1
|
Yang L, Lin X, Chen Y, Peng P, Lan Q, Zhao H, Wei H, Yin Y, Liu M. Association analysis of the sorting nexin 29 (SNX29) gene copy number variations with growth traits in Diannan small-ear (DSE) pigs. Anim Biotechnol 2024; 35:2309956. [PMID: 38315463 DOI: 10.1080/10495398.2024.2309956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
SNX29 is a potential functional gene associated with meat production traits. Previous studies have shown that SNX29 copy number variation (CNV) could be implicated with phenotype in goats. However, in Diannan small-ear (DSE) pigs, the genetic impact of SNX29 CNV on growth traits remains unclear. Therefore, this study investigated the associations between SNX29 CNVs (CNV10810 and CNV10811) and growth traits in 415 DSE pigs. The results revealed that the CNV10810 mutation was significantly associated with backfat thickness in DSE pigs at 12 and 15 months old (P < 0.05), while the CNV10811 mutation had significant effects on various growth traits at 6 and 12 months old, particularly for body weight, body height, back height and backfat thickness (P < 0.05 or P < 0.001). In conclusion, our results confirm that SNX29 CNV plays a role in regulating growth and development in pigs, thus suggesting its potential application for pig breeding programmes.
Collapse
Affiliation(s)
- Long Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaoding Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuhan Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Peiya Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qun Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
| | - Hongjiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
2
|
Zhang Z, Liu X, Chu C, Zhang Y, Li W, Yu X, Han Q, Sun H, Zhang Y, Zhu X, Chen L, Wei R, Fan N, Zhou M, Li X. MIR937 amplification potentiates ovarian cancer progression by attenuating FBXO16 inhibition on ULK1-mediated autophagy. Cell Death Dis 2024; 15:735. [PMID: 39384743 PMCID: PMC11464496 DOI: 10.1038/s41419-024-07120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is one of the most lethal gynecological cancer. Genetic studies have revealed gene copy number alterations (CNAs) frequently occurred in HGSOC pathogenesis, however the function and mechanism of CNAs for microRNAs are still not fully understood. Here, we show the dependence on gene copy number amplification of MIR937 that enhances cell autophagy and dictates HGSOC proliferative activity. Data mining of TCGA database revealed MIR937 amplification is correlated with increased MIR937 expression and cell proliferation of HGSOC. Deletion of MIR937 in HGSOC cells led to impaired autophagy and retarded cell proliferation, and the extent for its inhibitory effects scaled with the degree of MIR937 copy loss. Rescue assay confirmed miR-937-5p, a mature product of MIR937, was sufficient to restore its oncogenic function. Mechanistically, MIR937 amplification raised the expression of miR-937-5p, enhanced its binding to 3' UTR of FBXO16 transcript, and thereby restricting FBXO16 degradative effects on ULK1. Our results demonstrate that MIR937 amplification augments cell autophagy and proliferation, and suggest an alternative strategy of MIR937/FBXO16/ULK1 targeting for HGSOC treatment.
Collapse
Affiliation(s)
- Zhen Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinkui Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingjie Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyan Yu
- Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoqiao Han
- Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunhong Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxiao Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liang Chen
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ran Wei
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Nannan Fan
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaomiao Zhou
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Benfica LF, Brito LF, do Bem RD, de Oliveira LF, Mulim HA, Braga LG, Cyrillo JNSG, Bonilha SFM, Mercadante MEZ. Detection and characterization of copy number variation in three differentially-selected Nellore cattle populations. Front Genet 2024; 15:1377130. [PMID: 38694873 PMCID: PMC11061390 DOI: 10.3389/fgene.2024.1377130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Nellore cattle (Bos taurus indicus) is the main beef cattle breed raised in Brazil. This breed is well adapted to tropical conditions and, more recently, has experienced intensive genetic selection for multiple performance traits. Over the past 43 years, an experimental breeding program has been developed in the Institute of Animal Science (IZ, Sertaozinho, SP, Brazil), which resulted in three differentially-selected lines known as Nellore Control (NeC), Nellore Selection (NeS), and Nellore Traditional (NeT). The primary goal of this selection experiment was to determine the response to selection for yearling weight (YW) and residual feed intake (RFI) on Nellore cattle. The main objectives of this study were to: 1) identify copy number variation (CNVs) in Nellore cattle from three selection lines; 2) identify and characterize CNV regions (CNVR) on these three lines; and 3) perform functional enrichment analyses of the CNVR identified. Results: A total of 14,914 unique CNVs and 1,884 CNVRs were identified when considering all lines as a single population. The CNVRs were non-uniformly distributed across the chromosomes of the three selection lines included in the study. The NeT line had the highest number of CNVRs (n = 1,493), followed by the NeS (n = 823) and NeC (n = 482) lines. The CNVRs covered 23,449,890 bp (0.94%), 40,175,556 bp (1.61%), and 63,212,273 bp (2.54%) of the genome of the NeC, NeS, and NeT lines, respectively. Two CNVRs were commonly identified between the three lines, and six, two, and four exclusive regions were identified for NeC, NeS, and NeT, respectively. All the exclusive regions overlap with important genes, such as SMARCD3, SLC15A1, and MAPK1. Key biological processes associated with the candidate genes were identified, including pathways related to growth and metabolism. Conclusion: This study revealed large variability in CNVs and CNVRs across three Nellore lines differentially selected for YW and RFI. Gene annotation and gene ontology analyses of the exclusive CNVRs to each line revealed specific genes and biological processes involved in the expression of growth and feed efficiency traits. These findings contribute to the understanding of the genetic mechanisms underlying the phenotypic differences among the three Nellore selection lines.
Collapse
Affiliation(s)
- Lorena F. Benfica
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Ricardo D. do Bem
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
| | | | - Henrique A. Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Larissa G. Braga
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Sarah F. M. Bonilha
- Beef Cattle Research Center, Institute of Animal Science, Sertaozinho, São Paulo, Brazil
| | - Maria Eugenia Z. Mercadante
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
- Beef Cattle Research Center, Institute of Animal Science, Sertaozinho, São Paulo, Brazil
| |
Collapse
|
4
|
Shi H, Williams MJ, Satas G, Weiner AC, McPherson A, Shah SP. Allele-specific transcriptional effects of subclonal copy number alterations enable genotype-phenotype mapping in cancer cells. Nat Commun 2024; 15:2482. [PMID: 38509111 PMCID: PMC10954741 DOI: 10.1038/s41467-024-46710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
Subclonal copy number alterations are a prevalent feature in tumors with high chromosomal instability and result in heterogeneous cancer cell populations with distinct phenotypes. However, the extent to which subclonal copy number alterations contribute to clone-specific phenotypes remains poorly understood. We develop TreeAlign, which computationally integrates independently sampled single-cell DNA and RNA sequencing data from the same cell population. TreeAlign accurately encodes dosage effects from subclonal copy number alterations, the impact of allelic imbalance on allele-specific transcription, and obviates the need to define genotypic clones from a phylogeny a priori, leading to highly granular definitions of clones with distinct expression programs. These improvements enable clone-clone gene expression comparisons with higher resolution and identification of expression programs that are genomically independent. Our approach sets the stage for dissecting the relative contribution of fixed genomic alterations and dynamic epigenetic processes on gene expression programs in cancer.
Collapse
Affiliation(s)
- Hongyu Shi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Marc J Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gryte Satas
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adam C Weiner
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Nguyen MTN, Rajavuori A, Huhtinen K, Hietanen S, Hynninen J, Oikkonen J, Hautaniemi S. Circulating tumor DNA-based copy-number profiles enable monitoring treatment effects during therapy in high-grade serous carcinoma. Biomed Pharmacother 2023; 168:115630. [PMID: 37806091 DOI: 10.1016/j.biopha.2023.115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Circulating tumor DNA (ctDNA) analysis has emerged as a promising tool for detecting and profiling longitudinal genomics changes in cancer. While copy-number alterations (CNAs) play a major role in cancers, treatment effect monitoring using copy-number profiles has received limited attention as compared to mutations. A major reason for this is the insensitivity of CNA analysis for the real-life tumor-fraction ctDNA samples. We performed copy-number analysis on 152 plasma samples obtained from 29 patients with high-grade serous ovarian cancer (HGSC) using a sequencing panel targeting over 500 genes. Twenty-one patients had temporally matched tissue and plasma sample pairs, which enabled assessing concordance with tissues sequenced with the same panel or whole-genome sequencing and to evaluate sensitivity. Our approach could detect concordant CNA profiles in most plasma samples with as low as 5% tumor content and highly amplified regions in samples with ∼1% of tumor content. Longitudinal profiles showed changes in the CNA profiles in seven out of 11 patients with high tumor-content plasma samples at relapse. These changes included focal acquired or lost copy-numbers, even though most of the genome remained stable. Two patients displayed major copy-number profile changes during therapy. Our analysis revealed ctDNA-detectable subclonal selection resulting from both surgical operations and chemotherapy. Overall, longitudinal ctDNA data showed acquired and diminished CNAs at relapse when compared to pre-treatment samples. These results highlight the importance of genomic profiling during treatment as well as underline the usability of ctDNA.
Collapse
Affiliation(s)
- Mai T N Nguyen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland
| | - Anna Rajavuori
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4, Turku 20521, Finland
| | - Kaisa Huhtinen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland; Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, Turku 20014, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4, Turku 20521, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4, Turku 20521, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland.
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland.
| |
Collapse
|
6
|
Tao Y, Xing S, Zuo S, Bao P, Jin Y, Li Y, Li M, Wu Y, Chen S, Wang X, Zhu Y, Feng Y, Zhang X, Wang X, Xi Q, Lu Q, Wang P, Lu ZJ. Cell-free multi-omics analysis reveals potential biomarkers in gastrointestinal cancer patients' blood. Cell Rep Med 2023; 4:101281. [PMID: 37992683 PMCID: PMC10694666 DOI: 10.1016/j.xcrm.2023.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
During cancer progression, tumorigenic and immune signals are spread through circulating molecules, such as cell-free DNA (cfDNA) and cell-free RNA (cfRNA) in the blood. So far, they have not been comprehensively investigated in gastrointestinal cancers. Here, we profile 4 categories of cell-free omics data from patients with colorectal cancer and patients with stomach adenocarcinoma and then assay 15 types of genomic, epigenomic, and transcriptomic variations. We find that multi-omics data are more appropriate for detection of cancer genes compared with single-omics data. In particular, cfRNAs are more sensitive and informative than cfDNAs in terms of detection rate, enriched functional pathways, etc. Moreover, we identify several peripheral immune signatures that are suppressed in patients with cancer. Specifically, we establish a γδ-T cell score and a cancer-associated-fibroblast (CAF) score, providing insights into clinical statuses like cancer stage and survival. Overall, we reveal a cell-free multi-molecular landscape that is useful for blood monitoring in personalized cancer treatment.
Collapse
Affiliation(s)
- Yuhuan Tao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Shuai Zuo
- Gastro-Intestinal Surgery, Peking University First Hospital, Beijing 100034, China
| | - Pengfei Bao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Yunfan Jin
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Yu Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Mingyang Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yingchao Wu
- Gastro-Intestinal Surgery, Peking University First Hospital, Beijing 100034, China
| | - Shanwen Chen
- Gastro-Intestinal Surgery, Peking University First Hospital, Beijing 100034, China
| | - Xiaojuan Wang
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China; Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No. 168, Litang Road, Changping District, Beijing 102218, China
| | - Yumin Zhu
- Medical school, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ying Feng
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiaohua Zhang
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xianbo Wang
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qian Lu
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China; Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No. 168, Litang Road, Changping District, Beijing 102218, China.
| | - Pengyuan Wang
- Gastro-Intestinal Surgery, Peking University First Hospital, Beijing 100034, China.
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Shi H, Williams MJ, Satas G, Weiner AC, McPherson A, Shah SP. Exploiting allele-specific transcriptional effects of subclonal copy number alterations for genotype-phenotype mapping in cancer cell populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523464. [PMID: 36711951 PMCID: PMC9882029 DOI: 10.1101/2023.01.10.523464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Somatic copy number alterations drive aberrant gene expression in cancer cells. In tumors with high levels of chromosomal instability, subclonal copy number alterations (CNAs) are a prevalent feature which often result in heterogeneous cancer cell populations with distinct phenotypes1. However, the extent to which subclonal CNAs contribute to clone-specific phenotypes remains poorly understood, in part due to the lack of methods to quantify how CNAs influence gene expression at a subclone level. We developed TreeAlign, which computationally integrates independently sampled single-cell DNA and RNA sequencing data from the same cell population and explicitly models gene dosage effects from subclonal alterations. We show through quantitative benchmarking data and application to human cancer data with single cell DNA and RNA libraries that TreeAlign accurately encodes clone-specific transcriptional effects of subclonal CNAs, the impact of allelic imbalance on allele-specific transcription, and obviates the need to arbitrarily define genotypic clones from a phylogenetic tree a priori. Combined, these advances lead to highly granular definitions of clones with distinct copy-number driven expression programs with increased resolution and accuracy over competing methods. The resulting improvement in assignment of transcriptional phenotypes to genomic clones enables clone-clone gene expression comparisons and explicit inference of genes that are mechanistically altered through CNAs, and identification of expression programs that are genomically independent. Our approach sets the stage for dissecting the relative contribution of fixed genomic alterations and dynamic epigenetic processes on gene expression programs in cancer.
Collapse
Affiliation(s)
- Hongyu Shi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Marc J. Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gryte Satas
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adam C. Weiner
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sohrab P. Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
8
|
Pokrovac I, Pezer Ž. Recent advances and current challenges in population genomics of structural variation in animals and plants. Front Genet 2022; 13:1060898. [PMID: 36523759 PMCID: PMC9745067 DOI: 10.3389/fgene.2022.1060898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/15/2022] [Indexed: 05/02/2024] Open
Abstract
The field of population genomics has seen a surge of studies on genomic structural variation over the past two decades. These studies witnessed that structural variation is taxonomically ubiquitous and represent a dominant form of genetic variation within species. Recent advances in technology, especially the development of long-read sequencing platforms, have enabled the discovery of structural variants (SVs) in previously inaccessible genomic regions which unlocked additional structural variation for population studies and revealed that more SVs contribute to evolution than previously perceived. An increasing number of studies suggest that SVs of all types and sizes may have a large effect on phenotype and consequently major impact on rapid adaptation, population divergence, and speciation. However, the functional effect of the vast majority of SVs is unknown and the field generally lacks evidence on the phenotypic consequences of most SVs that are suggested to have adaptive potential. Non-human genomes are heavily under-represented in population-scale studies of SVs. We argue that more research on other species is needed to objectively estimate the contribution of SVs to evolution. We discuss technical challenges associated with SV detection and outline the most recent advances towards more representative reference genomes, which opens a new era in population-scale studies of structural variation.
Collapse
Affiliation(s)
| | - Željka Pezer
- Laboratory for Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
9
|
Xu Y, Hu J, Fan W, Liu H, Zhang Y, Guo Z, Huang W, Liu X, Hou S. Genome-wide association analysis reveals 6 copy number variations associated with the number of cervical vertebrae in Pekin ducks. Front Cell Dev Biol 2022; 10:1041088. [PMID: 36438573 PMCID: PMC9685309 DOI: 10.3389/fcell.2022.1041088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/07/2022] [Indexed: 02/02/2024] Open
Abstract
As a critical developmental stage in vertebrates, the vertebral column formation process is under strict control; however, we observed variations in the number of cervical vertebrae in duck populations in our previous study. Here, we further explored the variations in the number of vertebrae in two duck populations: 421 Pekin duck × mallard F2 ducks and 850 Pekin ducks. Using resequencing data of 125 Pekin ducks with different numbers of cervical vertebrae and 352 Pekin duck × mallard F2 ducks with different numbers of thoracic vertebrae, we detected whole-genome copy number variations (CNVs) and implemented a genome-wide association study (GWAS) to identify the genetic variants related to the traits. The findings verified the existence of variations in the number of cervical vertebrae in duck populations. The number of cervical vertebrae in most ducks was 15, while that in a small number of the ducks was 14 or 16. The number of cervical vertebrae had a positive influence on the neck production, and one cervical vertebra addition could increase 11 g or 2 cm of duck neck. Genome-wide CNV association analysis identified six CNVs associated with the number of cervical vertebrae, and the associated CNV regions covered 15 genes which included WNT10A and WNT6. These findings improve our understanding of the variations in the number of vertebrae in ducks and lay a foundation for future duck breeding.
Collapse
Affiliation(s)
- Yaxi Xu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Jian Hu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlei Fan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hehe Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanbao Guo
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Huang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Shuisheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Estrada‐Reyes ZM, Ogunade IM, Pech‐Cervantes AA, Terrill TH. Copy number variant-based genome wide association study reveals immune-related genes associated with parasite resistance in a heritage sheep breed from the United States. Parasite Immunol 2022; 44:e12943. [PMID: 36071651 PMCID: PMC9786709 DOI: 10.1111/pim.12943] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 12/30/2022]
Abstract
Florida Native is a heritage sheep breed in the United States and expresses superior ability to regulate gastrointestinal nematodes. The objective of the present study was to investigate the importance of copy number variants (CNVs) on resistance to natural Haemonchus contortus infections. A total of 300 Florida Native sheep were evaluated. Phenotypic records included fecal egg count (FEC, eggs/gram), FAMACHA© score, percentage cell volume (PCV, %), body condition score (BCS) and average daily gain (ADG, kg). Sheep were genotyped using the GGP Ovine 50K single nucleotide polymorphism (SNP) chip. Log ratios from 45.2 k SNP markers spanning the entire genome were utilized for CNV detection. After quality control, 261 animals with CNVs and phenotypic records were used for the association testing. Association tests were carried out using correlation-trend test and principal component analysis correction to identify CNVs associated with FEC, FAMACHA©, PCV, BCS and ADG. Significant CNVs were detected when their adjusted p-value was <.05 after FDR correction. A total of 8124 CNVs were identified, which gave 246 non-overlapping CNVs. Fourteen CNVs were significantly associated with FEC and PCV. CNVs associated with FEC overlapped 14 Quantitative Trait Locus previously associated with H. contortus resistance. Our study demonstrated for the first time that CNVs could be potentially involved with parasite resistance in Florida Native sheep. Immune-related genes such as CCL1, CCL2, CCL8, CCL11, NOS2, TNF, CSF3 and STAT3 genes could play an important role for controlling H. contortus resistance. These genes could be potentially utilized as candidate markers for selection of parasite resistance in this breed.
Collapse
Affiliation(s)
- Zaira M. Estrada‐Reyes
- Department of Animal SciencesNorth Carolina A&T State UniversityGreensboroNorth CarolinaUSA,Department of Animal SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - Ibukun M. Ogunade
- Division of Animal and Nutritional ScienceWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Andres A. Pech‐Cervantes
- College of Agricultural, Family Sciences, and TechnologyFort Valley State UniversityFort ValleyGeorgiaUSA
| | - Thomas H. Terrill
- College of Agricultural, Family Sciences, and TechnologyFort Valley State UniversityFort ValleyGeorgiaUSA
| |
Collapse
|
11
|
Martins FC, Couturier DL, de Santiago I, Sauer CM, Vias M, Angelova M, Sanders D, Piskorz A, Hall J, Hosking K, Amirthanayagam A, Cosulich S, Carnevalli L, Davies B, Watkins TBK, Funingana IG, Bolton H, Haldar K, Latimer J, Baldwin P, Crawford R, Eldridge M, Basu B, Jimenez-Linan M, Mcpherson AW, McGranahan N, Litchfield K, Shah SP, McNeish I, Caldas C, Evan G, Swanton C, Brenton JD. Clonal somatic copy number altered driver events inform drug sensitivity in high-grade serous ovarian cancer. Nat Commun 2022; 13:6360. [PMID: 36289203 PMCID: PMC9606297 DOI: 10.1038/s41467-022-33870-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/06/2022] [Indexed: 01/12/2023] Open
Abstract
Chromosomal instability is a major challenge to patient stratification and targeted drug development for high-grade serous ovarian carcinoma (HGSOC). Here we show that somatic copy number alterations (SCNAs) in frequently amplified HGSOC cancer genes significantly correlate with gene expression and methylation status. We identify five prevalent clonal driver SCNAs (chromosomal amplifications encompassing MYC, PIK3CA, CCNE1, KRAS and TERT) from multi-regional HGSOC data and reason that their strong selection should prioritise them as key biomarkers for targeted therapies. We use primary HGSOC spheroid models to test interactions between in vitro targeted therapy and SCNAs. MYC chromosomal copy number is associated with in-vitro and clinical response to paclitaxel and in-vitro response to mTORC1/2 inhibition. Activation of the mTOR survival pathway in the context of MYC-amplified HGSOC is statistically associated with increased prevalence of SCNAs in genes from the PI3K pathway. Co-occurrence of amplifications in MYC and genes from the PI3K pathway is independently observed in squamous lung cancer and triple negative breast cancer. In this work, we show that identifying co-occurrence of clonal driver SCNA genes could be used to tailor therapeutics for precision medicine.
Collapse
Affiliation(s)
- Filipe Correia Martins
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK.
- Experimental Medicine Initiative, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Department of Gynaecological Oncology, Cambridge University Hospitals, Cambridge, UK.
| | - Dominique-Laurent Couturier
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Ines de Santiago
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Maria Vias
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Deborah Sanders
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Anna Piskorz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - James Hall
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ionut G Funingana
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Helen Bolton
- Department of Gynaecological Oncology, Cambridge University Hospitals, Cambridge, UK
| | - Krishnayan Haldar
- Department of Gynaecological Oncology, Cambridge University Hospitals, Cambridge, UK
| | - John Latimer
- Department of Gynaecological Oncology, Cambridge University Hospitals, Cambridge, UK
| | - Peter Baldwin
- Department of Gynaecological Oncology, Cambridge University Hospitals, Cambridge, UK
| | - Robin Crawford
- Department of Gynaecological Oncology, Cambridge University Hospitals, Cambridge, UK
| | - Matthew Eldridge
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Bristi Basu
- Cambridge University Hospitals, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | | - Andrew W Mcpherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Centre, NYC, USA
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Centre, NYC, USA
| | - Iain McNeish
- Department of Surgery and Cancer, Imperial College of London, London, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Gerard Evan
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Robustness of the Autophagy Pathway to Somatic Copy Number Losses. Cells 2022; 11:cells11111762. [PMID: 35681458 PMCID: PMC9179279 DOI: 10.3390/cells11111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Autophagy allows cells to temporarily tolerate energy stress by replenishing critical metabolites through self-digestion, thereby attenuating the cytotoxic effects of anticancer drugs that target tumor metabolism. Autophagy defects could therefore mark a metabolically vulnerable cancer state and open a therapeutic window. While mutations of autophagy genes (ATGs) are notably rare in cancer, haploinsufficiency network analyses across many cancers have shown that the autophagy pathway is frequently hit by somatic copy number losses of ATGs such as MAP1LC3B/ATG8F (LC3), BECN1/ATG6 (Beclin-1), and ATG10. Here, we used CRISPR/Cas9 technology to delete increasing numbers of copies of one or more of these ATGs in non-small cell lung cancer cells and examined the effects on sensitivity to compounds targeting aerobic glycolysis, a hallmark of cancer metabolism. Whereas the complete knockout of one ATG blocked autophagy and led to profound metabolic vulnerability, this was not the case for combinations of different nonhomozygous deletions. In cancer patients, the effect of ATG copy number loss was blunted at the protein level and did not lead to the accumulation of p62 as a sign of reduced autophagic flux. Thus, the autophagy pathway is shown to be markedly robust and resilient, even with the concomitant copy number loss of key autophagy genes.
Collapse
|
13
|
Differential Regulation of NK Cell Receptors in Acute Lymphoblastic Leukemia. J Immunol Res 2022; 2022:7972039. [PMID: 35652109 PMCID: PMC9150999 DOI: 10.1155/2022/7972039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer immunotherapies are preferred over conventional treatments which are highly cytotoxic to normal cells. Focus has been on T cells but natural killer (NK) cells have equal potential. Concepts in cancer control and influence of sex require further investigation to improve successful mobilization of immune cells in cancer patients. Acute lymphoblastic leukemia (ALL) is a hematological malignancy mainly of B cell (B-ALL) and T cell (T-ALL) subtypes. Influence of ALL on NK cell is still unclear. Targeted next-generation sequencing was conducted on 62 activating/inhibitory receptors, ligands, effector, and exhaustion molecules on T-ALL (6 males) and normal controls (NC) (4 males and 4 females). Quantitative PCR (q-PCR) further investigated copy number variation (CNV), methylation index (MI), and mRNA expression of significant genes in T-ALL (14 males), NC (12 males and 12 females), and B-ALL samples (N = 12 males and 12 females). Bioinformatics revealed unique variants particularly rs2253849 (T>C) in KLRC1 and rs1141715 (A>G) in KLRC2 only among T-ALL (allele frequency 0.8-1.0). Gene amplification was highest in female B-ALL compared to male B-ALL (KLRC2, KLRC4, and NCR3, p < 0.05) and lowest in male T-ALL cumulating in deletion of KLRD1 and CD69. MI was higher in male ALL of both subtypes compared to normal (KIR2DL1-2 and 4 and KIR2DS2 and 4, p < 0.05) as well as to female B-ALL (KIR3DL2 and KIR2DS2, p < 0.05). mRNA expressions were low. Thus, ALL subtypes potentially regulated NK cell suppression by different mechanisms which should be considered in future immunotherapies for ALL.
Collapse
|
14
|
Lahoz S, Archilla I, Asensio E, Hernández‐Illán E, Ferrer Q, López‐Prades S, Nadeu F, Del Rey J, Sanz‐Pamplona R, Lozano JJ, Castells A, Cuatrecasas M, Camps J. Copy-number intratumor heterogeneity increases the risk of relapse in chemotherapy-naive stage II colon cancer. J Pathol 2022; 257:68-81. [PMID: 35066875 PMCID: PMC9790656 DOI: 10.1002/path.5870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 12/30/2022]
Abstract
Optimal selection of high-risk patients with stage II colon cancer is crucial to ensure clinical benefit of adjuvant chemotherapy. Here, we investigated the prognostic value of genomic intratumor heterogeneity and aneuploidy for disease recurrence. We combined targeted sequencing, SNP arrays, fluorescence in situ hybridization, and immunohistochemistry on a retrospective cohort of 84 untreated stage II colon cancer patients. We assessed the clonality of copy-number alterations (CNAs) and mutations, CD8+ lymphocyte infiltration, and their association with time to recurrence. Prognostic factors were included in machine learning analysis to evaluate their ability to predict individual relapse risk. Tumors from recurrent patients displayed a greater proportion of CNAs compared with non-recurrent (mean 31.3% versus 23%, respectively; p = 0.014). Furthermore, patients with elevated tumor CNA load exhibited a higher risk of recurrence compared with those with low levels [p = 0.038; hazard ratio (HR) 2.46], which was confirmed in an independent cohort (p = 0.004; HR 3.82). Candidate chromosome-specific aberrations frequently observed in recurrent cases included gain of the chromosome arm 13q (p = 0.02; HR 2.67) and loss of heterozygosity at 17q22-q24.3 (p = 0.05; HR 2.69). CNA load positively correlated with intratumor heterogeneity (R = 0.52; p < 0.0001). Consistently, incremental subclonal CNAs were associated with an elevated risk of relapse (p = 0.028; HR 2.20), which we did not observe for subclonal single-nucleotide variants and small insertions and deletions. The clinico-genomic model rated an area under the curve of 0.83, achieving a 10% incremental gain compared with clinicopathological markers (p = 0.047). In conclusion, tumor aneuploidy and copy-number intratumor heterogeneity were predictive of poor outcome and improved discriminative performance in early-stage colon cancer. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sara Lahoz
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology TeamInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of BarcelonaBarcelonaSpain
| | - Ivan Archilla
- Pathology Department, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of BarcelonaBarcelonaSpain
| | - Elena Asensio
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology TeamInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of BarcelonaBarcelonaSpain
| | - Eva Hernández‐Illán
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology TeamInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of BarcelonaBarcelonaSpain
| | - Queralt Ferrer
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology TeamInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of BarcelonaBarcelonaSpain
| | - Sandra López‐Prades
- Pathology Department, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of BarcelonaBarcelonaSpain
| | - Ferran Nadeu
- Molecular Pathology of Lymphoid NeoplasmsInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)BarcelonaSpain
| | - Javier Del Rey
- Department of Cell Biology, Physiology and Immunology, Faculty of MedicineUniversity Autonomous of BarcelonaBellaterraSpain
| | - Rebeca Sanz‐Pamplona
- Unit of Biomarkers and SusceptibilityOncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESPl'Hospitalet de LlobregatSpain
| | - Juan José Lozano
- Bioinformatics PlatformCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
| | - Antoni Castells
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology TeamInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of BarcelonaBarcelonaSpain
| | - Miriam Cuatrecasas
- Pathology Department, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of BarcelonaBarcelonaSpain
| | - Jordi Camps
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology TeamInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of BarcelonaBarcelonaSpain,Department of Cell Biology, Physiology and Immunology, Faculty of MedicineUniversity Autonomous of BarcelonaBellaterraSpain
| |
Collapse
|
15
|
Kim S, Hwang S. G-Quadruplex Matters in Tissue-Specific Tumorigenesis by BRCA1 Deficiency. Genes (Basel) 2022; 13:genes13030391. [PMID: 35327946 PMCID: PMC8948836 DOI: 10.3390/genes13030391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
How and why distinct genetic alterations, such as BRCA1 mutation, promote tumorigenesis in certain tissues, but not others, remain an important issue in cancer research. The underlying mechanisms may reveal tissue-specific therapeutic vulnerabilities. Although the roles of BRCA1, such as DNA damage repair and stalled fork stabilization, obviously contribute to tumor suppression, these ubiquitously important functions cannot explain tissue-specific tumorigenesis by BRCA1 mutations. Recent advances in our understanding of the cancer genome and fundamental cellular processes on DNA, such as transcription and DNA replication, have provided new insights regarding BRCA1-associated tumorigenesis, suggesting that G-quadruplex (G4) plays a critical role. In this review, we summarize the importance of G4 structures in mutagenesis of the cancer genome and cell type-specific gene regulation, and discuss a recently revealed molecular mechanism of G4/base excision repair (BER)-mediated transcriptional activation. The latter adequately explains the correlation between the accumulation of unresolved transcriptional regulatory G4s and multi-level genomic alterations observed in BRCA1-associated tumors. In summary, tissue-specific tumorigenesis by BRCA1 deficiency can be explained by cell type-specific levels of transcriptional regulatory G4s and the role of BRCA1 in resolving it. This mechanism would provide an integrated understanding of the initiation and development of BRCA1-associated tumors.
Collapse
Affiliation(s)
- Sanghyun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Sungnam 13488, Korea;
| | - Sohyun Hwang
- Department of Biomedical Science, College of Life Science, CHA University, Sungnam 13488, Korea;
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Sungnam 13496, Korea
- Correspondence:
| |
Collapse
|
16
|
Abdelatty A, Sun Q, Hu J, Wu F, Wei G, Xu H, Zhou G, Wang X, Xia H, Lan L. Pan-Cancer Study on Protein Kinase C Family as a Potential Biomarker for the Tumors Immune Landscape and the Response to Immunotherapy. Front Cell Dev Biol 2022; 9:798319. [PMID: 35174160 PMCID: PMC8841516 DOI: 10.3389/fcell.2021.798319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
The protein kinase C (PKC) family has been described with its role in some cancers, either as a promoter or suppressor. PKC signaling also regulates a molecular switch between transactivation and transrepression activity of the peroxisome proliferator-activated receptor alpha (PPARalpha). However, the role of different PKC enzymes in tumor immunity remains poorly defined. This study aims to investigate the correlation between PKC genes and tumor immunity, in addition to studying the probability of their use as predictive biomarkers for tumor immunity and immunotherapeutic response. The ssGSEA and the ESTIMATE methods were used to assess 28 tumor-infiltrating lymphocytes (TILs) and the immune component of each cancer, then correlated with PKC levels. Prediction of PKC levels-dependent immunotherapeutic response was based on human leukocytic antigen (HLA) gene enrichment scores and programmed cell death 1 ligand (PD-L1) expression. Univariate and multivariate Cox analysis was performed to evaluate the prognostic role of PKC genes in cancers. Methylation level and CNAs could drive the expression levels of some PKC members, especially PRKCI, whose CNGs are predicted to elevate their level in many cancer types. The most crucial finding in this study was that PKC isoenzymes are robust biomarkers for the tumor immune status, PRKCB, PRKCH, and PRKCQ as stimulators, while PRKCI and PRKCZ as inhibitors in most cancers. Also, PKC family gene levels can be used as predictors for the response to immunotherapies, especially HLAs dependent and PD-L1 blockade-dependent ones. In addition to its prognostic function, all PKC family enzymes are promising tumor immunity biomarkers and can help select suitable immune therapy in different cancers.
Collapse
Affiliation(s)
- Alaa Abdelatty
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Junhong Hu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fubing Wu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Guanqun Wei
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Haojun Xu
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Guoren Zhou
- Department of Oncology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| | - Hongping Xia
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| |
Collapse
|
17
|
Wang X, Wang Y, Cao X, Huang Y, Li P, Lan X, Buren C, Hu L, Chen H. Copy number variations of the KAT6A gene are associated with body measurements of Chinese sheep breeds. Anim Biotechnol 2021:1-8. [PMID: 34842492 DOI: 10.1080/10495398.2021.2005616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Copy number variation (CNV) is one kind of genomic structure variations and presents as gains and losses of genomic fragments. More recently, we have made an atlas of CNV maps for livestock. In the future, it is a primary focus to determine the phenotypic effects of candidate CNVs. Lysine Acetyltransferase 6 A (KAT6A) is a protein coding gene and plays a critical role in many cellular processes. However, the effects of KAT6A CNVs on sheep body measurements remains unknown. In this study, we performed quantitative polymerase chain reaction (qPCR) to detect the presences and distributions of three CNV regions within KAT6A gene in 672 sheep from four Chinese breeds. Association analysis indicated that the three CNVs of KAT6A gene were significantly associated with body measurement(s) in Small-tailed Han sheep (STH) and Hu sheep (HU) (p < 0.05), while no effects on Large-tailed Han sheep (LTH) were observed (p > 0.05) were observed. Additionally, only one CNV was significantly associated with body measurement (body length) in Chaka sheep (CK) (p < 0.05). Our study provided evidence that the CNV(s) of KAT6A gene could be used as candidate marker(s) for molecular breedings of STH, HU, and CK breeds.
Collapse
Affiliation(s)
- Xiaogang Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiru Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yongzhen Huang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Pi Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Xianyong Lan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaogetu Buren
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
18
|
Young GR, Ferron AKW, Panova V, Eksmond U, Oliver PL, Kassiotis G, Stoye JP. Gv1, a Zinc Finger Gene Controlling Endogenous MLV Expression. Mol Biol Evol 2021; 38:2468-2474. [PMID: 33560369 PMCID: PMC8136514 DOI: 10.1093/molbev/msab039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The genomes of inbred mice harbor around 50 endogenous murine leukemia virus (MLV) loci, although the specific complement varies greatly between strains. The Gv1 locus is known to control the transcription of endogenous MLVs and to be the dominant determinant of cell-surface presentation of MLV envelope, the GIX antigen. Here, we identify a single Krüppel-associated box zinc finger protein (ZFP) gene, Zfp998, as Gv1 and show it to be necessary and sufficient to determine the GIX+ phenotype. By long-read sequencing of bacterial artificial chromosome clones from 129 mice, the prototypic GIX+ strain, we reveal the source of sufficiency and deficiency as splice-acceptor variations and highlight the varying origins of the chromosomal region encompassing Gv1. Zfp998 becomes the second identified ZFP gene responsible for epigenetic suppression of endogenous MLVs in mice and further highlights the prominent role of this gene family in control of endogenous retroviruses.
Collapse
Affiliation(s)
- George R Young
- Retrovirus-host Interactions Laboratory, The Francis Crick Institute, London, UK
| | - Aaron K W Ferron
- Retrovirus-host Interactions Laboratory, The Francis Crick Institute, London, UK
| | - Veera Panova
- Retroviral Immunology, The Francis Crick Institute, London, UK
| | - Urszula Eksmond
- Retroviral Immunology, The Francis Crick Institute, London, UK
| | | | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, UK.,Department of Infectious Disease, Imperial College London, London, UK
| | - Jonathan P Stoye
- Retrovirus-host Interactions Laboratory, The Francis Crick Institute, London, UK.,Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
19
|
Stockinger EJ. The Breeding of Winter-Hardy Malting Barley. PLANTS 2021; 10:plants10071415. [PMID: 34371618 PMCID: PMC8309344 DOI: 10.3390/plants10071415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
In breeding winter malting barley, one recurring strategy is to cross a current preferred spring malting barley to a winter barley. This is because spring malting barleys have the greatest amalgamation of trait qualities desirable for malting and brewing. Spring barley breeding programs can also cycle their material through numerous generations each year-some managing even six-which greatly accelerates combining desirable alleles to generate new lines. In a winter barley breeding program, a single generation per year is the limit when the field environment is used and about two generations per year if vernalization and greenhouse facilities are used. However, crossing the current favored spring malting barley to a winter barley may have its downsides, as winter-hardiness too may be an amalgamation of desirable alleles assembled together that confers the capacity for prolonged cold temperature conditions. In this review I touch on some general criteria that give a variety the distinction of being a malting barley and some of the general trends made in the breeding of spring malting barleys. But the main objective of this review is to pull together different aspects of what we know about winter-hardiness from the seemingly most essential aspect, which is survival in the field, to molecular genetics and gene regulation, and then finish with ideas that might help further our insight for predictability purposes.
Collapse
Affiliation(s)
- Eric J Stockinger
- Ohio Agricultural Research and Development Center (OARDC), Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
20
|
Importance of determining variations in the number of copies in newborns with autosomal aneuploidies. ACTA ACUST UNITED AC 2021; 41:282-292. [PMID: 34214269 PMCID: PMC8387016 DOI: 10.7705/biomedica.5354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Indexed: 11/21/2022]
Abstract
Introducción. Las aneuploidías son trastornos genéticos frecuentes en la práctica clínica; sin embargo, se conoce poco sobre las otras variantes genéticas que modifican el fenotipo final. Objetivo. Determinar las variantes en el número de copias y las regiones con pérdida de heterocigosidad autosómica mayor de 0,5 % o de regiones mayores de 10 Mb en neonatos con aneuploidías autosómicas. Materiales y métodos. Se hizo el análisis cromosómico por micromatrices a los neonatos con aneuploidías autosómicas (n=7), trisomía 21 (n=5) y trisomía 18 (n=2) evaluados en los hospitales Antonio Lorena y Regional de Cusco, Perú, en el 2018. Resultados. En dos neonatos se encontraron variantes en el número de copias, patogénicas o probablemente patogénicas, en regiones diferentes al cromosoma 21 o al 18. Además, se observaron dos variantes del número de copias con más de 500 kpb de patogenia desconocida. Conclusiones. Si bien el número de pacientes era muy reducido, es importante resaltar que se encontraron otras variantes en el número de copias que se han descrito asociadas con trastornos del neurodesarrollo, varias anomalías congénitas, hipoacusia y talla baja o alta, entre otras, lo que probablemente influye negativamente en el fenotipo de este grupo de pacientes.
Collapse
|
21
|
Copy number variation: Characteristics, evolutionary and pathological aspects. Biomed J 2021; 44:548-559. [PMID: 34649833 PMCID: PMC8640565 DOI: 10.1016/j.bj.2021.02.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Copy number variants (CNVs) were the subject of extensive research in the past years. They are common features of the human genome that play an important role in evolution, contribute to population diversity, development of certain diseases, and influence host–microbiome interactions. CNVs have found application in the molecular diagnosis of many diseases and in non-invasive prenatal care, but their full potential is only emerging. CNVs are expected to have a tremendous impact on screening, diagnosis, prognosis, and monitoring of several disorders, including cancer and cardiovascular disease. Here, we comprehensively review basic definitions of the term CNV, outline mechanisms and factors involved in CNV formation, and discuss their evolutionary and pathological aspects. We suggest a need for better defined distinguishing criteria and boundaries between known types of CNVs.
Collapse
|
22
|
Sui Y, Peng S. A Mechanism Leading to Changes in Copy Number Variations Affected by Transcriptional Level Might Be Involved in Evolution, Embryonic Development, Senescence, and Oncogenesis Mediated by Retrotransposons. Front Cell Dev Biol 2021; 9:618113. [PMID: 33644055 PMCID: PMC7905054 DOI: 10.3389/fcell.2021.618113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 01/05/2023] Open
Abstract
In recent years, more and more evidence has emerged showing that changes in copy number variations (CNVs) correlated with the transcriptional level can be found during evolution, embryonic development, and oncogenesis. However, the underlying mechanisms remain largely unknown. The success of the induced pluripotent stem cell suggests that genome changes could bring about transformations in protein expression and cell status; conversely, genome alterations generated during embryonic development and senescence might also be the result of genome changes. With rapid developments in science and technology, evidence of changes in the genome affected by transcriptional level has gradually been revealed, and a rational and concrete explanation is needed. Given the preference of the HIV-1 genome to insert into transposons of genes with high transcriptional levels, we propose a mechanism based on retrotransposons facilitated by specific pre-mRNA splicing style and homologous recombination (HR) to explain changes in CNVs in the genome. This mechanism is similar to that of the group II intron that originated much earlier. Under this proposed mechanism, CNVs on genome are dynamically and spontaneously extended in a manner that is positively correlated with transcriptional level or contract as the cell divides during evolution, embryonic development, senescence, and oncogenesis, propelling alterations in them. Besides, this mechanism explains several critical puzzles in these processes. From evidence collected to date, it can be deduced that the message contained in genome is not just three-dimensional but will become four-dimensional, carrying more genetic information.
Collapse
Affiliation(s)
- Yunpeng Sui
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | | |
Collapse
|
23
|
Dai L, Weiss RB, Dunn DM, Ramirez A, Paul S, Korenberg JR. Core transcriptional networks in Williams syndrome: IGF1-PI3K-AKT-mTOR, MAPK and actin signaling at the synapse echo autism. Hum Mol Genet 2021; 30:411-429. [PMID: 33564861 DOI: 10.1093/hmg/ddab041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Gene networks for disorders of social behavior provide the mechanisms critical for identifying therapeutic targets and biomarkers. Large behavioral phenotypic effects of small human deletions make the positive sociality of Williams syndrome (WS) ideal for determining transcriptional networks for social dysfunction currently based on DNA variations for disorders such as autistic spectrum disorder (ASD) and schizophrenia (SCHZ). Consensus on WS networks has been elusive due to the need for larger cohort size, sensitive genome-wide detection and analytic tools. We report a core set of WS network perturbations in a cohort of 58 individuals (34 with typical, 6 atypical deletions and 18 controls). Genome-wide exon-level expression arrays robustly detected changes in differentially expressed gene (DEG) transcripts from WS deleted genes that ranked in the top 11 of 12 122 transcripts, validated by quantitative reverse transcription PCR, RNASeq and western blots. WS DEG's were strictly dosed in the full but not the atypical deletions that revealed a breakpoint position effect on non-deleted CLIP2, a caveat for current phenotypic mapping based on copy number variants. Network analyses tested the top WS DEG's role in the dendritic spine, employing GeneMANIA to harmonize WS DEGs with comparable query gene-sets. The results indicate perturbed actin cytoskeletal signaling analogous to the excitatory dendritic spines. Independent protein-protein interaction analyses of top WS DEGs generated a 100-node graph annotated topologically revealing three interacting pathways, MAPK, IGF1-PI3K-AKT-mTOR/insulin and actin signaling at the synapse. The results indicate striking similarity of WS transcriptional networks to genome-wide association study-based ASD and SCHZ risk suggesting common network dysfunction for these disorders of divergent sociality.
Collapse
Affiliation(s)
- Li Dai
- Center for Integrated Neuroscience and Human Behavior, Brain Institute, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Diane M Dunn
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Anna Ramirez
- Center for Integrated Neuroscience and Human Behavior, Brain Institute, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Julie R Korenberg
- Center for Integrated Neuroscience and Human Behavior, Brain Institute, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA.,Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
24
|
Characterization of Copy-Number Variations and Possible Candidate Genes in Recurrent Pregnancy Losses. Genes (Basel) 2021; 12:genes12020141. [PMID: 33499090 PMCID: PMC7911754 DOI: 10.3390/genes12020141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
It is well established that embryonic chromosomal abnormalities (both in the number of chromosomes and the structure) account for 50% of early pregnancy losses. However, little is known regarding the potential differences in the incidence and distribution of chromosomal abnormalities between patients with sporadic abortion (SA) and recurrent pregnancy loss (RPL), let alone the role of submicroscopic copy-number variations (CNVs) in these cases. The aim of the present study was to systematically evaluate the role of embryonic chromosomal abnormalities and CNVs in the etiology of RPL compared with SA. Over a 3-year period, 1556 fresh products of conception (POCs) from miscarriage specimens were investigated using single nucleotide polymorphism array (SNP-array) and CNV sequencing (CNV-seq) in this study, along with further functional enrichment analysis. Chromosomal abnormalities were identified in 57.52% (895/1556) of all cases. Comparisons of the incidence and distributions of chromosomal abnormalities within the SA group and RPL group and within the different age groups were performed. Moreover, 346 CNVs in 173 cases were identified, including 272 duplications, 2 deletions and 72 duplications along with deletions. Duplications in 16q24.3 and 16p13.3 were significantly more frequent in RPL cases, and thereby considered to be associated with RPL. There were 213 genes and 131 signaling pathways identified as potential RPL candidate genes and signaling pathways, respectively, which were centered primarily on six functional categories. The results of the present study may improve our understanding of the etiologies of RPL and assist in the establishment of a population-based diagnostic panel of genetic markers for screening RPL amongst Chinese women.
Collapse
|
25
|
Compson ZG, McClenaghan B, Singer GAC, Fahner NA, Hajibabaei M. Metabarcoding From Microbes to Mammals: Comprehensive Bioassessment on a Global Scale. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.581835] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Global biodiversity loss is unprecedented, and threats to existing biodiversity are growing. Given pervasive global change, a major challenge facing resource managers is a lack of scalable tools to rapidly and consistently measure Earth's biodiversity. Environmental genomic tools provide some hope in the face of this crisis, and DNA metabarcoding, in particular, is a powerful approach for biodiversity assessment at large spatial scales. However, metabarcoding studies are variable in their taxonomic, temporal, or spatial scope, investigating individual species, specific taxonomic groups, or targeted communities at local or regional scales. With the advent of modern, ultra-high throughput sequencing platforms, conducting deep sequencing metabarcoding surveys with multiple DNA markers will enhance the breadth of biodiversity coverage, enabling comprehensive, rapid bioassessment of all the organisms in a sample. Here, we report on a systematic literature review of 1,563 articles published about DNA metabarcoding and summarize how this approach is rapidly revolutionizing global bioassessment efforts. Specifically, we quantify the stakeholders using DNA metabarcoding, the dominant applications of this technology, and the taxonomic groups assessed in these studies. We show that while DNA metabarcoding has reached global coverage, few studies deliver on its promise of near-comprehensive biodiversity assessment. We then outline how DNA metabarcoding can help us move toward real-time, global bioassessment, illustrating how different stakeholders could benefit from DNA metabarcoding. Next, we address barriers to widespread adoption of DNA metabarcoding, highlighting the need for standardized sampling protocols, experts and computational resources to handle the deluge of genomic data, and standardized, open-source bioinformatic pipelines. Finally, we explore how technological and scientific advances will realize the promise of total biodiversity assessment in a sample—from microbes to mammals—and unlock the rich information genomics exposes, opening new possibilities for merging whole-system DNA metabarcoding with (1) abundance and biomass quantification, (2) advanced modeling, such as species occupancy models, to improve species detection, (3) population genetics, (4) phylogenetics, and (5) food web and functional gene analysis. While many challenges need to be addressed to facilitate widespread adoption of environmental genomic approaches, concurrent scientific and technological advances will usher in methods to supplement existing bioassessment tools reliant on morphological and abiotic data. This expanded toolbox will help ensure that the best tool is used for the job and enable exciting integrative techniques that capitalize on multiple tools. Collectively, these new approaches will aid in addressing the global biodiversity crisis we now face.
Collapse
|
26
|
Xie H, Liu F, Zhang Y, Chen Q, Shangguan S, Gao Z, Wu N, Wang J, Cui X, Wang L, Chen X. Neurodevelopmental trajectory and modifiers of 16p11.2 microdeletion: A follow-up study of four Chinese children carriers. Mol Genet Genomic Med 2020; 8:e1485. [PMID: 32870608 PMCID: PMC7667312 DOI: 10.1002/mgg3.1485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023] Open
Abstract
Background Neurodevelopmental disorders (NDDs) are a group of disorders with high genetic and phenotypic heterogeneities. The 16p11.2 microdeletion has been implicated as an important genetic risk factor for NDDs. Methods Multiple genetic tests were used to detect the 16p11.2 microdeletion from 918 Chinese children with NDDs. Targeted sequencing of genes in the 16p11.2 interval was performed in all carriers of the 16p11.2 microdeletion, and whole‐genome expression profiling analysis was performed for the patient carriers and normal carriers in their intra‐family. Results Three patients carrying the 16p11.2 microdeletion were screened out, indicating a frequency of 0.33% for the 16p11.2 microdeletion in this cohort. We reviewed the neurodevelopmental trajectories of the 16p11.2 microdeletion carriers from childhood to puberty and confirmed that this microdeletion was associated with abnormal neurodevelopment, with varied neurodevelopmental phenotypes. A differential PRRT2 genotype (rs10204, T>C) was identified between patients and normal carriers of the 16p11.2 microdeletion. Moreover, the determination of differential whole‐genome expression profiling demonstrated the destruction of the top‐ranked network in neurogenesis and accounted for observation of abnormal neurodevelopmental phenotypes in the 16p11.2 microdeletion carriers. Conclusions We have provided the frequency of the 16p11.2 microdeletion in a Chinese pediatric NDD cohort with a variable NDD phenotype from childhood to puberty, which is useful for Chinese geneticists/pediatricians to conduct the 16p11.2 microdeletion testing in children with NDDs.
Collapse
Affiliation(s)
- Hua Xie
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Fang Liu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China.,Graduate School of Peking, Union Medical College, Beijing, China
| | - Yu Zhang
- Department of Laboratory Center, Capital Institute of Pediatrics, Beijing, China
| | - Qian Chen
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Shaofang Shangguan
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Zhijie Gao
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, China
| | - Jian Wang
- Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaodai Cui
- Department of Laboratory Center, Capital Institute of Pediatrics, Beijing, China
| | - Lin Wang
- Department of Preventive Health Care, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Xiaoli Chen
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China.,Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
27
|
Siavrienė E, Preikšaitienė E, Maldžienė Ž, Mikštienė V, Rančelis T, Ambrozaitytė L, Gueneau L, Reymond A, Kučinskas V. A de novo 13q31.3 microduplication encompassing the miR-17 ~ 92 cluster results in features mirroring those associated with Feingold syndrome 2. Gene 2020; 753:144816. [PMID: 32473250 DOI: 10.1016/j.gene.2020.144816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/24/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Hemizygosity of the MIR17HG gene encoding the miR-17 ~ 92 cluster is associated with Feingold syndrome 2 characterized by intellectual disability, skeletal abnormalities, short stature, and microcephaly. Here, we report on a female with a de novo 13q31.3 microduplication encompassing MIR17HG but excluding GPC5. She presented developmental delay, skeletal and digital abnormalities, and features such as tall stature and macrocephaly mirroring those of Feingold syndrome 2 patients. The limited extent of the proband's rearrangement to the miR cluster and the corresponding normal expression level of the neighboring GPC5 in her cells, together with previously described data on affected individuals of two families carrying overlapping duplications of the miR-17 ~ 92 cluster that comprise part of GPC5, who likewise presented macrocephaly, developmental delay, as well as skeletal, digital and stature abnormalities, allow to define a new syndrome due to independent microduplication of the miR-17 ~ 92 cluster.
Collapse
Affiliation(s)
- Evelina Siavrienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Eglė Preikšaitienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Živilė Maldžienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Violeta Mikštienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tautvydas Rančelis
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Lucie Gueneau
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
28
|
A genome-wide survey of copy number variations reveals an asymmetric evolution of duplicated genes in rice. BMC Biol 2020; 18:73. [PMID: 32591023 PMCID: PMC7318451 DOI: 10.1186/s12915-020-00798-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/20/2020] [Indexed: 11/21/2022] Open
Abstract
Background Copy number variations (CNVs) are an important type of structural variations in the genome that usually affect gene expression levels by gene dosage effect. Understanding CNVs as part of genome evolution may provide insights into the genetic basis of important agricultural traits and contribute to the crop breeding in the future. While available methods to detect CNVs utilizing next-generation sequencing technology have helped shed light on prevalence and effects of CNVs, the complexity of crop genomes poses a major challenge and requires development of additional tools. Results Here, we generated genomic and transcriptomic data of 93 rice (Oryza sativa L.) accessions and developed a comprehensive pipeline to call CNVs in this large-scale dataset. We analyzed the correlation between CNVs and gene expression levels and found that approximately 13% of the identified genes showed a significant correlation between their expression levels and copy numbers. Further analysis showed that about 36% of duplicate pairs were involved in pseudogenetic events while only 5% of them showed functional differentiation. Moreover, the offspring copy mainly contributed to the expression levels and seemed more likely to become a pseudogene, whereas the parent copy tended to maintain the function of ancestral gene. Conclusion We provide a high-accuracy CNV dataset that will contribute to functional genomics studies and molecular breeding in rice. We also showed that gene dosage effect of CNVs in rice is not exponential or linear. Our work demonstrates that the evolution of duplicated genes is asymmetric in both expression levels and gene fates, shedding a new insight into the evolution of duplicated genes.
Collapse
|
29
|
Yamasaki M, Makino T, Khor SS, Toyoda H, Miyagawa T, Liu X, Kuwabara H, Kano Y, Shimada T, Sugiyama T, Nishida H, Sugaya N, Tochigi M, Otowa T, Okazaki Y, Kaiya H, Kawamura Y, Miyashita A, Kuwano R, Kasai K, Tanii H, Sasaki T, Honda M, Tokunaga K. Sensitivity to gene dosage and gene expression affects genes with copy number variants observed among neuropsychiatric diseases. BMC Med Genomics 2020; 13:55. [PMID: 32223758 PMCID: PMC7104509 DOI: 10.1186/s12920-020-0699-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Copy number variants (CNVs) have been reported to be associated with diseases, traits, and evolution. However, it is hard to determine which gene should have priority as a target for further functional experiments if a CNV is rare or a singleton. In this study, we attempted to overcome this issue by using two approaches: by assessing the influences of gene dosage sensitivity and gene expression sensitivity. Dosage sensitive genes derived from two-round whole-genome duplication in previous studies. In addition, we proposed a cross-sectional omics approach that utilizes open data from GTEx to assess the effect of whole-genome CNVs on gene expression. METHODS Affymetrix Genome-Wide SNP Array 6.0 was used to detect CNVs by PennCNV and CNV Workshop. After quality controls for population stratification, family relationship and CNV detection, 287 patients with narcolepsy, 133 patients with essential hypersomnia, 380 patients with panic disorders, 164 patients with autism, 784 patients with Alzheimer disease and 1280 healthy individuals remained for the enrichment analysis. RESULTS Overall, significant enrichment of dosage sensitive genes was found across patients with narcolepsy, panic disorders and autism. Particularly, significant enrichment of dosage-sensitive genes in duplications was observed across all diseases except for Alzheimer disease. For deletions, less or no enrichment of dosage-sensitive genes with deletions was seen in the patients when compared to the healthy individuals. Interestingly, significant enrichments of genes with expression sensitivity in brain were observed in patients with panic disorder and autism. While duplications presented a higher burden, deletions did not cause significant differences when compared to the healthy individuals. When we assess the effect of sensitivity to genome dosage and gene expression at the same time, the highest ratio of enrichment was observed in the group including dosage-sensitive genes and genes with expression sensitivity only in brain. In addition, shared CNV regions among the five neuropsychiatric diseases were also investigated. CONCLUSIONS This study contributed the evidence that dosage-sensitive genes are associated with CNVs among neuropsychiatric diseases. In addition, we utilized open data from GTEx to assess the effect of whole-genome CNVs on gene expression. We also investigated shared CNV region among neuropsychiatric diseases.
Collapse
Affiliation(s)
- Maria Yamasaki
- Department of Health Data Science Research, Healthy Aging Innovation Center, Tokyo Metropolitan Geriatric Medical Center, Tokyo, Japan
| | - Takashi Makino
- Laboratory of Evolutionary Genomics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project (Toyama), National Center for for Global Health and Medicine, Tokyo, Japan
| | - Hiromi Toyoda
- Genome Medical Science Project (Toyama), National Center for for Global Health and Medicine, Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Miyagawa
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoxi Liu
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yukiko Kano
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Shizuoka, Japan
- Department of Child Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takafumi Shimada
- Division for Counseling and Support, The University of Tokyo, Tokyo, Japan
| | - Toshiro Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hisami Nishida
- Asunaro Hospital for Child and Adolescent Psychiatry, Mie, Japan
| | - Nagisa Sugaya
- Unit of Public Health and Preventive Medicine, School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Mamoru Tochigi
- Department of Neuropsychiatry, Teikyo University Hospital, Tokyo, Japan
| | - Takeshi Otowa
- Department of Neuropsychiatry, NTT Medical Center Tokyo, Tokyo, Japan
| | - Yuji Okazaki
- Department of Psychiatry, Koseikai Michinoo Hospital, Nagasaki, Japan
| | - Hisanobu Kaiya
- Panic Disorder Research Center, Warakukai Med Corp, Tokyo, Japan
| | - Yoshiya Kawamura
- Department of Psychiatry, Shonan Kamakura General Hospital, Kanagawa, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Bioresource Science Branch, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ryozo Kuwano
- Department of Molecular Genetics, Bioresource Science Branch, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
- Asahigawaso Research Institute, Asahigawaso Medical-Welfare Center, Okayama, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisashi Tanii
- Center for Physical and Mental Health, Mie University, Tsu, Mie Japan
| | - Tsukasa Sasaki
- Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Makoto Honda
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project (Toyama), National Center for for Global Health and Medicine, Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Genome-wide CNV analysis revealed variants associated with growth traits in African indigenous goats. Genomics 2020; 112:1477-1480. [DOI: 10.1016/j.ygeno.2019.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 11/24/2022]
|
31
|
Bhattacharya A, Bense RD, Urzúa-Traslaviña CG, de Vries EGE, van Vugt MATM, Fehrmann RSN. Transcriptional effects of copy number alterations in a large set of human cancers. Nat Commun 2020; 11:715. [PMID: 32024838 PMCID: PMC7002723 DOI: 10.1038/s41467-020-14605-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/20/2020] [Indexed: 01/01/2023] Open
Abstract
Copy number alterations (CNAs) can promote tumor progression by altering gene expression levels. Due to transcriptional adaptive mechanisms, however, CNAs do not always translate proportionally into altered expression levels. By reanalyzing >34,000 gene expression profiles, we reveal the degree of transcriptional adaptation to CNAs in a genome-wide fashion, which strongly associate with distinct biological processes. We then develop a platform-independent method-transcriptional adaptation to CNA profiling (TACNA profiling)-that extracts the transcriptional effects of CNAs from gene expression profiles without requiring paired CNA profiles. By applying TACNA profiling to >28,000 patient-derived tumor samples we define the landscape of transcriptional effects of CNAs. The utility of this landscape is demonstrated by the identification of four genes that are predicted to be involved in tumor immune evasion when transcriptionally affected by CNAs. In conclusion, we provide a novel tool to gain insight into how CNAs drive tumor behavior via altered expression levels.
Collapse
Affiliation(s)
- Arkajyoti Bhattacharya
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rico D Bense
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Carlos G Urzúa-Traslaviña
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
32
|
Copy number variation profiling in pharmacogenes using panel-based exome resequencing and correlation to human liver expression. Hum Genet 2019; 139:137-149. [PMID: 31786673 DOI: 10.1007/s00439-019-02093-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/23/2019] [Indexed: 12/13/2022]
Abstract
Structural variants including copy number variations (CNV) have gained widespread attention, especially in pharmacogenomics but for several genes functional relevance and clinical evidence are still lacking. Detection of CNVs in next-generation sequencing data is challenging but offers widespread applications. We developed a cohort-based CNV detection workflow to extract CNVs from read counts of targeted NGS of 340 genes involved in absorption, distribution, metabolism and excretion (ADME) of drugs. We applied our method to 150 human liver tissue samples and correlated identified CNVs to mRNA expression levels. In total, we identified 445 deletions (73%) and 167 duplications (27%) in 36 pharmacogenes including all well-known CNVs of CYPs, GSTs, SULTs, UGTs, numerous described rare CNVs of CYP2E1, SLC16A3 or UGT2B15 as well as novel observations, e.g., for SLC22A12, SLC22A17 and GPS2 (G Protein Pathway Suppressor 2). We were able to fine-map complex CNVs of CYP2A6 and CYP2D6 with exon resolution. Correlation analysis confirmed known expression patterns for common CNVs and suggested an influence on expression variability for some rare CNVs. Our straightforward CNV detection workflow can be easily applied to any NGS coverage data and helped to analyze CNVs in an ADME-NGS panel of 340 pharmacogenes to improve genotype-phenotype correlations.
Collapse
|
33
|
Copy Number Variation of the CADM2 Gene and Its Association with Growth Traits in Yak. Animals (Basel) 2019; 9:ani9121008. [PMID: 31766342 PMCID: PMC6940794 DOI: 10.3390/ani9121008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Cell adhesion molecule 2 (CADM2), also known as synaptic cell adhesion molecule 2 (SYNCAM2), is the mediator of synaptic signals enriched in the brain. Overlaps between copy number variation (CNV) regions in CADM2 and quantitative trait loci (QTL) related to body weight have been clarified in a previous study. In this study, two loci were amplified in the CADM2 gene (CNV1: 235,915 bp, exon 1 and partial intron 1; CNV2: 60,430 bp, intron 9) to explore the relationship between CNV types in the CADM2 gene and growth traits in 350 Ashidan yaks. Association analysis illustrated that no significant effect was found on growth traits in CNV1. However, the CNV2 mutation had a significant effect on body weight at the sixth month (p < 0.05). Individuals with the gain-type copy number variation CNV2 were significantly superior to those with loss- or normal-type in terms of body weight (p < 0.05). In summary, this study confirmed that CADM2-CNVs affect growth traits in yaks, and may be candidate genes for successful yak breeding and genetics projects. Abstract Copy number variation (CNV) is currently accepted as a common source of genetic variation. It is reported that CNVs may influence the resistance to disease and complex economic traits, such as residual feed intake, muscle formation, and fat deposition in livestock. Cell adhesion molecule 2 (CADM2) is expressed widely in the brain and adipose tissue and can regulate body weight through the central nervous system. Growth traits are important economic traits for animal selection. In this study, we aimed to explore the effect of CADM2 gene copy number variants on yak growth traits. Here, two CNVs in the CADM2 gene were investigated using the quantitative polymerase chain reaction (qPCR), and the association of the CNVs with growth traits in yak was analyzed using statistical methods by SPSS software. Differences were considered significant if the p value was < 0.05. Statistical analysis indicated significant association of CADM2-CNV2 with the body weight of the Chinese Ashidan yak. A significant effect of CNV2 (p < 0.05) was found on body weight at 6 months. In CNV2, the gain-type copy number variation exhibited greater performance than the other variants, with greater body weight observed at 6 months (p < 0.05). To the best of our knowledge, this is the first attempt to investigate the function of CADM2-CNVs and their association with growth traits in animals. This may be a useful candidate marker in marker-assisted selection of yaks.
Collapse
|
34
|
Lai YC, Lai YT, Rahman MM, Chen HW, Husna AA, Fujikawa T, Ando T, Kitahara G, Koiwa M, Kubota C, Miura N. Bovine milk transcriptome analysis reveals microRNAs and RNU2 involved in mastitis. FEBS J 2019; 287:1899-1918. [PMID: 31663680 DOI: 10.1111/febs.15114] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/09/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022]
Abstract
Mastitis is a common inflammatory infectious disease in dairy cows. To understand the microRNA (miRNA) expression profile changes during bovine mastitis, we undertook a genome-wide miRNA study of normal milk and milk that tested positive on the California mastitis test for bovine mastitis (CMT+). Twenty-five miRNAs were differentially expressed (23 miRNAs upregulated and two downregulated) during bovine mastitis relative to their expression in normal milk. Upregulated mature miR-1246 probably derived from a U2 small nuclear RNA rather than an miR-1246 precursor. The significantly upregulated miRNA precursors and RNU2 were significantly enriched on bovine chromosome 19, which is homologous to human chromosome 17. A gene ontology analysis of the putative mRNA targets of the significantly upregulated miRNAs showed that these miRNAs were involved in binding target mRNA transcripts and regulating target gene expression, and a Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the upregulated miRNAs were predominantly related to cancer and immune system pathways. Three novel miRNAs were associated with bovine mastitis and were relatively highly expressed in milk. We confirmed that one of the novel mastitis-related miRNAs was significantly upregulated using a digital PCR system. The differentially expressed miRNAs were involved in human cancers, infections, and immune-related diseases. The genome-wide analysis of miRNA profiles in this study provides insight into bovine mastitis and inflammatory diseases. DATABASES: The miRNAseq generated for this study can be found in the Sequence Read Archive (SRA) under BioProject Number PRJNA421075 and SRA Study Number SRP126134 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA421075).
Collapse
Affiliation(s)
- Yu-Chang Lai
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Japan
| | | | - Md Mahfuzur Rahman
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Japan
| | - Hui-Wen Chen
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Japan.,Joint Graduate School of Veterinary Medicine, Kagoshima University, Japan
| | - Al Asmaul Husna
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Japan
| | - Takuro Fujikawa
- The United Graduate School of Veterinary Science, Yamaguchi University, Japan.,Laboratory of Veterinary Theriogenology, Joint Faculty of Veterinary Medicine, Kagoshima University, Japan
| | - Takaaki Ando
- Laboratory of Veterinary Theriogenology, Joint Faculty of Veterinary Medicine, Kagoshima University, Japan
| | - Go Kitahara
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Japan
| | - Masateru Koiwa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Chikara Kubota
- Laboratory of Veterinary Theriogenology, Joint Faculty of Veterinary Medicine, Kagoshima University, Japan
| | - Naoki Miura
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Japan
| |
Collapse
|
35
|
Wu B, Cox MP. Greater genetic and regulatory plasticity of retained duplicates in Epichloë endophytic fungi. Mol Ecol 2019; 28:5103-5114. [PMID: 31614039 PMCID: PMC7004115 DOI: 10.1111/mec.15275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022]
Abstract
Gene duplicates can act as a source of genetic material from which new functions arise. Most duplicated genes revert to single copy genes and only a small proportion are retained. However, it remains unclear why some duplicate genes persist in the genome for an extended time. We investigate this question by analysing retained gene duplicates in the fungal genus Epichloë, ascomycete fungi that form close endophytic symbioses with their host grasses. Retained duplicates within this genus have two independent origins, but both long pre-date the origin and diversification of the genus Epichloë. We find that loss of retained duplicates within the genus is frequent and often associated with speciation. Retained duplicates have faster evolutionary rates (Ka) and show relaxed selection (Ka/Ks) compared to single copy genes. Both features are time-dependent. Through comparison of conspecific strains, we find greater evolutionary rates in coding regions and sequence divergence in regulatory regions of retained duplicates than single copy genes, with this pattern more pronounced for strains adapted to different grass host species. Consistent with this sequence divergence in regulatory regions, transcriptome analyses show greater expression variation of retained duplicates than single copy genes. This suggest that cis-regulatory changes make important contributions to the expression patterns of retained duplicates. Coupled with supporting observations from the model yeast Saccharomyces cerevisiae, these data suggest that genetic robustness and regulatory plasticity are common drivers behind the retention of duplicated genes in fungi.
Collapse
Affiliation(s)
- Baojun Wu
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Murray P Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
36
|
Ben-David U, Amon A. Context is everything: aneuploidy in cancer. Nat Rev Genet 2019; 21:44-62. [DOI: 10.1038/s41576-019-0171-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
37
|
Clough B, Finethy R, Khan RT, Fisch D, Jordan S, Patel H, Coers J, Frickel EM. C57BL/6 and 129 inbred mouse strains differ in Gbp2 and Gbp2b expression in response to inflammatory stimuli in vivo. Wellcome Open Res 2019; 4:124. [PMID: 31544161 PMCID: PMC6749937 DOI: 10.12688/wellcomeopenres.15329.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 12/02/2022] Open
Abstract
Background: Infections cause the production of inflammatory cytokines such as Interferon gamma (IFNγ). IFNγ in turn prompts the upregulation of a range of host defence proteins including members of the family of guanylate binding proteins (Gbps). In humans and mice alike, GBPs restrict the intracellular replication of invasive microbes and promote inflammation. To study the physiological functions of Gbp family members, the most commonly chosen in vivo models are mice harbouring loss-of-function mutations in either individual Gbp genes or the entire Gbp gene cluster on mouse chromosome 3. Individual Gbp deletion strains differ in their design, as some strains exist on a pure C57BL/6 genetic background, while other strains contain a 129-derived genetic interval encompassing the Gbp gene cluster on an otherwise C57BL/6 genetic background. Methods: To determine whether the presence of 129 alleles of paralogous Gbps could influence the phenotypes of 129-congenic Gbp-deficient strains, we studied the expression of Gbps in both C57BL/6J and 129/Sv mice following in vivo stimulation with adjuvants and after infection with either Toxoplasma gondii or Shigella flexneri. Results: We show that C57BL/6J relative to 129/Sv mice display moderately elevated expression of Gbp2, but more prominently, are also defective for Gbp2b (formerly Gbp1) mRNA induction upon immune priming. Notably, Toxoplasma infections induce robust Gbp2b protein expression in both strains of mice, suggestive of a Toxoplasma-activated mechanism driving Gbp2b protein translation. We further find that the higher expression of Gbp2b mRNA in 129/Sv mice correlates with a gene duplication event at the Gbp2b locus resulting in two copies of the Gbp2b gene on the haploid genome of the 129/Sv strain. Conclusions: Our findings demonstrate functional differences between 129 and C57BL/6 Gbp alleles which need to be considered in the design and interpretation of studies utilizing mouse models, particularly for phenotypes influenced by Gbp2 or Gbp2b expression.
Collapse
Affiliation(s)
- Barbara Clough
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ryan Finethy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Rabia T Khan
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Daniel Fisch
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sarah Jordan
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, NW1 1AT, UK
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
38
|
Keel BN, Nonneman DJ, Lindholm-Perry AK, Oliver WT, Rohrer GA. A Survey of Copy Number Variation in the Porcine Genome Detected From Whole-Genome Sequence. Front Genet 2019; 10:737. [PMID: 31475038 PMCID: PMC6707380 DOI: 10.3389/fgene.2019.00737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Copy number variations (CNVs) are gains and losses of large regions of genomic sequence between individuals of a species. Although CNVs have been associated with various phenotypic traits in humans and other species, the extent to which CNVs impact phenotypic variation remains unclear. In swine, as well as many other species, relatively little is understood about the frequency of CNV in the genome, sizes, locations, and other chromosomal properties. In this work, we identified and characterized CNV by utilizing whole-genome sequence from 240 members of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the purebred founding boars (12 Duroc and 12 Landrace), 48 of the founding Yorkshire-Landrace composite sows, 109 composite animals from generations 4 through 9, 29 composite animals from generation 15, and 30 purebred industry boars (15 Landrace and 15 Yorkshire) used as sires in generations 10 through 15. Using a combination of split reads, paired-end mapping, and read depth approaches, we identified a total of 3,538 copy number variable regions (CNVRs), including 1,820 novel CNVRs not reported in previous studies. The CNVRs covered 0.94% of the porcine genome and overlapped 1,401 genes. Gene ontology analysis identified that CNV-overlapped genes were enriched for functions related to organism development. Additionally, CNVRs overlapped with many known quantitative trait loci (QTL). In particular, analysis of QTL previously identified in the USMARC herd showed that CNVRs were most overlapped with reproductive traits, such as age of puberty and ovulation rate, and CNVRs were significantly enriched for reproductive QTL.
Collapse
Affiliation(s)
- Brittney N Keel
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Dan J Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | | | - William T Oliver
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Gary A Rohrer
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| |
Collapse
|
39
|
Copy Number Variation of the SHE Gene in Sheep and Its Association with Economic Traits. Animals (Basel) 2019; 9:ani9080531. [PMID: 31390723 PMCID: PMC6720781 DOI: 10.3390/ani9080531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Src Homology 2 Domain Containing E (SHE) is a protein coding gene, and member of the SH2 domain-containing family. Sequencing revealed a 2000 bp copy number variation in the SHE gene. There is overlap between SHE copy number variation (CNV) and quantitative trait loci related to milk fat percentage and bone density. A total of 750 sheep, including Chaka sheep (CKS), Hu sheep (HS), Small Tail Han sheep (STHS) and Large Tail Han sheep (LTHS) were available to detect the CNV of the SHE gene and correlate these gene variations with economic traits. The results showed that there were more individuals with SHE copy number loss in CKS and HS than in STHS and LTHS. Association analysis showed that gain and normal copy number types performed better in body length (p < 0.05), circumference of cannon bone (p < 0.05), heart girth (p < 0.05), chest width (p < 0.05) and high at the cross (p < 0.05) in CKS, HS and STHS. Chi-square analyses found significant variation in the CNV of the SHE gene, so it varies greatly between varieties. These findings clarified the relationship between the CNV of the SHE gene and the economic traits in these four kinds of sheep, and provide a reference for sheep breeding. Abstract Copy number variation (CNV) caused by gene rearrangement is an important part of genomic structural variation. We found that the copy number variation region of the Src Homology 2 Domain Containing E (SHE) gene correlates with a quantitative trait locus of sheep related to milk fat percentage and bone density. The aim of our study was to detect the copy number variation of the SHE gene in four sheep breeds and to conduct a correlation analysis with economic traits, hoping to provide some reference for sheep breeding. In this study, we examined 750 sheep from four Chinese breeds: Chaka sheep (CKS), Hu sheep (HS), Large Tail Han sheep (LTHS) and Small Tail Han sheep (STHS). We used qPCR to evaluate the copy number of the SHE gene, and then used general linear models to analyze the associations between CNV and economic traits. The results showed that there were more individuals with SHE copy number loss in CKS and HS than in STHS and LTHS individuals. Association analyses showed that gain and normal copy number types were correlated to body length, circumference of cannon bone, heart girth, chest width and high at the cross in CKS, HS and STHS (p < 0.05), but this association was not observed for LTHS. Chi-square values (χ2) found prominent differences in CNV distribution among the studied breeds. Overall, the CNV of the SHE gene may be an important consideration for sheep molecular breeding.
Collapse
|
40
|
Lauer S, Gresham D. An evolving view of copy number variants. Curr Genet 2019; 65:1287-1295. [PMID: 31076843 DOI: 10.1007/s00294-019-00980-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 01/08/2023]
Abstract
Copy number variants (CNVs) are regions of the genome that vary in integer copy number. CNVs, which comprise both amplifications and deletions of DNA sequence, have been identified across all domains of life, from bacteria and archaea to plants and animals. CNVs are an important source of genetic diversity, and can drive rapid adaptive evolution and progression of heritable and somatic human diseases, such as cancer. However, despite their evolutionary importance and clinical relevance, CNVs remain understudied compared to single-nucleotide variants (SNVs). This is a consequence of the inherent difficulties in detecting CNVs at low-to-intermediate frequencies in heterogeneous populations of cells. Here, we discuss molecular methods used to detect CNVs, the limitations associated with using these techniques, and the application of new and emerging technologies that present solutions to these challenges. The goal of this short review and perspective is to highlight aspects of CNV biology that are understudied and define avenues for further research that address specific gaps in our knowledge of these complex alleles. We describe our recently developed method for CNV detection in which a fluorescent gene functions as a single-cell CNV reporter and present key findings from our evolution experiments in Saccharomyces cerevisiae. Using a CNV reporter, we found that CNVs are generated at a high rate and undergo selection with predictable dynamics across independently evolving replicate populations. Many CNVs appear to be generated through DNA replication-based processes that are mediated by the presence of short, interrupted, inverted-repeat sequences. Our results have important implications for the role of CNVs in evolutionary processes and the molecular mechanisms that underlie CNV formation. We discuss the possible extension of our method to other applications, including tracking the dynamics of CNVs in models of human tumors.
Collapse
Affiliation(s)
- Stephanie Lauer
- Institute for Systems Genetics, New York University Langone Health, New York, NY, USA
| | - David Gresham
- Center for Genomics and System Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
41
|
Chen SN, Taylor M, Mestroni L. Unraveling Missing Genes and Missing Inheritance in Arrhythmogenic Cardiomyopathy. Circ Arrhythm Electrophysiol 2019; 10:CIRCEP.117.005813. [PMID: 29038109 DOI: 10.1161/circep.117.005813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Suet Nee Chen
- From the Cardiovascular Institute, University of Colorado and Adult Medical Genetics, Aurora
| | - Matthew Taylor
- From the Cardiovascular Institute, University of Colorado and Adult Medical Genetics, Aurora
| | - Luisa Mestroni
- From the Cardiovascular Institute, University of Colorado and Adult Medical Genetics, Aurora.
| |
Collapse
|
42
|
Liu S, Kang X, Catacchio CR, Liu M, Fang L, Schroeder SG, Li W, Rosen BD, Iamartino D, Iannuzzi L, Sonstegard TS, Van Tassell CP, Ventura M, Low WY, Williams JL, Bickhart DM, Liu GE. Computational detection and experimental validation of segmental duplications and associated copy number variations in water buffalo ( Bubalus bubalis ). Funct Integr Genomics 2019; 19:409-419. [PMID: 30734132 DOI: 10.1007/s10142-019-00657-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/13/2018] [Accepted: 01/09/2019] [Indexed: 01/25/2023]
Abstract
Duplicated sequences are an important source of gene evolution and structural variation within mammalian genomes. Using a read depth approach based on next-generation sequencing, we performed a genome-wide analysis of segmental duplications (SDs) and associated copy number variations (CNVs) in the water buffalo (Bubalus bubalis). By aligning short reads of Olimpia (the reference water buffalo) to the UMD3.1 cattle genome, we identified 1,038 segmental duplications comprising 44.6 Mb (equivalent to ~1.73% of the cattle genome) of the autosomal and X chromosomal sequence in the buffalo genome. We experimentally validated 70.3% (71/101) of these duplications using fluorescent in situ hybridization. We also detected a total of 1,344 CNV regions across 14 additional water buffaloes, amounting to 59.8 Mb of variable sequence or the equivalent of 2.2% of the cattle genome. The CNV regions overlap 1,245 genes that are significantly enriched for specific biological functions including immune response, oxygen transport, sensory system and signal transduction. Additionally, we performed array Comparative Genomic Hybridization (aCGH) experiments using the 14 water buffaloes as test samples and Olimpia as the reference. Using a linear regression model, a high Pearson correlation (r = 0.781) was observed between the log2 ratios between copy number estimates and the log2 ratios of aCGH probes. We further designed Quantitative PCR assays to confirm CNV regions within or near annotated genes and found 74.2% agreement with our CNV predictions. These results confirm sub-chromosome-scale structural rearrangements present in the cattle and water buffalo. The information on genome variation that will be of value for evolutionary and phenotypic studies, and may be useful for selective breeding of both species.
Collapse
Affiliation(s)
- Shuli Liu
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaolong Kang
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA
- College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | | | - Mei Liu
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA
- College of Animal Science and Technology, Shaanxi Key Laboratory of Agricultural Molecular Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lingzhao Fang
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742, USA
| | - Steven G Schroeder
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA
| | - Wenli Li
- The Cell Wall Utilization and Biology Laboratory, US Dairy Forage Research Center, USDA, ARS, Madison, WI 53706, USA
| | - Benjamin D Rosen
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA
| | - Daniela Iamartino
- AIA-LGS, Associazione Italiana Allevatori - Laboratorio Genetica e Servizi, Via Bergamo 292, 26100 (CR), Cremona, Italy
- Parco Tecnologico Padano, Via Einstein, Polo Universitario, 26900, Lodi, Italy
| | - Leopoldo Iannuzzi
- Laboratory of Animal Cytogenetics and Gene Mapping, Nationa Research Council (CNR), ISPAAM, Via Argine 1085, 80147, Naples, Italy
| | | | - Curtis P Van Tassell
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA
| | - Mario Ventura
- Department of Biology, University of Bari, 70126, Bari, Italy
| | - Wai Yee Low
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - John L Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Derek M Bickhart
- The Cell Wall Utilization and Biology Laboratory, US Dairy Forage Research Center, USDA, ARS, Madison, WI 53706, USA.
| | - George E Liu
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, Maryland, 20705, USA.
| |
Collapse
|
43
|
Xu L, Yang L, Wang L, Zhu B, Chen Y, Gao H, Gao X, Zhang L, Liu GE, Li J. Probe-based association analysis identifies several deletions associated with average daily gain in beef cattle. BMC Genomics 2019; 20:31. [PMID: 30630414 PMCID: PMC6327516 DOI: 10.1186/s12864-018-5403-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Average daily gain (ADG) is an important trait that contributes to the production efficiency and economic benefits in the beef cattle industry. The molecular mechanisms of ADG have not yet been fully explored because most recent association studies for ADG are based on SNPs or haplotypes. We reported a systematic CNV discovery and association analysis for ADG in Chinese Simmental beef cattle. RESULTS Our study identified 4912 nonredundant CNVRs with a total length of ~ 248.7 Mb, corresponding to ~ 8.9% of the cattle genome. Using probe-based CNV association, we identified 24 and 12 significant SNP probes within five deletions and two duplications for ADG, respectively. Among them, we found one common deletion with 89 kb imbedded in LHFPL Tetraspan Subfamily Member 6 (LHFPL6) at 22.9 Mb on BTA12, which has high frequency (12.9%) dispersing across population. CNV selection test using VST statistic suggested this common deletion may be under positive selection in Chinese Simmental cattle. Moreover, this deletion was not overlapped with any candidate SNP for ADG compared with previous SNPs-based association studies, suggesting its important role for ADG. In addition, we identified one rare deletion near gene Growth Factor Receptor-bound Protein 10 (GRB10) at 5.1 Mb on BTA4 for ADG using both probe-based association and region-based approaches. CONCLUSIONS Our results provided some valuable insights to elucidate the genetic basis of ADG in beef cattle, and these findings offer an alternative perspective to understand the genetic mechanism of complex traits in terms of copy number variations in farm animals.
Collapse
Affiliation(s)
- Lingyang Xu
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Liu Yang
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Wang
- Beijing Genecast Biotechnology Co., Beijing, 100191, China
| | - Bo Zhu
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yan Chen
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huijiang Gao
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Gao
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lupei Zhang
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - George E Liu
- U.S. Department of Agriculture-Agricultural Research Services, Animal Genomics and Improvement Laboratory, Beltsville, MD, 20705, USA.
| | - Junya Li
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
44
|
Goshu HA, Chu M, Wu X, Pengjia B, Ding XZ, Yan P. Association study and expression analysis of GPC1 gene copy number variation in Chinese Datong yak ( Bos grunniens) breed. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1586456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Habtamu Abera Goshu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
- Animal Science Department, Oromia Agricultural Research Institute, Bako Agricultural Research Center, Bako, Ethiopia
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Bao Pengjia
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Xue Zhi Ding
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| |
Collapse
|
45
|
Strillacci MG, Gorla E, Cozzi MC, Vevey M, Genova F, Scienski K, Longeri M, Bagnato A. A copy number variant scan in the autochthonous Valdostana Red Pied cattle breed and comparison with specialized dairy populations. PLoS One 2018; 13:e0204669. [PMID: 30261013 PMCID: PMC6160104 DOI: 10.1371/journal.pone.0204669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/12/2018] [Indexed: 11/24/2022] Open
Abstract
Copy number variants (CNVs) are an important source of genomic structural variation, recognized to influence phenotypic variation in many species. Many studies have focused on identifying CNVs within and between human and livestock populations alike, but only few have explored population-genetic properties in cattle based on CNVs derived from a high-density SNP array. We report a high-resolution CNV scan using Illumina’s 777k BovineHD Beadchip for Valdostana Red Pied (VRP), an autochthonous Italian dual-purpose cattle population reared in the Alps that did not undergo strong selection for production traits. After stringent quality control and filtering, CNVs were called across 108 bulls using the PennCNV software. A total of 6,784 CNVs were identified, summarized to 1,723 CNV regions (CNVRs) on 29 autosomes covering a total of ~59 Mb of the UMD3.1 assembly. Among the mapped CNVRs, there were 812 losses, 832 gains and 79 complexes. We subsequently performed a comparison of CNVs detected in the VRP and those available from published studies in the Italian Brown Swiss (IBS) and Mexican Holstein (HOL). A total of 171 CNVRs were common to all three breeds. Between VRP and IBS, 474 regions overlapped, while only 313 overlapped between VRP and HOL, indicating a more similar genetic background among populations with common origins, i.e. the Alps. The principal component, clustering and admixture analyses showed a clear separation of the three breeds into three distinct clusters. In order to describe the distribution of CNVs within and among breeds we used the pair VST statistic, considering only the CNVRs shared to more than 5 individuals (within breed). We identified unique and highly differentiated CNVs (n = 33), some of which could be due to specific breed selection and adaptation. Genes and QTL within these regions were characterized.
Collapse
Affiliation(s)
| | - Erica Gorla
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | | | - Mario Vevey
- Associazione Nazionale Allevatori Bovini Di Razza Valdostana, Gressan, Aosta, Italy
| | - Francesca Genova
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Kathy Scienski
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Maria Longeri
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | | |
Collapse
|
46
|
Abstract
Craniosynostosis refers to a condition during early development in which one or more of the fibrous sutures of the skull prematurely fuse by turning into bone, which produces recognizable patterns of cranial shape malformations depending on which suture(s) are affected. In addition to cases with isolated cranial dysmorphologies, craniosynostosis appears in syndromes that include skeletal features of the eyes, nose, palate, hands, and feet as well as impairment of vision, hearing, and intellectual development. Approximately 85% of the cases are nonsyndromic sporadic and emerge after de novo structural genome rearrangements or single nucleotide variation, while the remainders consist of syndromic cases following mendelian inheritance. By karyotyping, genome wide linkage, and CNV analyses as well as by whole exome and whole genome sequencing, numerous candidate genes for craniosynostosis belonging to the FGF, Wnt, BMP, Ras/ERK, ephrin, hedgehog, STAT, and retinoic acid signaling pathways have been identified. Many of the craniosynostosis-related candidate genes form a functional network based upon protein-protein or protein-DNA interactions. Depending on which node of this craniosynostosis-related network is affected by a gene mutation or a change in gene expression pattern, a distinct craniosynostosis syndrome or set of phenotypes ensues. Structural variations may alter the dosage of one or several genes or disrupt the genomic architecture of genes and their regulatory elements within topologically associated chromatin domains. These may exert dominant effects by either haploinsufficiency, dominant negative partial loss of function, gain of function, epistatic interaction, or alteration of levels and patterns of gene expression during development. Molecular mechanisms of dominant modes of action of these mutations may include loss of one or several binding sites for cognate protein partners or transcription factor binding sequences. Such losses affect interactions within functional networks governing development and consequently result in phenotypes such as craniosynostosis. Many of the novel variants identified by genome wide CNV analyses, whole exome and whole genome sequencing are incorporated in recently developed diagnostic algorithms for craniosynostosis.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
47
|
Mutational and transcriptional landscape of spontaneous gene duplications and deletions in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2018; 115:7386-7391. [PMID: 29941601 DOI: 10.1073/pnas.1801930115] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene duplication and deletion are pivotal processes shaping the structural and functional repertoire of genomes, with implications for disease, adaptation, and evolution. We employed a mutation accumulation (MA) framework partnered with high-throughput genomics to assess the molecular and transcriptional characteristics of newly arisen gene copy-number variants (CNVs) in Caenorhabditis elegans populations subjected to varying intensity of selection. Here, we report a direct spontaneous genome-wide rate of gene duplication of 2.9 × 10-5/gene per generation in C. elegans, the highest for any species to date. The rate of gene deletion is sixfold lower (5 × 10-6/gene per generation). Deletions of highly expressed genes are particularly deleterious, given their paucity in even the N = 1 lines with minimal efficacy of selection. The increase in average transcript abundance of new duplicates arising under minimal selection is significantly greater than twofold compared with single copies of the same gene, suggesting that genes in segmental duplications are frequently overactive at inception. The average increase in transcriptional activity of gene duplicates is greater in the N = 1 MA lines than in MA lines with larger population bottlenecks. There is an inverse relationship between the ancestral transcription levels of new gene duplicates and population size, with duplicate copies of highly expressed genes less likely to accumulate in larger populations. Our results demonstrate a fitness cost of increased transcription following duplication, which results in purifying selection against new gene duplicates. However, on average, duplications also provide a significant increase in gene expression that can facilitate adaptation to novel environmental challenges.
Collapse
|
48
|
Xu Y, Shi W, Song R, Long W, Guo H, Yuan S, Zhang T. Divergent patterns of genic copy number variation in KCNIP1 gene reveal risk locus of type 2 diabetes in Chinese population. Endocr J 2018; 65:537-545. [PMID: 29491224 DOI: 10.1507/endocrj.ej17-0496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Copy number variation (CNV) has emerged as another important genetic marker in addition to SNP for understanding etiology of complex disease. Kv channel interacting protein 1 (KCNIP1) is a Ca2+-dependent transcriptional modulator that contributes to the regulation of insulin secretion. Previous genome-wide CNV assay identified the KCNIP1 gene encompassing a CNV region, however, its further effect and risk rate on type 2 diabetes (T2D) have rarely been addressed, especially in Chinese population. The current study aims to detect and excavate genetic distribution profile of KCNIP1 CNV in Chinese T2D and control populations, and further to investigate the associations with clinical characteristics. Divergent patterns of the KCNIP1 CNV were identified (p < 0.01), in which the copy number gain was predominant in T2D, while the copy number normal accounted for the most in control group. Consistently, the individuals with copy number gain showed significant risk on T2D (OR = 4.550, p < 0.01). The KCNIP1 copy numbers presented significantly positive correlations with fasting plasma glucose and glycated hemoglobin in T2D. For OGTT test, the T2D patients with copy number gain had remarkably elevated glucose contents (60, 120, 180-min, p < 0.05 or p < 0.01) and diminished insulin levels (60, 120-min, p < 0.05) than those with copy number loss and normal, which suggested that the KCNIP1 CNV was correlated with the glucose and insulin action. This is the first CNV association study of the KCNIP1 gene in Chinese population, and these data indicated that KCNIP1 might function as a T2D-susceptibility gene whose dysregulation alters insulin production.
Collapse
Affiliation(s)
- Yao Xu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Weilin Shi
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Ruhui Song
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Wenlin Long
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Hui Guo
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Shiliang Yuan
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430064, China
| | - Tongcun Zhang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| |
Collapse
|
49
|
Achim K, Eling N, Vergara HM, Bertucci PY, Musser J, Vopalensky P, Brunet T, Collier P, Benes V, Marioni JC, Arendt D. Whole-Body Single-Cell Sequencing Reveals Transcriptional Domains in the Annelid Larval Body. Mol Biol Evol 2018; 35:1047-1062. [PMID: 29373712 PMCID: PMC5913682 DOI: 10.1093/molbev/msx336] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Animal bodies comprise diverse arrays of cells. To characterize cellular identities across an entire body, we have compared the transcriptomes of single cells randomly picked from dissociated whole larvae of the marine annelid Platynereis dumerilii. We identify five transcriptionally distinct groups of differentiated cells, each expressing a unique set of transcription factors and effector genes that implement cellular phenotypes. Spatial mapping of cells into a cellular expression atlas, and wholemount in situ hybridization of group-specific genes reveals spatially coherent transcriptional domains in the larval body, comprising, for example, apical sensory-neurosecretory cells versus neural/epidermal surface cells. These domains represent new, basic subdivisions of the annelid body based entirely on differential gene expression, and are composed of multiple, transcriptionally similar cell types. They do not represent clonal domains, as revealed by developmental lineage analysis. We propose that the transcriptional domains that subdivide the annelid larval body represent families of related cell types that have arisen by evolutionary diversification. Their possible evolutionary conservation makes them a promising tool for evo-devo research.
Collapse
Affiliation(s)
- Kaia Achim
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nils Eling
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Paola Yanina Bertucci
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jacob Musser
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pavel Vopalensky
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Brunet
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Paul Collier
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - John C Marioni
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
50
|
Li W, Bickhart DM, Ramunno L, Iamartino D, Williams JL, Liu GE. Comparative sequence alignment reveals River Buffalo genomic structural differences compared with cattle. Genomics 2018; 111:418-425. [PMID: 29501677 DOI: 10.1016/j.ygeno.2018.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/12/2018] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
This study sought to characterize differences in gene content, regulation and structure between taurine cattle and river buffalo (one subspecies of domestic water buffalo) using the extensively annotated UMD3.1 cattle reference genome as a basis for comparisons. We identified 127 deletion CNV regions in river buffalo representing 5 annotated cattle genes. We also characterized 583 merged mobile element insertion (MEI) events within the upstream regions of annotated cattle genes. Transcriptome analysis in various tissue types on river buffalo confirmed the absence of four cattle genes. Four genes which may be related to phenotypic differences in meat quality and color, had upstream MEI predictions and were found to have significantly elevated expression in river buffalo compared with cattle. Our comparative alignment approach and gene expression analyses suggested a functional role for many genomic structural variations, which may contribute to the unique phenotypes of river buffalo.
Collapse
Affiliation(s)
- Wenli Li
- The Cell Wall Utilization and Biology Laboratory, US Dairy Forage Research Center, USDA ARS, Madison, WI 53706, USA
| | - Derek M Bickhart
- The Cell Wall Utilization and Biology Laboratory, US Dairy Forage Research Center, USDA ARS, Madison, WI 53706, USA
| | - Luigi Ramunno
- Dipartimento di Agraria, Università degli Studi di Napoli "Federico II", via Università 100, 80055 Portici (NA), Italy
| | - Daniela Iamartino
- AIA-LGS, Associazione Italiana Allevatori - Laboratorio Genetica e Servizi, Via Bergamo 292, 26100 Cremona (CR), Italy; Parco Tecnologico Padano, Via Einstein, 26500 Lodi, Italy
| | - John L Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - George E Liu
- The Animal Genomics and Improvement Laboratory, USDA ARS, Beltsville, MD, USA.
| |
Collapse
|