1
|
Liu S, Zhang F, Bai Y, Huang L, Zhong Y, Li Y. Therapeutic effects of acupuncture therapy for kidney function and common symptoms in patients with chronic kidney disease: a systematic review and meta-analysis. Ren Fail 2024; 46:2301504. [PMID: 38189090 PMCID: PMC10776068 DOI: 10.1080/0886022x.2023.2301504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose: The number of clinical reports of acupuncture therapy in chronic kidney disease (CKD) is gradually increasing. This systematic review and meta-analysis aim to examine the therapeutic role of acupuncture therapy in kidney function and common symptoms in CKD patients.Methods: We searched Embase, PubMed, Scopus, Web of Science, China National Knowledge Infrastructure, WanFang, and WeiPu for randomized controlled trials comparing acupuncture treatment with control or placebo groups. We assessed the effect of acupuncture therapy in CKD patients using a meta-analysis with the hartung-knapp-sidik-jonkman random effects model. In addition, we visualized keyword co-occurrence overlay visualization with the help of VOSviewer software to describe the research hotspots of acupuncture therapy and CKD.Results: A total of 24 studies involving 1494 participants were included. Compared to the control group, acupuncture therapy reduced serum creatinine levels (standardized mean difference [SMD]: -0.57; 95% CI -1.05 to -0.09) and relieved pruritus (SMD: -2.20; 95% CI -3.84, -0.57) in patients with CKD, while the TSA showed that the included sample size did not exceed the required information size. The included studies did not report acupuncture-related adverse events.Conclusions: Acupuncture is an effective and safe treatment for improving kidney function and relieving pruritic symptoms in patients with CKD, but the very low evidence may limit this conclusion. The TSA suggests that high-quality trials are needed to validate the efficacy of acupuncture therapy.
Collapse
Affiliation(s)
- Shan Liu
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fan Zhang
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Bai
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liuyan Huang
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Zhong
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Li
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Shi J, Piao M, Liu C, Yang J, Guan X, Liu H, Li Q, Zhang Y, Yu J. Electroacupuncture pretreatment maintains mitochondrial quality control via HO-1/MIC60 signaling pathway to alleviate endotoxin-induced acute lung injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167480. [PMID: 39209235 DOI: 10.1016/j.bbadis.2024.167480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Electroacupuncture has been demonstrated to mitigate endotoxin-induced acute lung injury by enhancing mitochondrial function. This study investigates whether electroacupuncture confers lung protection through the regulation of mitochondrial quality control mediated by heme oxygenase-1 (HO-1) and the mitochondrial inner membrane protein MIC60. HO-1, an inducible stress protein, is crucial for maintaining mitochondrial homeostasis and protecting against lung injury. MIC60, a key component of the mitochondrial contact site and cristae organizing system, supports mitochondrial integrity. We employed genetic knockout/silencing and cell transfection techniques to model lipopolysaccharide (LPS)-induced lung injury, assessing changes in mitochondrial structure, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and the expression of proteins essential for mitochondrial quality control. Our findings reveal that electroacupuncture alleviates endotoxin-induced acute lung injury and associated mitochondrial dysfunction, as evidenced by reductions in lung injury scores, decreased ROS production, and suppressed expression of proteins involved in mitochondrial fission and mitophagy. Additionally, electroacupuncture enhanced MMP and upregulated proteins that facilitate mitochondrial fusion and biogenesis. Importantly, the protective effects of electroacupuncture were reduced in models with Hmox1 knockout or Mic60 silencing, and in macrophages transfected with Hmox1-siRNA or Mic60-siRNA. Moreover, HO-1 was found to influence MIC60 expression during electroacupuncture preconditioning and LPS challenge, demonstrating that these proteins not only co-localize but also interact directly. In conclusion, electroacupuncture effectively modulates mitochondrial quality control through the HO-1/MIC60 signaling pathway, offering an adjunctive therapeutic strategy to ameliorate endotoxin-induced acute lung injury in both in vivo and in vitro settings.
Collapse
Affiliation(s)
- Jia Shi
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Meiling Piao
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Chuanning Liu
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Jing Yang
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Xin Guan
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Huayang Liu
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Qiujia Li
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Yuan Zhang
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Jianbo Yu
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair.
| |
Collapse
|
3
|
Liao HH, Huang MC, Lee YC, Lin CL, Wu MY, Mayer PK, Yen HR. Acupuncture treatment is associated with a decreased risk of dementia in patients with rheumatoid arthritis in Taiwan: A propensity-score matched cohort study. Integr Med Res 2024; 13:101086. [PMID: 39399823 PMCID: PMC11465145 DOI: 10.1016/j.imr.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/10/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024] Open
Abstract
Background The purpose of this study was to understand whether acupuncture can decrease the risk of dementia in patients with rheumatoid arthritis (RA). Methods Using the registry from the National Health Insurance Research Database of Taiwan, we carried out a 1:1 propensity-score matched cohort study to analyze patients with RA diagnosed between 2000 and 2010. The patients who received acupuncture therapy were grouped as acupuncture users (n = 9,919), while the others were grouped as non-acupuncture users (n = 19,331). After propensity-score matching, the final sample included 9,218 matched participants in both groups, and these participants were followed up until the end of 2011. We used a Cox regression model to adjust for age, sex, comorbidiy, and conventional drugs and compared the hazard ratios (HRs) of developing dementia in the acupuncture and non-acupuncture groups. Results Acupuncture users tended to be more female-dominant and younger than non-acupuncture users. After propensity-score matching, both groups have comparable demographic characteristics. Acupuncture users had a lower risk of dementia than non-acupuncture users (adjusted HR: 0.55, 95% CI: 0.46-0.66). The cumulative incidence of dementia in the acupuncture group was significantly lower than that in the non-acupuncture group (log-rank test, p < 0.001). Patients who received the combinational treatment of conventional drugs and acupuncture had a significantly lower risk of developing dementia (adjusted HR: 0.64, 95% CI: 0.56-0.73) compared to those who only received conventional drugs. Conclusion Acupuncture therapy is associated with a reduced risk of dementia in patients with RA. Further clinical and mechanistic studies are needed.
Collapse
Affiliation(s)
- Hou-Hsun Liao
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Ming-Cheng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chen Lee
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Yao Wu
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Peter Karl Mayer
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- International Master Program in Acupuncture, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hung-Rong Yen
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- International Master Program in Acupuncture, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Xie Y, Shen Z, Zhu X, Pan Y, Sun H, Xie M, Gong Q, Hu Q, Chen J, Wu Z, Zhou S, Liu B, He X, Liu B, Shao X, Fang J. Infralimbic-basolateral amygdala circuit associated with depression-like not anxiety-like behaviors induced by chronic neuropathic pain and the antidepressant effects of electroacupuncture. Brain Res Bull 2024; 218:111092. [PMID: 39369764 DOI: 10.1016/j.brainresbull.2024.111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Chronic pain, such as neuropathic pain, can lead to anxiety, depression, and other negative emotions, thereby forming comorbidities and increasing the risk of chronic pain over time. Both the infralimbic amygdala (IL) and the basolateral amygdala (BLA) are significantly associated with negative emotions and pain, and they are known to have reciprocal connections. However, the role of IL-BLA circuit pathways in neuropathic pain-induced anxiety and depression remains unexplored. Electroacupuncture (EA) is frequently employed in the treatment of chronic pain and emotional disorders. However, The mechanism by which EA mediates its analgesic and emotion-alleviating effects via the IL-BLA circuit remains uncertain. Here, we used chemogenetic manipulation combined with behavioral tests to detect pain induced anxiety-like and depression-like behaviors. We observed that activation of the IL-BLA circuit by chemogenetic activation induced depression-like behavior of mice. Additionally, we discovered that chemogenetic activation of the IL-BLA circuit successfully prevented the beneficial effects of EA on depression-like behavior brought on by chronic pain in mice with spared nerve injury (SNI). We discovered that SNI-induced depression-like behavior could be mitigated by inhibiting the circuit, and EA had a comparable depressive-relieving effect. Furthermore, the IL-BLA circuit's activation or inhibition had no effect on the anxiety-like feelings brought on by SNI. Overall, our findings identify a specific neural circuit that selectively regulates pain-induced depression-like emotions, without affecting pain-induced anxiety-like emotions. This discovery offers a precise target for future treatments of comorbid pain and depression and provides a plausible explanation for the efficacy of EA in treating depression-like emotions associated with chronic pain.
Collapse
Affiliation(s)
- Yiping Xie
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xixiao Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yushuang Pan
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haiju Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengdi Xie
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiuzhu Gong
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qunqi Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zemin Wu
- Department of Acupuncture and Moxibustion, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuting Zhou
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyu Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Zhang QA, Luo WS, Li J, Zhang QW, Guo Q, Chen J, Liang ZQ. Integrative Analysis of Acupuncture Targets and Immune Genes in Diabetes, Diabetic Peripheral Neuropathy, and Adjunct Therapy of Cancer. J Multidiscip Healthc 2024; 17:4939-4962. [PMID: 39492981 PMCID: PMC11529286 DOI: 10.2147/jmdh.s483940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Acupuncture may help treat diabetes mellitus (DM), diabetic peripheral neuropathy (DPN), and adjunct therapy for cancer, but the biological mechanisms and immune-related genes involved are unclear; this study aims to clarify these aspects. Methods Comprehensive gene expression analysis revealed differentially expressed genes (DEGs) among DM, DPN, and control samples. Key genes from WGCNA were intersected with DEGs and acupuncture targets. Inflammatory responses, immune processes, signaling pathways, immune cell infiltration, and microRNA-gene interactions were studied. Hub immune-related genes' dysregulation was analyzed for copy number variation and gene methylation. A pan-cancer nomogram model was created to predict survival based on various factors, linking hub genes to cancer properties. Results Our analysis found 3,217 and 2,191 DEGs in DM/control and DPN/DM comparisons, respectively, and identified 1,830 potential acupuncture targets. We pinpointed 21 key genes in DM and 43 in DPN, involved in inflammatory responses, immune processes, CAMKK2, and cAMP signaling pathways. Distinct immune cell infiltration patterns, including M0 and M2 macrophages, neutrophils, and follicular helper T cells, were noted. Further analysis revealed microRNAs and TF genes interacting with immune hub genes in both conditions. Dysregulation of eight hub immune-related genes was linked to copy number variation and gene methylation, correlating with cancer prognosis. Co-occurrence of single nucleotide variations and oncogenic mutations was observed in these genes. The pan-cancer nomogram model showed strong prognostic capabilities, and a significant association was found between the eight genes and cancer properties like angiogenesis, EMT, and cell cycle progression. Discussion Our findings underscore the pivotal roles of MAPK3, IL1RN, SOD2, CTSD, ESR1, SLC1A1, NPY, and CCR2 in the immune response mediated by acupuncture in the context of DM, DPN, and adjunct therapy for cancer.
Collapse
Affiliation(s)
- Quan-Ai Zhang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Wang-Sheng Luo
- Department of Cardiology, the First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China
| | - Ji Li
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Qi-Wen Zhang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Qin Guo
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jian Chen
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Anhui Province Rural Revitalization Collaborative Technical Service Center, Huangshan University, Huangshan, People’s Republic of China
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Zhi-Qiang Liang
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Tahiri A, Youssef A, Inoue R, Moon S, Alsarkhi L, Berroug L, Nguyen XTA, Wang L, Kwon H, Pang ZP, Zhao JY, Shirakawa J, Ulloa L, El Ouaamari A. Vagal sensory neuron-derived FGF3 controls insulin secretion. Dev Cell 2024:S1534-5807(24)00542-2. [PMID: 39413782 DOI: 10.1016/j.devcel.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/28/2023] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Vagal nerve stimulation has emerged as a promising modality for treating a wide range of chronic conditions, including metabolic disorders. However, the cellular and molecular pathways driving these clinical benefits remain largely obscure. Here, we demonstrate that fibroblast growth factor 3 (Fgf3) mRNA is upregulated in the mouse vagal ganglia under acute metabolic stress. Systemic and vagal sensory overexpression of Fgf3 enhanced glucose-stimulated insulin secretion (GSIS), improved glucose excursion, and increased energy expenditure and physical activity. Fgf3-elicited insulinotropic and glucose-lowering responses were recapitulated when overexpression of Fgf3 was restricted to the pancreas-projecting vagal sensory neurons. Genetic ablation of Fgf3 in pancreatic vagal afferents exacerbated high-fat diet-induced glucose intolerance and blunted GSIS. Finally, electrostimulation of the vagal afferents enhanced GSIS and glucose clearance independently of efferent outputs. Collectively, we demonstrate a direct role for the vagal afferent signaling in GSIS and identify Fgf3 as a vagal sensory-derived metabolic factor that controls pancreatic β-cell activity.
Collapse
Affiliation(s)
- Azeddine Tahiri
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Ayman Youssef
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC 27710, USA
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Lamyaa Alsarkhi
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Laila Berroug
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Xuan Thi Anh Nguyen
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Le Wang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Hyokjoon Kwon
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jerry Yingtao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC 27710, USA
| | - Abdelfattah El Ouaamari
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
7
|
Chen X, Mi W, Gao T, Ding F, Wang W. Astrocytes in the rostral ventromedial medulla mediate the analgesic effect of electroacupuncture in a rodent model of chemotherapy-induced peripheral neuropathic pain. Pain 2024:00006396-990000000-00741. [PMID: 39432736 DOI: 10.1097/j.pain.0000000000003433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Chemotherapy-induced peripheral neuropathic pain aggravates cancer survivors' life burden. Electroacupuncture (EA) has exhibited promising analgesic effects on neuropathic pain in previous studies. We investigated whether EA was effective in a paclitaxel-induced neuropathic pain mouse model. We further explored the functional role of astrocytes in the rostral ventromedial medulla (RVM), a well-established pain modulation center, in the process of neuropathic pain as well as the analgesic effect of EA. We found that paclitaxel induced mechanical allodynia, astrocytic calcium signaling, and neuronal activation in the RVM and spinal cord, which could be suppressed by EA treatment. Electroacupuncture effectively alleviated paclitaxel-induced mechanical allodynia, and the effect was attenuated by the chemogenetic activation of astrocytes in the RVM. In addition, inhibiting astrocytic calcium activity by using either IP3R2 knockout (IP3R2 KO) mice or microinjection of AAV-mediated hPMCA2 w/b into the RVM to reduce non-IP3R2-dependent Ca2+ signaling in astrocytes exhibited an analgesic effect on neuropathic pain, which mimicked the EA effect. The current study revealed the pivotal role of the RVM astrocytes in mediating the analgesic effects of EA on chemotherapy-induced peripheral neuropathic pain.
Collapse
Affiliation(s)
- Xuejiao Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianchi Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Chen Y, Li M, Guo K. Exploring the mechanisms and current status of acupuncture in alleviating tumor metabolism and associated diseases: Insights from the central nervous system and immune microenvironment. SLAS Technol 2024; 29:100208. [PMID: 39396727 DOI: 10.1016/j.slast.2024.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Acupuncture, as a traditional Chinese medical treatment, has garnered increasing attention in recent years in fields such as tumor metabolism, the central nervous system, and the immune microenvironment. This paper aims to explore the fundamental principles, mechanisms, and research status of acupuncture therapy for tumor-related diseases. Firstly, we introduce the basic principles of acupuncture therapy, including the theories of meridians and its theoretical basis in tumor treatment. Secondly, we systematically review the mechanisms of acupuncture therapy for tumor-related diseases, discussing how acupuncture alleviates side effects such as pain, depression, fatigue, and gastrointestinal discomfort caused by conventional treatments through modulation of the immune microenvironment, central nervous system, and endocrine system. Subsequently, we discuss the current research status of acupuncture therapy for tumor-related diseases, as well as the application of current research methods and technologies in elucidating acupuncture mechanisms. Additionally, by combining clinical practice with different types of tumor-related diseases as experimental subjects, we demonstrate the application effectiveness and clinical practice experience of acupuncture in tumor treatment. Finally, a comprehensive assessment of acupuncture therapy for tumor-related diseases is provided, summarizing its limitations and prospecting future directions, including interdisciplinary collaboration and personalized treatment. In conclusion, acupuncture, as a feasible adjunctive therapy, is closely related to the central nervous system and the immune microenvironment, holding potential significant value in tumor treatment.
Collapse
Affiliation(s)
- Yuwei Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| | - Mingzhu Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| | - Kaixin Guo
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| |
Collapse
|
9
|
Jiang S, Pei L, Chen L, Sun J, Song Y. Mechanisms of Electroacupuncture in Alleviating Visceral Hypersensitivity in Post-Infectious Irritable Bowel Syndrome Mice: The Role of GDNF Signaling Pathway and Gut Microbiota. Microb Physiol 2024; 34:255-263. [PMID: 39396501 DOI: 10.1159/000541888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Post-infectious irritable bowel syndrome (PI-IBS) is a functional bowel disease that develops following an acute gastrointestinal infection. Electroacupuncture (EA) can regulate the gut microbiota and alleviate visceral hypersensitivity. Glial cell-derived neurotrophic factor (GDNF) is a potential factor in visceral hypersensitivity reactions. The aim of this study was to explore whether EA could alleviate visceral hypersensitivity in PI-IBS by regulating gut microbiota through GDNF signaling. METHODS 2,4,6-trinitrobenzene sulfonic acid was used to induce visceral hypersensitivity in PI-IBS mice. Intestinal visceral sensitivity was assessed by using the abdominal withdrawal reflex (colorectal distention). 16S ribosomal RNA sequencing profiles the gut microbiome community. RESULTS GDNF can exacerbate the imbalances of the gut microbiota and increase visceral hypersensitivity compared with the model group. Whereas EA treatment increases the richness and diversity of the gut microbiota, decreases differences among species and alleviates visceral sensitivity. CONCLUSION EA can alleviate visceral hypersensitivity in PI-IBS by regulating the gut microbiota via GDNF signaling, providing new insights for mechanistic research on EA in PI-IBS treatment.
Collapse
Affiliation(s)
- Shiyuan Jiang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China,
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China,
| | - Lixia Pei
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhua Sun
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yafang Song
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Gowripriya T, Yashwanth R, James PB, Suresh R, Balamurugan K. Dopaminergic neuronal regulation determines innate immunity of Caenorhabditis elegans during Klebsiella aerogenes infection. Microbes Infect 2024:105430. [PMID: 39369984 DOI: 10.1016/j.micinf.2024.105430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
The innate immune signals are the front line of host defense against bacterial pathogens. Pathogen-induced harmful effects, such as reduced neuronal signals to the intestine, affect the host's food sensing and dwelling behavior. Here, we report that dopamine and kpc-1 signals control the intestinal innate immune responses through the p38/PMK-1 MAPK signaling pathway in C. elegans. K. aerogenes infection in C. elegans affects the food-dwelling behavior, which depends on dopamine regulation. The absence of the dopamine receptor (dop-1) and transporter (dat-1) increases attraction to the pathogen instead of avoidance. The K. aerogenes infection affects age-1 regulation through the furin-like proprotein convertase (kpc-1); the absence of kpc-1 affects environment-dependent dauer formation. In contrast, the dop-1 mutation antagonistically regulates intestinal immune regulation, while the kpc-1 mutation partially regulates the p38/PMK-1 MAPK pathway. Our findings indicate that dopamine and kpc-1signaling from the nervous system control intestinal immunity in an antagonistic and agonistic manner, respectively.
Collapse
Affiliation(s)
- Thirumugam Gowripriya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, India
| | - Radhakrishnan Yashwanth
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India
| | - Prabhanand Bhaskar James
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India
| | - Ramamurthi Suresh
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India
| | | |
Collapse
|
11
|
Tsai J, Malik S, Tjen-A-Looi SC. Pulmonary Hypertension: Pharmacological and Non-Pharmacological Therapies. Life (Basel) 2024; 14:1265. [PMID: 39459565 PMCID: PMC11509317 DOI: 10.3390/life14101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pulmonary hypertension (PH) is a severe and chronic disease characterized by increased pulmonary vascular resistance and remodeling, often precipitating right-sided heart dysfunction and death. Although the condition is progressive and incurable, current therapies for the disease focus on multiple different drugs and general supportive therapies to manage symptoms and prolong survival, ranging from medications more specific to pulmonary arterial hypertension (PAH) to exercise training. Moreover, there are multiple studies exploring novel experimental drugs and therapies including unique neurostimulation, to help better manage the disease. Here, we provide a narrative review focusing on current PH treatments that target multiple underlying biochemical mechanisms, including imbalances in vasoconstrictor-vasodilator and autonomic nervous system function, inflammation, and bone morphogenic protein (BMP) signaling. We also focus on the potential of novel therapies for managing PH, focusing on multiple types of neurostimulation including acupuncture. Lastly, we also touch upon the disease's different subgroups, clinical presentations and prognosis, diagnostics, demographics, and cost.
Collapse
Affiliation(s)
- Jason Tsai
- Susan Samueli Integrative Health Institute, College of Health Sciences, University of California-Irvine, Irvine, CA 92617, USA;
| | | | - Stephanie C. Tjen-A-Looi
- Susan Samueli Integrative Health Institute, College of Health Sciences, University of California-Irvine, Irvine, CA 92617, USA;
| |
Collapse
|
12
|
Niruthisard S, Ma Q, Napadow V. Recent advances in acupuncture for pain relief. Pain Rep 2024; 9:e1188. [PMID: 39285954 PMCID: PMC11404884 DOI: 10.1097/pr9.0000000000001188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/20/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Acupuncture therapy has achieved global expansion and shown promise for health promotion and treatment of acute/chronic pain. Objectives To present an update on the existing evidence base for research and clinical practice supporting acupuncture analgesia. Methods This Clinical Update elaborates on the 2023 International Association for the Study of Pain Global Year for Integrative Pain Care "Factsheet Acupuncture for Pain Relief" and reviews best evidence and practice. Results Acupuncture is supported by a large research evidence base and growing utilization. Mechanisms of acupuncture analgesia include local physiological response at the needling site, suppression of nociceptive signaling at spinal and supraspinal levels, and peripheral/central release of endogenous opioids and other biochemical mediators. Acupuncture also produces pain relief by modulating specific brain networks, integral for sensory, affective, and cognitive processing, as demonstrated by neuroimaging research. Importantly, acupuncture does not just manage pain symptoms but may target the sources that drive pain, such as inflammation, partially by modulating autonomic pathways. Contextual factors are important for acupuncture analgesia, which is a complex multifaceted intervention. In clinical practice, historical records and many providers believe that acupuncture efficacy depends on specific acupoints used, the technique of needle placement and stimulation, and the person who delivers the procedure. Clinical research has supported the safety and effectiveness of acupuncture for various pain disorders, including acupuncture as a complementary/integrative therapy with other pain interventions. Conclusion Although the quality of supportive evidence is heterogeneous, acupuncture's potential cost-effectiveness and low risk profile under standardized techniques suggest consideration as a neuromodulatory and practical nonpharmacological pain therapy.
Collapse
Affiliation(s)
- Supranee Niruthisard
- Pain Management Research Unit, Department of Anesthesiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Qiufu Ma
- Center of Bioelectronic Medicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Vitaly Napadow
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
13
|
Campos J, Osorio-Barrios F, Villanelo F, Gutierrez-Maldonado SE, Vargas P, Pérez-Acle T, Pacheco R. Chemokinergic and Dopaminergic Signalling Collaborates through the Heteromer Formed by CCR9 and Dopamine Receptor D5 Increasing the Migratory Speed of Effector CD4 + T-Cells to Infiltrate the Colonic Mucosa. Int J Mol Sci 2024; 25:10022. [PMID: 39337509 PMCID: PMC11432204 DOI: 10.3390/ijms251810022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Inflammatory bowel diseases (IBDs) involve chronic inflammation of the gastrointestinal tract, where effector CD4+ T-cells play a central role. Thereby, the recruitment of T-cells into the colonic mucosa represents a key process in IBD. We recently found that CCR9 and DRD5 might form a heteromeric complex on the T-cell surface. The increase in CCL25 production and the reduction in dopamine levels associated with colonic inflammation represent a dual signal stimulating the CCR9:DRD5 heteromer, which promotes the recruitment of CD4+ T-cells into the colonic lamina propria. Here, we aimed to analyse the molecular requirements involved in the heteromer assembly as well as to determine the underlying cellular mechanisms involved in the colonic tropism given by the stimulation of the CCR9:DRD5 complex. The results show that dual stimulation of the CCR9:DRD5 heteromer potentiates the phosphorylation of the myosin light chain 2 (MLC2) and the migration speed in confined microchannels. Accordingly, disrupting the CCR9:DRD5 assembly induced a sharp reduction in the pMLC2 in vitro, decreased the migratory speed in confined microchannels, and dampened the recruitment of CD4+ T-cells into the inflamed colonic mucosa. Furthermore, in silico analysis confirmed that the interface of interaction of CCR9:DRD5 is formed by the transmembrane segments 5 and 6 from each protomer. Our findings demonstrated that the CCR9:DRD5 heteromeric complex plays a fundamental role in the migration of CD4+ T-cells into the colonic mucosa upon inflammation. Thereby, the present study encourages the design of strategies for disassembling the formation of the CCR9:DRD5 as a therapeutic opportunity to treat IBD.
Collapse
Affiliation(s)
- Javier Campos
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba 8580704, Santiago, Chile; (J.C.); (F.V.); (S.E.G.-M.); (T.P.-A.)
| | - Francisco Osorio-Barrios
- Gut Microbiology, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 25, 3001 Bern, Switzerland
| | - Felipe Villanelo
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba 8580704, Santiago, Chile; (J.C.); (F.V.); (S.E.G.-M.); (T.P.-A.)
- Escuela de Ingeniería, Facultad de Ingeniería Arquitectura y Diseño, Universidad San Sebastián, Recoleta 8420524, Santiago, Chile
| | - Sebastian E. Gutierrez-Maldonado
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba 8580704, Santiago, Chile; (J.C.); (F.V.); (S.E.G.-M.); (T.P.-A.)
- Escuela de Ingeniería, Facultad de Ingeniería Arquitectura y Diseño, Universidad San Sebastián, Recoleta 8420524, Santiago, Chile
| | - Pablo Vargas
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France;
- Université Paris Cité, CNRS, INSERM, Inserm, INEM, F-75015 Paris, France
| | - Tomás Pérez-Acle
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba 8580704, Santiago, Chile; (J.C.); (F.V.); (S.E.G.-M.); (T.P.-A.)
- Escuela de Ingeniería, Facultad de Ingeniería Arquitectura y Diseño, Universidad San Sebastián, Recoleta 8420524, Santiago, Chile
| | - Rodrigo Pacheco
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba 8580704, Santiago, Chile; (J.C.); (F.V.); (S.E.G.-M.); (T.P.-A.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia 7510157, Santiago, Chile
| |
Collapse
|
14
|
Li D, Tao L, Yang J, Cai W, Shen W. Global research trends in acupuncture treatment for post-stroke depression: A bibliometric analysis. Complement Ther Med 2024; 84:103070. [PMID: 39111706 DOI: 10.1016/j.ctim.2024.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/25/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVE Post-stroke depression (PSD) is a prevalent and severe sequela of stroke. It is an emotional disorder that significantly impacts functional recovery, prognosis, secondary stroke risk, and mortality among stroke survivors. The incidence rate of PSD is 18 %∼33 %, with symptoms such as low mood, decreased interest, sleep disorders, decreased appetite, impaired attention, and in severe cases, hallucinations and even suicidal tendencies. While diverse therapeutic modalities are employed globally to address PSD, each approach carries its inherent advantages and limitations. Notably, acupuncture stands out as a promising and effective intervention for ameliorating PSD symptoms and enhancing stroke prognosis. This study aims to conduct a bibliometric analysis to scrutinize the current landscape, identify hotspots, and explore frontiers in acupuncture research for PSD. METHODS A systematic search for acupuncture and PSD-related research was conducted from January 2014 to October 2023 on the Web of Science Core Collection (WoSCC). The data were downloaded and processed using Bibliometrix and VOSviewer to generate knowledge visualization maps. RESULTS A total of 11,540 articles related to acupuncture and PSD were retrieved. China emerged as the leading contributor with the highest volume of articles on acupuncture and PSD. Author Liu CZ attained the highest H-index, focusing primarily on investigating the compatibility effects and mechanisms of acupoints. Common hotspot keywords included pain, stimulation, mechanisms, complementary, and alternative medicine. The main research frontiers were mechanisms, neuroinflammation, gut microbiota, and therapeutic methods. CONCLUSION This study offered multifaceted insights into acupuncture for PSD, unveiling pivotal areas, research hotspots, and emerging trends. The findings aimed to guide researchers in exploring novel research directions and selecting appropriate journals for advancing the understanding and treatment of PSD through acupuncture interventions.
Collapse
Affiliation(s)
- Dong Li
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Larissa Tao
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Jia Yang
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Wa Cai
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai 201203, China.
| | - Weidong Shen
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
15
|
Bae SJ, Jang Y, Kim Y, Park JH, Jang JH, Oh JY, Jang SY, Ahn S, Park HJ. Gut Microbiota Regulation by Acupuncture and Moxibustion: A Systematic Review and Meta-Analysis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1245-1273. [PMID: 39192678 DOI: 10.1142/s0192415x24500502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
There have been numerous studies investigating the impact of acupuncture and/or moxibustion on the gut microbiota, but the results have been inconclusive. Therefore, we conducted a systematic review and meta-analysis that included both preclinical and clinical studies to assess the current evidence regarding the effects of acupuncture on gut microbiota changes. We collected relevant studies from EMBASE and PubMed, collected outcomes including diversity and relative abundance measures of the gut microbiome, and the summarized effect estimates were calculated using the ratio of means (ROM) with 95% confidence intervals. Our analysis identified three clinical studies and 20 preclinical studies, encompassing various diseases and models, including colitis and obesity. The pooled results indicated no significant difference in alpha diversity changes between treatment groups and controls, except for the Simpson index measure, which was significantly higher in the treatment groups. Additionally, the pooled results showed an increase in the Firmicutes and a decrease in the Bacteroidetes in the treatment groups, along with increases in the Lactobacillus and Ruminococcus genera. These findings suggest acupuncture treatment can target the modification of specific phyla and genera of gut microbiota. However, it is important to note that the effects of acupuncture on the gut microbiome are heterogeneous across studies, particularly in different disease models.
Collapse
Affiliation(s)
- Sun-Jeong Bae
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yumi Jang
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yejin Kim
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ji-Han Park
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jae-Hwan Jang
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, 128 Beobwon-ro, Songpa-gu, Seoul 05854, Republic of Korea
| | - Ju-Young Oh
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sun-Young Jang
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sora Ahn
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of KHU-KIST Convergence Science & Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 027932, Republic of Korea
| |
Collapse
|
16
|
Zhou S, Chen W, Yang H. Dopamine. Trends Endocrinol Metab 2024:S1043-2760(24)00186-3. [PMID: 39138070 DOI: 10.1016/j.tem.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Affiliation(s)
- Siyao Zhou
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital, Liangzhu Laboratory, The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310000, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310000, China
| | - Wenqiang Chen
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Steno Diabetes Center Copenhagen, Herlev 2730, Denmark.
| | - Hongbin Yang
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital, Liangzhu Laboratory, The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310000, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
17
|
Oh JY, Lee H, Jang SY, Kim H, Park G, Serikov A, Jang JH, Kim J, Yang S, Sa M, Lee SE, Han YE, Hwang TY, Jung SJ, Kim HY, Lee SE, Oh SJ, Kim J, Kim J, Kim J, McHugh TJ, Lee CJ, Nam MH, Park HJ. Central Role of Hypothalamic Circuits for Acupuncture's Anti-Parkinsonian Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403245. [PMID: 39119926 DOI: 10.1002/advs.202403245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/30/2024] [Indexed: 08/10/2024]
Abstract
Despite clinical data stretching over millennia, the neurobiological basis of the effectiveness of acupuncture in treating diseases of the central nervous system has remained elusive. Here, using an established model of acupuncture treatment in Parkinson's disease (PD) model mice, we show that peripheral acupuncture stimulation activates hypothalamic melanin-concentrating hormone (MCH) neurons via nerve conduction. We further identify two separate neural pathways originating from anatomically and electrophysiologically distinct MCH neuronal subpopulations, projecting to the substantia nigra and hippocampus, respectively. Through chemogenetic manipulation specifically targeting these MCH projections, their respective roles in mediating the acupuncture-induced motor recovery and memory improvements following PD onset are demonstrated, as well as the underlying mechanisms mediating recovery from dopaminergic neurodegeneration, reactive gliosis, and impaired hippocampal synaptic plasticity. Collectively, these MCH neurons constitute not only a circuit-based explanation for the therapeutic effectiveness of traditional acupuncture, but also a potential cellular target for treating both motor and non-motor PD symptoms.
Collapse
Affiliation(s)
- Ju-Young Oh
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Studies of Translational Acupuncture Research (STAR), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyowon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sun-Young Jang
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Studies of Translational Acupuncture Research (STAR), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyunjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Geunhong Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Almas Serikov
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Hwan Jang
- Studies of Translational Acupuncture Research (STAR), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Junyeop Kim
- Laboratory of Stem Cells & Cell Reprogramming, Department of Chemistry, Dongguk University, Seoul, 04629, Republic of Korea
| | - Seulkee Yang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Moonsun Sa
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Sung Eun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Tae-Yeon Hwang
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Studies of Translational Acupuncture Research (STAR), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sharon Jiyoon Jung
- Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Eun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongyeon Kim
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jongpil Kim
- Laboratory of Stem Cells & Cell Reprogramming, Department of Chemistry, Dongguk University, Seoul, 04629, Republic of Korea
| | - Thomas J McHugh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Laboratory for Circuit and Behavioral Physiology, RIKEN, Wako-shi Saitama, 351-0198, Japan
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hi-Joon Park
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Studies of Translational Acupuncture Research (STAR), Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
18
|
Wang Z, Xia L, Cheng J, Liu J, Zhu Q, Cui C, Li J, Huang Y, Shen J, Xia Y. Combination Therapy of Bone Marrow Mesenchymal Stem Cell Transplantation and Electroacupuncture for the Repair of Intrauterine Adhesions in Rats: Mechanisms and Functional Recovery. Reprod Sci 2024; 31:2318-2330. [PMID: 38499950 DOI: 10.1007/s43032-024-01465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/12/2024] [Indexed: 03/20/2024]
Abstract
Transplantation of bone marrow mesenchymal stem cells (BMSCs) has demonstrated promising clinical utility in the treatment of endometrial injury and the restoration of fertility. However, since the efficacy of BMSCs after transplantation is not stable, it is very important to find effective ways to enhance the utilisation of BMSCs. Electroacupuncture (EA) has some positive effects on the chemotaxis of stem cells and diseases related to uterine injury. In this study, we established the intrauterine adhesion (IUA) model of the Sprague-Dawley rat using lipopolysaccharide infection and mechanical scratching. Phosphate-buffered saline, BMSCs alone, and BMSCs combined with EA were randomly administered to the rats. Fluorescent cell labelling showed the migration of transplanted BMSCs. H&E staining, Masson staining, Western blot, immunohistochemistry, ELISA, and qRT-PCR were utilised to detect changes in endometrial morphology and expressions of endometrial receptivity-related factors, endometrial pro-inflammatory factors, and fibrosis factors. Finally, we conducted a fertility test to measure the recovery of uterine function. The results showed that EA promoted transplanted BMSCs to migrate into the injured uterus by activating the SDF-1/CXCR4 axis. Endometrial morphology showed the most significant improvement in the BMSC + EA group. The expressions of endometrial pro-inflammatory factors and fibrosis indexes in the BMSC + EA group were lower than those in the model and BMSC groups. Further studies revealed that the expression of endometrial receptivity-related factors and the number of embryos implanted on day 8 of gestation increased in the BMSC + EA group compared with the model group and the BMSC group.
Collapse
Affiliation(s)
- Zhaoxian Wang
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liangjun Xia
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Cheng
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingyu Liu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qian Zhu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chuting Cui
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junwei Li
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yueying Huang
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Shen
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Youbing Xia
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
19
|
Yu C, Mao X, Zhou C. Influence of acupuncture and moxibustion on gastrointestinal function and adverse events in gastric cancer patients after surgery and chemotherapy: a meta-analysis. Support Care Cancer 2024; 32:524. [PMID: 39023776 DOI: 10.1007/s00520-024-08740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE The impact of acupuncture and moxibustion on postoperative complications and adverse events (AEs) of chemotherapy in patients with gastric cancer (GC) has been investigated. Through a meta-analysis of existing randomized controlled trials (RCTs), this study sought to strengthen the evidentiary basis to help investigators further understand the effects of moxibustion and acupuncture on postoperative complications and AEs of chemotherapy among GC patients. METHODS Embase, Web of Science, PubMed, The Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang Database, and VIP Database for Chinese Technical Periodicals were searched to collect RCTs on effects of acupuncture and moxibustion on gastrointestinal function and AEs among GC patients undergoing surgery and chemotherapy. Outcome measures included postoperative gastrointestinal recovery (bowel sound recovery time, time to first flatus/defecation/feeding), the incidence of AEs (nausea and vomiting, abdominal distension, and diarrhea), myelosuppression (white blood cells, hemoglobin, and platelet), and immune function indicators (CD3+ and CD4+). To assess quality, the Cochrane Risk of Bias Tool was utilized. Review Manager 5.4 was implemented to do the meta-analysis. RESULTS Fifteen eligible RCTs involved 1259 patients. Meta-analysis results showed that the experimental group had a significantly shorter bowel sound recovery time (MD = - 14.57, 95% CI = [- 18.97, - 10.18], P < 0.00001), time to first flatus (MD = - 17.56, 95% CI = [- 22.23, - 12.88], P < 0.00001), time to first defecation (MD = - 17.05, 95% CI = [- 21.02, - 13.09], P < 0.00001), and time to first feeding (MD = - 23.49, 95% CI = [- 28.81, - 18.17], P < 0.00001) than the control group. There were significant decreases in the incidence of nausea and vomiting (RR = 0.46, 95% CI = [0.21, 1.02], P = 0.05) and abdominal distension (RR = 0.45, 95% CI = [0.27, 0.75], P = 0.002) observed in the experimental group in comparison with the control group. The experimental group demonstrated a significant increase in white blood cell counts in comparison with to the control group (MD = 0.89, 95% CI = [0.23, 1.55], P = 0.008). The experimental group showed significantly higher levels of CD3+ (MD = 7.30, 95% CI = [1.86, 12.74], P = 0.009) and CD4+ (MD = 2.75, 95% CI = [1.61, 3.90], P < 0.00001) than the control group. CONCLUSION Among GC patients, acupuncture and moxibustion can aid in gastrointestinal function recovery, reduce the incidence of AEs of surgery and chemotherapy, and improve immune function.
Collapse
Affiliation(s)
- Chun Yu
- Department of Gastrointestinal Surgery, Quzhou People's Hospital (Quzhou Hospital Affiliated to Wenzhou Medical University), Zhejiang Province, Quzhou City, 324000, China
| | - Xinglong Mao
- Department of Gastrointestinal Surgery, Quzhou People's Hospital (Quzhou Hospital Affiliated to Wenzhou Medical University), Zhejiang Province, Quzhou City, 324000, China
| | - Chun Zhou
- Department of Rehabilitation Medicine, Quzhou People's Hospital (Quzhou Hospital Affiliated to Wenzhou Medical University), Zhejiang Province, Quzhou City, 324000, China.
| |
Collapse
|
20
|
Liu H, Dai H, Qiu F, Chen Y, Liang CL, Yang B, Gong N, Bromberg JS, Dai Z. Electrostimulation suppresses allograft rejection via promoting lymphatic regulatory T cell migration mediated by lymphotoxin - lymphotoxin receptor β signaling. Am J Transplant 2024:S1600-6135(24)00392-7. [PMID: 38992495 DOI: 10.1016/j.ajt.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Conventional immunosuppressants that suppress allograft rejection cause various side effects. Although regulatory T cells (Tregs) are essential for allograft survival, the limited efficacy of Treg therapy demands improvement. Thus, it is imperative to seek new approaches to enhancing Treg suppression. Low-intensity electrostimulation (ES) has been shown to exert antiinflammatory effects without causing major adverse reactions. However, it remains unknown whether and how ES regulates alloimmunity. Here, we found that regional ES delayed murine skin allograft rejection and promoted long-term allograft survival induced by an mTOR inhibitor, rapamycin. ES also extended islet allograft survival. Mechanistically, ES enhanced the expression of lymphotoxin α (LTα) on Tregs after transplantation. Blockade of lymphotoxin β receptor-mediated nonclassical NFκB signaling suppressed lymphatic Treg migration and largely reversed the effects of ES on allograft survival. Moreover, ES failed to extend allograft survival when recipients lacked LTα/lymph nodes or if transferred Tregs lacked LTα. Therefore, ES promoted the lymphatic migration of CD4+Foxp3+ Tregs by upregulating their surface expression of LTα. Finally, ES augmented expression of LTα on murine or human Tregs, but not conventional T cells, while promoting their calcium influx in vitro. This ES-mediated upregulation of LTα relied on calcium influx. Thus, our findings have unveiled novel mechanisms underlying ES-mediated immunoregulation.
Collapse
Affiliation(s)
- Huazhen Liu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Feifei Qiu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuchao Chen
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chun-Ling Liang
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences University of Leicester, Leicester, UK
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Jonathan S Bromberg
- Kidney and Pancreas Transplantation, Department of Surgery and Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | - Zhenhua Dai
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Xu H, Luo Y, Li Q, Zhu H. Acupuncture influences multiple diseases by regulating gut microbiota. Front Cell Infect Microbiol 2024; 14:1371543. [PMID: 39040602 PMCID: PMC11260648 DOI: 10.3389/fcimb.2024.1371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Acupuncture, an important green and side effect-free therapy in traditional Chinese medicine, is widely use both domestically and internationally. Acupuncture can interact with the gut microbiota and influence various diseases, including metabolic diseases, gastrointestinal diseases, mental disorders, nervous system diseases, and other diseases. This review presents a thorough analysis of these interactions and their impacts and examines the alterations in the gut microbiota and the potential clinical outcomes following acupuncture intervention to establish a basis for the future utilization of acupuncture in clinical treatments.
Collapse
Affiliation(s)
- Huimin Xu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiaoqi Li
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Zhang Z, Zhang D, Lin Q, Cui X. Therapeutically Fine-Tuning Autonomic Nervous System to Treat Sepsis: A New Perspective on the Immunomodulatory Effects of Acupuncture. J Inflamm Res 2024; 17:4373-4387. [PMID: 38988505 PMCID: PMC11233988 DOI: 10.2147/jir.s477181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Recent studies have highlighted the immunomodulatory effects of acupuncture on sepsis and proposed novel non-pharmacological or bioelectronic approaches to managing inflammatory illnesses. Establishing rules for selectively activating sympathetic or vagal nerve-mediated anti-inflammatory pathways using acupuncture has valuable clinical applications. Over the years, studies have revealed the segmental modulatory role of acupuncture in regulating visceral function by targeting the autonomic nervous system (ANS). In this review, we aim to summarize recent findings on acupuncture in treating sepsis, focusing on the underlying ANS mechanism, as well as the rules of acupoint specificity, intensity, frequency, and other parameters utilized in these studies. Mechanistically, the immunomodulatory properties of the sympathetic nervous system have been highlighted. Furthermore, we explore the immunotherapeutic benefits of acupuncture in treating sepsis. A better understanding of the immunoregulatory mechanism of sympathetic nervous system may offer novel approaches for the development of therapeutics to treat or prevent a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Dingdan Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21287, USA
| | - Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| |
Collapse
|
23
|
Li P, Wang T, Guo H, Liu Y, Zhao H, Ren T, Tang Y, Wang Y, Zou M. Pramipexole improves depression-like behavior in diabetes mellitus with depression rats by inhibiting NLRP3 inflammasome-mediated neuroinflammation and preventing impaired neuroplasticity. J Affect Disord 2024; 356:586-596. [PMID: 38657764 DOI: 10.1016/j.jad.2024.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/09/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) is frequently associated with the occurrence and development of depression, and the co-occurrence of diabetes mellitus with depression (DD) may further reduce patients' quality of life. Recent research indicates that dopamine receptors (DRs) play a crucial role in immune and metabolic regulation. Pramipexole (PPX), a D2/3R agonist, has demonstrated promising neuroprotective and immunomodulatory effects. Nevertheless, the therapeutic effects and mechanisms of action of PPX on DM-induced depression are not clear at present. METHODS Depression, DM, and DD were induced in a rat model through a combination of a high-fat diet (HFD) supplemented with streptozotocin (STZ) and chronic unpredictable mild stress (CUMS) combined with solitary cage rearing. The pathogenesis of DD and the neuroprotective effects of DRs agonists were investigated using behavioral assays, enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin (HE) staining, Nissl staining, Western blotting (WB) and immunofluorescence (IF). RESULTS DD rats exhibited more severe dopaminergic, neuroinflammatory, and neuroplastic impairments and more pronounced depressive behaviors than rats with depression alone or DM. Our findings suggest that DRs agonists have significant therapeutic effects on DD rats and that PPX improved neuroplasticity and decreased neuroinflammation in the hippocampus of DD rats while also promoting DG cell growth and differentiation, ultimately mitigating depression-like behaviors. LIMITATION Our study is based on a rat model. Further evidence is needed to determine whether the therapeutic effects of PPX apply to patients suffering from DD. CONCLUSIONS Neuroinflammation mediated by damage to the dopaminergic system is one of the key pathogenic mechanisms of DD. We provide evidence that PPX has a neuroprotective effect on the hippocampus in DD rats and the mechanism may involve the inhibition of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation by DRs to attenuate the neuroinflammatory response and neuroplasticity damage.
Collapse
Affiliation(s)
- Ping Li
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Tingting Wang
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Haipeng Guo
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Yingxi Liu
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Hongqing Zhao
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Prevention and Treatment of Depressive Diseases with Traditional Chinese Medicine, Changsha 410208, Hunan, China
| | - Tingting Ren
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Yingjuan Tang
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Yuhong Wang
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Prevention and Treatment of Depressive Diseases with Traditional Chinese Medicine, Changsha 410208, Hunan, China.
| | - Manshu Zou
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Prevention and Treatment of Depressive Diseases with Traditional Chinese Medicine, Changsha 410208, Hunan, China.
| |
Collapse
|
24
|
Trevizan-Baú P, McAllen RM. What is the Vagal-Adrenal Axis? J Comp Neurol 2024; 532:e25656. [PMID: 38980012 DOI: 10.1002/cne.25656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
Some recent publications have used the term "vagal-adrenal axis" to account for mechanisms involved in the regulation of inflammation by electroacupuncture. This concept proposes that efferent parasympathetic nerve fibers in the vagus directly innervate the adrenal glands to influence catecholamine secretion. Here, we discuss evidence for anatomical and functional links between the vagi and adrenal glands that may be relevant in the context of inflammation and its neural control by factors, including acupuncture. First, we find that evidence for any direct vagal parasympathetic efferent innervation of the adrenal glands is weak and likely artifactual. Second, we find good evidence that vagal afferent fibers directly innervate the adrenal gland, although their function is uncertain. Third, we highlight a wealth of evidence for indirect pathways, whereby vagal afferent signals act via the central nervous system to modify adrenal-dependent anti-inflammatory responses. Vagal afferents, not efferents, are thus the likely key to these phenomena.
Collapse
Affiliation(s)
- Pedro Trevizan-Baú
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Robin M McAllen
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Tsai CY, Liao WL, Wu HM, Chang CW, Chen WL, Hsieh CL. Acupuncture improves neurological function and anti-inflammatory effect in patients with acute ischemic stroke: A double-blinded randomized controlled trial. Complement Ther Med 2024; 82:103049. [PMID: 38729273 DOI: 10.1016/j.ctim.2024.103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Acupuncture exerts an anti-inflammatory effect and is recommended by the World Health Organization as a complementary therapy for stroke. This study investigated the improvement in neurological function outcome in acute-stage intervention of acute ischemic stroke (AIS), and the anti-inflammatory effect of early acupuncture. METHODS Fifty patients with AIS were randomly assigned to either a control group (CG, 25 patients, received sham acupuncture) or treatment group (TG, 25 patients, received acupuncture treatment). Acupuncture intervention was administered twice a week for a total of 8 sessions over 4 consecutive weeks. The primary outcome was the changes in the National Institutes of Health Stroke Scale (NIHSS), modified Rankin Scale (mRS), and Barthel Index (BI) scores. The secondary outcome was the changes in serum inflammation-related biomarker levels.(ANAIS trial) RESULTS: A total of 35 patients (18 patients in the CG and 17 patients in the TG) completed the trial. The reduction in NIHSS scores was greater in the TG than in the CG between V2 (second assessment administered after acupuncture intervention) and V1 (first assessment administered before acupuncture intervention; 4.33 ± 1.91 vs. 2.68 ± 1.42, p = 0.005) and between V3 (third assessment administered 28 days after last acupuncture intervention) and V1 (6.00 ± 2.53 vs. 3.83 ± 2.31, p = 0.012). The increase in BI scores was greater in the TG than in the CG between V2 and V1 (28.89 ± 15.39 vs. 14.21 ± 19.38, p = 0.016) and between V3 and V1 (39.41 ± 20.98 vs. 25.00 ± 18.47, p = 0.038). Among participants with high inflammation, the increase in serum IL-12p70 level between V2 and V1 was greater in the TG than in the CG (0.20 ± 0.19 vs. -0.14 ± 0.30, pg/mL p = 0.006). CONCLUSIONS Acupuncture improved the neurological function of patients with AIS, and the relationship between acupuncture improving neurological function and anti-inflammatory effect needs further study. In addition, studies with larger sample sizes and longer follow-ups as well as multicenter clinical trials are expected in the future.
Collapse
Affiliation(s)
- Chueh-Yi Tsai
- Department of Neurology, Chung Shan Medical University Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan; Department of Neurology, Nantou Hospital, Ministry of Health and Welfare, Nantou, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan; Center for Personalized Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hung-Ming Wu
- Department of Neurology, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Wei Chang
- Department of Neurology, Nantou Hospital, Ministry of Health and Welfare, Nantou, Taiwan
| | - Wei-Liang Chen
- Center for the Neuroscience and Behavioral Medicine, Children's National Research Institute, Children's National Medical Center, Washington D.C, USA; George Washington University, Washington D.C, USA
| | - Ching-Liang Hsieh
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
26
|
Chen Y, Chen S, Zhang J, Hu X, Li N, Liu Z, Huang L, Yu J, Zhang Y, Lin X, Xu Z, Fang Y, Chen Z, Guo Y, Chen B. Electroacupuncture pre-treatment exerts a protective effect on LPS-induced cardiomyopathy in mice through the delivery of miR-381 via exosomes. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167208. [PMID: 38701956 DOI: 10.1016/j.bbadis.2024.167208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE This study aims to investigate the cardiac protective effects and molecular mechanisms of electroacupuncture (EA) pre-treatment in lipopolysaccharide (LPS)-Induced Cardiomyopathy. METHODS AND RESULTS Pre-treatment with EA was performed 30 min before intraperitoneal injection of LPS. Cardiac function changes in mice of the EA + LPS group were observed using electrocardiography, echocardiography, and enzyme linked immunosorbent assay (ELISA) and compared with the LPS group. The results demonstrated that EA pre-treatment significantly improved the survival rate of septic mice, alleviated the severity of endotoxemia, and exhibited notable cardiac protective effects. These effects were characterized by a reduction in ST-segment elevation on electrocardiography, an increase in ejection fraction (EF) and fraction shortening (FS) on echocardiography and a decrease in the expression of serum cardiac troponin I (cTn-I) levels. Serum exosomes obtained after EA pre-treatment were extracted and administered to septic mice, revealing significant cardiac protective effects of EA-derived exosomes. Furthermore, the antagonism of circulating exosomes in mice markedly suppressed the cardiac protective effects conferred by EA pre-treatment. Analysis of serum exosomes using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed a significant upregulation of miR-381 expression after EA pre-treatment. Inhibition or overexpression of miR-381 through serotype 9 adeno-associated virus (AAV9)-mediated gene delivery demonstrated that overexpression of miR-381 exerted a cardiac protective effect, while inhibition of miR-381 significantly attenuated the cardiac protective effects conferred by EA pre-treatment. CONCLUSIONS Our research findings have revealed a novel endogenous cardiac protection mechanism, wherein circulating exosomes derived from EA pre-treatment mitigate LPS-induced cardiac dysfunction via miR-381.
Collapse
Affiliation(s)
- Yong Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
| | - Shuangli Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiyou Hu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ningcen Li
- Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 500515, China
| | - Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lihong Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
27
|
Wei JQ, Bai J, Zhou CH, Yu H, Zhang W, Xue F, He H. Electroacupuncture intervention alleviates depressive-like behaviors and regulates gut microbiome in a mouse model of depression. Heliyon 2024; 10:e30014. [PMID: 38699009 PMCID: PMC11064442 DOI: 10.1016/j.heliyon.2024.e30014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Electroacupuncture (EA) is a neuroregulatory therapy for depression. Nonetheless, the effects of EA on the gut microbiome in mice models of depression are not well established. Here, using a chronic unpredictable mild stress (CUMS) model in mice, we evaluated the antidepressant effects of EA and changes in gut microbiota with behavioral tests and 16S rRNA gene sequencing. The results found that EA increased the time spent in the center area of the open-field test and the percentage of sucrose preference and reduced the immobility time in the tail suspension test in CUMS-treated mice. Furthermore, the genus Lachnoclostridium, Ruminococcaceae_UCG-002 and Rikenellaceae_RC9_gut_group were enriched in the CUMS group, which was positively correlated with depressive-like behaviors. Whereas phylum Actinobacteria and genus Allobaculum, Bifidobacterium, Dubosiella, Rikenella and Ileibacterium were enriched in the EA and CUMS + EA groups, all of which were negatively correlated with depressive-like behaviors. This study characterizes gut microbiota under EA treatment and provides new insights into the association of anti-depressive-like effects of EA and gut microbiota.
Collapse
Affiliation(s)
- Jia-quan Wei
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Jie Bai
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Cui-hong Zhou
- Department of Psychiatry, Xijing Hospital, Xi'an, 710032, China
| | - Huan Yu
- Department of Psychiatry, Xijing Hospital, Xi'an, 710032, China
| | - Wen Zhang
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Fen Xue
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Hong He
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| |
Collapse
|
28
|
Zhong Z, Yao L, Liu YZ, Wang Y, He M, Sun MM, Huang HP, Ma SQ, Zheng HZ, Li MY, Zhang XY, Cong DY, Wang HF. Objectivization study of acupuncture Deqi and brain modulation mechanisms: a review. Front Neurosci 2024; 18:1386108. [PMID: 38765671 PMCID: PMC11099230 DOI: 10.3389/fnins.2024.1386108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Deqi is an important prerequisite for acupuncture to achieve optimal efficacy. Chinese medicine has long been concerned with the relationship between Deqi and the clinical efficacy of acupuncture. However, the underlying mechanisms of Deqi are complex and there is a lack of systematic summaries of objective quantitative studies of Deqi. Acupuncture Deqi can achieve the purpose of treating diseases by regulating the interaction of local and neighboring acupoints, brain centers, and target organs. At local and neighboring acupoints, Deqi can change their tissue structure, temperature, blood perfusion, energy metabolism, and electrophysiological indicators. At the central brain level, Deqi can activate the brain regions of the thalamus, parahippocampal gyrus, postcentral gyrus, insular, middle temporal gyrus, cingulate gyrus, etc. It also has extensive effects on the limbic-paralimbic-neocortical-network and default mode network. The brain mechanisms of Deqi vary depending on the acupuncture techniques and points chosen. In addition, Deqi 's mechanism of action involves correcting abnormalities in target organs. The mechanisms of acupuncture Deqi are multi-targeted and multi-layered. The biological mechanisms of Deqi are closely related to brain centers. This study will help to explore the mechanism of Deqi from a local-central-target-organ perspective and provide information for future clinical decision-making.
Collapse
Affiliation(s)
- Zhen Zhong
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lin Yao
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yan-Ze Liu
- Acupuncture and Tuina Center, The 3rd Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yu Wang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Min He
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meng-Meng Sun
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hai-Peng Huang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shi-Qi Ma
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hai-Zhu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meng-Yuan Li
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xin-Yu Zhang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - De-Yu Cong
- Department of Tuina, Traditional Chinese Medicine Hospital of Jilin Province, Changchun, China
| | - Hong-Feng Wang
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
29
|
Wu J, Hua L, Liu W, Yang X, Tang X, Yuan S, Zhou S, Ye Q, Cui S, Wu Z, Lai L, Tang C, Wang L, Yi W, Yao L, Xu N. Electroacupuncture Exerts Analgesic Effects by Restoring Hyperactivity via Cannabinoid Type 1 Receptors in the Anterior Cingulate Cortex in Chronic Inflammatory Pain. Mol Neurobiol 2024; 61:2949-2963. [PMID: 37957422 PMCID: PMC11043129 DOI: 10.1007/s12035-023-03760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
As one of the commonly used therapies for pain-related diseases in clinical practice, electroacupuncture (EA) has been proven to be effective. In chronic pain, neurons in the anterior cingulate cortex (ACC) have been reported to be hyperactive, while the mechanism by which cannabinoid type 1 receptors (CB1Rs) in the ACC are involved in EA-mediated analgesic mechanisms remains to be elucidated. In this study, we investigated the potential central mechanism of EA analgesia. A combination of techniques was used to detect the expression and function of CB1R, including quantitative real-time PCR (q-PCR), western blot (WB), immunofluorescence (IF), enzyme-linked immunosorbent assay (ELISA), and in vivo multichannel optical fibre recording, and neuronal activity was examined by in vivo two-photon imaging and in vivo electrophysiological recording. We found that the hyperactivity of pyramidal neurons in the ACC during chronic inflammatory pain is associated with impairment of the endocannabinoid system. EA at the Zusanli acupoint (ST36) can reduce the hyperactivity of pyramidal neurons and exert analgesic effects by increasing the endocannabinoid ligands anandamide (AEA), 2-arachidonoylglycerol (2-AG) and CB1R. More importantly, CB1R in the ACC is one of the necessary conditions for the EA-mediated analgesia effect, which may be related to the negative regulation of the N-methyl-D-aspartate receptor (NMDAR) by the activation of CB1R downregulating NR1 subunits of NMDAR (NR1) via histidine triad nucleotide-binding protein 1 (HINT1). Our study suggested that the endocannabinoid system in the ACC plays an important role in acupuncture analgesia and provides evidence for a central mechanism of EA-mediated analgesia.
Collapse
Affiliation(s)
- Junshang Wu
- Department of Acupuncture and Moxibustion, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Libo Hua
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhao Liu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyun Yang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaorong Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si Yuan
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sheng Zhou
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuping Ye
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuai Cui
- Acupuncture and Meridian Research Institute, Anhui Academy of Chinese Medicine, Anhui, China
| | - Zhennan Wu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanfeng Lai
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhi Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Yi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lulu Yao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
30
|
Kurata-Sato I, Mughrabi IT, Rana M, Gerber M, Al-Abed Y, Sherry B, Zanos S, Diamond B. Vagus nerve stimulation modulates distinct acetylcholine receptors on B cells and limits the germinal center response. SCIENCE ADVANCES 2024; 10:eadn3760. [PMID: 38669336 PMCID: PMC11051663 DOI: 10.1126/sciadv.adn3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Acetylcholine is produced in the spleen in response to vagus nerve activation; however, the effects on antibody production have been largely unexplored. Here, we use a chronic vagus nerve stimulation (VNS) mouse model to study the effect of VNS on T-dependent B cell responses. We observed lower titers of high-affinity IgG and fewer antigen-specific germinal center (GC) B cells. GC B cells from chronic VNS mice exhibited altered mRNA and protein expression suggesting increased apoptosis and impaired plasma cell differentiation. Follicular dendritic cell (FDC) cluster dispersal and altered gene expression suggested poor function. The absence of acetylcholine-producing CD4+ T cells diminished these alterations. In vitro studies revealed that α7 and α9 nicotinic acetylcholine receptors (nAChRs) directly regulated B cell production of TNF, a cytokine crucial to FDC clustering. α4 nAChR inhibited coligation of CD19 to the B cell receptor, presumably decreasing B cell survival. Thus, VNS-induced GC impairment can be attributed to distinct effects of nAChRs on B cells.
Collapse
Affiliation(s)
- Izumi Kurata-Sato
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Ibrahim T. Mughrabi
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Minakshi Rana
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Michael Gerber
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Barbara Sherry
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Betty Diamond
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
31
|
Liu S, Fu W, Fu J, Chen G, He Y, Zheng T, Ma T. Electroacupuncture alleviates intestinal inflammation via a distinct neuro-immune signal pathway in the treatment of postoperative ileus. Biomed Pharmacother 2024; 173:116387. [PMID: 38471276 DOI: 10.1016/j.biopha.2024.116387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The induction of intestinal inflammation as a result of abdominal surgery is an essential factor in postoperative ileus (POI) development. Electroacupuncture (EA) at ST36 has been demonstrated to relieve intestinal inflammation and restore gastrointestinal dysmotility in POI. This study aims to elucidate the neuroimmune pathway involved in the anti-inflammatory properties of EA in POI. METHODS After intestinal manipulation (IM) was performed to induce POI, intestinal inflammation and motility were assessed 24 h post-IM, by evaluating gastrointestinal transit (GIT), cytokines expression, and leukocyte infiltration. Experimental surgery, pharmacological intervention, and genetic knockout mice were used to elucidate the neuroimmune mechanisms of EA. RESULTS EA at ST36 significantly improved GIT and reduced the expression of pro-inflammatory cytokines and leukocyte infiltration in the intestinal muscularis following IM in mice. The anti-inflammatory effectiveness of EA treatment was abolished by sub-diaphragmatic vagotomy, whereas splenectomy did not hinder the anti-inflammatory benefits of EA treatment. The hexamethonium chloride (HEX) administration contributes to a notable reduction in the EA capacity to suppress inflammation and enhance motility dysfunction, and EA is ineffective in α7 nicotinic acetylcholine receptor (α7nAChR) knockout mice. CONCLUSIONS EA at ST36 prevents intestinal inflammation and dysmotility through a neural circuit that requires vagal innervation but is independent of the spleen. Further findings revealed that the process involves enteric neurons mediating the vagal signal and requires the presence of α7nAChR. These findings suggest that utilizing EA at ST36 may represent a possible therapeutic approach for POI and other immune-related gastrointestinal diseases.
Collapse
Affiliation(s)
- Shuchang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Wei Fu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Jingnan Fu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China; Department of Minimally Invasive Surgery, Characteristics Medical Center of Chinese People Armed Police Force, Tianjin 300162, China
| | - Guibing Chen
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China; Department of Gastrointestinal Surgery, Clinical Medical College and The First Affilliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Yuxin He
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Ting Zheng
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|
32
|
Gong M, Qi S, Wu Z, Huang Y, Wu L, Wang X, He L, Lin L, Lin D. A novel therapeutic approach to modulate the inflammatory cascade: A timely exogenous local inflammatory response attenuates the sepsis-induced cytokine storm. Cytokine 2024; 176:156533. [PMID: 38340550 DOI: 10.1016/j.cyto.2024.156533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND The emergence of severe sepsis is contingent upon the occurrence of a cytokine storm (CS), a multifaceted process intricately entwined with the temporal dimension, thereby rendering the infection response remarkably intricate. Consequently, it becomes imperative to discern and accurately identify the optimal timing for interventions, predicated upon the dynamic timeline of inflammatory changes. Moreover, the administration of exogenous low-dose pro-inflammatory agents has exhibited the potential to impede the relentless progression of the inflammatory cascade. Hence, the present study aims to scrutinize the impact of exogenous Local Inflammatory Response (eLIR) on the body surface in the context of the inflammatory cascade during sepsis, within a temporal framework, with a particular emphasis on the point of exacerbation of inflammation. METHODS Rats were induced sterile sepsis by intraperitoneal injection of zymosan (ZY) at an appropriate dosage. The temporal progression of inflammatory changes and eLIR effects were described based on the trend of serum crucial inflammatory cytokines, tring to quest time-point of inflammatory aggravation in sepsis. Then, the varying degrees of surface inflammation caused by eLIR on this time point leading to the final effects on the inflammatory cascade response were explored. In addition, given the authentic pathological progression of sepsis, further observation was conducted on the impact of another intervention timing of eLIR on the inflammatory cascade. The survival rate was measured. Serum and organ related inflammatory cytokines were detected, and organ histopathology was investigated. RESULTS In present study, a dosage of 600 mg/kg ZY was found to be optimal for the sterile sepsis model. Initiating eLIR 6 h prior to ZY injection, the maximum effect point of eLIR could be precisely align with the inflammatory aggravation point of sterile sepsis. Initiating eLIR at this time, 3 sessions of eLIR were found to be more effective than 1 or 2 sessions in mitigating inflammatory responses during the initial stage of inflammation and the peak of inflammation. Notably, the findings also suggested that this intervention improve survival rate. In addition, the anti-inflammatory efficacy has been substantially diminished by the prompt initiation of 3 sessions of eLIR immediately after ZY injection at the onset of sepsis. Similarly, the current findings did not demonstrate a statistically significant enhancement in survival rates with eLIR at this time point. CONCLUSIONS Compared with the initial stage of inflammation, low-scale inflammation caused by a certain intensity of eLIR (3 sessions) on the body surface can more effectively pry the inflammation aggravation time-point, thereby shifting the pro-inflammatory to anti-inflammatory milieu, impeding the disproportionate cytokines release in inflammatory diseases, slowing down the inflammatory cascade, and improving the survival rate of sepsis.
Collapse
Affiliation(s)
- Meng Gong
- College of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Shiyi Qi
- College of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Zhiting Wu
- College of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Ying Huang
- College of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Lihua Wu
- Department of Otolaryngology, Fujian provincial hospital, Fuzhou, Fujian Province, China
| | - Xiangbin Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Lingling He
- College of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Lili Lin
- College of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China; Institute of Acupuncture and Meridian, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, China
| | - Dong Lin
- College of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China; Institute of Acupuncture and Meridian, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, China.
| |
Collapse
|
33
|
Luo J, Yan R, Ding L, Ning J, Chen M, Guo Y, Liu J, Chen Z, Zhou R. Electroacupuncture Attenuates Ventilator-Induced Lung Injury by Modulating the Nrf2/HO-1 Pathway. J Surg Res 2024; 295:811-819. [PMID: 38160492 DOI: 10.1016/j.jss.2023.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Ventilator-induced lung injury (VILI) is the most common complication associated with mechanical ventilation. Electroacupuncture (EA) has shown potent anti-inflammatory effects. This study aimed to investigate the effects of EA on VILI and explore the underlying mechanisms. METHODS Male C57BL/6 mice were subjected to high tidal volume ventilation to induce VILI. Prior to mechanical ventilation, mice received treatment with EA, nonacupoint EA, or EA combined with zinc protoporphyrin. RESULTS EA treatment significantly improved oxygenation, as indicated by increased PaO2 levels in VILI mice. Moreover, EA reduced lung injury score, lung wet/dry weight ratio, and protein concentration in bronchoalveolar lavage fluid. EA also decreased the expression of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, tumor necrosis factor-α, IL-18, chemokine keratinocyte chemoattractant, macrophage inflammatory protein 2, and malondialdehyde. Furthermore, EA increased the activities of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase in VILI mice. At the molecular level, EA upregulated the expression of Nrf2 (nucleus) and heme oxygenase -1, while down-regulating the expression of p-NF-κB p65, NLR Family Pyrin Domain Containing 3, Cleaved Caspase-1, and ASC in VILI mice. Notably, the effects of EA were reversed by zinc protoporphyrin treatment, nonacupoint EA did not affect the aforementioned indicators of VILI. CONCLUSIONS EA alleviates VILI by inhibiting the NLR Family Pyrin Domain Containing three inflammasome through activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Jiansheng Luo
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ruyu Yan
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lingling Ding
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Jiaqi Ning
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Mengjie Chen
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuhong Guo
- Department of Emergency, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiaxi Liu
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhuoya Chen
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ruiling Zhou
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Yan-Qiu L, Jun-Peng Y, Xiang-Yun Y, Wen W, Yu-Peng Z, Lu Y, Yu-Jun H, Ying L. Advances in acupuncture regulation on the autonomic nervous system from 2013 to 2022: A bibliometric analysis via citespace. Complement Ther Med 2024; 80:103009. [PMID: 38081432 DOI: 10.1016/j.ctim.2023.103009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/28/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE To understand research advances and frontiers of acupuncture regulation on the autonomic nervous system (ANS) over the past decade through a bibliometric analysis. METHODS Publications related to acupuncture regulation on the ANS were retrieved from the Web of Science Core Collection (WoSCC) database. CiteSpace software was used to analyze the datasets and generate knowledge maps. RESULTS A total of 445 relevant publications published between 2013 and 2022 were included in this bibliometric analysis. The number of annual publications fluctuated from 2013 to 2016 but increased gradually from 2016 to 2022. China produced the highest number of publications, while the USA established the most extensive cooperation relationships. China Academy of Chinese Medical Science was the most productive institution. Chen Jiande D.Z. was the most prolific author and Rong Peijing holds the most extensive cooperation network. Han Jisheng was the most co-cited author. Relevant research involved mechanism exploration and clinical efficacy research, and "anti-inflammatory effect" was the most active research topic, especially cholinergic anti-inflammatory mechanisms. The most cited references mainly focused on inflammation. Gastrointestinal and cardiovascular disorders were the most active medical conditions studied in this field. CONCLUSIONS Research related to acupuncture regulation on the ANS mainly focused on anti-inflammation, and regulating gastrointestinal and cardiovascular function over the past decade. However, the mechanisms of the autonomic effects of acupuncture need further investigation. High-quality clinical studies are required to determine the optimal parameters of acupuncture for clinical application.
Collapse
Affiliation(s)
- Li Yan-Qiu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yao Jun-Peng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Xiang-Yun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wang Wen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhang Yu-Peng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuan Lu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hou Yu-Jun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Ying
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
35
|
Liu T, Wang Y, Liu J, Han X, Zou Y, Wang P, Xu R, Tong L, Liu J, Liang J, Sun Y, Fan Y, Zhang X. An injectable photocuring silk fibroin-based hydrogel for constructing an antioxidant microenvironment for skin repair. J Mater Chem B 2024; 12:2282-2293. [PMID: 38323909 DOI: 10.1039/d3tb02214e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Skin has a protein microenvironment dominated by functional collagen fibers, while oxidative stress caused by injury can greatly slow down the progress of wound healing. Here, methacrylated dopamine was incorporated into methacrylated silk fibroin molecule chains to develop an injectable hydrogel with photocuring properties for constructing an antioxidant skin protein microenvironment. This silk fibroin-based hydrogel (SF-g-SDA) showed good tensile and adhesion properties for adapting to the wound shape and skin movement, exhibited stable mechanical properties, good biodegradability and cytocompatibility, and promoted cell adhesion and vascularization in vitro. In addition, its phenolic hydroxyl-mediated antioxidant properties effectively protected cells from damage caused by oxidative stress and supported normal cellular life activities. In animal experiments, SF-g-SDA achieved better skin repair effects in comparison to commercial Tegaderm™ in vivo, showing its ability to accelerate wound healing, improve collagen deposition and alignment in newly fabricated tissues, and promote neovascularization and hair follicle formation. These experimental results indicated that the SF-g-SDA hydrogel is a promising wound dressing.
Collapse
Affiliation(s)
- Tangjinhai Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Jingyi Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Xiaowen Han
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Yaping Zou
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Peilei Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Ruiling Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Lei Tong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Junli Liu
- Department of Orthopedics, Chongqing General Hospital, No. 118 Xingguang Avenue, Liangjiang New District, Chongqing, 401147, P. R. China.
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| |
Collapse
|
36
|
Huang CY, Huang MC, Liao HH, Lin CL, Lee YC, Zimmerman G, Wu MY, Yen HR. Effect of acupuncture on ischaemic stroke in patients with rheumatoid arthritis: a nationwide propensity score-matched study. BMJ Open 2024; 14:e075218. [PMID: 38351113 PMCID: PMC10868250 DOI: 10.1136/bmjopen-2023-075218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 11/20/2023] [Indexed: 02/16/2024] Open
Abstract
OBJECTIVE To demonstrate that acupuncture is beneficial for decreasing the risk of ischaemic stroke in patients with rheumatoid arthritis (RA). DESIGN A propensity score-matched cohort study. SETTING A nationwide population-based study. PARTICIPANTS Patients with RA diagnosed between 1 January 1997 and 31 December 2010, through the National Health Insurance Research Database in Taiwan. INTERVENTIONS Patients who were administered acupuncture therapy from the initial date of RA diagnosis to 31 December 2010 were included in the acupuncture cohort. Patients who did not receive acupuncture treatment during the same time interval constituted the no-acupuncture cohort. PRIMARY OUTCOME MEASURES A Cox regression model was used to adjust for age, sex, comorbidities, and types of drugs used. We compared the subhazard ratios (SHRs) of ischaemic stroke between these two cohorts through competing-risks regression models. RESULTS After 1:1 propensity score matching, a total of 23 226 patients with newly diagnosed RA were equally subgrouped into acupuncture cohort or no-acupuncture cohort according to their use of acupuncture. The basic characteristics of these patients were similar. A lower cumulative incidence of ischaemic stroke was found in the acupuncture cohort (log-rank test, p<0.001; immortal time (period from initial diagnosis of RA to index date) 1065 days; mean number of acupuncture visits 9.83. In the end, 341 patients in the acupuncture cohort (5.95 per 1000 person-years) and 605 patients in the no-acupuncture cohort (12.4 per 1000 person-years) experienced ischaemic stroke (adjusted SHR 0.57, 95% CI 0.50 to 0.65). The advantage of lowering ischaemic stroke incidence through acupuncture therapy in RA patients was independent of sex, age, types of drugs used, and comorbidities. CONCLUSIONS This study showed the beneficial effect of acupuncture in reducing the incidence of ischaemic stroke in patients with RA.
Collapse
Affiliation(s)
- Chia-Yu Huang
- Department of Family Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Cheng Huang
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hou-Hsun Liao
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chen Lee
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Gregory Zimmerman
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- International Master Program in Acupuncture, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Yao Wu
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Hung-Rong Yen
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- International Master Program in Acupuncture, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
37
|
Yi L, Huang B, Liu Y, Zhou L, Wu Y, Yu C, Long W, Li Y. Acupuncture therapies for relieving pain in pelvic inflammatory disease: A systematic review and meta-analysis. PLoS One 2024; 19:e0292166. [PMID: 38295033 PMCID: PMC10830011 DOI: 10.1371/journal.pone.0292166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Studies investigating the effectiveness of acupuncture therapies in alleviating pain in pelvic inflammatory disease (PID) have gained increasing attention. However, to date, there have been no systematic reviews and meta-analyses providing high-quality evidence regarding the efficacy and safety of acupuncture therapies in this context. OBJECTIVE The objective of this review was to assess the efficacy and safety of acupuncture therapies as complementary or alternative treatments for pain relief in patients with PID. METHOD A comprehensive search was conducted in eight databases from inception to February 20, 2023: PubMed, Embase, Web of Science, the Cochrane Library, China National Knowledge Infrastructure, Wanfang Database, VIP Database, and Chinese Biomedical Literature Database. Randomized controlled trials (RCTs) investigating acupuncture therapies as complementary or additional treatments to routine care were identified. Primary outcomes were pain intensity scores for abdominal or lumbosacral pain. The Cochrane risk of bias criteria was applied to assess the methodological quality of the included trials. The Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) system was used to evaluate the quality of evidence. Data processing was performed using RevMan 5.4. RESULT This systematic review included twelve trials comprising a total of 1,165 patients. Among these, nine trials examined acupuncture therapies as adjunctive therapy, while the remaining three did not. Meta-analyses demonstrated that acupuncture therapies, whether used alone or in combination with routine treatment, exhibited greater efficacy in relieving abdominal pain compared to routine treatment alone immediately after the intervention (MD: -1.32; 95% CI: -1.60 to -1.05; P < 0.00001). The advantage of acupuncture therapies alone persisted for up to one month after the treatment (MD: -1.44; 95% CI: -2.15 to -0.72; P < 0.0001). Additionally, acupuncture therapies combined with routine treatment had a more pronounced effect in relieving lumbosacral pain after the intervention (MD: -1.14; 95% CI: -2.12 to -0.17; P < 0.00001) in patients with PID. The incidence of adverse events did not increase with the addition of acupuncture therapies (OR: 0.56; 95% CI: 0.21 to 1.51; P = 0.25). The findings also indicated that acupuncture therapies, as a complementary treatment, could induce anti-inflammatory cytokines, reduce pro-inflammatory cytokines, alleviate anxiety, and improve the quality of life in patients with PID. CONCLUSION Our findings suggest that acupuncture therapies may effectively reduce pain intensity in the abdomen and lumbosacral region as complementary or alternative treatments, induce anti-inflammatory cytokines, decrease pro-inflammatory cytokines, alleviate anxiety, and enhance the quality of life in patients with PID, without increasing the occurrence of adverse events. However, due to the low quality of the included trials, the conclusion should be interpreted with caution, highlighting the need for further high-quality trials to establish more reliable conclusions.
Collapse
Affiliation(s)
- Lichen Yi
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baoyi Huang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunyun Liu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Luolin Zhou
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingjie Wu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengyang Yu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjie Long
- Department of Geriatrics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuemei Li
- Department of Rehabilitation, Guangzhou Eighth People`s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
38
|
Wang Y, Liu F, Du X, Shi J, Yu R, Li S, Na R, Zhao Y, Zhou M, Guo Y, Cheng L, Wang G, Zheng T. Combination of Anti-PD-1 and Electroacupuncture Induces a Potent Antitumor Immune Response in Microsatellite-Stable Colorectal Cancer. Cancer Immunol Res 2024; 12:26-35. [PMID: 37956404 DOI: 10.1158/2326-6066.cir-23-0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/22/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Programmed death receptor-1 (PD-1) inhibitors are ineffective against microsatellite-stable (MSS) colorectal cancer. Electroacupuncture (EA) has oncosuppressive and immunomodulatory properties. Here, we investigated the antitumor effects of EA and explored the feasibility of EA combined with anti-PD-1 in MSS colorectal cancer. Results showed that EA exerted its antitumor effect in an intensity-specific manner, and moderate-intensity EA (1.0 mA) induced maximal tumor inhibition. EA enhanced antitumor immune responses by increasing lymphocytes and granzyme B (GzmB) levels, as well as activating the stimulator of IFN genes (STING) pathway. EA combined with anti-PD-1 showed superior efficacy compared with either monotherapy in multiple MSS colorectal cancer mouse models. Single-cell RNA sequencing revealed that cotreatment reprogrammed the tumor immune microenvironment (TIME), as characterized by enhancement of cytotoxic functions. Mechanically, we found that the potentiated effect of EA was dependent upon the STING pathway. Collectively, EA reshapes the TIME of MSS colorectal cancer and sensitizes tumors to anti-PD-1 in a STING pathway-dependent manner. These results provide a mechanistic rationale for using EA as an immunomodulatory strategy to improve the clinical efficacy of anti-PD-1 in MSS colorectal cancer. EA is safe, well-tolerated, and feasible for clinical translation as a promising strategy for treating MSS colorectal cancer.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Fengyi Liu
- Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
- Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Xiaoxue Du
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Jiaqi Shi
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Rui Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China
| | - Shuang Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Ruisi Na
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Ying Zhao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Meng Zhou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Ying Guo
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, P. R. China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, P. R. China
- Heilongjiang Cancer Institute, Harbin, P. R. China
| |
Collapse
|
39
|
Chen Y, Liu H, Yan Y, Chen H, Ye S, Qiu F, Liang CL, Zhang Q, Zheng F, Han L, Lu C, Dai Z. Methotrexate and electrostimulation cooperate to alleviate the relapse of psoriasiform skin inflammation by suppressing memory T cells. Biochem Pharmacol 2024; 219:115979. [PMID: 38081367 DOI: 10.1016/j.bcp.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Methotrexate (MTX) is an immunosuppressant used to treat autoimmune diseases, including psoriasis. However, like other immunosuppressants, MTX alone does not prevent their recurrence. Electrostimulation (ES) has been utilized to treat some inflammatory disorders without any major side-effect. But it remains unknown if ES alone, or together with MTX, ameliorates autoimmune disease relapse: a sticky medical problem. In particular, the mechanisms underlying ES action remain unclear. The objective of this study was to determine an impact of ES and/or MTX on psoriasis relapse and their potential cooperation. We found that regional ES, but not MTX, ameliorated psoriasiform skin inflammation recurrence. Interestingly, treatment with both MTX and ES further prevented psoriasis recurrence compared to ES alone. Moreover, ES downregulated potassium channel Kv1.3 on T-cells and reduced CD4+/CD8+ effector memory (TEM) and CD8+ skin-resident memory T (TRM) cells, while ES plus MTX further decreased CD8+ TEM/TRM cells compared to ES alone. However, ES failed to further attenuate psoriasis recurrence or suppress T cell memory in Kv1.3-deficient mice, whereas lack of Kv1.3 itself ameliorated psoriasis relapse by shrinking T cell memory pool. Importantly, ES moderately inhibited T-cell proliferation in vitro. ES also reduced human CD8+ TRM cells and attenuated human skin lesions in humanized mice grafted with lesional skin from patients with recurrent psoriasis, with an enhanced efficacy in mice treated with both ES and MTX. Thus, ES and MTX cooperated to prevent psoriasis relapse by reducing T-cell memory via targeting potassium channel Kv1.3. Our studies may be implicated for treating human psoriasis.
Collapse
Affiliation(s)
- Yuchao Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Huazhen Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Yuhong Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Haiming Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Shuyan Ye
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Feifei Qiu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Chun-Ling Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Qunfang Zhang
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fang Zheng
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China.
| | - Zhenhua Dai
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
40
|
Liu R, Zhang Y, Li K, Xu H, Cheng Z, Pang F, Wu H, Guo Z, He J, Tang X, Zhou X, Jiang Q. Effect of acupuncture on regulating IL-17, TNF-ɑ and AQPs in Sjögren's syndrome. Oral Dis 2024; 30:50-62. [PMID: 37518974 DOI: 10.1111/odi.14680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023]
Abstract
AIM The aim of the study was to observe the effect of acupuncture on regulating interleukin (IL)-17, tumor necrosis factor (TNF)-ɑ, and aquaporins (AQPs) in Sjögren's syndrome (SS) on patients and on non-obese diabetic (NOD) models. METHODS Levels of anti-AQP 1, 5, 8, and 9 antibodies, IL-17, and TNF-ɑ in the serum of SS patients were compared prior and following 20 acupuncture treatment visits during 8 weeks. While in murine model, five groups were divided to receive interventions for 4 weeks, including control, model, acupuncture, isoflurane, and hydroxychloroquine. The submaxillofacial gland index, histology, immunohistochemistry of AQP1, 5, salivary flow, together with IL-17, and TNF-ɑ expression in peripheral blood were compared among the groups. RESULTS Acupuncture reduced IL-17, TNF-ɑ, and immunoglobin A levels, and numeric analog scale of dryness in 14 patients with SS (p < 0.05). The salivary flow was increased, and the water intake decreased in NOD mice receiving acupuncture treatments. IL-17 and TNF-ɑ levels in peripheral serum were down-regulated (p < 0.05) and AQP1, 5 expression in the submandibular glands up-regulated in mice. CONCLUSION The effect on relieving xerostomia with acupuncture may be achieved by up-regulating the expression of AQP1. AQP5, down-regulating levels of IL-17 and TNF-ɑ, and a decrease in inflammation of glands.
Collapse
Affiliation(s)
- Ruihua Liu
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kesong Li
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haodong Xu
- Department of Rheumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Zengyu Cheng
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengtao Pang
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hengbo Wu
- Department of Rheumatology, Xi'an Hospital of Traditional Chinese Medicine, Shanxi, China
| | - Zilin Guo
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiale He
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaopo Tang
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyao Zhou
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Quan Jiang
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Shi F, Cao J, Zhou D, Wang X, Yang H, Liu T, Chen Z, Zeng J, Du S, Yang L, Jia R, Zhang S, Zhang M, Guo Y, Lin X. Revealing the clinical effect and biological mechanism of acupuncture in COPD: A review. Biomed Pharmacother 2024; 170:115926. [PMID: 38035864 DOI: 10.1016/j.biopha.2023.115926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND To provide new ideas for the clinical and mechanism research of acupuncture in the treatment of chronic obstructive pulmonary disease (COPD), this study systematically reviews clinical research and the progress of basic research of acupuncture in the treatment of COPD. METHODS PubMed and Web of Science databases were searched using acupuncture and COPD as keywords in the last 10 years, and the included literature was determined according to exclusion criteria. FINDINGS Acupuncture can relieve clinical symptoms, improve exercise tolerance, anxiety, and nutritional status, as well as hemorheological changes (blood viscosity), reduce the inflammatory response, and reduce the duration and frequency of COPD in patients with COPD. Mechanistically, acupuncture inhibits M1 macrophage activity, reduces neutrophil infiltration, reduces inflammatory factor production in alveolar type II epithelial cells, inhibits mucus hypersecretion of airway epithelial cells, inhibits the development of chronic inflammation in COPD, and slows tissue structure destruction. Acupuncture may control pulmonary COPD inflammation through the vagal-cholinergic anti-inflammatory, vagal-adrenomedullary-dopamine, vagal-dual-sensory nerve fiber-pulmonary, and CNS-hypothalamus-orexin pathways. Furthermore, acupuncture can increase endogenous cortisol levels by inhibiting the HPA axis, thus improving airway antioxidant capacity and reducing airway inflammation in COPD. In conclusion, the inhibition of the chronic inflammatory response is the key mechanism of acupuncture treatment for COPD.
Collapse
Affiliation(s)
- Fangyuan Shi
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dan Zhou
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Wang
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haitao Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tingting Liu
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaming Zeng
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruo Jia
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Siqi Zhang
- Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, China
| | - Mingxing Zhang
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaowei Lin
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center of Experimental Acupuncture Science, School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
42
|
Manjarres Z, Calvo M, Pacheco R. Regulation of Pain Perception by Microbiota in Parkinson Disease. Pharmacol Rev 2023; 76:7-36. [PMID: 37863655 DOI: 10.1124/pharmrev.122.000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Pain perception involves current stimulation in peripheral nociceptive nerves and the subsequent stimulation of postsynaptic excitatory neurons in the spinal cord. Importantly, in chronic pain, the neural activity of both peripheral nociceptors and postsynaptic neurons in the central nervous system is influenced by several inflammatory mediators produced by the immune system. Growing evidence has indicated that the commensal microbiota plays an active role in regulating pain perception by either acting directly on nociceptors or indirectly through the modulation of the inflammatory activity on immune cells. This symbiotic relationship is mediated by soluble bacterial mediators or intrinsic structural components of bacteria that act on eukaryotic cells, including neurons, microglia, astrocytes, macrophages, T cells, enterochromaffin cells, and enteric glial cells. The molecular mechanisms involve bacterial molecules that act directly on neurons, affecting their excitability, or indirectly on non-neuronal cells, inducing changes in the production of proinflammatory or anti-inflammatory mediators. Importantly, Parkinson disease, a neurodegenerative and inflammatory disorder that affects mainly the dopaminergic neurons implicated in the control of voluntary movements, involves not only a motor decline but also nonmotor symptomatology, including chronic pain. Of note, several recent studies have shown that Parkinson disease involves a dysbiosis in the composition of the gut microbiota. In this review, we first summarize, integrate, and classify the molecular mechanisms implicated in the microbiota-mediated regulation of chronic pain. Second, we analyze the changes on the commensal microbiota associated to Parkinson disease and propose how these changes affect the development of chronic pain in this pathology. SIGNIFICANCE STATEMENT: The microbiota regulates chronic pain through the action of bacterial signals into two main locations: the peripheral nociceptors and the postsynaptic excitatory neurons in the spinal cord. The dysbiosis associated to Parkinson disease reveals increased representation of commensals that potentially exacerbate chronic pain and reduced levels of bacteria with beneficial effects on pain. This review encourages further research to better understand the signals involved in bacteria-bacteria and bacteria-host communication to get the clues for the development of probiotics with therapeutic potential.
Collapse
Affiliation(s)
- Zulmary Manjarres
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Margarita Calvo
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| |
Collapse
|
43
|
Zhang Z, Cui X, Liu K, Gao X, Zhou Q, Xi H, Zhao Y, Zhang D, Zhu B. Adrenal sympathetic nerve mediated the anti-inflammatory effect of electroacupuncture at ST25 acupoint in a rat model of sepsis. Anat Rec (Hoboken) 2023; 306:3178-3188. [PMID: 36300612 DOI: 10.1002/ar.25102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022]
Abstract
Acupuncture plays a vital anti-inflammatory action in sepsis by activating autonomic nerve anti-inflammatory pathways, such as sympathoadrenal medullary pathway, but the mechanism remains unclear. This study aims to explore the optimum parameter of electroacupuncture (EA) stimulation in regulating the sympathoadrenal medullary pathway and evaluate EA's anti-inflammatory effect on sepsis. To determine the optimum parameter of EA at homotopic acupoint on adrenal sympathetic activity, the left adrenal sympathetic nerve firing rate evoked by different intensities of single shock electrical stimulation (ES) at ST25 in healthy male Sprague-Dawley rats were evaluated by in vivo electrophysiological recording, and the levels of norepinephrine (NE) and its metabolites normetanephrine (NMN) were also examined using mass spectrometry. To verify the role of EA at ST25 in sepsis, the rats were given an intraperitoneal injection of lipopolysaccharide (LPS) to induce sepsis model, and survival rate, clinical score, and the level of interleukin (IL)-6, IL-1β, and IL-10 were evaluated after EA application. We observed that 3 mA is the optimal intensity for activating adrenal sympathetic nerve, which significantly elevated the level of NE in the peripheral blood. For LPS-treated rats, EA at the ST25 apparently increased the survival rate and improved the clinical score compared to the control group. Furthermore, 3 mA EA at ST25 significantly decreased pro-inflammatory cytokines IL-6 and IL-1β and upregulated anti-inflammatory cytokine IL-10 compared to the LPS-treated group. Overall, our data suggested that 3 mA is the optimal EA intensity at ST25 to activate the sympathoadrenal medullary pathway and exert an anti-inflammatory effect in sepsis.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kun Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyan Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingchen Zhou
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Acupuncture-moxibustion and Tuina Department, Qilu Hospital of Shandong University, Jinan, China
| | - Hanqing Xi
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingkun Zhao
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Dingdan Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
44
|
Chen CS, Lin CF, Chou YL, Lee DY, Tien PT, Wang YC, Chang CY, Lin ES, Chen JJ, Wu MY, Ku H, Gan D, Chang YM, Lin HJ, Wan L. Acupuncture modulates development of myopia by reducing NLRP3 inflammasome activation via the dopamine-D1R signaling pathway. Acupunct Med 2023; 41:364-375. [PMID: 37211683 DOI: 10.1177/09645284231170886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND Dopamine has been suggested to be a stop signal for eye growth and affects the development of myopia. Acupuncture is known to increase dopamine secretion and is widely used to treat myopia clinically. OBJECTIVE The aim of this study was to determine if acupuncture inhibits myopia progression in form deprived Syrian hamsters by inducing rises in dopamine content that in turn suppress inflammasome activation. METHODS Acupuncture was applied at LI4 and Taiyang every other day for 21 days. The levels of molecules associated with the dopamine signaling pathway, inflammatory signaling pathway and inflammasome activation were determined. A dopamine agonist (apomorphine) was used to evaluate if activation of the dopaminergic signaling pathway suppresses myopia progression by inhibiting inflammasome activation in primary retinal pigment epithelial (RPE) cells. A dopamine receptor 1 (D1R) inhibitor (SCH39166) was also administered to the hamsters. RESULTS Acupuncture inhibited myopia development by increasing dopamine levels and activating the D1R signaling pathway. Furthermore, we also demonstrated that nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome activation was inhibited by activation of the D1R signaling pathway. CONCLUSION Our findings suggest that acupuncture inhibits myopia development by suppressing inflammation, which is initiated by activation of the dopamine-D1R signaling pathway.
Collapse
Affiliation(s)
- Chih-Sheng Chen
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung
- Division of Chinese Medicine, Asia University Hospital, Taichung
| | - Chi-Fong Lin
- PhD Program for Health Science and Industry, China Medical University, Taichung
| | - Yung-Lan Chou
- School of Chinese Medicine, China Medical University, Taichung
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, China Medical University, Taichung
| | - Peng-Tai Tien
- Eye Center, China Medical University Hospital, Taichung
| | - Yao-Chien Wang
- Department of Emergency Medicine, Taichung Tzu Chi Hospital, Taichung
| | - Ching-Yao Chang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung
| | | | - Ming-Yen Wu
- Eye Center, China Medical University Hospital, Taichung
| | - Hsiangyu Ku
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Dekang Gan
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yung-Ming Chang
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung
- Department of Chinese Medicine, 1PT Biotechnology Co., Ltd., Taichung
| | - Hui-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung
- Graduate Institute of Integrated Medicine, China Medical University, Taichung
| | - Lei Wan
- School of Chinese Medicine, China Medical University, Taichung
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung
| |
Collapse
|
45
|
Zhang R, Wang J, Deng Q, Xiao X, Zeng X, Lai B, Li G, Ma Y, Ruan J, Han I, Zeng YS, Ding Y. Mesenchymal Stem Cells Combined With Electroacupuncture Treatment Regulate the Subpopulation of Macrophages and Astrocytes to Facilitate Axonal Regeneration in Transected Spinal Cord. Neurospine 2023; 20:1358-1379. [PMID: 38171303 PMCID: PMC10762392 DOI: 10.14245/ns.2346824.412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE Herein, we investigated whether mesenchymal stem cells (MSCs) transplantation combined with electroacupuncture (EA) treatment could decrease the proportion of proinflammatory microglia/macrophages and neurotoxic A1 reactive astrocytes and inhibit glial scar formation to enhance axonal regeneration after spinal cord injury (SCI). METHODS Adult rats were divided into 5 groups after complete transection of the spinal cord at the T10 level: a control group, a nonacupoint EA (NA-EA) group, an EA group, an MSC group, and an MSCs+EA group. Immunofluorescence labeling, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blots were performed. RESULTS The results showed that MSCs+EA treatment reduced the proportion of proinflammatory M1 subtype microglia/macrophages, but increased the differentiation of anti-inflammatory M2 phenotype cells, thereby suppressing the mRNA and protein expression of proinflammatory cytokines (tumor necrosis factor-α and IL-1β) and increasing the expression of an anti-inflammatory cytokine (interleukin [IL]-10) on days 7 and 14 after SCI. The changes in expression correlated with the attenuated neurotoxic A1 reactive astrocytes and glial scar, which in turn facilitated the axonal regeneration of the injured spinal cord. In vitro, the proinflammatory cytokines increased the level of proliferation of astrocytes and increased the expression levels of C3, glial fibrillary acidic protein, and chondroitin sulfate proteoglycan. These effects were blocked by administering inhibitors of ErbB1 and signal transducer and activator of transcription 3 (STAT3) (AG1478 and AG490) and IL-10. CONCLUSION These findings showed that MSCs+EA treatment synergistically regulated the microglia/macrophage subpopulation to reduce inflammation, the formation of neurotoxic A1 astrocytes, and glial scars. This was achieved by downregulating the ErbB1-STAT3 signal pathway, thereby providing a favorable microenvironment conducive to axonal regeneration after SCI.
Collapse
Affiliation(s)
- Rongyi Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pain Management, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junhua Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qingwen Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xingru Xiao
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Biqin Lai
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Yuanhuan Ma
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangzhou Institute of Clinical Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Jingwen Ruan
- Department of Acupuncture, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Inbo Han
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Korea
| | - Yuan-Shan Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Sun Yat-sen Memorial Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Sun Yat-sen Memorial Hospital, Guangzhou, China
| |
Collapse
|
46
|
Zhang W, Jiang H, Wu G, Huang P, Wang H, An H, Liu S, Zhang W. The pathogenesis and potential therapeutic targets in sepsis. MedComm (Beijing) 2023; 4:e418. [PMID: 38020710 PMCID: PMC10661353 DOI: 10.1002/mco2.418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as "a life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection." At present, sepsis continues to pose a grave healthcare concern worldwide. Despite the use of supportive measures in treating traditional sepsis, such as intravenous fluids, vasoactive substances, and oxygen plus antibiotics to eradicate harmful pathogens, there is an ongoing increase in both the morbidity and mortality associated with sepsis during clinical interventions. Therefore, it is urgent to design specific pharmacologic agents for the treatment of sepsis and convert them into a novel targeted treatment strategy. Herein, we provide an overview of the molecular mechanisms that may be involved in sepsis, such as the inflammatory response, immune dysfunction, complement deactivation, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we highlight important targets involved in sepsis-related regulatory mechanisms, including GSDMD, HMGB1, STING, and SQSTM1, among others. We summarize the latest advancements in potential therapeutic drugs that specifically target these signaling pathways and paramount targets, covering both preclinical studies and clinical trials. In addition, this review provides a detailed description of the crosstalk and function between signaling pathways and vital targets, which provides more opportunities for the clinical development of new treatments for sepsis.
Collapse
Affiliation(s)
- Wendan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Honghong Jiang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Gaosong Wu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Pengli Huang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haonan Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Huazhasng An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
47
|
Xu Y, Zhu X, Chen Y, Chen Y, Zhu Y, Xiao S, Wu M, Wang Y, Zhang C, Wu Z, He X, Liu B, Shen Z, Shao X, Fang J. Electroacupuncture alleviates mechanical allodynia and anxiety-like behaviors induced by chronic neuropathic pain via regulating rostral anterior cingulate cortex-dorsal raphe nucleus neural circuit. CNS Neurosci Ther 2023; 29:4043-4058. [PMID: 37401033 PMCID: PMC10651964 DOI: 10.1111/cns.14328] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/02/2023] [Accepted: 06/17/2023] [Indexed: 07/05/2023] Open
Abstract
AIMS Epidemiological studies in patients with neuropathic pain have demonstrated a strong association between neuropathic pain and psychiatric conditions such as anxiety. Preclinical and clinical work has demonstrated that electroacupuncture (EA) effectively alleviates anxiety-like behaviors induced by chronic neuropathic pain. In this study, a potential neural circuitry underlying the therapeutic action of EA was investigated. METHODS The effects of EA stimulation on mechanical allodynia and anxiety-like behaviors in animal models of spared nerve injury (SNI) were examined. EA plus chemogenetic manipulation of glutamatergic (Glu) neurons projecting from the rostral anterior cingulate cortex (rACCGlu ) to the dorsal raphe nucleus (DRN) was used to explore the changes of mechanical allodynia and anxiety-like behaviors in SNI mice. RESULTS Electroacupuncture significantly alleviated both mechanical allodynia and anxiety-like behaviors with increased activities of glutamatergic neurons in the rACC and serotoninergic neurons in the DRN. Chemogenetic activation of the rACCGlu -DRN projections attenuated both mechanical allodynia and anxiety-like behaviors in mice at day 14 after SNI. Chemogenetic inhibition of the rACCGlu -DRN pathway did not induce mechanical allodynia and anxiety-like behaviors under physiological conditions, but inhibiting this pathway produced anxiety-like behaviors in mice at day 7 after SNI; this effect was reversed by EA. EA plus activation of the rACCGlu -DRN circuit did not produce a synergistic effect on mechanical allodynia and anxiety-like behaviors. The analgesic and anxiolytic effects of EA could be blocked by inhibiting the rACCGlu -DRN pathway. CONCLUSIONS The role of rACCGlu -DRN circuit may be different during the progression of chronic neuropathic pain and these changes may be related to the serotoninergic neurons in the DRN. These findings describe a novel rACCGlu -DRN pathway through which EA exerts analgesic and anxiolytic effects in SNI mice exhibiting anxiety-like behaviors.
Collapse
Affiliation(s)
- Yingling Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain‐Machine Integration, School of Brain Science and Brain MedicineZhejiang UniversityHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
| | - Xixiao Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yuerong Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yeqing Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yichen Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Siqi Xiao
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Mengwei Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yifang Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Chi Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Zenmin Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Boyu Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang ProvinceThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
48
|
Cummings M. Acupuncture for Chronic Spontaneous Urticaria. Ann Intern Med 2023; 176:1674-1675. [PMID: 37956434 DOI: 10.7326/m23-2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Affiliation(s)
- Mike Cummings
- British Medical Acupuncture Society, London, United Kingdom
| |
Collapse
|
49
|
Hu J, Xiao Y, Jiang G, Hu X. Research Trends of Acupuncture Therapy on Chronic Pelvic Pain Syndrome from 2000 to 2022: A Bibliometric Analysis. J Pain Res 2023; 16:4049-4069. [PMID: 38054110 PMCID: PMC10695139 DOI: 10.2147/jpr.s434333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Background Acupuncture is considered an important means of analgesic, which has been widely used in chronic pelvic pain syndrome (CPPS) management and treatment in recent years, published a large number of related documents. However, the relevant literature in this field has not been summarized and quantitatively analyzed. Therefore, this study aims to analyze the hotspots and predicting future research trends of acupuncture on pelvic pain syndrome. Methods Search for the relevant publications of the web of science database from 2000 to 2022 about the treatment of acupuncture on chronic pelvic pain syndrome. The Citespace software and VosViewer software are used to analyze the visualization of the countries, institutions, authors, keywords and references and references in the literature. Results A total of 173 publications were included. The annual number of essays gradually showed an overall growth trend over time. Medicine magazine is the most published journal in this field. J UROLOGY and Acupunct Med are the most cited journals and the most influential magazines; The most active and influential country is China, and the most produced institutions are Beijing University of Chinese Medicine; The most produced authors are Liu Zhishun. The most cited and most influential authors are Nickel JC and Armour M; keywords and cited reference analysis show that the quality of life, mechanism research, alternative medicine and electro-acupuncture will be the scientific hotspot of acupuncture treatment for chronic pelvic pain syndrome. Conclusion This study shows that acupuncture on CPPS is increasingly valued and recognized. The future research hotspots will focus on the effects and mechanisms. In the future, more high-quality animal basic research will be required to explore the exact mechanism of acupuncture on CPPS. In addition, different parameters of acupuncture such as electric-acupuncture, stimulating frequency, duration and strength are also the focus of future research. More clinical trials are required to verify its safety and effectiveness.
Collapse
Affiliation(s)
- Jinyu Hu
- School of Graduate and Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang City, People’s Republic of China
| | - Yuanyi Xiao
- School of Graduate and Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang City, People’s Republic of China
| | - Guilin Jiang
- Department of Clinical Medicine, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, People’s Republic of China
| | - Xiaorong Hu
- Department of Clinical Medicine, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, People’s Republic of China
| |
Collapse
|
50
|
Wang X, Chen X, Chen J, Liao C, Yang X, Zhou J, Liu S, Ye S, Zheng Y, Huang L, Zhao J, Ye L, Huang B, Cao Y. Dopamine Receptor 1 Impedes ILC2-Mediated Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1418-1425. [PMID: 37728417 DOI: 10.4049/jimmunol.2300220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Ever-growing evidence has revealed that group 2 innate lymphoid cells (ILC2s) exhibit pleiotropic effects in antihelminth immunity, allergy, tissue protection, and cancer. Currently, the role of ILC2s in cancer is highly controversial regarding the intricate tumor microenvironment (TME), and the tumor-promoting or antitumor immunological mechanisms of ILC2s remain largely unknown. In this study, we report that dopamine receptor 1 (DRD1) restrains ILC2 activity in the TME. DRD1 deficiency promotes ILC2 activation, which irritates eosinophil recruitment and cytotoxic CD8+ T cell expansion during ongoing malignancy. Consequently, DRD1-deficient mice exhibit delayed tumor growth and reduced tumor progression. Furthermore, fenoldopam, a selective DRD1 agonist, restrains the ILC2 response in the TME and aggravates tumor burden in mice. Taken together, our data elaborate that the DRD1 signal acts as an excitatory rheostat in regulating ILC2-dependent antitumor immunity.
Collapse
Affiliation(s)
- Xiangyang Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiangyu Chen
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jierong Chen
- Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Chunhui Liao
- Department of Orthodontics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xiaofan Yang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jiasheng Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shusen Ye
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yuhao Zheng
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Linzi Huang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jiacong Zhao
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lilin Ye
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Bihui Huang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yingjiao Cao
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|