag 21-x{S 2P(O nPr) 2} 12] ( x = 0-2) Series. J Am Chem Soc 2023. [PMID: 37473452 DOI: 10.1021/jacs.3c04482] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Three hitherto unknown eight-electron rhodium/silver alloy nanoclusters, [RhAg21{S2P(OnPr)2}12] (1), [RhHAg20{S2P(OnPr)2}12] (2), and [RhH2Ag19{S2P(OnPr)2}12] (3), have been isolated and fully characterized. Cluster 1 contains a regular Rh@Ag12 icosahedral core, whereas 2 and 3 exhibit distorted RhH@Ag12 and RhH2@Ag12 icosahedral cores. The single-crystal neutron structure of 2 located the encapsulated hydride at the center of an enlarged RhAg3 tetrahedron. A similar position was found by neutron diffraction for one of the hydrides in 3, whereas the other hydride is trigonally coordinated to Rh and an elongated Ag-Ag edge. The solid-state structures of 1-3 possess C1 symmetry due to the asymmetric arrangement of the surrounding capping Ag atoms. Our investigation shows that the insertion of one hydride dopant provokes the elimination of one capping silver atom on the cluster surface, resulting in the general formula [RhHx@Ag21-x{S2P(OnPr)2}12] (x = 0-2), which maintains the same number of cluster electrons as well as neutral charge. Clusters 1-3 exhibit an intense emission band in the NIR region. Contrarily to their PdAg21 and PdHAg20 relatives, the 4d orbitals of the encapsulated heterometal are somewhat involved in the optical processes.
Collapse
Affiliation(s)
- Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| | - Ying-Yann Wu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| | - Jie-Ying Chen
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan (Republic of China)
| | - Yuan Jang Chen
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan (Republic of China)
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| |
Collapse
|
30
|
Liu Z, Tan H, Li B, Hu Z, Jiang DE, Yao Q, Wang L, Xie J. Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters. Nat Commun 2023; 14:3374. [PMID: 37291124 DOI: 10.1038/s41467-023-38914-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
The ligand effects of atomically precise metal nanoclusters on electrocatalysis kinetics have been rarely revealed. Herein, we employ atomically precise Au25 nanoclusters with different ligands (i.e., para-mercaptobenzoic acid, 6-mercaptohexanoic acid, and homocysteine) as paradigm electrocatalysts to demonstrate oxygen evolution reaction rate-determining step switching through ligand engineering. Au25 nanoclusters capped by para-mercaptobenzoic acid exhibit a better performance with nearly 4 times higher than that of Au25 NCs capped by other two ligands. We deduce that para-mercaptobenzoic acid with a stronger electron-withdrawing ability establishes more partial positive charges on Au(I) (i.e., active sites) for facilitating feasible adsorption of OH- in alkaline media. X-ray photo-electron spectroscopy and theoretical study indicate a profound electron transfer from Au(I) to para-mercaptobenzoic acid. The Tafel slope and in situ Raman spectroscopy suggest different ligands trigger different rate-determining step for these Au25 nanoclusters. The mechanistic insights reported here can add to the acceptance of atomically precise metal nanoclusters as effective electrocatalysts.
Collapse
Affiliation(s)
- Zhihe Liu
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou, Fuzhou, 350207, PR China
- Department of Chemical and Biomolecular Engineering National University of, Singapore, 117585, Singapore
| | - Hua Tan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences Nanyang Technological University, Singapore, 637371, Singapore
| | - Bo Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Zehua Hu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences Nanyang Technological University, Singapore, 637371, Singapore
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Qiaofeng Yao
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou, Fuzhou, 350207, PR China.
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering National University of, Singapore, 117585, Singapore.
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou, Fuzhou, 350207, PR China.
- Department of Chemical and Biomolecular Engineering National University of, Singapore, 117585, Singapore.
| |
Collapse
|
31
|
Li Y, Zhao S, Zang S. Programmable kernel structures of atomically precise metal nanoclusters for tailoring catalytic properties. EXPLORATION (BEIJING, CHINA) 2023; 3:20220005. [PMID: 37933377 PMCID: PMC10624382 DOI: 10.1002/exp.20220005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/01/2022] [Indexed: 11/08/2023]
Abstract
The unclear structures and polydispersity of metal nanoparticles (NPs) seriously hamper the identification of the active sites and the construction of structure-reactivity relationships. Fortunately, ligand-protected metal nanoclusters (NCs) with atomically precise structures and monodispersity have become an ideal candidate for understanding the well-defined correlations between structure and catalytic property at an atomic level. The programmable kernel structures of atomically precise metal NCs provide a fantastic chance to modulate their size, shape, atomic arrangement, and electron state by the precise modulating of the number, type, and location of metal atoms. Thus, the special focus of this review highlights the most recent process in tailoring the catalytic activity and selectivity over metal NCs by precisely controlling their kernel structures. This review is expected to shed light on the in-depth understanding of metal NCs' kernel structures and reactivity relationships.
Collapse
Affiliation(s)
- Ya‐Hui Li
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| | - Shu‐Na Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| | - Shuang‐Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| |
Collapse
|
32
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
33
|
Li Y, Luo XM, Luo P, Zang QX, Wang ZY, Zang SQ. Cocrystallization of Two Negatively Charged Dimercaptomaleonitrile-Stabilized Silver Nanoclusters. ACS NANO 2023; 17:5834-5841. [PMID: 36912873 DOI: 10.1021/acsnano.2c12473] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Studies on the assembly of atomically precise metal nanoclusters (NCs) are of great significance in the nanomaterial field, which has attracted increasing interest in the last few decades. Herein, we report the cocrystallization of two negatively charged atom-precise silver nanoclusters, the octahedral [Ag62(MNT)24(TPP)6]8- (Ag62) and the truncated-tetrahedral [Ag22(MNT)12(TPP)4]4- (Ag22) in a 1:2 ratio (MNT2- = dimercaptomaleonitrile, TPP = triphenylphosphine). As far as we know, a cocrystal containing two negatively charged NCs has seldom been reported. Single-crystal structure determinations reveal that the component Ag22 and Ag62 NCs both adopt core-shell structures. In addition, the component NCs were separately obtained by adjusting the synthetic conditions. This work enriches the structural diversity of silver NCs and extends the family of cluster-based cocrystals.
Collapse
Affiliation(s)
- Yao Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Xi-Ming Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Peng Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, People's Republic of China
| | - Qiu-Xu Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
34
|
Ma A, Wang J, Kong J, Ren Y, Wang Y, Ma X, Zhou M, Wang S. Au 10Ag 17(TPP) 10(SR) 6Cl 5 nanocluster: structure, transformation and the origin of its photoluminescence. Phys Chem Chem Phys 2023; 25:9772-9778. [PMID: 36946196 DOI: 10.1039/d3cp00459g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Nanocluster photoluminescence (PL) has important practical applications and its rationalization is therefore of significant interest. Here, we report the synthesis, structure determination and photoluminescence of Au10Ag17(TPP)10(SR)6Cl5 (TPP = triphenylphosphine, SR = 3, 5-bis(trifluoromethyl)thiophenol, denoted as Au10Ag17). Au10Ag17 exhibited a low photoluminescence quantum yield (PLQY) of 2.8%, which could be increased 15-fold by removing the two terminal silver atoms to give AgxAu25-x(SR)5(TPP)10Cl22+ (x = 11-13, SR = 2-phenylethylmercaptan, abbrev. Au12Ag13). The discovery of such a PL switch constitutes an interesting opportunity to further understand the origin of fluorescence in nanoclusters.
Collapse
Affiliation(s)
- Along Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China.
| | - Jiawei Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China.
| | - Jie Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Yonggang Ren
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China.
| | - Yuxuan Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China.
| | - Xiaoshuang Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China.
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China.
| |
Collapse
|
35
|
Tang L, Duan T, Pei Y, Wang S. Synchronous Metal Rearrangement on Two-Dimensional Equatorial Surfaces of Au-Cu Alloy Nanoclusters. ACS NANO 2023; 17:4279-4286. [PMID: 36876873 DOI: 10.1021/acsnano.2c07136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding the growth of nanoclusters and the relationship between structure-activity depends on the precise arrangement of metals on their surface. In this work, we realized the synchronous rearrangement of metal atoms on the equatorial plane of Au-Cu alloy nanoclusters. Upon adsorption of the phosphine ligand, the Cu atoms on the equatorial plane of the Au52Cu72(SPh)55 nanocluster are irreversibly rearranged. The whole metal rearrangement process can be understood from a synchronous metal rearrangement mechanism initiated by the adsorption of the phosphine ligand. Furthermore, this metal rearrangement can effectively improve the efficiency of A3 coupling reactions without increasing the amount of catalyst.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Tengfei Duan
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
36
|
Sun Y, Luo J, Zhang M, Li J, Yu J, Lu S, Song W, Wei Y, Li Z, Liu J. Electron Delocalization of Au Nanoclusters Triggered by Fe Single Atoms Boosts Alkaline Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10696-10708. [PMID: 36791310 DOI: 10.1021/acsami.2c21390] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rational design and in-depth understanding of the structure-activity relationship (SAR) of hydrogen and oxygen evolution reaction (HER and OER) bifunctional electrocatalysts are vital to decreasing the energy consumption of hydrogen production by electrochemical water splitting. Herein, we report an inducing electron delocalization method where Fe single atoms as inducers are used to regulate the electron structure of Au nanoclusters by the M-Nx-C substrate to acquire satisfactory intrinsic HER activity. Meanwhile, Fe single atoms also serve as efficient OER active sites to construct bifunctional electrocatalysts. On account of the strong synergistic effect between Au nanoclusters and Fe single atoms, the hybrid catalyst Au-Fe1NC/NF performs an outstanding alkaline HER and OER activity. Only 35.6 mV, 246 mV, and 1.52 V are needed to reach 10 mA cm-2 for alkaline HER, OER, and two-electrode electrolytic cells, respectively. In addition, the bifunctional electrocatalysts also display excellent electrochemical stability. DFT calculations demonstrate that the strong synergistic effect can enhance the O-H bond activation ability of Au nanoclusters and upshift the d-band center of the Fe single atom to promote alkaline electrocatalytic water splitting. The strong synergistic effect is proven to arise from the electron delocalization of Au nanoclusters triggered by Fe single atoms.
Collapse
Affiliation(s)
- Yuanqing Sun
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249, China
| | - Jiaqing Luo
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249, China
| | - Manxue Zhang
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249, China
| | - Jun Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingkun Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Siyu Lu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249, China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249, China
| | - Zhenxing Li
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249, China
- Laboratory of Heavy Oil at Karamay, China University of Petroleum─Beijing at Karamay, Karamay 834000, China
| |
Collapse
|
37
|
Suyama M, Takano S, Tsukuda T. Spontaneous Intercluster Electron Transfer X 2- + X 0 → 2 X - (X = PtAu 24(SC nH 2n+1) 18) in Solution: Promotion by Long Alkyl Chains. J Am Chem Soc 2023; 145:3361-3368. [PMID: 36689616 DOI: 10.1021/jacs.2c09391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this work, we systematically investigated the ligand effects on spontaneous electron transfer (ET) between alkanethiolate-protected metal clusters in solution. The donor and acceptor clusters used were [PtAu24(SCnH2n+1)18]2- (8e(Cn)) and [PtAu24(SCmH2m+1)18]0 (6e(Cm)) (n, m = 2-16), which have icosahedral Pt@Au12 cores with eight and six valence electrons, respectively. The ET rate constant (kET) from 8e(Cn) to 6e(Cm) in benzene exhibited a novel turnover behavior as a function of the total chain length n + m: the kET decreased with n + m in the range of 4-12, whereas it monotonically increased with n + m in the range of 12-32. Electrospray ionization mass spectrometry of the mixture of 8e(Cn) and 6e(Cm) detected the dimer complex 8e(Cn)·6e(Cm), the relative population of which increased with n + m. The activation energy (Ea), determined based on the Arrhenius plots for n = m, monotonically decreased with n (≥ 6). Based on these results, we proposed that the promotion of ET by longer alkanethiolates was ascribed to two effects on the key intermediate 8e(Cn)·6e(Cm): (1) elongation of the lifetime and (2) the contraction of the distance between 8e(Cn) and 6e(Cm) due to the stronger van der Waals interaction between the longer alkyl chains. Such alkyl-chain-promoted ET is specific to ultrasmall clusters in solution because a nonuniform ligand layer could be formed due to the large curvature of the cluster core.
Collapse
Affiliation(s)
- Megumi Suyama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| |
Collapse
|
38
|
Shan H, Shi J, Chen T, Cao Y, Yao Q, An H, Yang Z, Wu Z, Jiang Z, Xie J. Modulating Catalytic Activity and Stability of Atomically Precise Gold Nanoclusters as Peroxidase Mimics via Ligand Engineering. ACS NANO 2023; 17:2368-2377. [PMID: 36723080 DOI: 10.1021/acsnano.2c09238] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal nanoclusters (NCs), composed of a metal core and protecting ligands, show promising potentials as enzyme mimics for producing fuels, pharmaceuticals, and valuable chemicals, etc. Herein, we explore the critical role of ligands in modulating the peroxidase mimic activity and stability of Au NCs. A series of Au15(SR)13 NCs with various thiolate ligands [SR = N-acetyl-l-cysteine (NAC), 3-mercaptopropionic acid (MPA), or 3-mercapto-2-methylpropanoic acid (MMPA)] are utilized as model catalysts. It is found that Au15(NAC)13 shows higher structural stability than Au15(MMPA)13 and Au15(MPA)13 against external stimuli (e.g., pH, oxidants, and temperature) because of the intramolecular hydrogen bonds. More importantly, detailed enzymatic kinetics data show that the catalytic activity of Au15(NAC)13 is about 4.3 and 2.7 times higher than the catalytic activity of Au15(MMPA)13 and Au15(MPA)13, respectively. Density functional theory (DFT) calculations reveal that the Au atoms on the motif of Au NCs should be the active centers, whereas the superior peroxidase mimic activity of Au15(NAC)13 should originate from the emptier orbitals of Au atoms because of the electron-withdrawing effect of acetyl amino group in NAC. This work demonstrates the ligand-engineered electronic structure and functionality of atomically precise metal NCs, which afford molecular and atomic level insights for artificial enzyme design.
Collapse
Affiliation(s)
- Huiting Shan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore117585, Singapore
| | - Jiafu Shi
- School of Environmental Science and Engineering, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing10090, China
| | - Tiankai Chen
- School Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen518000, China
| | - Yitao Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore117585, Singapore
| | - Qiaofeng Yao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore117585, Singapore
| | - Hua An
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore117585, Singapore
| | - Zhucheng Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore117585, Singapore
| | - Zhenhua Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin300072, China
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore117585, Singapore
| |
Collapse
|
39
|
Havenridge S, Weerawardene KLDM, Aikens CM. Characterization of Pt-doping effects on nanoparticle emission: a theoretical look at Au 24Pt(SH) 18 and Au 24Pt(SC 3H 7) 18. Faraday Discuss 2023; 242:464-477. [PMID: 36222075 DOI: 10.1039/d2fd00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Developments in nanotechnology have made the creation of functionalized materials with atomic precision possible. Thiolate-protected gold nanoclusters, in particular, have become the focus of study in literature as they possess high stability and have tunable structure-property relationships. In addition to adjustments in properties due to differences in size and shape, heteroatom doping has become an exciting way to tune the properties of these systems by mixing different atomic d characters from transition metal atoms. Au24Pt(SR)18 clusters, notably, have shown incredible catalytic properties, but fall short in the field of photochemistry. The influence of the Pt dopant on the photoluminescence mechanism and excited state dynamics has been investigated by a few experimental groups, but the origin of the differences that arise due to doping has not been clarified thoroughly. In this paper, density functional theory methods are used to analyze the geometry, optical and photoluminescent properties of Au24Pt(SR)18 in comparison with those of [Au25(SR)18]1-. Furthermore, as these clusters have shown slightly different geometric and optical properties for different ligands, the analysis is completed with both hydrogen and propyl ligands in order to ascertain the role of the passivating ligands.
Collapse
Affiliation(s)
- Shana Havenridge
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA.
| | | | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
40
|
Zhu Y, Guo L, Guo J, Zhao L, Li C, Qiu X, Qin Y, Gu X, Sun X, Tang Z. Room-Temperature Spin Transport in Metal Nanocluster-Based Spin Valves. Angew Chem Int Ed Engl 2023; 62:e202213208. [PMID: 36445822 DOI: 10.1002/anie.202213208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
As a new type of inorganic-organic hybrid semiconductor, quantum-confined atomically precise metal nanoclusters (MNCs) have been widely applied in the fields of chemical sensing, optical imaging, biomedicine and catalysis. Herein, we successfully design and fabricate the first example of MNC-based spin valves (SVs) that exhibit remarkable magnetoresistance (MR) value up to 1.6 % even at room temperature (300 K). The concomitant photoresponse of MNC-based SVs unambiguously confirms that the spin-polarized electron transmission takes place across the MNC interlayer. Furthermore, the spin-dependent transport property of MNC-based SVs is largely varied by changing the atomic structure of MNCs. Both experimental proofs and quantum chemistry calculations reveal that the atomic structure-discriminative spin transport behavior is attributed to the distinct spin-orbit coupling (SOC) effect of MNCs.
Collapse
Affiliation(s)
- Yanfei Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lidan Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Luyang Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chunyan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Xueying Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yang Qin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianrong Gu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangnan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
41
|
Ding J, Yang H, Zhang S, Liu Q, Cao H, Luo J, Liu X. Advances in the Electrocatalytic Hydrogen Evolution Reaction by Metal Nanoclusters-based Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204524. [PMID: 36287086 DOI: 10.1002/smll.202204524] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Indexed: 05/27/2023]
Abstract
With the development of renewable energy systems, clean hydrogen is burgeoning as an optimal alternative to fossil fuels, in which its application is promising to retarding the global energy and environmental crisis. The hydrogen evolution reaction (HER), capable of producing high-purity hydrogen rapidly in electrocatalytic water splitting, has received much attention. Abundant research about HER has been done, focusing on advanced electrocatalyst design with high efficiency and robust stability. As potential HER catalysts, metal nanoclusters (MNCs) have been studied extensively. They are composed of several to a hundred metal atoms, with sizes being comparable to the Fermi wavelength of electrons, that is, < 2.0 nm. Different from metal atoms/nanoparticles, they exhibit unique catalytic properties due to their quantum size effect and low-coordination environment. In this review, the activity-enhancing approaches of MNCs applied in HER electrocatalysis are mainly summarized. Furthermore, recent progress in MNCs classified with different stabilization strategies, that is, the freestanding MNCs, MNCs with organic, metal and carbon supports, are introduced. Finally, the current challenges and deficiencies of these MNCs for HER are prospected.
Collapse
Affiliation(s)
- Junyang Ding
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Hui Yang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Huanqi Cao
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
42
|
Wang S, Tan Y, Li T, Zhou Q, Li P, Yang S, Yu H, Zhu M. Insight into the Role of Copper in the Transformation of a [Ag 25(2,5-DMBT) 16(DPPF) 3] + Nanocluster: Doping or Oxidation. Inorg Chem 2022; 61:18450-18457. [DOI: 10.1021/acs.inorgchem.2c02655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Silan Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Yesen Tan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Tianrong Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Qi Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Peng Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
43
|
Gholipour-Ranjbar H, Deepika, Jena P, Laskin J. Gas-phase fragmentation of single heteroatom-incorporated Co 5MS 8(PEt 3) 6+ (M = Mn, Fe, Co, Ni) nanoclusters. Commun Chem 2022; 5:130. [PMID: 36697963 PMCID: PMC9814561 DOI: 10.1038/s42004-022-00750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/07/2022] [Indexed: 01/28/2023] Open
Abstract
Functionalization of metal-chalcogenide clusters by either replacing core atoms or by tuning the ligand is a powerful technique to tailor their properties. Central to this approach is understanding the competition between the strength of the metal-ligand and metal-metal interactions. Here, using collision-induced dissociation of atomically precise metal sulfide nanoclusters, Co5MS8L6+ (L = PEt3, M = Mn, Fe, Co, Ni) and Co5-xFexS8L6+ (x = 1-3), we study the effect of a heteroatom incorporation on the core-ligand interactions and relative stability towards fragmentation. Sequential ligand loss is the dominant dissociation pathway that competes with ligand sulfide (LS) loss. Because the ligands are attached to metal atoms, LS loss is an unusual dissociation pathway, indicating significant rearrangement of the core prior to fragmentation. Both experiments and theoretical calculations indicate the reduced stability of Co5MnS8L6+ and Co5FeS8L6+ towards the first ligand loss in comparison with their Co6S8L6+ and Co5NiS8L6+ counterparts and provide insights into the core-ligand interaction.
Collapse
Affiliation(s)
| | - Deepika
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
44
|
Cai X, Li G, Hu W, Zhu Y. Catalytic Conversion of CO 2 over Atomically Precise Gold-Based Cluster Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Guangjun Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Weigang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
45
|
Tang S, Xu J, Liu X, Zhu Y. Ag Doped Au
44
Nanoclusters for Electrocatalytic Conversion of CO
2
to CO. Chemistry 2022; 28:e202201262. [DOI: 10.1002/chem.202201262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Shisi Tang
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jiayu Xu
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Xu Liu
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
46
|
Liu X, Wang E, Zhou M, Wan Y, Zhang Y, Liu H, Zhao Y, Li J, Gao Y, Zhu Y. Asymmetrically Doping a Platinum Atom into a Au 38 Nanocluster for Changing the Electron Configuration and Reactivity in Electrocatalysis. Angew Chem Int Ed Engl 2022; 61:e202207685. [PMID: 35638166 DOI: 10.1002/anie.202207685] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/25/2022]
Abstract
It is an obstacle to precisely manipulate a doped heteroatom into a desired position in a metal nanocluster. Herein, we overcome this difficulty to obtain Pt1 Au37 (SCH2 Pht Bu)24 and Pt2 Au36 (SCH2 Pht Bu)24 nanoclusters via controllably doping Pt atoms into the kernels of Au38 (SCH2 Pht Bu)24 . We reveal that asymmetrical doping of one Pt atom into either of the cores of Au38 (SCH2 Pht Bu)24 elevates the relative energy of the HOMO (highest occupied molecular orbital) accompanied by one valence electron loss of Pt1 Au37 (SCH2 Pht Bu)24 , compared to Au38 (SCH2 Pht Bu)24 with 14 electrons, while symmetrical doping of two Pt atoms into the cores of Au38 (SCH2 Pht Bu)24 narrows the HOMO-LUMO gap (LUMO: lowest unoccupied molecular orbital) of Pt2 Au36 (SCH2 Pht Bu)24 with two valence electrons less. Consequently, Pt1 Au37 (SCH2 Pht Bu)24 shows an electron-spin-induced high activity for CO2 electroreduction, whereas Pt2 Au36 (SCH2 Pht Bu)24 is least efficient and Au38 (SCH2 Pht Bu)24 has a decent performance.
Collapse
Affiliation(s)
- Xu Liu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Endong Wang
- Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuankun Zhang
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Haoqi Liu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi Gao
- Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yan Zhu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
47
|
Sun F, Tang Q, Jiang DE. Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - De-en Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
48
|
Xiang H, Yan H, Liu J, Cheng R, Xu CQ, Li J, Yao C. Identifying the Real Chemistry of the Synthesis and Reversible Transformation of AuCd Bimetallic Clusters. J Am Chem Soc 2022; 144:14248-14257. [PMID: 35737965 DOI: 10.1021/jacs.2c05053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The capability of precisely constructing bimetallic clusters with atomic accuracy provides exciting opportunities for establishing their structure-property correlations. However, the chemistry (the charge state of precursors, the property of ligands, the amount of dopant, and so forth) dictating the fabrication of clusters with atomic-level control has been a long-standing challenge. Herein, based on the well-defined Au25(SR)18 cluster (SR = thiolates), we have systematically investigated the factors of steric hindrance and electronic effect of ligands, the charge state of Au25(SR)18, and the amount of dopant that may determine the structure of AuCd clusters. It is revealed that [Au19Cd3(SR)18]- can be obtained when a ligand of smaller steric hindrance is used, while Au24Cd(SR)18 is attained when a larger steric hindrance ligand is used. In addition, negatively charged [Au25(SR)18]- is apt to form [Au19Cd3(SR)18]- during Cd doping, while Au24Cd(SR)18 is produced when neutral Au25(SR)18 is used as a precursor. Intriguingly, the reversible transformation between [Au19Cd3(SR)18]- and Au24Cd(SR)18 is feasible by subtly manipulating ligands with different steric hindrances. Most importantly, by introducing the excess amount of dopant, a novel bimetallic cluster, Au4Cd4(SR)12 is successfully fabricated and its total structure is fully determined. The electronic structures and the chirality of Au4Cd4(SR)12 have been elucidated by density functional theory (DFT) calculations. Au4Cd4(SR)12 reported herein represents the smallest AuCd bimetallic cluster with chirality.
Collapse
Affiliation(s)
- Huixin Xiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE) and Ningbo Institute of NPU, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Hao Yan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE) and Ningbo Institute of NPU, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jiaohu Liu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE) and Ningbo Institute of NPU, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Ranran Cheng
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE) and Ningbo Institute of NPU, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chuanhao Yao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE) and Ningbo Institute of NPU, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
49
|
Liu X, Wang E, Zhou M, Wan Y, Zhang Y, Liu H, Zhao Y, Li J, Gao Y, Zhu Y. Asymmetrically Doping a Platinum Atom into a Au
38
Nanocluster for Changing the Electron Configuration and Reactivity in Electrocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xu Liu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Endong Wang
- Interdisciplinary Research Center, Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Yan Wan
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Yuankun Zhang
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Haoqi Liu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Yue Zhao
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences School of Life Sciences Tsinghua University Beijing 100084 China
| | - Yi Gao
- Interdisciplinary Research Center, Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Yan Zhu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
50
|
Bis-Schiff base linkage-triggered highly bright luminescence of gold nanoclusters in aqueous solution at the single-cluster level. Nat Commun 2022; 13:3381. [PMID: 35697695 PMCID: PMC9192726 DOI: 10.1038/s41467-022-30760-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/13/2022] [Indexed: 12/23/2022] Open
Abstract
Metal nanoclusters (NCs) have been developed as a new class of luminescent nanomaterials with potential applications in various fields. However, for most of the metal NCs reported so far, the relatively low photoluminescence quantum yield (QY) in aqueous solution hinders their applications. Here, we describe the utilization of bis-Schiff base linkages to restrict intramolecular motion of surface motifs at the single-cluster level. Based on Au22(SG)18 (SG: glutathione) NCs, an intracluster cross-linking system was constructed with 2,6-pyridinedicarboxaldehyde (PDA), and water-soluble gold NCs with luminescence QY up to 48% were obtained. The proposed approach for achieving high emission efficiency can be extended to other luminescent gold NCs with core-shell structure. Our results also show that the content of surface-bound Au(I)-SG complexes has a significant impact on the PDA-induced luminescence enhancement, and a high ratio of Au(I)-SG will be beneficial to increasing the photoluminescence intensity of gold NCs. Boosting the luminescence of atomically precise metal clusters is a main goal in view of applications. Here, the authors describe a strategy to increase the photoluminescence quantum yield of water-soluble gold clusters at the single-cluster level via formation of bis-Schiff base linkages, providing detailed insight into the mechanism.
Collapse
|