1
|
Mailleux L, Decraene L, Kalkantzi A, Kleeren L, Crotti M, Campenhout AV, Verheyden G, Ortibus E, Green D, Klingels K, Feys H. Spatiotemporal coordination in children with unilateral cerebral palsy: Insights from a bimanual goal-directed task. Eur J Paediatr Neurol 2024; 53:73-87. [PMID: 39418827 DOI: 10.1016/j.ejpn.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND In children with unilateral cerebral palsy (uCP), bimanual assessments mostly focus on qualitative assessments of the impaired upper limb during bimanual tasks, which do not capture the spatiotemporal coordination between both hands. Hence, we aimed to advance our understandings in spatiotemporal coordination in children with uCP compared to typically developing children (TDC) using a bimanual, asymmetrical, goal-directed task. PARTICIPANTS AND METHODOLOGY In this observational study, thirty-seven children with uCP (11y8m±2y10m, 20 males, 16 right-sided uCP, Manual Ability Classification System level I = 23, II = 11, III = 3) and 37 age and sex-matched TDC opened a box with one hand and pressed a button inside using the opposite hand. Spatiotemporal bimanual (movement time, temporal coupling, movement overlap, goal synchronisation) and unimanual (movement time, path length and smoothness) parameters were extracted. Between groups comparisons were investigated using a two-way mixed ANCOVA with age as covariate (α < 0.05). Additionally, correlation coefficients between unimanual and bimanual parameters were calculated. RESULTS Compared to TDC, children with uCP were slower (p = 0.01, ηp2 = 0.13) and presented unimanual spatiotemporal deficits in both upper limbs (p < 0.03, ηp2>0.10), which worsened in children with lower manual abilities (p < 0.04, ηp2>0.19). However, they did not differ in bimanual coupling (p > 0.31, ηp2<0.03). Furthermore, slower movement time was related with increased unimanual spatiotemporal deficits bilaterally (r = 0.34-0.80, p = 0.001-0.04), suggesting that reduced performance at both upper limbs contributes to bimanual difficulties in children with uCP. CONCLUSIONS The bilateral reduced spatiotemporal performance, related to longer bimanual movement time, stresses the importance to assess and treat both upper limbs in children with uCP.
Collapse
Affiliation(s)
- Lisa Mailleux
- KU Leuven, Department of Rehabilitation Sciences, B-3000, Leuven, Belgium; KU Leuven, Child and Youth Institute, B-3000, Leuven, Belgium.
| | - Lisa Decraene
- KU Leuven, Department of Rehabilitation Sciences, B-3000, Leuven, Belgium; KU Leuven, Child and Youth Institute, B-3000, Leuven, Belgium; Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Diepenbeek, Belgium.
| | - Alexandra Kalkantzi
- KU Leuven, Department of Rehabilitation Sciences, B-3000, Leuven, Belgium; KU Leuven, Child and Youth Institute, B-3000, Leuven, Belgium
| | - Lize Kleeren
- KU Leuven, Department of Rehabilitation Sciences, B-3000, Leuven, Belgium; KU Leuven, Child and Youth Institute, B-3000, Leuven, Belgium
| | - Monica Crotti
- KU Leuven, Child and Youth Institute, B-3000, Leuven, Belgium; KU Leuven, Department of Development and Regeneration, B-3000, Leuven, Belgium
| | - Anja Van Campenhout
- KU Leuven, Child and Youth Institute, B-3000, Leuven, Belgium; KU Leuven, Department of Development and Regeneration, B-3000, Leuven, Belgium; University Hospitals Leuven, Department of Orthopedic Surgery, B-3000, Leuven, Belgium
| | - Geert Verheyden
- KU Leuven, Department of Rehabilitation Sciences, B-3000, Leuven, Belgium
| | - Els Ortibus
- KU Leuven, Child and Youth Institute, B-3000, Leuven, Belgium; KU Leuven, Department of Development and Regeneration, B-3000, Leuven, Belgium; University Hospitals Leuven, Department of Pediatric Neurology, B-3000, Leuven, Belgium
| | - Dido Green
- Department of Rehabilitation, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Katrijn Klingels
- KU Leuven, Department of Rehabilitation Sciences, B-3000, Leuven, Belgium; Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Diepenbeek, Belgium
| | - Hilde Feys
- KU Leuven, Department of Rehabilitation Sciences, B-3000, Leuven, Belgium; KU Leuven, Child and Youth Institute, B-3000, Leuven, Belgium
| |
Collapse
|
2
|
Zhao W, Si Y, Li X, Zhao Y, Jia S, Dong B. Association of allostatic load with functional disability in the China Health and Retirement Longitudinal Study. J Nutr Health Aging 2024; 28:100367. [PMID: 39341031 DOI: 10.1016/j.jnha.2024.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVES Allostatic load (AL) is an index that manifests as cumulative wear and tear on multiple physiological systems resulting from repeated adaptation to stressors throughout the life course. Higher AL was found to be associated with increased risk of adverse health outcomes, but studies on functional disability among large Chinese older population were limited. We aimed to investigate the associations of AL with functional disability among Chinese older adults. RESEARCH DESIGN AND METHODS This prospective cohort study included 5880 older adults who were at least 50 years old and participated in the CHARLS at baseline (2011 wave), with 3 follow-ups (2013, 2015 and 2018 waves). We selected 11 biomarkers from 4 physiological systems to construct AL. AL score was classified into three categories based on tertiles: 0-1 (low burden), 2-3 (medium burden) and 4-11 (high burden). Functional disability was assessed by activities of daily living (ADL) and instrumental activities of daily living (IADL). Multivariable logistic regression models examined the association between baseline AL, transitions of AL burden and incidence of functional disability. RESULTS In cross-sectional analyses, medium and high AL burden were associated with an increased prevalence of ADL disability, while association was only significant between high AL burden and IADL disability. During the 7-year follow-up, 1102 and 1777 participants incident ADL disability and IADL disability, respectively. Those with medium and high AL burden had an increased risk of new-onset ADL disability than those with low AL burden ("medium": OR = 1.25, 95%CI = 1.01, 1.55; "high": OR = 1.69, 95%CI = 1.32, 2.18). As for IADL disability, association was only significant in "high" group (OR = 1.50, 95% CI = 1.24, 1.83). We also found keep medium/high AL burden in 2011 and 2015 was associated with new-onset ADL (OR = 2.27, 95%CI = 1.50, 3.44) and IADL disability (OR = 1.51, 95%CI = 1.11, 2.05) in 2018. CONCLUSION These results show that higher AL predicts functional disability among Chinese older adults. Monitoring AL and paying close attention to those with medium/high AL burden may aid prevention of adverse health outcomes, thus giving a healthier ageing experience to a large proportion of the population.
Collapse
Affiliation(s)
- Wanyu Zhao
- Center of Gerontology and Geriatrics and National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, China
| | - Yanjun Si
- Department of Laboratory Medicine, West China Hospital, Sichuan University, China
| | - Xueqin Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, China
| | - Yunli Zhao
- Department of Geriatric Medicine, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Shuli Jia
- Center of Gerontology and Geriatrics and National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, China
| | - Birong Dong
- Center of Gerontology and Geriatrics and National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, China.
| |
Collapse
|
3
|
Cienfuegos M, Naceri A, Maycock J, Kõiva R, Ritter H, Schack T. Comparative analysis of motor skill acquisition in a novel bimanual task: the role of mental representation and sensorimotor feedback. Front Hum Neurosci 2024; 18:1425090. [PMID: 39323958 PMCID: PMC11422229 DOI: 10.3389/fnhum.2024.1425090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction This study investigates the multifaceted nature of motor learning in a complex bimanual task by examining the interplay between mental representation structures, biomechanics, tactile pressure, and performance. We developed a novel maze game requiring participants to maneuver a rolling sphere through a maze, exemplifying complex sequential coordination of vision and haptic control using both hands. A key component of this study is the introduction of cognitive primitives, fundamental units of cognitive and motor actions that represent specific movement patterns and strategies. Methods Participants were divided into two groups based on initial performance: poor performers (PPG) and good performers (GPG). The experimental setup employed motion capture and innovative tactile sensors to capture a detailed multimodal picture of the interaction process. Our primary aims were to (1) assess the effects of daily practice on task performance, biomechanics, and tactile pressure, (2) examine the relationship between changes in mental representation structures and skill performance, and (3) explore the interplay between biomechanics, tactile pressure, and cognitive representation in motor learning. Results Performance analysis showed that motor skills improved with practice, with the GPG outperforming the PPG in maze navigation efficiency. Biomechanical analysis revealed that the GPG demonstrated superior movement strategies, as indicated by higher peak velocities and fewer velocity peaks during task execution. Tactile feedback analysis showed that GPG participants applied more precise and focused pressure with their right-hand thumb, suggesting enhanced motor control. Cognitively, both groups refined their mental representation structures over time, but the GPG exhibited a more structured and sophisticated cognitive mapping of the task post-practice. Discussion The findings highlight the intertwined nature of biomechanical control, tactile feedback, and cognitive processing in motor skill acquisition. The results support established theories, such as the cognitive action architecture approach, emphasizing the role of mental representation in planning and executing motor actions. The integration of cognitive primitives in our analysis provides a theoretical framework that connects observable behaviors to underlying cognitive strategies, enhancing the understanding of motor learning across various contexts. Our study underscores the necessity of a holistic approach to motor learning research, recognizing the complex interaction between cognitive and motor processes in skill acquisition.
Collapse
Affiliation(s)
- Miguel Cienfuegos
- Neurocognition and Action-Biomechanics Group, Bielefeld University, Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Abdeldjallil Naceri
- Munich School of Robotics and Machine Intelligence (MSRM), Technical University of Munich (TUM), Munich, Germany
| | | | - Risto Kõiva
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Helge Ritter
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
- Neuroinformatics Group, Bielefeld University, Bielefeld, Germany
| | - Thomas Schack
- Neurocognition and Action-Biomechanics Group, Bielefeld University, Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Herard GAM, Hung YC, Brandao MB, Gordon AM. Bimanual Coordination in Children with Bilateral Cerebral Palsy: A Cross-Sectional Study. Phys Occup Ther Pediatr 2024:1-16. [PMID: 39007684 DOI: 10.1080/01942638.2024.2376062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
AIM To compare bimanual coordination in children with bilateral cerebral palsy (BCP) with that of children with typical development (TD) and correlate bimanual coordination with clinical measures of hand function. METHODS 3-D kinematic data were collected from 14 children with BCP (mean age 13 years 1 month; range 7.3-17.2 years, 5 females) and 14 age-matched children with TD (mean age 13 years 1 month, range 7.0-16.0 years, 7 females) as they opened a drawer with one hand and activated a switch inside it with the other hand at self-paced and as-fast-as-possible speeds. Hand roles varied in each condition. Participants' hand function levels were classified using the Manual Ability Classification System. Unimanual dexterity and bimanual performance were evaluated using the Box and Blocks Test and Both Hands Assessment respectively. RESULTS Participants with BCP performed the bimanual task more slowly (p < 0.001) and sequentially, as evidenced by greater time differences between the two hands achieving the end goal (p = 0.01). Faster speeds, particularly when the less affected hand opened the drawer, facilitated time-related measures of bimanual coordination (p < 0.05). Bimanual coordination correlated with all clinical measures of hand function (p < 0.05). CONCLUSION For children with BCP, speed and hand used for each subcomponent of the task influence bimanual coordination. Better bimanual coordination is associated with less impairment of both hands.
Collapse
Affiliation(s)
- Grace-Anne M Herard
- Doctorate of Physical Therapy Program, University of St. Augustine for Health Sciences, Coral Gables, FL, USA
- Department of Biobehavioral Sciences, Columbia University, New York, NY, USA
| | - Ya-Ching Hung
- Department of Family, Nutrition and Exercise Science, Queens College, Flushing, NY, USA
| | - Marina B Brandao
- Department of Occupational Therapy, Graduate Program in Rehabilitation Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andrew M Gordon
- Department of Biobehavioral Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Hagen AC, Acosta JS, Swanson CW, Fling BW. Interhemispheric inhibition and gait adaptation associations in people with multiple sclerosis. Exp Brain Res 2024; 242:1761-1772. [PMID: 38822825 DOI: 10.1007/s00221-024-06860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Multiple sclerosis is a neurodegenerative disease that damages the myelin sheath within the central nervous system. Axonal demyelination, particularly in the corpus callosum, impacts communication between the brain's hemispheres in persons with multiple sclerosis (PwMS). Changes in interhemispheric communication may impair gait coordination which is modulated by communication across the corpus callosum to excite and inhibit specific muscle groups. To further evaluate the functional role of interhemispheric communication in gait and mobility, this study assessed the ipsilateral silent period (iSP), an indirect marker of interhemispheric inhibition and how it relates to gait adaptation in PwMS. METHODS Using transcranial magnetic stimulation (TMS), we assessed interhemispheric inhibition differences between the more affected and less affected hemisphere in the primary motor cortices in 29 PwMS. In addition, these same PwMS underwent a split-belt treadmill walking paradigm, with the faster paced belt moving under their more affected limb. Step length asymmetry (SLA) was the primary outcome measure used to assess gait adaptability during split-belt treadmill walking. We hypothesized that PwMS would exhibit differences in iSP inhibitory metrics between the more affected and less affected hemispheres and that increased interhemispheric inhibition would be associated with greater gait adaptability in PwMS. RESULTS No statistically significant differences in interhemispheric inhibition or conduction time were found between the more affected and less affected hemisphere. Furthermore, SLA aftereffect was negatively correlated with both average percent depth of silent period (dSP%AVE) (r = -0.40, p = 0.07) and max percent depth of silent period (dSP%MAX) r = -0.40, p = 0.07), indicating that reduced interhemispheric inhibition was associated with greater gait adaptability in PwMS. CONCLUSION The lack of differences between the more affected and less affected hemisphere indicates that PwMS have similar interhemispheric inhibitory capacity irrespective of the more affected hemisphere. Additionally, we identified a moderate correlation between reduced interhemispheric inhibition and greater gait adaptability. These findings may indicate that interhemispheric inhibition may in part influence responsiveness to motor adaptation paradigms and the need for further research evaluating the neural mechanisms underlying the relationship between interhemispheric inhibition and motor adaptability.
Collapse
Affiliation(s)
- Andrew C Hagen
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jordan S Acosta
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Clayton W Swanson
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Brett W Fling
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA.
- Molecular, Cellular, & Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
6
|
Wang Y, Neto OP, Weinrich M, Abbott R, Diaz-Artiles A, Kennedy DM. The effect of inherent and incidental constraints on bimanual force control in simulated Martian gravity. Hum Mov Sci 2024; 95:103199. [PMID: 38518737 DOI: 10.1016/j.humov.2024.103199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
The ability to coordinate actions between the limbs is important for many operationally relevant tasks associated with space exploration. A future milestone in space exploration is sending humans to Mars. Therefore, an experiment was designed to examine the influence of inherent and incidental constraints on the stability characteristics associated with the bimanual control of force in simulated Martian gravity. A head-up tilt (HUT)/head-down tilt (HDT) paradigm was used to simulate gravity on Mars (22.3° HUT). Right limb dominant participants (N = 11) were required to rhythmically coordinate patterns of isometric forces in 1:1 in-phase and 1:2 multifrequency patterns by exerting force with their right and left limbs. Lissajous displays were provided to guide task performance. Participants performed 14 twenty-second practice trials at 90° HUT (Earth). Following a 30-min rest period, participants performed 2 test trials for each coordination pattern in both Earth and Mars conditions. Performance during the test trials were compared. Results indicated very effective temporal performance of the goal coordination tasks in both gravity conditions. However, results indicated differences associated with the production of force between Earth and Mars. In general, participants produced less force in simulated Martian gravity than in the Earth condition. In addition, force production was more harmonic in Martian gravity than Earth gravity for both limbs, indicating that less force distortions (adjustments, hesitations, and/or perturbations) occurred in the Mars condition than in the Earth condition. The force coherence analysis indicated significantly higher coherence in the 1:1 task than in the 1:2 task for all force frequency bands, with the highest level of coherence in the 1-4 Hz frequency band for both gravity conditions. High coherence in the 1-4 Hz frequency band is associated with a common neural drive that activates the two arms simultaneously and is consistent with the requirements of the two tasks. The results also support the notion that neural crosstalk stabilizes the performance of the 1:1 in-phase task. In addition, significantly higher coherence in the 8-12 Hz frequency bands were observed for the Earth condition than the Mars condition. Force coherence in the 8-12 Hz bands is associated with the processing of sensorimotor information, suggesting that participants were better at integrating visual, proprioceptive, and/or tactile feedback in Earth than for the Mars condition. Overall, the results indicate less neural interference in Martian gravity; however, participants appear to be more effective at using the Lissajous displays to guide performance under Earth's gravity.
Collapse
Affiliation(s)
- Yiyu Wang
- Department of Kinesiology and Sport Management, Texas A&M University, TX, USA
| | - Osmar P Neto
- Department of Biomedical Engineering, Anhembi Morumbi University, SP, Brazil
| | - Madison Weinrich
- Department of Kinesiology and Sport Management, Texas A&M University, TX, USA
| | - Renee Abbott
- Department of Aerospace Engineering, Texas A&M University, TX, USA
| | - Ana Diaz-Artiles
- Department of Kinesiology and Sport Management, Texas A&M University, TX, USA; Department of Aerospace Engineering, Texas A&M University, TX, USA
| | - Deanna M Kennedy
- Department of Kinesiology and Sport Management, Texas A&M University, TX, USA.
| |
Collapse
|
7
|
Yuk J, Kitchen NM, Przybyla A, Scheidt RA, Sainburg RL. Symmetry and synchrony of bimanual movements are not predicated on interlimb control coupling. J Neurophysiol 2024; 131:982-996. [PMID: 38629153 PMCID: PMC11383609 DOI: 10.1152/jn.00476.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/31/2024] Open
Abstract
Previous studies suggest that bimanual coordination recruits neural mechanisms that explicitly couple control of the arms, resulting in symmetric kinematics. However, the higher symmetry for actions that require congruous joint motions compared with noncongruous joint motions calls into question the concept of control coupling as a general policy. An alternative view proposes that codependence might emerge from an optimal feedback controller that minimizes control effort and costs in task performance. Support for this view comes from studies comparing conditions in which both hands move a shared or independent virtual objects. Because these studies have mainly focused on congruous bimanual movements, it remains unclear if kinematic symmetry emerges from such control policies. We now examine movements with congruous or noncongruous joint motions (inertially symmetric or asymmetric, respectively) under shared or independent cursors conditions. We reasoned that if a control policy minimizes kinematic differences between limbs, spatiotemporal symmetry should remain relatively unaffected by inertial asymmetries. As shared tasks reportedly elicit greater interlimb codependence, these conditions should elicit higher bilateral covariance regardless of inertial asymmetries. Our results indicate a robust spatiotemporal symmetry only under inertially symmetric conditions, regardless of cursor condition. We simulated bimanual reaching using an optimal feedback controller with and without explicit costs of kinematic asymmetry, finding that only the latter mirrored our empirical data. Our findings support the hypothesis that bimanual control policies do not include kinematic asymmetry as a cost when it is not demanded by task constraints suggesting that kinematic symmetry depends critically on mechanical movement conditions.NEW & NOTEWORTHY Previously, the control coupling hypothesis and task-dependent control hypothesis have been shown to be robust in the bimanually symmetrical movement, but whether the same policy remains robust in the bimanually asymmetrical movement remains unclear. Here, with evidence from empirical and simulation data, we show that a spatiotemporal symmetry between the arms is not predicated on control coupling, but instead it is predicated on the symmetry of mechanical conditions (e.g. limb inertia) between the arms.
Collapse
Affiliation(s)
- Jisung Yuk
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Nick M Kitchen
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
- Department of Neurology, Penn State Milton S. Hershey College of Medicine, Hershey, Pennsylvania, United States
| | - Andrzej Przybyla
- Department of Physical Therapy, University of North Georgia, Dahlonega, Georgia, United States
| | - Robert A Scheidt
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Robert L Sainburg
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
- Department of Neurology, Penn State Milton S. Hershey College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
8
|
Sanal-Hayes NEM, Hayes LD, Mclaughlin M, Berry ECJ, Sculthorpe NF. People with Long Covid and ME/CFS Exhibit Similarly Impaired Dexterity and Bimanual Coordination: A Case-Case-Control Study. Am J Med 2024:S0002-9343(24)00091-3. [PMID: 38403179 DOI: 10.1016/j.amjmed.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
PURPOSE Dexterity and bimanual coordination had not previously been compared between people with long COVID and people with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Therefore, this study determined dexterity and bimanual coordination in people with long COVID (∼16 month illness duration; n=21) and ME/CFS (∼16 year illness duration; n=20), versus age-matched healthy controls (n=20). METHODS Dexterity, and bimanual coordination was determined using the Purdue pegboard test. RESULTS The main findings of the present investigation were that people with ME/CFS and people with long COVID were generally comparable for Purdue pegboard tests (p>0.556 and d<0.36 for pairwise comparisons). It is worth noting however, that both these patient groups performed poorer in the Perdue pegboard test than healthy controls (p<0.169 and d>0.40 for pairwise comparisons). CONCLUSIONS These data suggest that both people with long COVID and people with ME/CFS have similarly impaired dexterity, and bimanual coordination. Therefore, there is an urgent need for interventions to target dexterity and bimanual coordination in people with ME/CFS, and given the current pandemic, people with long COVID.
Collapse
Affiliation(s)
- Nilihan E M Sanal-Hayes
- School of Health and Society, University of Salford, Salford, UK; Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK.
| | - Lawrence D Hayes
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK
| | - Marie Mclaughlin
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK; School of Sport, Exercise & Rehabilitation Sciences, University of Hull, Hull, UK
| | - Ethan C J Berry
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK
| | - Nicholas F Sculthorpe
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK
| |
Collapse
|
9
|
Buchanan JJ, Cordova A. Spontaneity competes with intention to influence the coordination dynamics of interpersonal performance tendencies. Hum Mov Sci 2024; 93:103160. [PMID: 38000349 DOI: 10.1016/j.humov.2023.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/28/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Research has shown that spontaneous visual coupling supports frequency entrainment, phase attraction, and intermittent interpersonal coordination when co-actors are switched from a no-vision (NV) to vision (V) context. In two experiments, co-actors started in a NV context while producing the same or different amplitude movements. The same amplitude resulted in similar self-paced frequencies, while different amplitudes resulted in disparate frequencies. In experiment 1, co-actors were instructed to maintain amplitude while receiving no instructions to coordinate their actions. Frequency and phase entrainment was limited in the V context even when co-actors started the NV context with the same amplitude. In experiment 2, co-actors were instructed to maintain amplitude and intentionally coordinate together, but not at a specific pattern. Significant frequency modulations occurred to maintain amplitude as the co-actors sought to coordinate their actions. With the open-ended instructions, co-actors produced in-phase and anti-phase coordination along with intermittent performance exhibited by shifts between a variety of stable relative phase patterns. The proposed hypotheses and findings are discussed within the context of a shared manifold representation for joint action contexts, with the coordination dynamics expressed by the HKB model of relative phase serving to conceptualization the representations in the shared manifold.
Collapse
Affiliation(s)
- John J Buchanan
- Texas A&M University, Department of Kinesiology and Sport Management, Perception-Action Dynamics Lab, School of Education and Human Development, College Station, TX 77843, USA.
| | - Alberto Cordova
- University of Texas at San Antonio, College for Health, Community and Policy, Department of Kinesiology, San Antonio, TX 78249, USA
| |
Collapse
|
10
|
Brunfeldt AT, Desrochers PC, Kagerer FA. Facilitated adaptation via structural learning increases bimanual interference. Exp Brain Res 2024; 242:137-148. [PMID: 37979066 DOI: 10.1007/s00221-023-06732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Bimanual coordination is an essential feature of the motor system, yet interactions between the limbs during independent control remain poorly understood. Interference between the two hands, or the assimilation of movement characteristics between the two effectors, can be induced by perturbing one arm (e.g., via visuomotor rotation) and then measuring the effects in the contralateral limb. In this study, we sought to further determine the role adaptation plays in bimanual interference using a structural learning paradigm to alter feedback regulation in reaching. We trained healthy participants to counter 60 unique random rotations in right hand visual feedback over 240 reaches. Following this, we assessed feedforward and feedback measures of interference in a bimanual reaching task where the right hand was exposed to a fixed visual feedback rotation while the left hand reached without visual feedback. We found that participants who had been exposed to the structural training task in the right hand showed increased left hand interference during the first 20 trials of the test task. Moreover, interference was greater in feedback, rather than feedforward control parameters. The results further suggest that structural learning enhances bimanual interference via sensory feedback upregulation.
Collapse
Affiliation(s)
- Alexander T Brunfeldt
- Department of Kinesiology, Michigan State University, 308 W Circle Dr, East Lansing, MI, 48824, USA
| | - Phillip C Desrochers
- Department of Kinesiology, Michigan State University, 308 W Circle Dr, East Lansing, MI, 48824, USA
| | - Florian A Kagerer
- Department of Kinesiology, Michigan State University, 308 W Circle Dr, East Lansing, MI, 48824, USA.
- Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
11
|
Shih PC, Steele CJ, Hoepfel D, Muffel T, Villringer A, Sehm B. The impact of lesion side on bilateral upper limb coordination after stroke. J Neuroeng Rehabil 2023; 20:166. [PMID: 38093308 PMCID: PMC10717693 DOI: 10.1186/s12984-023-01288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND A stroke frequently results in impaired performance of activities of daily life. Many of these are highly dependent on effective coordination between the two arms. In the context of bimanual movements, cyclic rhythmical bilateral arm coordination patterns can be classified into two fundamental modes: in-phase (bilateral homologous muscles contract simultaneously) and anti-phase (bilateral muscles contract alternately) movements. We aimed to investigate how patients with left (LHS) and right (RHS) hemispheric stroke are differentially affected in both individual-limb control and inter-limb coordination during bilateral movements. METHODS We used kinematic measurements to assess bilateral coordination abilities of 18 chronic hemiparetic stroke patients (9 LHS; 9 RHS) and 18 age- and sex-matched controls. Using KINARM upper-limb exoskeleton system, we examined individual-limb control by quantifying trajectory variability in each hand and inter-limb coordination by computing the phase synchronization between hands during anti- and in-phase movements. RESULTS RHS patients exhibited greater impairment in individual- and inter-limb control during anti-phase movements, whilst LHS patients showed greater impairment in individual-limb control during in-phase movements alone. However, LHS patients further showed a swap in hand dominance during in-phase movements. CONCLUSIONS The current study used individual-limb and inter-limb kinematic profiles and showed that bilateral movements are differently impaired in patients with left vs. right hemispheric strokes. Our results demonstrate that both fundamental bilateral coordination modes are differently controlled in both hemispheres using a lesion model approach. From a clinical perspective, we suggest that lesion side should be taken into account for more individually targeted bilateral coordination training strategies. TRIAL REGISTRATION the current experiment is not a health care intervention study.
Collapse
Affiliation(s)
- Pei-Cheng Shih
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Sony Computer Science Laboratories, Inc, Tokyo, Japan
| | - Christopher J Steele
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Dennis Hoepfel
- Clinic and Polyclinic for Psychiatry and Psychotherapy, Leipzig, Germany
| | - Toni Muffel
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany.
- Department of Neurology, University Hospital Halle (Saale), Halle, Germany.
| |
Collapse
|
12
|
Wiles TM, Mangalam M, Sommerfeld JH, Kim SK, Brink KJ, Charles AE, Grunkemeyer A, Kalaitzi Manifrenti M, Mastorakis S, Stergiou N, Likens AD. NONAN GaitPrint: An IMU gait database of healthy young adults. Sci Data 2023; 10:867. [PMID: 38052819 PMCID: PMC10698035 DOI: 10.1038/s41597-023-02704-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
An ongoing thrust of research focused on human gait pertains to identifying individuals based on gait patterns. However, no existing gait database supports modeling efforts to assess gait patterns unique to individuals. Hence, we introduce the Nonlinear Analysis Core (NONAN) GaitPrint database containing whole body kinematics and foot placement during self-paced overground walking on a 200-meter looping indoor track. Noraxon Ultium MotionTM inertial measurement unit (IMU) sensors sampled the motion of 35 healthy young adults (19-35 years old; 18 men and 17 women; mean ± 1 s.d. age: 24.6 ± 2.7 years; height: 1.73 ± 0.78 m; body mass: 72.44 ± 15.04 kg) over 18 4-min trials across two days. Continuous variables include acceleration, velocity, position, and the acceleration, velocity, position, orientation, and rotational velocity of each corresponding body segment, and the angle of each respective joint. The discrete variables include an exhaustive set of gait parameters derived from the spatiotemporal dynamics of foot placement. We technically validate our data using continuous relative phase, Lyapunov exponent, and Hurst exponent-nonlinear metrics quantifying different aspects of healthy human gait.
Collapse
Affiliation(s)
- Tyler M Wiles
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Joel H Sommerfeld
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Seung Kyeom Kim
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Kolby J Brink
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Anaelle Emeline Charles
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Alli Grunkemeyer
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Marilena Kalaitzi Manifrenti
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Spyridon Mastorakis
- College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Nick Stergiou
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
- Department of Physical Education and Sport Science, Aristotle University, Thessaloniki, Greece
| | - Aaron D Likens
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| |
Collapse
|
13
|
Chung JW, Bower AE, Malik I, Martello JP, Knight CA, Jeka JJ, Burciu RG. fMRI changes during multi-limb movements in Parkinson's disease. Front Hum Neurosci 2023; 17:1248636. [PMID: 38021235 PMCID: PMC10665733 DOI: 10.3389/fnhum.2023.1248636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
BackgroundWhile motor coordination problems are frequently reported among individuals with Parkinson’s disease (PD), the effects of the disease on the performance of multi-limb movements and the brain changes underlying impaired coordination are not well-documented.ObjectiveFunctional magnetic resonance imaging (fMRI) was used to examine differences in brain activity during a task that involved the coordination of non-homologous limbs (i.e., ipsilateral hand and foot) in individuals with and without PD.MethodsParticipants included 20 PD and 20 healthy control participants (HC). They were instructed to generate force in a coordinated manner by simultaneously contracting their ipsilateral hand and foot. PD were tested off their antiparkinsonian medication and on their more affected side, whereas the side in controls was randomized.ResultsAlthough both groups were able to coordinate the two limbs to produce the expected level of force, PD had a slower rate of force production and relaxation compared to HC. Additionally, their globus pallidus and primary motor cortex were underactive, whereas their pre-supplementary motor area (pre-SMA) and lateral cerebellum were overactive relative to HC. Importantly, in PD, the fMRI activity within the pre-SMA correlated with the rate of force decrease.ConclusionMulti-limb force control deficits in PD appear to be related to widespread underactivation within the basal ganglia-cortical loop. An overactivation of higher-level motor regions within the prefrontal cortex and lateral cerebellum may reflect increased cognitive control and performance monitoring that emerges during more complex motor tasks such as those that involve the coordination of multiple limbs.
Collapse
Affiliation(s)
- Jae Woo Chung
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Abigail E. Bower
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Ibrahim Malik
- Center for Biomedical and Brain Imaging, University of Delaware, Newark, DE, United States
| | - Justin P. Martello
- Department of Neurosciences, Christiana Care Health System, Newark, DE, United States
| | - Christopher A. Knight
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE, United States
| | - John J. Jeka
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE, United States
| | - Roxana G. Burciu
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE, United States
| |
Collapse
|
14
|
Nazarahari M, Ajami S, Jeon S, Arami A. Visual feedback decoding during bimanual circle drawing. J Neurophysiol 2023; 130:1200-1213. [PMID: 37820018 DOI: 10.1152/jn.00372.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
The between-hand interference during bimanual tasks is a consequence of the connection between the neural controllers of movement. Previous studies showed the existence of an asymmetric between-hand interference (caused by neural cross talk) when different kinematics plans were to be executed by each hand or when only one was visually guided and received perturbed visual feedback. Here, in continuous bimanual circle drawing tasks, we investigated if the central nervous system (CNS) can benefit from visual composite feedback, i.e., a weighted sum of hands' positions presented for the visually guided hand, to control the nonvisible hand. Our results demonstrated improvement in the nonvisible nondominant hand (NDH) performance in the presence of the composite feedback. When NDH was visually guided, the dominant hand's (DH) performance during asymmetric drawing deteriorated, whereas its performance during symmetric drawing improved. This indicates that the CNS's ability to leverage composite feedback, which can be the result of decoding the nonvisible hand positional information from the composite feedback, is task-dependent and can be asymmetric. Also, the nonvisible hand's performance degraded when DH or NDH was visually guided with amplified error feedback. The results of the amplified feedback condition do not strongly support the asymmetry of the interference during asymmetric circle drawing. Comparing muscle activations in the asymmetric experiment, we concluded that the observed kinematic differences were not due to alternation in muscle co-contractions.NEW & NOTEWORTHY Many daily activities involve bimanual coordination while simultaneous movement of the hands may result in interference with their movements. Here, we studied whether the central nervous system could use the relevant information in composite feedback, i.e., a weighted sum of positional information of nonvisible and visible hands, to improve the movement of the nonvisible hand. Our results suggest the ability to decode and associate task-relevant information from the composite feedback.
Collapse
Affiliation(s)
- Milad Nazarahari
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sahand Ajami
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Soo Jeon
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Arash Arami
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
- KITE Institute, University Health Network (UHN), Toronto, Ontario, Canada
| |
Collapse
|
15
|
Altermatt M, Jordan H, Ho K, Byblow WD. Modulation of ipsilateral motor evoked potentials during bimanual coordination tasks. Front Hum Neurosci 2023; 17:1219112. [PMID: 37736146 PMCID: PMC10509758 DOI: 10.3389/fnhum.2023.1219112] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/08/2023] [Indexed: 09/23/2023] Open
Abstract
Introduction Ipsilateral motor evoked potentials (iMEPs) are difficult to obtain in distal upper limb muscles of healthy participants but give a direct insight into the role of ipsilateral motor control. Methods We tested a new high-intensity double pulse transcranial magnetic stimulation (TMS) protocol to elicit iMEPs in wrist extensor and flexor muscles during four different bimanual movements (cooperative-asymmetric, cooperative-symmetric, non-cooperative-asymmetric and non-cooperative-symmetric) in 16 participants. Results Nine participants showed an iMEP in the wrist extensor in at least 20% of the trials in each of the conditions and were classified as iMEP+ participants. iMEP persistence was greater for cooperative (50.5 ± 28.8%) compared to non-cooperative (31.6 ± 22.1%) tasks but did not differ between asymmetric and symmetric tasks. Area and amplitude of iMEPs were also increased during cooperative (area = 5.41 ± 3.4 mV × ms; amplitude = 1.60 ± 1.09 mV) compared to non-cooperative (area = 3.89 ± 2.0 mV × ms; amplitude = 1.12 ± 0.56 mV) tasks and unaffected by task-symmetry. Discussion The upregulation of iMEPs during common-goal cooperative tasks shows a functional relevance of ipsilateral motor control in bimanual movements. The paired-pulse TMS protocol is a reliable method to elicit iMEPs in healthy participants and can give new information about neural control of upper limb movements. With this work we contribute to the research field in two main aspects. First, we describe a reliable method to elicit ipsilateral motor evoked potentials in healthy participants which will be useful in further advancing research in the area of upper limb movements. Second, we add new insight into the motor control of bimanual movements. We were able to show an upregulation of bilateral control represented by increased ipsilateral motor evoked potentials in cooperative, object-oriented movements compared to separate bimanual tasks. This result might also have an impact on neurorehabilitation after stroke.
Collapse
Affiliation(s)
- Miriam Altermatt
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
| | - Harry Jordan
- Clinical Neuroscience Laboratory, Department of Medicine, The University of Auckland, Auckland, New Zealand
| | - Kelly Ho
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
| | - Winston D. Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Kitchen NM, Yuk J, Przybyla A, Scheidt RA, Sainburg RL. Bilateral arm movements are coordinated via task-dependent negotiations between independent and codependent control, but not by a "coupling" control policy. J Neurophysiol 2023; 130:497-515. [PMID: 37529832 PMCID: PMC10655823 DOI: 10.1152/jn.00501.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023] Open
Abstract
Prior research has shown that coordination of bilateral arm movements might be attributed to either control policies that minimize performance and control costs regardless of bilateral symmetry or by control coupling, which activates bilaterally homologous muscles as a single unit to achieve symmetric performance. We hypothesize that independent bimanual control (movements of one arm are performed without influence on the other) and codependent bimanual control (two arms are constrained to move together with high spatiotemporal symmetry) are two extremes on a coordination spectrum that can be negotiated to meet infinite variations in task demands. To better understand and distinguish between these views, we designed a task where minimization of either control costs or asymmetry would yield different patterns of coordination. Participants made bilateral reaches with a shared visual cursor to a midline target. We then covertly varied the gain contribution of either hand to the shared cursor's horizontal position. Across two experiments, we show that bilateral coordination retains high task-dependent sensitivity to subtle visual feedback gain asymmetries applied to the shared cursor. Specifically, we found a change from strong spatial covariation between hands during equal gains to more independent control during asymmetric gains, which occurred rapidly and with high specificity to the dimension of gain manipulation. Furthermore, the extent of spatial covariation was graded to the magnitude of perpendicular gain asymmetry between hands. These findings suggest coordination of bilateral arm movements flexibly maneuvers along a continuous coordination spectrum in a task-dependent manner that cannot be explained by bilateral control coupling.NEW & NOTEWORTHY Minimization of performance and control costs and efferent coupling between bilaterally homologous muscle groups have been separately hypothesized to describe patterns of bimanual coordination. Here, we address whether the mechanisms mediating independent and codependent control between limbs can be weighted for successful task performance. Using bilaterally asymmetric visuomotor gain perturbations, we show bimanual coordination can be characterized as a negotiation along a spectrum between extremes of independent and codependent control, but not efferent control coupling.
Collapse
Affiliation(s)
- Nick M Kitchen
- Department of Neurology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States
- Department of Kinesiology, Pennsylvania State University, State College, Pennsylvania, United States
| | - Jisung Yuk
- Department of Kinesiology, Pennsylvania State University, State College, Pennsylvania, United States
| | - Andrzej Przybyla
- Department of Physical Therapy, University of North Georgia, Dahlonega, Georgia, United States
| | - Robert A Scheidt
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Robert L Sainburg
- Department of Neurology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States
- Department of Kinesiology, Pennsylvania State University, State College, Pennsylvania, United States
| |
Collapse
|
17
|
Ivanova E, Pena-Perez N, Eden J, Yip Y, Burdet E. Dissociating haptic feedback from physical assistance does not improve motor performance. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083127 DOI: 10.1109/embc40787.2023.10340983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In robots for motor rehabilitation and sports training, haptic assistance typically provides both mechanical guidance and task-relevant information. With the natural human tendency to minimise metabolic cost, mechanical guidance may however prevent efficient short term learning and retention. In this work, we explore the effect of providing haptic feedback to the not active hand during a tracking task. We test four types of haptic feedback: task- or error-related information, no information and irrelevant information. The results show that feedback provided to the hand not carrying out the tracking task did not improve task performance. However, irrelevant information to the task worsened performance, and negatively influenced the participants' perception of helpfulness, assistance, likability and predictability.
Collapse
|
18
|
Pauwels L, Gooijers J. The Role of the Corpus Callosum (Micro)Structure in Bimanual Coordination: A Literature Review Update. J Mot Behav 2023; 55:525-537. [PMID: 37336516 DOI: 10.1080/00222895.2023.2221985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
The characterization of callosal white matter is crucial for understanding the relationship between brain structure and bimanual motor function. An earlier literature review established this. With advancements in neuroimaging and data modeling, we aim to provide an update on the existing literature. Firstly, we highlight new CC parcellation approaches, such as functional MRI- and atlas-informed tractography and in vivo histology. Secondly, we elaborate on recent insights into the CC's role in bimanual coordination, drawing evidence from studies on healthy young and older adults, patients and training-related callosal plasticity. We also reflect on progress in the field and propose future perspectives to inspire research on the underlying mechanisms of structural-functional interactions.
Collapse
Affiliation(s)
- Lisa Pauwels
- Department of Movement Sciences, KU Leuven, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- KU Leuven, Leuven Brain Institute, Department of Movement Sciences, Movement control & Neuroplasticity Research Group, Leuven, Belgium
| | - Jolien Gooijers
- Department of Movement Sciences, KU Leuven, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- KU Leuven, Leuven Brain Institute, Department of Movement Sciences, Movement control & Neuroplasticity Research Group, Leuven, Belgium
| |
Collapse
|
19
|
Hüttner N, Müller F, Cañal-Bruland R. Motor performance in joint action tasks: The impact of dyadic motive fit. Hum Mov Sci 2023; 90:103100. [PMID: 37263040 DOI: 10.1016/j.humov.2023.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
In many daily situations, two or more individuals need to coordinate their actions to achieve a common goal and perform successfully. Past research on joint action has predominantly focused on the question of how such interactions are accomplished. Here we focus on the impact of inter-individual, trait-like differences to predict joint action performance. More specifically, we examined whether performance in a joint action task is moderated by the (in)congruence of individuals' motive dispositions. To this end, 27 dyads performed a joint action task in which they had to navigate a ball through a maze with each partner using a joystick and each being responsible for either moving the ball along the x-axis or the y-axis. As dependent measures, we analyzed dyads' performance (times and errors). As trait-like predictors, we assessed implicit and explicit motives by means of the Picture Story Exercise and the Unified Motive Scale, respectively. Linear regression modeling revealed that congruent explicit affiliation motives predict faster best times and that higher congruent implicit achievement motives are associated with reduced errors. Exploratory Response Surface Analyses yielded identical results for the affiliation motive. These findings provide initial evidence to suggest that interindividual differences and in motives as well as their fit are related to joint action performance. Future directions of this new paradigm and novel ways to analyze dyadic motive fits and their relation to joint action performance are discussed.
Collapse
Affiliation(s)
- Norman Hüttner
- Department for the Psychology of Human Movement and Sport, Institute of Sport Science, Friedrich Schiller University Jena, Germany.
| | - Florian Müller
- Department for the Psychology of Human Movement and Sport, Institute of Sport Science, Friedrich Schiller University Jena, Germany
| | - Rouwen Cañal-Bruland
- Department for the Psychology of Human Movement and Sport, Institute of Sport Science, Friedrich Schiller University Jena, Germany
| |
Collapse
|
20
|
Paoletti P, Pellegrino M, Ben-Soussan TD. A Three-Fold Integrated Perspective on Healthy Development: An Opinion Paper. Brain Sci 2023; 13:857. [PMID: 37371337 DOI: 10.3390/brainsci13060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Mental health and wellbeing are increasingly threatened in the current post-pandemic times, with stress, especially in students, reaching preoccupying levels. In addition, while many educational programs are unidimensional (i.e., lacking integration between physical, emotional and cognitive elements), there are ways to promote physical, social and mental health in children and adolescents. In this opinion paper, we will discuss the importance of an integrative approach for health development and examine relevant factors, such as awareness and emotional intelligence. We will highlight evidence ranging from behavioral to electrophysiological, structural and molecular, and report several recent studies supporting the effectiveness of a holistic approach in supporting wellbeing and creativity in children and adults, and detailing a specific paradigm named the Quadrato Motor Training (QMT). QMT is a specifically structured movement meditation, involving cognitive, motor and affective components. Finally, we will support a holistic view on education, integrating motion, emotion and cognition to develop a person-centered, or in this case student-centered, approach to wellbeing and health.
Collapse
Affiliation(s)
- Patrizio Paoletti
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, 06081 Assisi, Italy
| | - Michele Pellegrino
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, 06081 Assisi, Italy
| | - Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, 06081 Assisi, Italy
| |
Collapse
|
21
|
Kaur J, Proksch S, Balasubramaniam R. The effect of elastic and viscous force fields on bimanual coordination. Exp Brain Res 2023; 241:1117-1130. [PMID: 36914895 PMCID: PMC10081978 DOI: 10.1007/s00221-023-06589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Bimanual in-phase and anti-phase coordination modes represent two basic movement patterns with distinct characteristics-homologous muscle contraction and non-homologous muscle contraction, respectively. A method to understand the contribution of each limb to the overall coordination pattern involves detuning (Δω) the natural eigenfrequency of each limb. In the present experiment, we experimentally broke the symmetry between the two upper limbs by adding elastic and viscous force fields using a Kinarm robot exoskeleton. We measured the effect of this symmetry breaking on coordination stability as participants performed bimanual in-phase and anti-phase movements using their left and right hand in 1:1 frequency locking mode. Differences between uncoupled frequencies were manipulated via the application of viscous & elastic force fields and using fast and slow oscillation frequencies with a custom task developed using the Kinarm robotic exoskeleton. The effects of manipulating the asymmetry between the limbs were measured through the mean and variability of relative phase (ϕ) from the intended modes of 0 ° or 180 °. In general, participants deviated less from intended phase irrespective of coordination mode in all matched conditions, except for when elastic loads are applied to both arms in the anti-phase coordination. Second, we found that when force fields were mismatched participants exhibited a larger deviation from the intended phase. Overall, there was increased phase deviation during anti-phase coordination. Finally, participants exhibited higher variability in relative phase in mismatched force conditions compared to matched force conditions, with overall higher variability during anti-phase coordination mode. We extend previous research by demonstrating that symmetry breaking caused by force differences between the limbs disrupts stability in each coordination mode.
Collapse
Affiliation(s)
- Jaskanwaljeet Kaur
- Sensorimotor Neuroscience Laboratory, Cognitive and Information Sciences, University of California, 5200 N Lake Road Merced, Merced, CA, 95343, USA.
| | - Shannon Proksch
- Sensorimotor Neuroscience Laboratory, Cognitive and Information Sciences, University of California, 5200 N Lake Road Merced, Merced, CA, 95343, USA.,Department of Psychology, Augustana University, Sioux Falls, SD, 57197, USA
| | - Ramesh Balasubramaniam
- Sensorimotor Neuroscience Laboratory, Cognitive and Information Sciences, University of California, 5200 N Lake Road Merced, Merced, CA, 95343, USA
| |
Collapse
|
22
|
Rogojin A, Gorbet DJ, Sergio LE. Sex differences in the neural underpinnings of unimanual and bimanual control in adults. Exp Brain Res 2023; 241:793-806. [PMID: 36738359 DOI: 10.1007/s00221-023-06561-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
While many of the movements we make throughout our day involve just one upper limb, most daily movements require a certain degree of coordination between both upper limbs. Historically, sex differences in eye-hand coordination have been observed. As well, there are demonstrated sex-specific differences in hemisphere symmetry, interhemispheric connectivity, and motor cortex organization. While it has been suggested that these anatomical differences may underlie sex-related differences in performance, sex differences in the functional neural correlate underlying bimanual performance have not been explicitly investigated. In the current study we tested the hypothesis that the functional connectivity underlying bimanual movement control differed depending on the sex of an individual. Participants underwent MRI scanning to acquire anatomical and functional brain images. During the functional runs, participants performed unimanual and bimanual coordination tasks using two button boxes. The tasks included pressing the buttons in time to an auditory cue with either their left or their right hand individually (unimanual), or with both hands simultaneously (bimanual). The bimanual task was further divided into either an in-phase (mirror/symmetrical) or anti-phase (parallel/asymmetrical) condition. Participants were provided with extensive training to ensure task comprehension, and performance error rates were found to be equivalent between men and women. A generalized psychophysiological interaction (gPPI) analysis was implemented to examine how functional connectivity in each condition was modulated by sex. In support of our hypothesis, women and men demonstrated differences in the neural correlates underlying unimanual and bimanual movements. In line with previous literature, functional connectivity patterns showed sex-related differences for right- vs left-hand movements. Sex-specific functional connectivity during bimanual movements was not a sum of the functional connectivity underlying right- and left-hand unimanual movements. Further, women generally showed greater interhemispheric functional connectivity across all conditions compared to men and had greater connectivity between task-related cortical areas, while men had greater connectivity involving the cerebellum. Sex differences in brain connectivity were associated with both unimanual and bimanual movement control. Not only do these findings provide novel insight into the fundamentals of how the brain controls bimanual movements in both women and men, they also present potential clinical implications on how bimanual movement training used in rehabilitation can best be tailored to the needs of individuals.
Collapse
Affiliation(s)
- Alica Rogojin
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - Diana J Gorbet
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
- Centre for Vision Research, York University, Toronto, ON, Canada.
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada.
| |
Collapse
|
23
|
Van Malderen S, Hehl M, Verstraelen S, Swinnen SP, Cuypers K. Dual-site TMS as a tool to probe effective interactions within the motor network: a review. Rev Neurosci 2023; 34:129-221. [PMID: 36065080 DOI: 10.1515/revneuro-2022-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Dual-site transcranial magnetic stimulation (ds-TMS) is well suited to investigate the causal effect of distant brain regions on the primary motor cortex, both at rest and during motor performance and learning. However, given the broad set of stimulation parameters, clarity about which parameters are most effective for identifying particular interactions is lacking. Here, evidence describing inter- and intra-hemispheric interactions during rest and in the context of motor tasks is reviewed. Our aims are threefold: (1) provide a detailed overview of ds-TMS literature regarding inter- and intra-hemispheric connectivity; (2) describe the applicability and contributions of these interactions to motor control, and; (3) discuss the practical implications and future directions. Of the 3659 studies screened, 109 were included and discussed. Overall, there is remarkable variability in the experimental context for assessing ds-TMS interactions, as well as in the use and reporting of stimulation parameters, hindering a quantitative comparison of results across studies. Further studies examining ds-TMS interactions in a systematic manner, and in which all critical parameters are carefully reported, are needed.
Collapse
Affiliation(s)
- Shanti Van Malderen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Melina Hehl
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| |
Collapse
|
24
|
Pellegrino M, Ben-Soussan TD, Paoletti P. A Scoping Review on Movement, Neurobiology and Functional Deficits in Dyslexia: Suggestions for a Three-Fold Integrated Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3315. [PMID: 36834011 PMCID: PMC9966639 DOI: 10.3390/ijerph20043315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Developmental dyslexia is a common complex neurodevelopmental disorder. Many theories and models tried to explain its symptomatology and find ways to improve poor reading abilities. The aim of this scoping review is to summarize current findings and several approaches and theories, focusing on the interconnectedness between motion, emotion and cognition and their connection to dyslexia. Consequently, we present first a brief overview of the main theories and models regarding dyslexia and its proposed neural correlates, with a particular focus on cerebellar regions and their involvement in this disorder. After examining different types of intervention programs and remedial training, we highlight the effects of a specific structured sensorimotor intervention named Quadrato Motor Training (QMT). QMT utilizes several cognitive and motor functions known to be relevant in developmental dyslexia. We introduce its potential beneficial effects on reading skills, including working memory, coordination and attention. We sum its effects ranging from behavioral to functional, structural and neuroplastic, especially in relation to dyslexia. We report several recent studies that employed this training technique with dyslexic participants, discussing the specific features that distinguish it from other training within the specific framework of the Sphere Model of Consciousness. Finally, we advocate for a new perspective on developmental dyslexia integrating motion, emotion and cognition to fully encompass this complex disorder.
Collapse
Affiliation(s)
- Michele Pellegrino
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, 06081 Assisi, Italy
| | - Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, 06081 Assisi, Italy
| | | |
Collapse
|
25
|
Matsumoto H, Takenaka Y, Suzuki T, Sugawara K. The effect of initiation prediction and non-prediction on muscle relaxation control. J Phys Ther Sci 2023; 35:293-299. [PMID: 37020829 PMCID: PMC10067346 DOI: 10.1589/jpts.35.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 04/03/2023] Open
Abstract
[Purpose] This study aimed to examine the difference in the excitability of the primary motor cortex between initiation-predictive and non-predictive tasks, where the onset of muscle relaxation is predicted and not predicted, respectively. [Participants and Methods] Seventeen participants were asked to perform rapid muscle relaxation either through an initiation-predictive or non-predictive task. The baseline was set at 20 percent of the maximum voluntary contraction. Motor-evoked potentials and H-reflexes elicited by transcranial magnetic stimulation and median nerve electrical stimulation, respectively, were measured. The mean stimulation time from the onset of relaxation was calculated, and the motor-evoked potentials and Hoffmann's reflexes elicited during the first (immediately before relaxation) and second half (long before relaxation) were compared. [Results] The amplitude of the motor-evoked potential significantly increased in both initiation-predictive and non-predictive tasks when compared to the baseline, indicating increased excitability of the primary motor cortex. The motor-evoked potential from the initiation-non-predictive task, but not the initiation-predictive task, was associated with increased excitability of the primary motor cortex immediately before relaxation. [Conclusion] Variations in the predictability of motor movements are associated with changes in muscle relaxation control in the central nervous system.
Collapse
|
26
|
de Carvalho M, Swash M. Upper and lower motor neuron neurophysiology and motor control. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:17-29. [PMID: 37562869 DOI: 10.1016/b978-0-323-98818-6.00018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
This chapter considers the principles that underlie neurophysiological studies of upper motor neuron or lower motor neuron lesions, based on an understanding of the normal structure and function of the motor system. Human motor neurophysiology consists of an evaluation of the active components of the motor system that are relevant to volitional movements. Relatively primitive motor skills include locomotion, much dependent on the spinal cord central pattern generator, reaching, involving proximal and distal muscles activation, and grasping. Humans are well prepared to perform complex movements like writing. The role of motor cortex is critical for the motor activity, very dependent on the continuous sensory feedback, and this is essential for adapting the force and speed control, which contributes to motor learning. Most corticospinal neurons in the brain project to brainstem and spinal cord, many with polysynaptic inhibitory rather than excitatory connections. The monosynaptic connections observed in humans and primates constitute a specialized pathway implicated in fractional finger movements. Spinal cord has a complex physiology, and local reflexes and sensory feedback are essential to control adapted muscular contraction during movement. The cerebellum has a major role in motor coordination, but also consistent roles in sensory activities, speech, and language, in motor and spatial memory, and in psychological activity. The motor unit is the final effector of the motor drive. The complex interplay between the lower motor neuron, its axon, motor end-plates, and muscle fibers allows a relevant plasticity in the movement output.
Collapse
Affiliation(s)
- Mamede de Carvalho
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa-Norte, Lisbon, Portugal; Faculdade de Medicina-Instituto de Medicina Molecular-Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal.
| | - Michael Swash
- Faculdade de Medicina-Instituto de Medicina Molecular-Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal; Department of Neurology, Barts and London School of Medicine, Queen Mary University of London and Royal London Hospital, London, United Kingdom
| |
Collapse
|
27
|
Sardar SD, Yeo SH, Allsop JE, Punt TD. Overt visual attention and between-limb asynchrony for bimanual reaching movements. Exp Brain Res 2023; 241:649-660. [PMID: 36658440 PMCID: PMC9894997 DOI: 10.1007/s00221-023-06552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
Although synchrony between the limbs is an often-cited feature of bimanual coordination, recent studies have also highlighted the small asynchronies that can occur. The visuo-motor demands of any bimanual task are considered central to the emergence of asynchrony, but the relationship between the two remains largely unexplored. This study aimed to address this issue. Hand and eye movements were measured in 19 participants, while they made either unimanual or bimanual reach-to-point (aiming) movements to targets presented on a touchscreen. Bimanual movements were either congruent (same-sized targets) or incongruent (different-sized targets). Resulting hand data showed many of the typical patterns of movement previously reported. While temporal coupling between the limbs remained largely evident for bimanual movements, small between-limb asynchronies were apparent and demonstrated clear associations with the competing precision requirements of the targets and related visual attention. Participants mainly directed their gaze towards the more difficult target with corresponding reaching movements demonstrating greater precision than for the easier target. Additionally, there was a reliable tendency for the hand reaching towards the more difficult target to lead. Importantly, it was the competing visuo-motor demands of individual movements rather than overall difficulty that resulted in greater between-limb asynchrony; accordingly, where both targets were small (i.e., the most difficult condition), asynchrony was significantly less pronounced than for incongruent bimanual conditions. The results show how the visuo-motor system balances its apparent drive for synchrony in coordinating bimanual movements with the competing demands that characterise the constituent unimanual movements.
Collapse
Affiliation(s)
- S. D. Sardar
- grid.6572.60000 0004 1936 7486School of Sport, Exercise and Rehabilitation Sciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - S.-H. Yeo
- grid.6572.60000 0004 1936 7486School of Sport, Exercise and Rehabilitation Sciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - J. E. Allsop
- grid.6572.60000 0004 1936 7486School of Sport, Exercise and Rehabilitation Sciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT UK ,grid.469105.f0000 0004 0627 7078Central Flying School, RAF College Cranwell, Sleaford, NG34 8HB UK
| | - T. D. Punt
- grid.6572.60000 0004 1936 7486School of Sport, Exercise and Rehabilitation Sciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
28
|
Peña-Pérez N, Eden J, Ivanova E, Farkhatdinov I, Burdet E. How virtual and mechanical coupling impact bimanual tracking. J Neurophysiol 2023; 129:102-114. [PMID: 36475891 PMCID: PMC9844510 DOI: 10.1152/jn.00057.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Bilateral training systems look to promote the paretic hand's use in individuals with hemiplegia. Although this is normally achieved using mechanical coupling (i.e., a physical connection between the hands), a virtual reality system relying on virtual coupling (i.e., through a shared virtual object) would be simpler to use and prevent slacking. However, it is not clear whether different coupling modes differently impact task performance and effort distribution between the hands. We explored how 18 healthy right-handed participants changed their motor behaviors in response to the uninstructed addition of mechanical coupling, and virtual coupling using a shared cursor mapped to the average hands' position. In a second experiment, we then studied the impact of connection stiffness on performance, perception, and effort imbalance. The results indicated that both coupling types can induce the hands to actively contribute to the task. However, the task asymmetry introduced by using a cursor mapped to either the left or right hand only modulated the hands' contribution when not mechanically coupled. The tracking performance was similar for all coupling types, independent of the connection stiffness, although the mechanical coupling was preferred and induced the hands to move with greater correlation. These findings suggest that virtual coupling can induce the hands to actively contribute to a task in healthy participants without hindering their performance. Further investigation on the coupling types' impact on the performance and hands' effort distribution in patients with hemiplegia could allow for the design of simpler training systems that promote the affected hand's use.NEW & NOTEWORTHY We showed that the uninstructed addition of a virtual and/or a mechanical coupling can induce both hands to actively contribute in a continuous redundant bimanual tracking task without impacting performance. In addition, we showed that the task asymmetry can only alter the effort distribution when the hands are not connected, independent of the connection stiffness. Our findings suggest that virtual coupling could be used in the development of simpler VR-based training devices.
Collapse
Affiliation(s)
- Nuria Peña-Pérez
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
- Department of Bioengineering, Imperial College of Science Technology and Medicine, London, United Kingdom
| | - Jonathan Eden
- Mechanical Engineering Department, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Bioengineering, Imperial College of Science Technology and Medicine, London, United Kingdom
| | - Ekaterina Ivanova
- Department of Bioengineering, Imperial College of Science Technology and Medicine, London, United Kingdom
| | - Ildar Farkhatdinov
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
- Department of Bioengineering, Imperial College of Science Technology and Medicine, London, United Kingdom
| | - Etienne Burdet
- Department of Bioengineering, Imperial College of Science Technology and Medicine, London, United Kingdom
| |
Collapse
|
29
|
Transcranial direct current stimulation influences repetitive bimanual force control and interlimb force coordination. Exp Brain Res 2023; 241:313-323. [PMID: 36512062 DOI: 10.1007/s00221-022-06526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
This study aimed to investigate the potential effect of bilateral transcranial direct current stimulation (tDCS) on repetitive bimanual force control and force coordination in healthy young adults. In this sham-controlled crossover study, 18 right-handed young adults were enrolled. Repetitive bimanual handgrip force control trials were performed by the participants at 40% of maximum voluntary contraction until task failure. We randomly provided bilateral active and sham tDCS to the primary motor cortex (M1) of each participant before conducting the repetitive bimanual force control task. We quantified the number of successful trials to assess the ability to maintain bimanual force control across multiple trials. Moreover, we estimated bimanual force control and force coordination by quantifying force accuracy, variability, regularity, and correlation coefficient in maximal and adjusted successful trials. Force asymmetry was calculated to examine potential changes in motor dependency on each hand during the task. Bilateral tDCS significantly increased the number of successful trials compared with sham tDCS. The adjusted successful trial revealed that participants who received bilateral tDCS maintained better bimanual force control and coordination, as indicated by decreased force variability and regularity as well as more negative correlation coefficient values in comparison with sham condition. Moreover, participants who received bilateral tDCS produced more force from the dominant hand than from the nondominant hand in both maximal and adjusted successful trials. These findings suggest that bilateral tDCS on M1 successfully maintains bimanual force control with better force coordination by modulating motor dependency.
Collapse
|
30
|
Nolff MR, Conner NO, Haworth JL, Goble DJ. Lower Limb Asymmetry Evaluation Using the Balance Tracking System (BTrackS) Single Leg Stance Protocol. J Mot Behav 2022; 55:493-498. [PMID: 36581327 DOI: 10.1080/00222895.2022.2163222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/13/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Single Leg Stance (SLS) balance testing is a common means of determining lower limb asymmetries in motor behavior. The Balance Tracking System (BTrackS) Balance Plate is a low-cost, portable force plate for objectively obtaining balance measurements. The present study provides the first known balance results for the BTrackS SLS protocol. BTrackS SLS testing was conducted on 161 young adults (90 women, 71 men) according to the test's standardized instructions. Specifically, participants performed one-legged (left or right) stance on the BTrackS Balance Plate for four, (2 practice, 2 actual) 20 s trials. SLS test outputs included total Center of Pressure path length and absolute symmetry index. Results showed that women had better SLS performance than men and that both sexes performed better on the actual compared to practice trial. Systematic one-sample t-tests of the Absolute Symmetry Index measures showed that a difference of 16% or greater between legs represented asymmetric performance. These results have clear value for individuals using BTrackS SLS testing to evaluate potential asymmetries. Additionally, these findings agree with previous reports showing sex differences favoring women on tests of static balance, and validate the use of a practice trial in the BTrackS SLS protocol.
Collapse
Affiliation(s)
- Michael R Nolff
- Department of Human Movement Science, Oakland University, Rochester, Michigan, USA
| | - Nathan O Conner
- Department of Human Movement Science, Oakland University, Rochester, Michigan, USA
| | - Joshua L Haworth
- Department of Human Movement Science, Oakland University, Rochester, Michigan, USA
| | - Daniel J Goble
- Department of Human Movement Science, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
31
|
Higher visual gain contributions to bilateral motor synergies and force control. Sci Rep 2022; 12:18271. [PMID: 36316473 PMCID: PMC9622729 DOI: 10.1038/s41598-022-23274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
This study investigated the effects of altered visual gain levels on bilateral motor synergies determined by the uncontrolled manifold (UCM) hypothesis and force control. Twelve healthy participants performed bimanual index finger abduction force control tasks at 20% of their maximal voluntary contraction across four different visual gain conditions: 8, 80, 256, and 512 pixels/N. Quantifying force accuracy and variability within a trial provided a bimanual force control outcome. The UCM analysis measured bilateral motor synergies, a proportion of good variance to bad variance across multiple trials. Correlation analyses determined whether changes in the UCM variables were related to changes in force control variables from the lowest to highest visual gain conditions, respectively. Multiple analyses indicated that the three highest visual gain conditions in comparison to the lowest visual gain increased values of bilateral motor synergies and target force accuracy. The correlation findings showed that a reduction of bad variance from the lowest to three highest visual gain conditions was related to increased force accuracy. These findings reveal that visual gain greater than 8 pixels/N facilitates bimanual force control.
Collapse
|
32
|
The influence of distal and proximal muscle activation on neural crosstalk. PLoS One 2022; 17:e0275997. [PMID: 36282810 PMCID: PMC9595517 DOI: 10.1371/journal.pone.0275997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Previous research has indicated that neural crosstalk is asymmetric, with the dominant effector exerting a stronger influence on the non-dominant effector than vice versa. Recently, it has been hypothesized that this influence is more substantial for proximal than distal effectors. The current investigation was designed to determine the effects of distal ((First Dorsal Interosseous (FDI)) and proximal (triceps brachii (TBI)) muscle activation on neural crosstalk. Twelve right-limb dominant participants (mean age = 21.9) were required to rhythmically coordinate a 1:2 pattern of isometric force guided by Lissajous displays. Participants performed 10, 30 s trials with both distal and proximal effectors. Coherence between the two effector groups were calculated using EMG-EMG wavelet coherence. The results indicated that participants could effectively coordinate the goal coordination pattern regardless of the effectors used. However, spatiotemporal performance was more accurate when performing the task with distal than proximal effectors. Force distortion, quantified by harmonicity, indicated that more perturbations occurred in the non-dominant effector than in the dominant effector. The results also indicated significantly lower harmonicity for the non-dominant proximal effector compared to the distal effectors. The current results support the notion that neural crosstalk is asymmetric in nature and is greater for proximal than distal effectors. Additionally, the EMG-EMG coherence results indicated significant neural crosstalk was occurring in the Alpha bands (5-13 Hz), with higher values observed in the proximal condition. Significant coherence in the Alpha bands suggest that the influence of neural crosstalk is occurring at a subcortical level.
Collapse
|
33
|
Silva AF, Seifert L, Fernandes RJ, Vilas Boas JP, Figueiredo P. Front crawl swimming coordination: a systematic review. Sports Biomech 2022:1-20. [PMID: 36223481 DOI: 10.1080/14763141.2022.2125428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 09/10/2022] [Indexed: 10/17/2022]
Abstract
Several constraints, including environmental (e.g., aquatic resistance, temperature and viscosity), organismic (e.g., anthropometry, buoyancy) and task-related (e.g., imposed swim speed or stroke rate) impact motor coordination and swimming performance. As motor coordination requires structurally organising intra- and inter-limb coupling, the purpose of this review was to update the literature concerning coordination between the upper-limbs in front crawl swimming. We focused on the effects of biomechanical, physiological, and personal (gender, skill level, and age) factors on coordination and performance. In fact, it could be highlighted that upper-limbs coordination varies with organismic, task and environmental constraints, resulting in several available motor solutions that should be adopted according to how each swimmer deals with occurring constraints. As such, there is no ideal or optimal coordination pattern that youth, learners and less-skilled swimmers should imitate.
Collapse
Affiliation(s)
- Ana F Silva
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal
- Porto Biomechanics Laboratory, University of Porto, Porto, Portugal
| | - Ludovic Seifert
- Faculty of Sport Sciences, CETAPS EA3832, University of Rouen Normandy, Mont-Saint-Aignan, France
| | - Ricardo J Fernandes
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, LABIOMEP (Porto Biomechanics Laboratory), University of Porto, Porto, Portugal
| | - João Paulo Vilas Boas
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, LABIOMEP (Porto Biomechanics Laboratory), University of Porto, Porto, Portugal
| | - Pedro Figueiredo
- Physical Education Department, College of Education, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
34
|
Spectral properties of physiological mirror activity: an investigation of frequency features and common input between homologous muscles. Sci Rep 2022; 12:15965. [PMID: 36153347 PMCID: PMC9509371 DOI: 10.1038/s41598-022-20413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
During unilateral contractions, muscular activation can be detected in both active and resting limbs. In healthy populations, the latter is referred to as physiological mirror activity (pMA). The study of pMA holds implications for clinical applications as well as the understanding of bilateral motor control. However, the underlying mechanisms of pMA remain to be fully resolved. A commonality of prevailing explanatory approaches is the concept of shared neural input. With this study, we, therefore, aimed to investigate neural input in the form of multiple analyses of surface electromyography (sEMG) recordings in the frequency domain. For this purpose, 14 healthy, right-handed males aged 18–35 years were recruited. All participants performed a pinch-force task with the dominant hand in a blockwise manner. In total, 9 blocks of 5 contractions each were completed at 80% of maximum force output. Muscle activity was recorded via sEMG of the first dorsal interosseous muscle of the active and resting hand. We analyzed (1) spectral features as well as (2) intermuscular coherence (IMC). Our results demonstrate a blockwise increase in median frequency, mean frequency, and peak frequency in both hands. Frequency ratio analyses revealed a higher low-frequency component in the resting hand. Although we were able to demonstrate IMC on an individual level, results varied greatly and grand-averaged IMC failed to reach significance. Taken together, our findings imply an overlap of spectral properties between active and passive hands during repeated unilateral contractions. Combined with evidence from previous studies, this suggests a common neural origin between active and resting hands during unilateral contractions possibly resulting from a reduction in interhemispheric inhibition due to high force demands. Nevertheless, the exploratory nature of this study necessitates the classification of our results through follow-up studies.
Collapse
|
35
|
Solomons CD, Shanmugasundaram V, Balasubramanian S. Encoder-Controlled Functional Electrical Stimulator for Bilateral Wrist Activities—Design and Evaluation. Bioengineering (Basel) 2022; 9:bioengineering9100501. [PMID: 36290469 PMCID: PMC9598413 DOI: 10.3390/bioengineering9100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Upper limb impairment following stroke is often characterized by limited voluntary control in the affected arm. In addition, significant motor coordination problems occur on the unaffected arm due to avoidance of performing bilateral symmetrical activities. Rehabilitation strategies should, therefore, not only aim at improving voluntary control on the affected arm, but also contribute to synchronizing activity from both upper limbs. The encoder-controlled functional electrical stimulator, described in this paper, implements precise contralateral control of wrist flexion and extension with electrical stimulation. The stimulator is calibrated for each individual to obtain a table of stimulation parameters versus wrist angle. This table is used to set stimulation parameters dynamically, based on the difference in wrist angle between the set and stimulated side, which is continuously monitored. This allows the wrist on the stimulated side to follow flexion and extension patterns on the set side, thereby mirroring wrist movements of the normal side. This device also gives real-time graphical feedback on how the stimulated wrist is performing in comparison to the normal side. A study was performed on 25 normal volunteers to determine how closely wrist movements on the set side were being followed on the stimulated side. Graphical results show that there were minor differences, which were quantified by considering the peak angles of flexion and extension on the set and stimulated side for each participant. The mean difference in peak flexion and extension range of movement was 2.3 degrees and 1.9 degrees, respectively, with a mean time lag of 1 s between the set and the stimulated angle graphs.
Collapse
Affiliation(s)
- Cassandra D. Solomons
- Department of Instrumentation and Control, School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Vivekanandan Shanmugasundaram
- Department of Instrumentation and Control, School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
- Correspondence:
| | - Sivakumar Balasubramanian
- Department of Bioengineering, Christian Medical College and Hospital, Bagayam, Vellore 632002, Tamil Nadu, India
| |
Collapse
|
36
|
Johnson T, Ridgeway G, Luchmee D, Jacob J, Kantak S. Bimanual coordination during reach-to-grasp actions is sensitive to task goal with distinctions between left- and right-hemispheric stroke. Exp Brain Res 2022; 240:2359-2373. [PMID: 35869986 PMCID: PMC10077867 DOI: 10.1007/s00221-022-06419-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
The perceptual feature of a task such as how a task goal is perceived influences performance and coordination of bimanual actions in neurotypical adults. To assess how bimanual task goal modifies paretic and non-paretic arm performance and bimanual coordination in individuals with stroke affecting left and right hemispheres, 30 participants with hemispheric stroke (15 right-hemisphere damage-RHD); 15 left-hemisphere damage-LHD) and 10 age-matched controls performed reach-to-grasp and pick-up actions under bimanual common-goal (i.e., two physically coupled dowels), bimanual independent-goal (two physically uncoupled dowels), and unimanual conditions. Reach-to-grasp time and peak grasp aperture indexed motor performance, while time lags between peak reach velocities, peak grasp apertures, and peak pick-up velocities of the two hands characterized reach, grasp, and pick-up coordination, respectively. Compared to unimanual actions, bimanual actions significantly slowed non-paretic arm speed to match paretic arm speed, thus affording no benefit to paretic arm performance. Detriments in non-paretic arm performance during bimanual actions was more pronounced in the RHD group. Under common-goal conditions, movements were faster with smaller peak grasp apertures compared to independent-goal conditions for all groups. Compared to controls, individuals with stroke demonstrated poor grasp and pick-up coordination. Of the patient groups, patients with LHD showed more pronounced deficits in grasp coordination between hands. Finally, grasp coordination deficits related to paretic arm motor deficits (upper extremity Fugl-Meyer score) for LHD group, and to Trail-Making Test performance for RHD group. Findings suggest that task goal and distinct clinical deficits influence bimanual performance and coordination in patients with left- and right-hemispheric stroke.
Collapse
Affiliation(s)
- Tessa Johnson
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, PA, 19027, USA
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, PA, USA
| | - Gordon Ridgeway
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Dustin Luchmee
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, PA, 19027, USA
| | - Joshua Jacob
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, PA, 19027, USA
| | - Shailesh Kantak
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, PA, 19027, USA.
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA.
| |
Collapse
|
37
|
Seer C, Adab HZ, Sidlauskaite J, Dhollander T, Chalavi S, Gooijers J, Sunaert S, Swinnen SP. Bridging cognition and action: executive functioning mediates the relationship between white matter fiber density and complex motor abilities in older adults. Aging (Albany NY) 2022; 14:7263-7281. [PMID: 35997651 PMCID: PMC9550248 DOI: 10.18632/aging.204237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
Aging may be associated with motor decline that is attributed to deteriorating white matter microstructure of the corpus callosum (CC), among other brain-related factors. Similar to motor functioning, executive functioning (EF) typically declines during aging, with age-associated changes in EF likewise being linked to altered white matter connectivity in the CC. Given that both motor and executive functions rely on white matter connectivity via the CC, and that bimanual control is thought to rely on EF, the question arises whether EF can at least party account for the proposed link between CC-connectivity and motor control in older adults. To address this, diffusion magnetic resonance imaging data were obtained from 84 older adults. A fiber-specific approach was used to obtain fiber density (FD), fiber cross-section (FC), and a combination of both metrics in eight transcallosal white matter tracts. Motor control was assessed using a bimanual coordination task. EF was determined by a domain-general latent EF-factor extracted from multiple EF tasks, based on a comprehensive test battery. FD of transcallosal prefrontal fibers was associated with cognitive and motor performance. EF partly accounted for the relationship between FD of prefrontal transcallosal pathways and motor control. Our results underscore the multidimensional interrelations between callosal white matter connectivity (especially in prefrontal brain regions), EF across multiple domains, and motor control in the older population. They also highlight the importance of considering EF when investigating brain-motor behavior associations in older adults.
Collapse
Affiliation(s)
- Caroline Seer
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Justina Sidlauskaite
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | | | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, KU Leuven and University Hospital Leuven (UZ Leuven), Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Zhou G, Chen Y, Wang X, Wei H, Huang Q, Li L. The correlations between kinematic profiles and cerebral hemodynamics suggest changes of motor coordination in single and bilateral finger movement. Front Hum Neurosci 2022; 16:957364. [PMID: 36061505 PMCID: PMC9433536 DOI: 10.3389/fnhum.2022.957364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The correlation between the performance of coordination movement and brain activity is still not fully understood. The current study aimed to identify activated brain regions and brain network connectivity changes for several coordinated finger movements with different difficulty levels and to correlate the brain hemodynamics and connectivity with kinematic performance. Methods Twenty-one right-dominant-handed subjects were recruited and asked to complete circular motions of single and bilateral fingers in the same direction (in-phase, IP) and in opposite directions (anti-phase, AP) on a plane. Kinematic data including radius and angular velocity at each task and synchronized blood oxygen concentration data using functional near-infrared spectroscopy (fNIRS) were recorded covering six brain regions including the prefrontal cortex, motor cortex, and occipital lobes. A general linear model was used to locate activated brain regions, and changes compared with baseline in blood oxygen concentration were used to evaluate the degree of brain region activation. Small-world properties, clustering coefficients, and efficiency were used to measure information interaction in brain activity during the movement. Result It was found that the radius error of the dominant hand was significantly lower than that of the non-dominant hand (p < 0.001) in both clockwise and counterclockwise movements. The fNIRS results confirmed that the contralateral brain region was activated during single finger movement and the dominant motor area was activated in IP movement, while both motor areas were activated simultaneously in AP movement. The Δhbo were weakly correlated with radius errors (p = 0.002). Brain information interaction in IP movement was significantly larger than that from AP movement in the brain network (p < 0.02) in the right prefrontal cortex. Brain activity in the right motor cortex reduces motor performance (p < 0.001), while the right prefrontal cortex region promotes it (p < 0.05). Conclusion Our results suggest there was a significant correlation between motion performance and brain activation level, as well as between motion deviation and brain functional connectivity. The findings may provide a basis for further exploration of the operation of complex brain networks.
Collapse
Affiliation(s)
- Guangquan Zhou
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yuzhao Chen
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiaohan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Hao Wei
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qinghua Huang
- School of Artificial Intelligence, OPtics and ElectroNics (iOPEN), Northwestern Polytechnical University, Xi’an, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
39
|
Soto C, Gázquez JMM, Llorente M. Hand preferences in coordinated bimanual tasks in non-human primates: A systematic review and meta-analysis. Neurosci Biobehav Rev 2022; 141:104822. [PMID: 35961384 DOI: 10.1016/j.neubiorev.2022.104822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022]
Abstract
The evolutionary significance of hand preferences among non-human primates and humans has been studied for decades with the aim of determining the origins of the population-level tendency. In this study, a meta-analysis was conducted to statistically integrate data on hand preferences in non-human primates performing the tube task and other bimanual tasks to determine the presence and direction of manual laterality. Significant individual-level lateralization was obtained for these bimanual tasks. In nonhuman primates, 82% of the animals analysed showed right or left-hand preference performing the tube task, this figure being 90% for other bimanual tasks. In contrast with humans, no asymmetry was found at the population level. Additionally, population-level preferences were not found in either of the tasks, although a strong manual preference was found when performing the tube task and other bimanual tasks. Species was studied as a variable moderator throughout the meta-analysis. These results highlight the importance of standardized testing methodologies across species and institutions to obtain comparable data and fill the gaps in the taxonomy.
Collapse
Affiliation(s)
- Cristina Soto
- Fundació UdG: Innovació i Formació, Universitat de Girona, Carrer Pic de Peguera 11, 17003 Girona, Spain
| | - José M M Gázquez
- Fundació UdG: Innovació i Formació, Universitat de Girona, Carrer Pic de Peguera 11, 17003 Girona, Spain
| | - Miquel Llorente
- Fundació UdG: Innovació i Formació, Universitat de Girona, Carrer Pic de Peguera 11, 17003 Girona, Spain; Grup de Recerca "Llenguatge i Cognició", Departament de Psicologia, Facultat d'Educació i Psicologia, Universitat de Girona, Plaça Sant Domènec 9, 17004 Girona, Spain.
| |
Collapse
|
40
|
Veldema J, Gharabaghi A. Non-invasive brain stimulation for improving gait, balance, and lower limbs motor function in stroke. J Neuroeng Rehabil 2022; 19:84. [PMID: 35922846 PMCID: PMC9351139 DOI: 10.1186/s12984-022-01062-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives This systematic review and meta-analysis aim to summarize and analyze the available evidence of non-invasive brain stimulation/spinal cord stimulation on gait, balance and/or lower limb motor recovery in stroke patients. Methods The PubMed database was searched from its inception through to 31/03/2021 for randomized controlled trials investigating repetitive transcranial magnetic stimulation or transcranial/trans-spinal direct current/alternating current stimulation for improving gait, balance and/or lower limb motor function in stroke patients. Results Overall, 25 appropriate studies (including 657 stroke subjects) were found. The data indicates that non-invasive brain stimulation/spinal cord stimulation is effective in supporting recovery. However, the effects are inhomogeneous across studies: (1) transcranial/trans-spinal direct current/alternating current stimulation induce greater effects than repetitive transcranial magnetic stimulation, and (2) bilateral application of non-invasive brain stimulation is superior to unilateral stimulation. Conclusions The current evidence encourages further research and suggests that more individualized approaches are necessary for increasing effect sizes in stroke patients.
Collapse
Affiliation(s)
- Jitka Veldema
- Department of Sport Science, Bielefeld University, 33 501, Bielefeld, Germany. .,Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany.
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| |
Collapse
|
41
|
Hikosaka M, Aramaki Y. Corrigendum: Neuromuscular Fatigue in Unimanual Handgrip Does Not Completely Affect Simultaneous Bimanual Handgrip. Front Hum Neurosci 2022; 16:962181. [PMID: 35874154 PMCID: PMC9296840 DOI: 10.3389/fnhum.2022.962181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mikito Hikosaka
- Graduate School of Health and Sport Sciences, Chukyo University, Aichi, Japan
| | - Yu Aramaki
- School of Health and Sport Sciences, Chukyo University, Aichi, Japan
- *Correspondence: Yu Aramaki
| |
Collapse
|
42
|
Maleki S, Hendrikse J, Chye Y, Caeyenberghs K, Coxon JP, Oldham S, Suo C, Yücel M. Associations of cardiorespiratory fitness and exercise with brain white matter in healthy adults: A systematic review and meta-analysis. Brain Imaging Behav 2022; 16:2402-2425. [PMID: 35773556 PMCID: PMC9581839 DOI: 10.1007/s11682-022-00693-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
Magnetic resonance imaging (MRI) studies have revealed positive associations between brain structure and physical activity, cardiorespiratory fitness, and exercise (referred to here as PACE). While a considerable body of research has investigated the effects of PACE on grey matter, much less is known about effects on white matter (WM). Hence, we conducted a systematic review of peer-reviewed literature published prior to 5th July 2021 using online databases (PubMed and Scopus) and PRISMA guidelines to synthesise what is currently known about the relationship between PACE and WM in healthy adults. A total of 60 studies met inclusion criteria and were included in the review. Heterogeneity across studies was calculated using Qochran's q test, and publication bias was assessed for each meta-analysis using Begg and Mazumdar rank correlation test. A meta-regression was also conducted to explore factors contributing to any observed heterogeneity. Overall, we observed evidence of positive associations between PACE and global WM volume (effect size (Hedges's g) = 0.137, p < 0.001), global WM anomalies (effect size = 0.182, p < 0.001), and local microstructure integrity (i.e., corpus callosum: effect size = 0.345, p < 0.001, and anterior limb of internal capsule: effect size = 0.198, p < 0.001). These findings suggest that higher levels of PACE are associated with improved global WM volume and local integrity. We appraise the quality of evidence, and discuss the implications of these findings for the preservation of WM across the lifespan. We conclude by providing recommendations for future research in order to advance our understanding of the specific PACE parameters and neurobiological mechanisms underlying these effects.
Collapse
Affiliation(s)
- Suzan Maleki
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia
| | - Joshua Hendrikse
- Movement and Exercise Neuroscience Laboratory, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Yann Chye
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - James P Coxon
- Movement and Exercise Neuroscience Laboratory, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Stuart Oldham
- Neural Systems and Behaviour, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Chao Suo
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia.
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia.
| |
Collapse
|
43
|
Van Hoornweder S, Mora DAB, Depestele S, Frieske J, van Dun K, Cuypers K, Verstraelen S, Meesen R. Age and Interlimb Coordination Complexity Modulate Oscillatory Spectral Dynamics and Large-scale Functional Connectivity. Neuroscience 2022; 496:1-15. [PMID: 35691515 DOI: 10.1016/j.neuroscience.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 12/12/2022]
Abstract
Interlimb coordination deteriorates as a result of aging. Due to its ubiquity in daily life, a greater understanding of the underlying neurophysiological changes is required. Here, we combined electroencephalography time-frequency spectral power and functional connectivity analyses to provide a comprehensive overview of the neural dynamics underlying the age-related deterioration of interlimb coordination involving all four limbs. Theta, alpha and beta oscillations in the frontal, central and parietal regions were analyzed in twenty younger (18-30 years) and nineteen older adults (65-78 years) during a complex interlimb reaction time task. Reaction time was significantly higher in older adults across all conditions, and the discrepancy between both age groups was largest in the most complex movement condition. Older adults demonstrated enhanced beta event-related desynchronization (i.e., the attenuation of beta power), which further increased along with task complexity and was positively linked to behavioral performance. Theta functional connectivity between frontal, central and parietal regions generally increased with movement complexity, irrespective of age group. In general, frontoparietal alpha band functional connectivity tended to be reduced in older versus younger adults, although these contrasts did not survive multiple comparison corrections. Overall, spectral results suggest that enhanced beta desynchronization in older adults reflects a successful compensatory mechanism to cope with increased difficulty during complex interlimb coordination. Functional connectivity results suggest that theta and alpha band connectivity are prone to respectively task- and age-related modulations. Future work could target these spectral and functional connectivity dynamics through noninvasive brain stimulation to potentially improve interlimb coordination in older adults.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium.
| | | | - Siel Depestele
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Kim van Dun
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Koen Cuypers
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Raf Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Buchanan JJ, Cordova A. Individual goals interact with dyad goals to constrain and facilitate the formation of interpersonal patterns of coordination. Hum Mov Sci 2022; 83:102949. [DOI: 10.1016/j.humov.2022.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022]
|
45
|
Loehrer PA, Weber I, Oehrn CR, Nettersheim FS, Dafsari HS, Knake S, Tittgemeyer M, Timmermann L, Belke M. Microstructural alterations predict impaired bimanual control in Parkinson’s disease. Brain Commun 2022; 4:fcac137. [PMID: 35702729 PMCID: PMC9185383 DOI: 10.1093/braincomms/fcac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/25/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Bimanual coordination is impaired in Parkinson’s disease affecting patients’ ability to perform activities of daily living and to maintain independence. Conveyance of information between cortical and subcortical areas is essential for bimanual coordination and relies on the integrity of cerebral microstructure. As pathological deposition of alpha-synuclein compromises microstructure in Parkinson’s disease, we investigated the relationship between microstructural integrity and bimanual coordination using diffusion-weighted MRI in 23 patients with Parkinson’s disease (mean age ± standard deviation: 56.0 ± 6.45 years; 8 female) and 26 older adults (mean age ± standard deviation: 58.5 ± 5.52 years). Whole-brain analysis revealed specific microstructural alterations between patients and healthy controls matched for age, sex, handedness, and cognitive status congruent with the literature and known Parkinson’s disease pathology. A general linear model revealed distinct microstructural alterations associated with poor bimanual coordination in Parkinson’s disease, corrected for multiple comparisons using a permutation-based approach. Integrating known functional topography, we conclude that distinct changes in microstructure cause an impediment of structures involved in attention, working memory, executive function, motor planning, motor control, and visual processing contributing to impaired bimanual coordination in Parkinson’s disease.
Collapse
Affiliation(s)
- Philipp A. Loehrer
- Correspondence to: Philipp A. Loehrer Department of Neurology Philipps-University Marburg, Baldinger Str 35043 Marburg, Germany E-mail:
| | - Immo Weber
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Carina R. Oehrn
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
- Department of Cardiology, University Hospital Cologne, Cologne, Germany
| | | | - Haidar S. Dafsari
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Susanne Knake
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
- Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Frankfurt am Main, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Marcus Belke
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Frankfurt am Main, Germany
| |
Collapse
|
46
|
Mårup SH, Møller C, Vuust P. Coordination of voice, hands and feet in rhythm and beat performance. Sci Rep 2022; 12:8046. [PMID: 35577815 PMCID: PMC9110414 DOI: 10.1038/s41598-022-11783-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/25/2022] [Indexed: 11/11/2022] Open
Abstract
Interlimb coordination is critical to the successful performance of simple activities in everyday life and it depends on precisely timed perception–action coupling. This is particularly true in music-making, where performers often use body-movements to keep the beat while playing more complex rhythmic patterns. In the current study, we used a musical rhythmic paradigm of simultaneous rhythm/beat performance to examine how interlimb coordination between voice, hands and feet is influenced by the inherent figure-ground relationship between rhythm and beat. Sixty right-handed participants—professional musicians, amateur musicians and non-musicians—performed three short rhythmic patterns while keeping the underlying beat, using 12 different combinations of voice, hands and feet. Results revealed a bodily hierarchy with five levels (1) left foot, (2) right foot, (3) left hand, (4) right hand, (5) voice, i.e., more precise task execution was observed when the rhythm was performed with an effector occupying a higher level in the hierarchy than the effector keeping the beat. The notion of a bodily hierarchy implies that the role assigned to the different effectors is key to successful interlimb coordination: the performance level of a specific effector combination differs considerably, depending on which effector holds the supporting role of the beat and which effector holds the conducting role of the rhythm. Although performance generally increased with expertise, the evidence of the hierarchy was consistent in all three expertise groups. The effects of expertise further highlight how perception influences action. We discuss the possibility that musicians’ more robust metrical prediction models make it easier for musicians to attenuate prediction errors than non-musicians. Overall, the study suggests a comprehensive bodily hierarchy, showing how interlimb coordination is influenced by hierarchical principles in both perception and action.
Collapse
|
47
|
Teku F, Maslovat D, Carlsen AN. A TMS-induced cortical silent period delays the contralateral limb for bimanual symmetrical movements and the reaction time delay is reduced on startle trials. J Neurophysiol 2022; 127:1298-1308. [PMID: 35417257 DOI: 10.1152/jn.00476.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bimanual actions are typically initiated and executed in a temporally synchronous manner, likely due to planning bilateral commands as a single motor "program." Applying high intensity transcranial magnetic stimulation (TMS) to the motor cortex can result in a contralateral cortical silent period that delays reaction time (RT), if timed to coincide with the final motor output stage. The current study examined the impact of a unilateral TMS silent period on the RT and inter-limb timing of bilateral wrist extension. In addition, because a loud, startling acoustic stimulus (SAS) can result in the involuntary release of pre-programmed actions via increased reticulospinal activation, it was of interest whether startle-induced speeding of response initiation would moderate the impact of the TMS-induced RT delay. Participants performed blocks of unilateral and bilateral wrist extension in response to an acoustic (82dB) go-signal. On selected trials, either TMS was applied to the left motor cortex 70 ms prior to the expected EMG response onset, a SAS (120dB) replaced the go-signal, or both TMS and SAS were delivered. Results showed that TMS led to a significant RT delay in the right limb during both unimanual and bimanual extension but had no impact on the left limb initiation. In addition, the magnitude of the right limb RT delay was smaller when the response was triggered by a SAS. These results imply that preplanned bimanually synchronous movements are susceptible to lateralized dissociation late into the cortical motor output stage and movements triggered by startle involve increased reticulospinal output.
Collapse
Affiliation(s)
- Faven Teku
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Dana Maslovat
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | | |
Collapse
|
48
|
Rattanawan P. Correlations between Hand Dexterity and Bimanual Coordination on the Activities of Daily Living in Older Adults with Mild Cognitive Impairment. Dement Geriatr Cogn Dis Extra 2022; 12:24-32. [PMID: 35432440 PMCID: PMC8958629 DOI: 10.1159/000521644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background/Aims Many motor impairments are present in older adults with cognitive decline. One of them is the impairment of hand dexterity and bimanual coordination that result in poor functional ability in the activities of daily living (ADL). This study investigated the effects of hand dexterity and bimanual coordination declination on the sub-domains of ADL in older adults with mild cognitive impairment (MCI). Methods Thirty-one senior individuals with MCI were recruited in this study. The Purdue Pegboard Test was used to measure hand dexterity, and bimanual coordination was assessed by the continuous circle-drawing task. Their ADL were assessed with the General Activity Daily Living questionnaire. Results The correlations analysis showed an association between the dominant hand and bimanual dexterity with the domestic domain of ADL and all conditions of hand dexterity with the complex domain of ADL. Moreover, the multiple regression analysis showed that the predictor of the greatest effect for domestic and complex domains was dominant hand dexterity. Discussion/Conclusion These results revealed that dominant hand dexterity strongly affected domestic and complex ADL in older adults with MCI. There were age-related changes regarding lateral asymmetrical motor reduction, especially in cognitive tasks. However, complex tasks involving cognitive function may need dominant, nondominant and bimanual hand dexterity.
Collapse
|
49
|
Chettouf S, Triebkorn P, Daffertshofer A, Ritter P. Unimanual sensorimotor learning-A simultaneous EEG-fMRI aging study. Hum Brain Mapp 2022; 43:2348-2364. [PMID: 35133058 PMCID: PMC8996364 DOI: 10.1002/hbm.25791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/24/2021] [Accepted: 01/09/2022] [Indexed: 11/06/2022] Open
Abstract
Sensorimotor coordination requires orchestrated network activity in the brain, mediated by inter‐ and intra‐hemispheric interactions that may be affected by aging‐related changes. We adopted a theoretical model, according to which intra‐hemispheric inhibition from premotor to primary motor cortex is mandatory to compensate for inter‐hemispheric excitation through the corpus callosum. To test this as a function of age we acquired electroencephalography (EEG) simultaneously with functional magnetic resonance imaging (fMRI) in two groups of healthy adults (younger N = 13: 20–25 year and older N = 14: 59–70 year) while learning a unimanual motor task. On average, quality of performance of older participants stayed significantly below that of the younger ones. Accompanying decreases in motor‐event‐related EEG β‐activity were lateralized toward contralateral motor regions, albeit more so in younger participants. In this younger group, the mean β‐power during motor task execution was significantly higher in bilateral premotor areas compared to the older adults. In both groups, fMRI blood oxygen level dependent (BOLD) signals were positively correlated with source‐reconstructed β‐amplitudes: positive in primary motor and negative in premotor cortex. This suggests that β‐amplitude modulation is associated with primary motor cortex “activation” (positive BOLD response) and premotor “deactivation” (negative BOLD response). Although the latter results did not discriminate between age groups, they underscore that enhanced modulation in primary motor cortex may be explained by a β‐associated excitatory crosstalk between hemispheres.
Collapse
Affiliation(s)
- Sabrina Chettouf
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, Berlin, Germany.,Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam
| | - Paul Triebkorn
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, Berlin, Germany.,Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Andreas Daffertshofer
- Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam
| | - Petra Ritter
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neuroscience Berlin, Berlin, Germany.,Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
50
|
Gooijers J, Chalavi S, Koster LK, Roebroeck A, Kaas A, Swinnen SP. Representational Similarity Scores of Digits in the Sensorimotor Cortex Are Associated with Behavioral Performance. Cereb Cortex 2022; 32:3848-3863. [PMID: 35029640 DOI: 10.1093/cercor/bhab452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Previous studies aimed to unravel a digit-specific somatotopy in the primary sensorimotor (SM1) cortex. However, it remains unknown whether digit somatotopy is associated with motor preparation and/or motor execution during different types of tasks. We adopted multivariate representational similarity analysis to explore digit activation patterns in response to a finger tapping task (FTT). Sixteen healthy young adults underwent magnetic resonance imaging, and additionally performed an out-of-scanner choice reaction time task (CRTT) to assess digit selection performance. During both the FTT and CRTT, force data of all digits were acquired using force transducers. This allowed us to assess execution-related interference (i.e., digit enslavement; obtained from FTT & CRTT), as well as planning-related interference (i.e., digit selection deficit; obtained from CRTT) and determine their correlation with digit representational similarity scores of SM1. Findings revealed that digit enslavement during FTT was associated with contralateral SM1 representational similarity scores. During the CRTT, digit enslavement of both hands was also associated with representational similarity scores of the contralateral SM1. In addition, right hand digit selection performance was associated with representational similarity scores of left S1. In conclusion, we demonstrate a cortical origin of digit enslavement, and uniquely reveal that digit selection is associated with digit representations in primary somatosensory cortex (S1). Significance statement In current systems neuroscience, it is of critical importance to understand the relationship between brain function and behavioral outcome. With the present work, we contribute significantly to this understanding by uniquely assessing how digit representations in the sensorimotor cortex are associated with planning- and execution-related digit interference during a continuous finger tapping and a choice reaction time task. We observe that digit enslavement (i.e., execution-related interference) finds its origin in contralateral digit representations of SM1, and that deficits in digit selection (i.e., planning-related interference) in the right hand during a choice reaction time task are associated with more overlapping digit representations in left S1. This knowledge sheds new light on the functional contribution of the sensorimotor cortex to everyday motor skills.
Collapse
Affiliation(s)
- J Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
- LBI-KU Leuven Brain Institute, Leuven 3000, Belgium
| | - S Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
- LBI-KU Leuven Brain Institute, Leuven 3000, Belgium
| | - L K Koster
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6229 EV, the Netherlands
| | - A Kaas
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6229 EV, the Netherlands
| | - S P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
- LBI-KU Leuven Brain Institute, Leuven 3000, Belgium
| |
Collapse
|