1
|
Hyun KA, Liang X, Xu Y, Kim SY, Boo KH, Park JS, Chi WJ, Hyun CG. Analysis of the Setomimycin Biosynthetic Gene Cluster from Streptomyces nojiriensis JCM3382 and Evaluation of Its α-Glucosidase Inhibitory Activity Using Molecular Docking and Molecular Dynamics Simulations. Int J Mol Sci 2024; 25:10758. [PMID: 39409089 PMCID: PMC11476836 DOI: 10.3390/ijms251910758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
The formation of atroposelective biaryl compounds in plants and fungi is well understood; however, polyketide aglycone synthesis and dimerization in bacteria remain unclear. Thus, the biosynthetic gene cluster (BGC) responsible for antibacterial setomimycin production from Streptomyces nojiriensis JCM3382 was examined in comparison with the BGCs of spectomycin, julichromes, lincolnenins, and huanglongmycin. The setomimycin BGC includes post-polyketide synthase (PKS) assembly/cycling enzymes StmD (C-9 ketoreductase), StmE (aromatase), and StmF (thioesterase) as key components. The heterodimeric TcmI-like cyclases StmH and StmK are proposed to aid in forming the setomimycin monomer. In addition, StmI (P-450) is predicted to catalyze the biaryl coupling of two monomeric setomimycin units, with StmM (ferredoxin) specific to the setomimycin BGC. The roles of StmL and StmN, part of the nuclear transport factor 2 (NTF-2)-like protein family and unique to setomimycin BGCs, could particularly interest biochemists and combinatorial biologists. α-Glucosidase, a key enzyme in type 2 diabetes, hydrolyzes carbohydrates into glucose, thereby elevating blood glucose levels. This study aimed to assess the α-glucosidase inhibitory activity of EtOAc extracts of JCM 3382 and setomimycin. The JCM 3382 EtOAc extract and setomimycin exhibited greater potency than the standard inhibitor, acarbose, with IC50 values of 285.14 ± 2.04 μg/mL and 231.26 ± 0.41 μM, respectively. Molecular docking demonstrated two hydrogen bonds with maltase-glucoamylase chain A residues Thr205 and Lys480 (binding energy = -6.8 kcal·mol-1), two π-π interactions with Trp406 and Phe450, and one π-cation interaction with Asp542. Residue-energy analysis highlighted Trp406 and Phe450 as key in setomimycin's binding to maltase-glucoamylase. These findings suggest that setomimycin is a promising candidate for further enzymological research and potential antidiabetic therapy.
Collapse
Affiliation(s)
- Kyung-A Hyun
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea; (K.-A.H.); (K.-H.B.)
| | - Xuhui Liang
- Jeju Inside Agency and Cosmetic Science Center, Department of Beauty and Cosmetology, Jeju National University, Jeju 63243, Republic of Korea; (X.L.); (Y.X.)
| | - Yang Xu
- Jeju Inside Agency and Cosmetic Science Center, Department of Beauty and Cosmetology, Jeju National University, Jeju 63243, Republic of Korea; (X.L.); (Y.X.)
| | - Seung-Young Kim
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan 31460, Republic of Korea;
| | - Kyung-Hwan Boo
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea; (K.-A.H.); (K.-H.B.)
| | - Jin-Soo Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea;
| | - Won-Jae Chi
- Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Beauty and Cosmetology, Jeju National University, Jeju 63243, Republic of Korea; (X.L.); (Y.X.)
| |
Collapse
|
2
|
Fujimoto KJ, Tsuji R, Wang-Otomo ZY, Yanai T. Prominent Role of Charge Transfer in the Spectral Tuning of Photosynthetic Light-Harvesting I Complex. ACS PHYSICAL CHEMISTRY AU 2024; 4:499-509. [PMID: 39346607 PMCID: PMC11428290 DOI: 10.1021/acsphyschemau.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 10/01/2024]
Abstract
Purple bacteria possess two ring-shaped protein complexes, light-harvesting 1 (LH1) and 2 (LH2), both of which function as antennas for solar energy utilization for photosynthesis but exhibit distinct absorption properties. The two antennas have differing amounts of bacteriochlorophyll (BChl) a; however, their significance in spectral tuning remains elusive. Here, we report a high-precision evaluation of the physicochemical factors contributing to the variation in absorption maxima between LH1 and LH2, namely, BChl a structural distortion, protein electrostatic interaction, excitonic coupling, and charge transfer (CT) effects, as derived from detailed spectral calculations using an extended version of the exciton model, in the model purple bacterium Rhodospirillum rubrum. Spectral analysis confirmed that the electronic structure of the excited state in LH1 extended to the BChl a 16-mer. Further analysis revealed that the LH1-specific redshift (∼61% in energy) is predominantly accounted for by the CT effect resulting from the closer inter-BChl distance in LH1 than in LH2. Our analysis explains how LH1 and LH2, both with chemically identical BChl a chromophores, use distinct physicochemical effects to achieve a progressive redshift from LH2 to LH1, ensuring efficient energy transfer to the reaction center special pair.
Collapse
Affiliation(s)
- Kazuhiro J. Fujimoto
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Rio Tsuji
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | | | - Takeshi Yanai
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Reiter S, Kiss FL, Hauer J, de Vivie-Riedle R. Thermal site energy fluctuations in photosystem I: new insights from MD/QM/MM calculations. Chem Sci 2023; 14:3117-3131. [PMID: 36970098 PMCID: PMC10034153 DOI: 10.1039/d2sc06160k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Cyanobacterial photosystem I (PSI) is one of the most efficient photosynthetic machineries found in nature. Due to the large scale and complexity of the system, the energy transfer mechanism from the antenna complex to the reaction center is still not fully understood. A central element is the accurate evaluation of the individual chlorophyll excitation energies (site energies). Such an evaluation must include a detailed treatment of site specific environmental influences on structural and electrostatic properties, but also their evolution in the temporal domain, because of the dynamic nature of the energy transfer process. In this work, we calculate the site energies of all 96 chlorophylls in a membrane-embedded model of PSI. The employed hybrid QM/MM approach using the multireference DFT/MRCI method in the QM region allows to obtain accurate site energies under explicit consideration of the natural environment. We identify energy traps and barriers in the antenna complex and discuss their implications for energy transfer to the reaction center. Going beyond previous studies, our model also accounts for the molecular dynamics of the full trimeric PSI complex. Via statistical analysis we show that the thermal fluctuations of single chlorophylls prevent the formation of a single prominent energy funnel within the antenna complex. These findings are also supported by a dipole exciton model. We conclude that energy transfer pathways may form only transiently at physiological temperatures, as thermal fluctuations overcome energy barriers. The set of site energies provided in this work sets the stage for theoretical and experimental studies on the highly efficient energy transfer mechanisms in PSI.
Collapse
Affiliation(s)
- Sebastian Reiter
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Ferdinand L Kiss
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich Lichtenbergstr. 4, Garching 85747 Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| |
Collapse
|
4
|
Ma X, Yue J, Qiao B, Wang Y, Gao Y, Ren T, Tang J, Feng E, Li Z, Han X. Novel fluorescent self-assembling material with gel properties: ion recognition and energy transfer. Polym Chem 2022. [DOI: 10.1039/d2py00356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fabrication strategy for preparing fluorescent nanomaterials has been proposed based on supramolecular self-assembly complexes and energy transfer. Here a dual acylhydrazone-functionalized molecule (DAF) was designed and synthesized by...
Collapse
|
5
|
Keable SM, Kölsch A, Simon PS, Dasgupta M, Chatterjee R, Subramanian SK, Hussein R, Ibrahim M, Kim IS, Bogacz I, Makita H, Pham CC, Fuller FD, Gul S, Paley D, Lassalle L, Sutherlin KD, Bhowmick A, Moriarty NW, Young ID, Blaschke JP, de Lichtenberg C, Chernev P, Cheah MH, Park S, Park G, Kim J, Lee SJ, Park J, Tono K, Owada S, Hunter MS, Batyuk A, Oggenfuss R, Sander M, Zerdane S, Ozerov D, Nass K, Lemke H, Mankowsky R, Brewster AS, Messinger J, Sauter NK, Yachandra VK, Yano J, Zouni A, Kern J. Room temperature XFEL crystallography reveals asymmetry in the vicinity of the two phylloquinones in photosystem I. Sci Rep 2021; 11:21787. [PMID: 34750381 PMCID: PMC8575901 DOI: 10.1038/s41598-021-00236-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022] Open
Abstract
Photosystem I (PS I) has a symmetric structure with two highly similar branches of pigments at the center that are involved in electron transfer, but shows very different efficiency along the two branches. We have determined the structure of cyanobacterial PS I at room temperature (RT) using femtosecond X-ray pulses from an X-ray free electron laser (XFEL) that shows a clear expansion of the entire protein complex in the direction of the membrane plane, when compared to previous cryogenic structures. This trend was observed by complementary datasets taken at multiple XFEL beamlines. In the RT structure of PS I, we also observe conformational differences between the two branches in the reaction center around the secondary electron acceptors A1A and A1B. The π-stacked Phe residues are rotated with a more parallel orientation in the A-branch and an almost perpendicular confirmation in the B-branch, and the symmetry breaking PsaB-Trp673 is tilted and further away from A1A. These changes increase the asymmetry between the branches and may provide insights into the preferential directionality of electron transfer.
Collapse
Affiliation(s)
- Stephen M Keable
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adrian Kölsch
- Institut für Biologie, Humboldt-Universität Zu Berlin, 10115, Berlin, Germany
| | - Philipp S Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Medhanjali Dasgupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - Rana Hussein
- Institut für Biologie, Humboldt-Universität Zu Berlin, 10115, Berlin, Germany
| | - Mohamed Ibrahim
- Institut für Biologie, Humboldt-Universität Zu Berlin, 10115, Berlin, Germany
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Cindy C Pham
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Franklin D Fuller
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Daniel Paley
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Louise Lassalle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kyle D Sutherlin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nigel W Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Iris D Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| | - Johannes P Blaschke
- National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Casper de Lichtenberg
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, 75237, Uppsala, Sweden.,Department of Chemistry, Umeå University, Linnaeus väg 6 (KBC huset), 90187, Umeå, Sweden
| | - Petko Chernev
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, 75237, Uppsala, Sweden
| | - Mun Hon Cheah
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, 75237, Uppsala, Sweden
| | - Sehan Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Korea
| | - Gisu Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Korea
| | - Jangwoo Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Korea
| | - Sang Jae Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Korea
| | - Jaehyun Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Korea
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Mark S Hunter
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Alexander Batyuk
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | | | | | | | - Karol Nass
- Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Henrik Lemke
- Paul Scherrer Institut, 5232, Villigen, Switzerland
| | | | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Johannes Messinger
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, 75237, Uppsala, Sweden
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität Zu Berlin, 10115, Berlin, Germany
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Subedi DR, Jang Y, Ganesan A, Schoellhorn S, Reid R, Verbeck GF, D’Souza F. Donor-acceptor conjugates derived from cobalt porphyrin and fullerene via metal-ligand axial coordination: Formation and excited state charge separation. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two types of cobalt porphyrins, viz., meso-tetrakis(tolylporphyrinato)cobalt(II), (TTP)Co (1), and meso-tetrakis(triphenylamino porphyrinato)cobalt(II), [(TPA)4P]Co, (2) were self-assembled via metal-ligand axial coordination of phenyl imidazole functionalized fulleropyrrolidine, ImC[Formula: see text] to form a new series of donor–acceptor constructs. A 1:2 complex formation with ImC[Formula: see text] was established in the case of (TTP)Co while for [(TPA)4P]Co only a 1:1 complex was possible to positively identify. The binding constants [Formula: see text] and [Formula: see text] for step-wise addition of ImC[Formula: see text] to (TTP)Co were found to be 1.07 × 105 and 3.20 × 104 M[Formula: see text], respectively. For [(TPA)4P]Co:ImC[Formula: see text], the measured [Formula: see text] values was found to be 6.48 × 104 M[Formula: see text], slightly smaller than that observed for (TTP)Co. Although both cobalt porphyrins were non-fluorescent, they were able to quench the fluorescence of ImC[Formula: see text] indicating occurrence of excited state events in the supramolecular donor-acceptor complexes. Electrochemistry coupled with spectroelectrochemistry, revealed the formation of cobalt(III) porphyrin cation instead of a cobalt(II) porphyrin radical cation, as the main product, during oxidation of phenyl imidazole coordinated cobalt porphyrin. With the help of computational and electrochemical results, an energy level diagram was constructed to witness excited state photo-events. Competitive energy and electron transfer from excited CoP to coordinated ImC[Formula: see text], and electron transfer from Im1C[Formula: see text]* to cobalt(II) porphyrin resulting into the formation of PCo[Formula: see text]:ImC[Formula: see text] charge separated state was possible to envision from the energy diagram. Finally, using femtosecond transient absorption spectroscopy and data analysis by Glotaran, it was possible to establish sequential occurrence of energy transfer and charge separation processes. The lifetime of the final charge separated state was [Formula: see text] 2 ns. A slightly better charge stabilization was observed in the case of [(TPA)4P]Co:ImC[Formula: see text] due to the presence of electron rich, peripheral triphenylamine substituents on the cobalt porphyrin.
Collapse
Affiliation(s)
- Dili R. Subedi
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Youngwoo Jang
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Ashwin Ganesan
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Sydney Schoellhorn
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Ryan Reid
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Guido F. Verbeck
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Francis D’Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| |
Collapse
|
7
|
Gisriel C, Coe J, Letrun R, Yefanov OM, Luna-Chavez C, Stander NE, Lisova S, Mariani V, Kuhn M, Aplin S, Grant TD, Dörner K, Sato T, Echelmeier A, Cruz Villarreal J, Hunter MS, Wiedorn MO, Knoska J, Mazalova V, Roy-Chowdhury S, Yang JH, Jones A, Bean R, Bielecki J, Kim Y, Mills G, Weinhausen B, Meza JD, Al-Qudami N, Bajt S, Brehm G, Botha S, Boukhelef D, Brockhauser S, Bruce BD, Coleman MA, Danilevski C, Discianno E, Dobson Z, Fangohr H, Martin-Garcia JM, Gevorkov Y, Hauf S, Hosseinizadeh A, Januschek F, Ketawala GK, Kupitz C, Maia L, Manetti M, Messerschmidt M, Michelat T, Mondal J, Ourmazd A, Previtali G, Sarrou I, Schön S, Schwander P, Shelby ML, Silenzi A, Sztuk-Dambietz J, Szuba J, Turcato M, White TA, Wrona K, Xu C, Abdellatif MH, Zook JD, Spence JCH, Chapman HN, Barty A, Kirian RA, Frank M, Ros A, Schmidt M, Fromme R, Mancuso AP, Fromme P, Zatsepin NA. Membrane protein megahertz crystallography at the European XFEL. Nat Commun 2019; 10:5021. [PMID: 31685819 PMCID: PMC6828683 DOI: 10.1038/s41467-019-12955-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/07/2019] [Indexed: 12/02/2022] Open
Abstract
The world’s first superconducting megahertz repetition rate hard X-ray free-electron laser (XFEL), the European XFEL, began operation in 2017, featuring a unique pulse train structure with 886 ns between pulses. With its rapid pulse rate, the European XFEL may alleviate some of the increasing demand for XFEL beamtime, particularly for membrane protein serial femtosecond crystallography (SFX), leveraging orders-of-magnitude faster data collection. Here, we report the first membrane protein megahertz SFX experiment, where we determined a 2.9 Å-resolution SFX structure of the large membrane protein complex, Photosystem I, a > 1 MDa complex containing 36 protein subunits and 381 cofactors. We address challenges to megahertz SFX for membrane protein complexes, including growth of large quantities of crystals and the large molecular and unit cell size that influence data collection and analysis. The results imply that megahertz crystallography could have an important impact on structure determination of large protein complexes with XFELs. The European X-ray free-electron laser (EuXFEL) in Hamburg is the first XFEL with a megahertz repetition rate. Here the authors present the 2.9 Å structure of the large membrane protein complex Photosystem I from T. elongatus that was determined at the EuXFEL.
Collapse
Affiliation(s)
- Chris Gisriel
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Jesse Coe
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Oleksandr M Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Cesar Luna-Chavez
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Natasha E Stander
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Stella Lisova
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Manuela Kuhn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Steve Aplin
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Thomas D Grant
- Hauptman-Woodward Institute, 700 Ellicott St, Buffalo, NY, 14203-1102, USA.,Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, 700 Ellicott St, Buffalo, NY, 14203-1102, USA
| | - Katerina Dörner
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tokushi Sato
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Austin Echelmeier
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Jorvani Cruz Villarreal
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, 94025, CA, USA
| | - Max O Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Victoria Mazalova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Shatabdi Roy-Chowdhury
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Jay-How Yang
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Alex Jones
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Johan Bielecki
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Yoonhee Kim
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Grant Mills
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Jose D Meza
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Saša Bajt
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Gerrit Brehm
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Institute for X-Ray Physics, University of Göttingen, 37077, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Sabine Botha
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | | | - Sandor Brockhauser
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.,Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Barry D Bruce
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN, USA, 37996.,Program in Energy Science and Engineering, University of Tennessee at Knoxville, Knoxville, TN, USA, 37996.,Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA, 37996
| | - Matthew A Coleman
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | | | - Erin Discianno
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Zachary Dobson
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Hans Fangohr
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.,University of Southampton, University Rd, Southampton, SO17 1BJ, UK
| | - Jose M Martin-Garcia
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.,Hamburg University of Technology, Vision Systems E-2, Harburger Schloßstraße 20, 21079, Hamburg, Germany
| | - Steffen Hauf
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Ahmad Hosseinizadeh
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Friederike Januschek
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.,Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Gihan K Ketawala
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, 94025, CA, USA.,Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Luis Maia
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Marc Messerschmidt
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Thomas Michelat
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Jyotirmoy Mondal
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN, USA, 37996
| | - Abbas Ourmazd
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | | | - Iosifina Sarrou
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Silvan Schön
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Peter Schwander
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Megan L Shelby
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | | | | | - Janusz Szuba
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Monica Turcato
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Thomas A White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Krzysztof Wrona
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Chen Xu
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Mohamed H Abdellatif
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - James D Zook
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - John C H Spence
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Henry N Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Richard A Kirian
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Alexandra Ros
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Marius Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Raimund Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Adrian P Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.,Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Victoria, Australia
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA. .,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
| | - Nadia A Zatsepin
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA. .,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA. .,ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Victoria, Australia.
| |
Collapse
|
8
|
Zarrabi N, Lim GN, Bayard BJ, D'Souza F, Poddutoori PK. Surface anchored self-assembled reaction centre mimics as photoanodes consisting of a secondary electron donor, aluminium(iii) porphyrin and TiO2 semiconductor. Phys Chem Chem Phys 2019; 21:19612-19622. [DOI: 10.1039/c9cp03400e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vertically assembled photoanodes, consisting of aluminum(iii) porphyrin, an electron donor, and semiconductor TiO2, have been fabricated and their photophysical properties investigated.
Collapse
Affiliation(s)
- Niloofar Zarrabi
- Department of Chemistry & Biochemistry
- University of Minnesota Duluth
- Duluth
- USA
| | - Gary N. Lim
- Department of Chemistry
- University of North Texas
- Denton
- USA
| | - Brandon J. Bayard
- Department of Chemistry & Biochemistry
- University of Minnesota Duluth
- Duluth
- USA
| | | | | |
Collapse
|
9
|
Kouřil R, Nosek L, Semchonok D, Boekema EJ, Ilík P. Organization of Plant Photosystem II and Photosystem I Supercomplexes. Subcell Biochem 2018; 87:259-286. [PMID: 29464563 DOI: 10.1007/978-981-10-7757-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
In nature, plants are continuously exposed to varying environmental conditions. They have developed a wide range of adaptive mechanisms, which ensure their survival and maintenance of stable photosynthetic performance. Photosynthesis is delicately regulated at the level of the thylakoid membrane of chloroplasts and the regulatory mechanisms include a reversible formation of a large variety of specific protein-protein complexes, supercomplexes or even larger assemblies known as megacomplexes. Revealing their structures is crucial for better understanding of their function and relevance in photosynthesis. Here we focus our attention on the isolation and a structural characterization of various large protein supercomplexes and megacomplexes, which involve Photosystem II and Photosystem I, the key constituents of photosynthetic apparatus. The photosystems are often attached to other protein complexes in thylakoid membranes such as light harvesting complexes, cytochrome b 6 f complex, and NAD(P)H dehydrogenase. Structural models of individual supercomplexes and megacomplexes provide essential details of their architecture, which allow us to discuss their function as well as physiological significance.
Collapse
Affiliation(s)
- Roman Kouřil
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic.
| | - Lukáš Nosek
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| | - Dmitry Semchonok
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Egbert J Boekema
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Petr Ilík
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
10
|
Kölsch A, Hejazi M, Stieger KR, Feifel SC, Kern JF, Müh F, Lisdat F, Lokstein H, Zouni A. Insights into the binding behavior of native and non-native cytochromes to photosystem I from Thermosynechococcus elongatus. J Biol Chem 2018; 293:9090-9100. [PMID: 29695502 DOI: 10.1074/jbc.ra117.000953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/18/2018] [Indexed: 01/09/2023] Open
Abstract
The binding of photosystem I (PS I) from Thermosynechococcus elongatus to the native cytochrome (cyt) c6 and cyt c from horse heart (cyt cHH) was analyzed by oxygen consumption measurements, isothermal titration calorimetry (ITC), and rigid body docking combined with electrostatic computations of binding energies. Although PS I has a higher affinity for cyt cHH than for cyt c6, the influence of ionic strength and pH on binding is different in the two cases. ITC and theoretical computations revealed the existence of unspecific binding sites for cyt cHH besides one specific binding site close to P700 Binding to PS I was found to be the same for reduced and oxidized cyt cHH Based on this information, suitable conditions for cocrystallization of cyt cHH with PS I were found, resulting in crystals with a PS I:cyt cHH ratio of 1:1. A crystal structure at 3.4-Å resolution was obtained, but cyt cHH cannot be identified in the electron density map because of unspecific binding sites and/or high flexibility at the specific binding site. Modeling the binding of cyt c6 to PS I revealed a specific binding site where the distance and orientation of cyt c6 relative to P700 are comparable with cyt c2 from purple bacteria relative to P870 This work provides new insights into the binding modes of different cytochromes to PS I, thus facilitating steps toward solving the PS I-cyt c costructure and a more detailed understanding of natural electron transport processes.
Collapse
Affiliation(s)
- Adrian Kölsch
- From the Biophysics of Photosynthesis, Institute for Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany,
| | - Mahdi Hejazi
- From the Biophysics of Photosynthesis, Institute for Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | - Kai R Stieger
- Biosystems Technology, Institute for Applied Life Sciences, University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Sven C Feifel
- Biosystems Technology, Institute for Applied Life Sciences, University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Jan F Kern
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Frank Müh
- Department of Theoretical Biophysics, Institute for Theoretical Physics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria, and
| | - Fred Lisdat
- Biosystems Technology, Institute for Applied Life Sciences, University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, CZ-121 16 Praha 2, Czech Republic
| | - Athina Zouni
- From the Biophysics of Photosynthesis, Institute for Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany,
| |
Collapse
|
11
|
Bagaki A, Gobeze HB, Charalambidis G, Charisiadis A, Stangel C, Nikolaou V, Stergiou A, Tagmatarchis N, D’Souza F, Coutsolelos AG. Axially Assembled Photosynthetic Antenna-Reaction Center Mimics Composed of Boron Dipyrromethenes, Aluminum Porphyrin, and Fullerene Derivatives. Inorg Chem 2017; 56:10268-10280. [DOI: 10.1021/acs.inorgchem.7b01050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anthi Bagaki
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus Heraklion 70013, Crete, Greece
| | - Habtom B. Gobeze
- Department of Chemistry, University of North Texas, 1155 Union
Circle, #305070, Denton, Texas 76203-5017, United States
| | - Georgios Charalambidis
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus Heraklion 70013, Crete, Greece
| | - Asterios Charisiadis
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus Heraklion 70013, Crete, Greece
| | - Christina Stangel
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus Heraklion 70013, Crete, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Contantinou Avenue, Athens 11635, Greece
| | - Vasilis Nikolaou
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus Heraklion 70013, Crete, Greece
| | - Anastasios Stergiou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Contantinou Avenue, Athens 11635, Greece
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Contantinou Avenue, Athens 11635, Greece
| | - Francis D’Souza
- Department of Chemistry, University of North Texas, 1155 Union
Circle, #305070, Denton, Texas 76203-5017, United States
| | - Athanassios G. Coutsolelos
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus Heraklion 70013, Crete, Greece
| |
Collapse
|
12
|
Hossain E, Deng SM, Gozem S, Krylov AI, Wang XB, Wenthold PG. Photoelectron Spectroscopy Study of Quinonimides. J Am Chem Soc 2017; 139:11138-11148. [DOI: 10.1021/jacs.7b05197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ekram Hossain
- The
Department of Chemistry Purdue University West Lafayette, Indiana 47906, United States
| | - Shihu M. Deng
- Physical
Sciences Division, Pacific Northwest National Laboratory P.O. Box 999, MS k8-88 Richland, Washington 99352, United States
| | - Samer Gozem
- Department
of Chemistry University of Southern California Los Angeles, 90089, United States
| | - Anna I. Krylov
- Department
of Chemistry University of Southern California Los Angeles, 90089, United States
| | - Xue-Bin Wang
- Physical
Sciences Division, Pacific Northwest National Laboratory P.O. Box 999, MS k8-88 Richland, Washington 99352, United States
| | - Paul G. Wenthold
- The
Department of Chemistry Purdue University West Lafayette, Indiana 47906, United States
| |
Collapse
|
13
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Wang L, Li Q, Zhang A, Zhou W, Jiang R, Yang Z, Yang H, Qin X, Ding S, Lu Q, Wen X, Lu C. The Phytol Phosphorylation Pathway Is Essential for the Biosynthesis of Phylloquinone, which Is Required for Photosystem I Stability in Arabidopsis. MOLECULAR PLANT 2017; 10:183-196. [PMID: 28007557 DOI: 10.1016/j.molp.2016.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/03/2016] [Accepted: 12/12/2016] [Indexed: 05/16/2023]
Abstract
Phytyl-diphosphate, which provides phytyl moieties as a common substrate in both tocopherol and phylloquinone biosynthesis, derives from de novo isoprenoid biosynthesis or a salvage pathway via phytol phosphorylation. However, very little is known about the role and origin of the phytyl moiety for phylloquinone biosynthesis. Since VTE6, a phytyl-phosphate kinase, is a key enzyme for phytol phosphorylation, we characterized Arabidopsis vte6 mutants to gain insight into the roles of phytyl moieties in phylloquinone biosynthesis and of phylloquinone in photosystem I (PSI) biogenesis. The VTE6 knockout mutants vte6-1 and vte6-2 lacked detectable phylloquinone, whereas the phylloquinone content in the VTE6 knockdown mutant vte6-3 was 90% lower than that in wild-type. In vte6 mutants, PSI function was impaired and accumulation of the PSI complex was defective. The PSI core subunits PsaA/B were efficiently synthesized and assembled into the PSI complex in vte6-3. However, the degradation rate of PSI subunits in the assembled PSI complex was more rapid in vte6-3 than in wild-type. In vte6-3, PSI was more susceptible to high-light damage than in wild-type. Our results provide the first genetic evidence that the phytol phosphorylation pathway is essential for phylloquinone biosynthesis, and that phylloquinone is required for PSI complex stability.
Collapse
Affiliation(s)
- Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingwei Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aihong Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wen Zhou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhipan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huixia Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaochun Qin
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shunhua Ding
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qingtao Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Center for Plant Gene Research, Beijing 100093, China.
| |
Collapse
|
15
|
Yoneda Y, Katayama T, Nagasawa Y, Miyasaka H, Umena Y. Dynamics of Excitation Energy Transfer Between the Subunits of Photosystem II Dimer. J Am Chem Soc 2016; 138:11599-605. [DOI: 10.1021/jacs.6b04316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yusuke Yoneda
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
| | - Tetsuro Katayama
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
| | - Yutaka Nagasawa
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
- College
of Life Science, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Hiroshi Miyasaka
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
| | - Yasufumi Umena
- Research
Institute for Interdisciplinary Science, Okayama University, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
16
|
Cryo-EM structure of a tetrameric cyanobacterial photosystem I complex reveals novel subunit interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1619-1626. [DOI: 10.1016/j.bbabio.2016.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 11/23/2022]
|
17
|
Hynninen PH, Mesilaakso M. Synthesis and characterization of chlorophyll a enol derivatives: Chlorophyll a tert-butyldimethylsilyl-enol ether and 131-deoxo-131, 132-didehydro-chlorophyll a. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616500486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using the sterically hindered base, 1,8-diazabicyclo[5.4.0]undec-7-ene, for enolization and tert-butyldimethylsilyl-trifluoromethanesulfonate for silylation, chlorophyll (Chl) [Formula: see text] produced after 15 min at 0 [Formula: see text]C in deaerated pyridine solution under argon, after work-up and chromatographic purification on a sucrose column, tert-butyldimethylsilyl-enol ether of Chl [Formula: see text] in a yield of 77%. The 131-deoxo-131,132-didehydro-chlorophyll [Formula: see text], was obtained in a yield of 23% through a reaction sequence, where Chl [Formula: see text] was first reduced with sodium borohydride to 13[Formula: see text]-hydroxy-Chl [Formula: see text], which via demetalation yielded 13[Formula: see text]-hydroxypheophytin [Formula: see text]. In the presence of the sterically hindered base, 1,8-bis(dimethylamino)naphthalene, trifluoroacetylimidazole dehydrated 13[Formula: see text]-hydroxypheophytin [Formula: see text] to 131-deoxo-131,132-didehydro-pheophytin [Formula: see text], which after metalation yielded 131-deoxo-131,132-didehydro-Chl [Formula: see text]. Using 1,8-bis(dimethylamino)naphthalene and trifluoroacetylimidazole, the straight conversion of 13[Formula: see text]-hydroxy-Chl [Formula: see text] to 131-deoxo-131,132-didehydro-Chl [Formula: see text] was found unsuccessful. The major products were characterized by electronic absorption spectra (UV-vis) and practically completely assigned 1H and [Formula: see text]C NMR spectra. Some intermediates of the syntheses were also characterized by ESI-TOF mass spectra. Compared with Chl [Formula: see text], the macrocyclic ring-current in the synthesized Chl [Formula: see text] enol derivatives was found weakened by the expansion of the [Formula: see text]-system to include the isocyclic ring E. Nevertheless, these enol derivatives were still considered to be diamagnetic and aromatic. The possibility of the functional role of the enol derivatives of chlorophyll in photosynthesis is discussed.
Collapse
Affiliation(s)
- Paavo H. Hynninen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Markku Mesilaakso
- Finnish Institute for Verification of the Chemical Weapons Convention, University of Helsinki, P.O. Box 55 (A.I. Virtasen Aukio 1), FI-00014 Helsinki, Finland
| |
Collapse
|
18
|
Jain K, Duvva N, Badgurjar D, Giribabu L, Chitta R. Synthesis and spectroscopic studies of axially bound tetra(phenothiazinyl)/tetra(bis(4′-tert-butylbiphenyl-4-yl)aniline)-zinc(II)porphyrin-fullero[C60 & C70]pyrrolidine donor–acceptor triads. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Zilliges Y, Dau H. Unexpected capacity for organic carbon assimilation by Thermosynechococcus elongatus, a crucial photosynthetic model organism. FEBS Lett 2016; 590:962-70. [PMID: 26935247 DOI: 10.1002/1873-3468.12120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 11/07/2022]
Abstract
Genetic modification of key residues of photosystems is essential to identify functionally crucial processes by spectroscopic and crystallographic investigation; the required protein stability favours use of thermophilic species. The currently unique thermophilic photosynthetic model organism is the cyanobacterial genus Thermosynechococcus. We report the ability of Thermosynechococcus elongatus to assimilate organic carbon, specifically D-fructose. Growth in the presence of a photosynthesis inhibitor opens the door towards crucial amino acid substitutions in photosystems by the rescue of otherwise lethal mutations. Yet depression of batch-culture growth after 7 days implies that additional developments are needed.
Collapse
Affiliation(s)
- Yvonne Zilliges
- Institut für Experimentalphysik/Biophysik & Photosynthese, Freie Universität Berlin, Germany
| | - Holger Dau
- Institut für Experimentalphysik/Biophysik & Photosynthese, Freie Universität Berlin, Germany
| |
Collapse
|
20
|
Poddutoori PK, Bregles LP, Lim GN, Boland P, Kerr RG, D’Souza F. Modulation of Energy Transfer into Sequential Electron Transfer upon Axial Coordination of Tetrathiafulvalene in an Aluminum(III) Porphyrin–Free-Base Porphyrin Dyad. Inorg Chem 2015; 54:8482-94. [DOI: 10.1021/acs.inorgchem.5b01190] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prashanth K. Poddutoori
- Department
of Chemistry, University of Prince Edward Island, 550 University
Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Lucas P. Bregles
- Department
of Chemistry, University of Prince Edward Island, 550 University
Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Gary N. Lim
- Department
of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Patricia Boland
- Department
of Chemistry, University of Prince Edward Island, 550 University
Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Russ G. Kerr
- Department
of Chemistry, University of Prince Edward Island, 550 University
Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Francis D’Souza
- Department
of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| |
Collapse
|
21
|
Poddutoori PK, Lim GN, Sandanayaka ASD, Karr PA, Ito O, D'Souza F, Pilkington M, van der Est A. Axially assembled photosynthetic reaction center mimics composed of tetrathiafulvalene, aluminum(III) porphyrin and fullerene entities. NANOSCALE 2015; 7:12151-12165. [PMID: 26126984 DOI: 10.1039/c5nr01675d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The distance dependence of sequential electron transfer has been studied in six, vertical, linear supramolecular triads, (TTF-Ph(n)-py → AlPor-Ph(m)-C60, n = 0, 1 and m = 1, 2, 3), constructed using tetrathiafulvalene (TTF), aluminum(III) porphyrin (AlPor) and fullerene (C60) entities. The C60 and TTF units are bound to the Al center on opposite faces of the porphyrin; the C60 through a covalent axial bond using a benzoate spacer, and the TTF through a coordination bond via an appended pyridine. Time-resolved optical and EPR spectroscopic methods and computational studies are used to demonstrate that excitation of the porphyrin leads to step-wise, sequential electron transfer (ET) between TTF and C60, and to study the electron transfer rates and exchange coupling between the components of the triads as a function of the bridge lengths. Femtosecond transient absorption studies show that the rates of charge separation, k(CS) are in the range of 10(9)-10(11) s(-1), depending on the length of the bridges. The lifetimes of the charge-separated state TTF˙(+)-C₆₀˙⁻ obtained from transient absorbance experiments and the singlet lifetimes of the radical pairs obtained by time-resolved EPR are in good agreement with each other and range from 60-130 ns in the triads. The time-resolved EPR data also show that population of the triplet sublevels of the charge-separated state in the presence of a magnetic field leads to much longer lifetimes of >1 μs. The data show that a modest stabilization of the charge separation lifetime occurs in the triads. The attenuation factor β = 0.36 Å(-1) obtained from the exchange coupling values between TTF˙(+) and C₆₀˙⁻ is consistent with values reported in the literature for oligophenylene bridged TTF-C60 conjugates. The singlet charge recombination lifetime shows a much weaker dependence on the distance between the donor and acceptor, suggesting that a simple superexchange model is not sufficient to describe the back reaction.
Collapse
Affiliation(s)
- Prashanth K Poddutoori
- Department of Chemistry, Brock University, 500 Glenridge Ave., St. Catharines, Ontario, Canada L2S 3A1.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Meng LB, Li D, Xiong S, Hu XY, Wang L, Li G. FRET-capable supramolecular polymers based on a BODIPY-bridged pillar[5]arene dimer with BODIPY guests for mimicking the light-harvesting system of natural photosynthesis. Chem Commun (Camb) 2015; 51:4643-6. [DOI: 10.1039/c5cc00398a] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
FRET-capable supramolecular polymers based on a pillar[5]arene dimer and BODIPY derivatives were successfully constructed to mimic the photosynthetic light-harvesting system.
Collapse
Affiliation(s)
- Lu-Bo Meng
- Key Laboratory of Mesoscopic Chemistry of MOE
- Center for Multimolecular Organic Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Dongqi Li
- Key Laboratory of Mesoscopic Chemistry of MOE
- Center for Multimolecular Organic Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Shuhan Xiong
- Key Laboratory of Mesoscopic Chemistry of MOE
- Center for Multimolecular Organic Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Xiao-Yu Hu
- Key Laboratory of Mesoscopic Chemistry of MOE
- Center for Multimolecular Organic Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE
- Center for Multimolecular Organic Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| |
Collapse
|
23
|
Poddutoori PK, Lim GN, Vassiliev S, D'Souza F. Ultrafast charge separation and charge stabilization in axially linked ‘tetrathiafulvalene–aluminum(iii) porphyrin–gold(iii) porphyrin’ reaction center mimics. Phys Chem Chem Phys 2015; 17:26346-58. [DOI: 10.1039/c5cp04818d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequential electron transfer leading to charge stabilization in newly synthesized vertically aligned ‘tetrathiafulvalene–aluminum(iii) porphyrin–gold(iii) porphyrin’ supramolecular triads is reported.
Collapse
Affiliation(s)
| | - Gary N. Lim
- Department of Chemistry
- University of North Texas
- Denton
- USA
| | - Serguei Vassiliev
- Department of Biological Sciences
- Brock University
- St. Catharines
- Canada
| | | |
Collapse
|
24
|
Karapetyan NV, Bolychevtseva YV, Yurina NP, Terekhova IV, Shubin VV, Brecht M. Long-wavelength chlorophylls in photosystem I of cyanobacteria: origin, localization, and functions. BIOCHEMISTRY (MOSCOW) 2014; 79:213-20. [PMID: 24821447 DOI: 10.1134/s0006297914030067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The structural organization of photosystem I (PSI) complexes in cyanobacteria and the origin of the PSI antenna long-wavelength chlorophylls and their role in energy migration, charge separation, and dissipation of excess absorbed energy are discussed. The PSI complex in cyanobacterial membranes is organized preferentially as a trimer with the core antenna enriched with long-wavelength chlorophylls. The contents of long-wavelength chlorophylls and their spectral characteristics in PSI trimers and monomers are species-specific. Chlorophyll aggregates in PSI antenna are potential candidates for the role of the long-wavelength chlorophylls. The red-most chlorophylls in PSI trimers of the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus can be formed as a result of interaction of pigments peripherally localized on different monomeric complexes within the PSI trimers. Long-wavelength chlorophylls affect weakly energy equilibration within the heterogeneous PSI antenna, but they significantly delay energy trapping by P700. When the reaction center is open, energy absorbed by long-wavelength chlorophylls migrates to P700 at physiological temperatures, causing its oxidation. When the PSI reaction center is closed, the P700 cation radical or P700 triplet state (depending on the P700 redox state and the PSI acceptor side cofactors) efficiently quench the fluorescence of the long-wavelength chlorophylls of PSI and thus protect the complex against photodestruction.
Collapse
Affiliation(s)
- N V Karapetyan
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | | | |
Collapse
|
25
|
Coates CS, Ziegler J, Manz K, Good J, Kang B, Milikisiyants S, Chatterjee R, Hao S, Golbeck JH, Lakshmi KV. The structure and function of quinones in biological solar energy transduction: a cyclic voltammetry, EPR, and hyperfine sub-level correlation (HYSCORE) spectroscopy study of model naphthoquinones. J Phys Chem B 2013; 117:7210-20. [PMID: 23676117 DOI: 10.1021/jp401024p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quinones function as electron transport cofactors in photosynthesis and cellular respiration. The versatility and functional diversity of quinones is primarily due to the diverse midpoint potentials that are tuned by the substituent effects and interactions with surrounding amino acid residues in the binding site in the protein. In the present study, a library of substituted 1,4-naphthoquinones are analyzed by cyclic voltammetry in both protic and aprotic solvents to determine effects of substituent groups and hydrogen bonds on the midpoint potential. We use continuous-wave electron paramagnetic resonance (EPR) spectroscopy to determine the influence of substituent groups on the electronic properties of the 1,4-naphthoquinone models in an aprotic solvent. The results establish a correlation between the presence of substituent group(s) and the modification of electronic properties and a corresponding shift in the midpoint potential of the naphthoquinone models. Further, we use pulsed EPR spectroscopy to determine the effect of substituent groups on the strength and planarity of the hydrogen bonds of naphthoquinone models in a protic solvent. This study provides support for the tuning of the electronic properties of quinone cofactors by the influence of substituent groups and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Christopher S Coates
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Netz DJA, Pierik AJ, Stümpfig M, Bill E, Sharma AK, Pallesen LJ, Walden WE, Lill R. A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation. J Biol Chem 2012; 287:12365-78. [PMID: 22362766 DOI: 10.1074/jbc.m111.328914] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The essential P-loop NTPases Cfd1 and Nbp35 of the cytosolic iron-sulfur (Fe-S) protein assembly machinery perform a scaffold function for Fe-S cluster synthesis. Both proteins contain a nucleotide binding motif of unknown function and a C-terminal motif with four conserved cysteine residues. The latter motif defines the Mrp/Nbp35 subclass of P-loop NTPases and is suspected to be involved in transient Fe-S cluster binding. To elucidate the function of these two motifs, we first created cysteine mutant proteins of Cfd1 and Nbp35 and investigated the consequences of these mutations by genetic, cell biological, biochemical, and spectroscopic approaches. The two central cysteine residues (CPXC) of the C-terminal motif were found to be crucial for cell viability, protein function, coordination of a labile [4Fe-4S] cluster, and Cfd1-Nbp35 hetero-tetramer formation. Surprisingly, the two proximal cysteine residues were dispensable for all these functions, despite their strict evolutionary conservation. Several lines of evidence suggest that the C-terminal CPXC motifs of Cfd1-Nbp35 coordinate a bridging [4Fe-4S] cluster. Upon mutation of the nucleotide binding motifs Fe-S clusters could no longer be assembled on these proteins unless wild-type copies of Cfd1 and Nbp35 were present in trans. This result indicated that Fe-S cluster loading on these scaffold proteins is a nucleotide-dependent step. We propose that the bridging coordination of the C-terminal Fe-S cluster may be ideal for its facile assembly, labile binding, and efficient transfer to target Fe-S apoproteins, a step facilitated by the cytosolic iron-sulfur (Fe-S) protein assembly proteins Nar1 and Cia1 in vivo.
Collapse
Affiliation(s)
- Daili J A Netz
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35032 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hunter MS, Fromme P. Toward structure determination using membrane-protein nanocrystals and microcrystals. Methods 2011; 55:387-404. [PMID: 22197730 DOI: 10.1016/j.ymeth.2011.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/03/2011] [Accepted: 12/14/2011] [Indexed: 02/05/2023] Open
Abstract
Membrane proteins are very important for all living cells, being involved in respiration, photosynthesis, cellular uptake and signal transduction, amongst other vital functions. However, less than 300 unique membrane protein structures have been determined to date, often due to difficulties associated with the growth of sufficiently large and well-ordered crystals. This work has been focused on showing the first proof of concept for using membrane protein nanocrystals and microcrystals for high-resolution structure determination. Upon determining that crystals of the membrane protein Photosystem I, which is the largest and most complex membrane protein crystallized to date, exist with only 100 unit cells with sizes of less than 200 nm on an edge, work was done to develop a technique that could exploit the growth of the Photosystem I nanocrystals and microcrystals. Femtosecond X-ray protein nanocrystallography was developed for use at the first high-energy X-ray free electron laser, the LCLS at SLAC National Accelerator Laboratory, in which a liquid jet brought fully-hydrated Photosystem I nanocrystals into the interaction region of the pulsed X-ray source. Diffraction patterns were recorded from millions of individual PSI nanocrystals and data from thousands of different, randomly oriented crystallites were integrated using Monte Carlo integration of the peak intensities. The short pulses (∼70fs) provided by the LCLS allowed the possibility to collect the diffraction data before the onset of radiation damage, exploiting the diffract-before-destroy principle. During the initial experiments at the AMO beamline using 6.9-Å wavelength, Bragg peaks were recorded to 8.5-Å resolution, and an electron-density map was determined that did not show any effects of X-ray-induced radiation damage [94]. Many additional techniques still need to be developed to explore the femtosecond nanocrystallography technique for experimental phasing and time-resolved X-ray crystallography experiments. The first proof-of-principle results for the femtosecond nanocrystallography technique indicate the incredible potential of the technique to offer a new route to the structure determination of membrane proteins.
Collapse
Affiliation(s)
- Mark S Hunter
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA.
| | | |
Collapse
|
28
|
Chatterjee R, Coates CS, Milikisiyants S, Poluektov OG, Lakshmi KV. Structure and Function of Quinones in Biological Solar Energy Transduction: A High-Frequency D-Band EPR Spectroscopy Study of Model Benzoquinones. J Phys Chem B 2011; 116:676-82. [DOI: 10.1021/jp210156a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ruchira Chatterjee
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Christopher S. Coates
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sergey Milikisiyants
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
29
|
Brecht M, Hussels M, Schlodder E, Karapetyan NV. Red antenna states of Photosystem I trimers from Arthrospira platensis revealed by single-molecule spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:445-52. [PMID: 22155210 DOI: 10.1016/j.bbabio.2011.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
Abstract
Single-molecule fluorescence spectroscopy at 1.4K was used to investigate the spectral properties of red (long-wavelength) chlorophylls in trimeric Photosystem I (PSI) complexes from the cyanobacterium Arthrospira platensis. Three distinct red antenna states could be identified in the fluorescence spectra of single PSI trimers from A. platensis in the presence of oxidized P700. Two of them are responsible for broad emission bands centered at 726 and 760nm. These bands are similar to those found in bulk fluorescence spectra measured at cryogenic temperatures. The broad fluorescence bands at ≅726 and ≅760nm belong to individual emitters that are broadened by strong electron-phonon coupling giving rise to a large Stokes-shift of about 20nm and rapid spectral diffusion. An almost perpendicular orientation of the transition dipole moments of F726 and F760 has to be assumed because direct excitation energy transfer does not occur between F726 and F760. For the first time a third red state assigned to the pool absorbing around 708nm could be detected by its zero-phonon lines. The center of the zero-phonon line distribution is found at ≅714nm. The spectral properties of the three red antenna states show a high similarity to the red antenna states found in trimeric PSI of Thermosynechoccocus elongatus. Based on these findings a similar organization of the red antenna states in PSI of these two cyanobacteria is discussed.
Collapse
Affiliation(s)
- Marc Brecht
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
30
|
König C, Neugebauer J. Quantum chemical description of absorption properties and excited-state processes in photosynthetic systems. Chemphyschem 2011; 13:386-425. [PMID: 22287108 DOI: 10.1002/cphc.201100408] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Indexed: 11/07/2022]
Abstract
The theoretical description of the initial steps in photosynthesis has gained increasing importance over the past few years. This is caused by more and more structural data becoming available for light-harvesting complexes and reaction centers which form the basis for atomistic calculations and by the progress made in the development of first-principles methods for excited electronic states of large molecules. In this Review, we discuss the advantages and pitfalls of theoretical methods applicable to photosynthetic pigments. Besides methodological aspects of excited-state electronic-structure methods, studies on chlorophyll-type and carotenoid-like molecules are discussed. We also address the concepts of exciton coupling and excitation-energy transfer (EET) and compare the different theoretical methods for the calculation of EET coupling constants. Applications to photosynthetic light-harvesting complexes and reaction centers based on such models are also analyzed.
Collapse
Affiliation(s)
- Carolin König
- Institute for Physical and Theoretical Chemistry, Technical University Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
31
|
Hunter MS, DePonte DP, Shapiro DA, Kirian RA, Wang X, Starodub D, Marchesini S, Weierstall U, Doak RB, Spence JCH, Fromme P. X-ray diffraction from membrane protein nanocrystals. Biophys J 2011; 100:198-206. [PMID: 21190672 DOI: 10.1016/j.bpj.2010.10.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 10/02/2010] [Accepted: 10/13/2010] [Indexed: 11/25/2022] Open
Abstract
Membrane proteins constitute > 30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane proteins is < 300. To develop new concepts for membrane protein structure determination, we have explored the serial nanocrystallography method, in which fully hydrated protein nanocrystals are delivered to an x-ray beam within a liquid jet at room temperature. As a model system, we have collected x-ray powder diffraction data from the integral membrane protein Photosystem I, which consists of 36 subunits and 381 cofactors. Data were collected from crystals ranging in size from 100 nm to 2 μm. The results demonstrate that there are membrane protein crystals that contain < 100 unit cells (200 total molecules) and that 3D crystals of membrane proteins, which contain < 200 molecules, may be suitable for structural investigation. Serial nanocrystallography overcomes the problem of x-ray damage, which is currently one of the major limitations for x-ray structure determination of small crystals. By combining serial nanocrystallography with x-ray free-electron laser sources in the future, it may be possible to produce molecular-resolution electron-density maps using membrane protein crystals that contain only a few hundred or thousand unit cells.
Collapse
Affiliation(s)
- M S Hunter
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kirian RA, White TA, Holton JM, Chapman HN, Fromme P, Barty A, Lomb L, Aquila A, Maia FRNC, Martin AV, Fromme R, Wang X, Hunter MS, Schmidt KE, Spence JCH. Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals. Acta Crystallogr A 2011; 67:131-40. [PMID: 21325716 PMCID: PMC3066792 DOI: 10.1107/s0108767310050981] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 12/05/2010] [Indexed: 11/10/2022] Open
Abstract
A complete set of structure factors has been extracted from hundreds of thousands of femtosecond single-shot X-ray microdiffraction patterns taken from randomly oriented nanocrystals. The method of Monte Carlo integration over crystallite size and orientation was applied to experimental data from Photosystem I nanocrystals. This arrives at structure factors from many partial reflections without prior knowledge of the particle-size distribution. The data were collected at the Linac Coherent Light Source (the first hard-X-ray laser user facility), to which was fitted a hydrated protein nanocrystal injector jet, according to the method of serial crystallography. The data are single 'still' diffraction snapshots, each from a different nanocrystal with sizes ranging between 100 nm and 2 µm, so the angular width of Bragg peaks was dominated by crystal-size effects. These results were compared with single-crystal data recorded from large crystals of Photosystem I at the Advanced Light Source and the quality of the data was found to be similar. The implications for improving the efficiency of data collection by allowing the use of very small crystals, for radiation-damage reduction and for time-resolved diffraction studies at room temperature are discussed.
Collapse
Affiliation(s)
- Richard A. Kirian
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Thomas A. White
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - James M. Holton
- Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry, University of California, San Francisco, CA 945158-2330, USA
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Petra Fromme
- Department of Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| | - Anton Barty
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Lukas Lomb
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Andrew Aquila
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Filipe R. N. C. Maia
- Department of Cell and Molecular Biology, Laboratory of Molecular Biophysics, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Andrew V. Martin
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Raimund Fromme
- Department of Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| | - Xiaoyu Wang
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Mark S. Hunter
- Department of Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| | - Kevin E. Schmidt
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - John C. H. Spence
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
33
|
|
34
|
Kirian RA, Wang X, Weierstall U, Schmidt KE, Spence JCH, Hunter M, Fromme P, White T, Chapman HN, Holton J. Femtosecond protein nanocrystallography-data analysis methods. OPTICS EXPRESS 2010; 18:5713-23. [PMID: 20389587 PMCID: PMC4038330 DOI: 10.1364/oe.18.005713] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
X-ray diffraction patterns may be obtained from individual submicron protein nanocrystals using a femtosecond pulse from a free-electron X-ray laser. Many "single-shot" patterns are read out every second from a stream of nanocrystals lying in random orientations. The short pulse terminates before significant atomic (or electronic) motion commences, minimizing radiation damage. Simulated patterns for Photosystem I nanocrystals are used to develop a method for recovering structure factors from tens of thousands of snapshot patterns from nanocrystals varying in size, shape and orientation. We determine the number of shots needed for a required accuracy in structure factor measurement and resolution, and investigate the convergence of our Monte-Carlo integration method.
Collapse
Affiliation(s)
- Richard A. Kirian
- Department of Physics, Arizona State University, Tempe, Arizona 85287 USA
| | - Xiaoyu Wang
- Department of Physics, Arizona State University, Tempe, Arizona 85287 USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, Arizona 85287 USA
| | - Kevin E. Schmidt
- Department of Physics, Arizona State University, Tempe, Arizona 85287 USA
| | - John C. H. Spence
- Department of Physics, Arizona State University, Tempe, Arizona 85287 USA
| | - Mark Hunter
- Department of Biochemistry, Arizona State Unviversity, Tempe, Arizona 85287 USA
| | - Petra Fromme
- Department of Biochemistry, Arizona State Unviversity, Tempe, Arizona 85287 USA
| | - Thomas White
- Center for Free Electron Laser Science DESY University of Hamburg, Notkestrasse 85, 22607, Hamburg, Germany
| | - Henry N. Chapman
- Center for Free Electron Laser Science DESY University of Hamburg, Notkestrasse 85, 22607, Hamburg, Germany
- University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - James Holton
- Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158 USA
| |
Collapse
|
35
|
Pudlak M, Pincak R. Electronic pathway in reaction centers from Rhodobacter sphaeroides and Chloroflexus aurantiacus. J Biol Phys 2010; 36:273-89. [PMID: 21629589 DOI: 10.1007/s10867-009-9183-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Accepted: 12/09/2009] [Indexed: 12/13/2022] Open
Abstract
The reaction centers (RC) of Chloroflexus aurantiacus and Rhodobacter sphaeroidesH(M182)L mutant were investigated. Prediction for electron transfer (ET) at very low temperatures was also performed. To describe the kinetics of the C. aurantiacus RCs, the incoherent model of electron transfer was used. It was shown that the asymmetry in electronic coupling parameters must be included to explain the experiments. For the description of R. sphaeroidesH(M182)L mutant RCs, the coherent and incoherent models of electron transfer were used. These two models are discussed with regard to the observed electron transfer kinetics. It seems likely that the electron transfer asymmetry in R. sphaeroides RCs is caused mainly by the asymmetry in the free energy levels of L- and M-side cofactors. In the case of C. aurantiacus RCs, the unidirectionality of the charge separation can be caused mainly by the difference in the electronic coupling parameters in two branches.
Collapse
|
36
|
Neugebauer J. Subsystem-Based Theoretical Spectroscopy of Biomolecules and Biomolecular Assemblies. Chemphyschem 2009; 10:3148-73. [DOI: 10.1002/cphc.200900538] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Maligaspe E, Kumpulainen T, Lemmetyinen H, Tkachenko NV, Subbaiyan NK, Zandler ME, D’Souza F. Ultrafast Singlet−Singlet Energy Transfer in Self-Assembled via Metal−Ligand Axial Coordination of Free-Base Porphyrin−Zinc Phthalocyanine and Free-Base Porphyrin−Zinc Naphthalocyanine Dyads. J Phys Chem A 2009; 114:268-77. [DOI: 10.1021/jp908115e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eranda Maligaspe
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, and Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| | - Tatu Kumpulainen
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, and Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| | - Helge Lemmetyinen
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, and Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| | - Nikolai V. Tkachenko
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, and Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| | - Navaneetha K. Subbaiyan
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, and Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| | - Melvin E. Zandler
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, and Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| | - Francis D’Souza
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, and Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| |
Collapse
|
38
|
Weyers AM, Chatterjee R, Milikisiyants S, Lakshmi KV. Structure and Function of Quinones in Biological Solar Energy Transduction: A Differential Pulse Voltammetry, EPR, and Hyperfine Sublevel Correlation (HYSCORE) Spectroscopy Study of Model Benzoquinones. J Phys Chem B 2009; 113:15409-18. [DOI: 10.1021/jp907379d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amanda M. Weyers
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Ruchira Chatterjee
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Sergey Milikisiyants
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
39
|
|
40
|
Srinivasan N, Golbeck JH. Protein–cofactor interactions in bioenergetic complexes: The role of the A1A and A1B phylloquinones in Photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1057-88. [DOI: 10.1016/j.bbabio.2009.04.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/14/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
|
41
|
Yamamura T, Suzuki S, Taguchi T, Onoda A, Kamachi T, Okura I. Porphyrin Arrays Responsive to Additives. Fluorescence Tuning. J Am Chem Soc 2009; 131:11719-26. [DOI: 10.1021/ja809851d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takeshi Yamamura
- Department of Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162-0825, Japan, Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan, and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi,
| | - Shingo Suzuki
- Department of Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162-0825, Japan, Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan, and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi,
| | - Tomotaka Taguchi
- Department of Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162-0825, Japan, Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan, and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi,
| | - Akira Onoda
- Department of Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162-0825, Japan, Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan, and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi,
| | - Toshiaki Kamachi
- Department of Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162-0825, Japan, Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan, and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi,
| | - Ichiro Okura
- Department of Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162-0825, Japan, Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan, and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi,
| |
Collapse
|
42
|
Maligaspe E, Tkachenko NV, Subbaiyan NK, Chitta R, Zandler ME, Lemmetyinen H, D’Souza F. Photosynthetic Antenna−Reaction Center Mimicry: Sequential Energy- and Electron Transfer in a Self-assembled Supramolecular Triad Composed of Boron Dipyrrin, Zinc Porphyrin and Fullerene. J Phys Chem A 2009; 113:8478-89. [DOI: 10.1021/jp9032194] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eranda Maligaspe
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, and Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| | - Nikolai V. Tkachenko
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, and Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| | - Navaneetha K. Subbaiyan
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, and Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| | - Raghu Chitta
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, and Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| | - Melvin E. Zandler
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, and Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| | - Helge Lemmetyinen
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, and Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| | - Francis D’Souza
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, and Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland
| |
Collapse
|
43
|
Amunts A, Nelson N. Plant Photosystem I Design in the Light of Evolution. Structure 2009; 17:637-50. [DOI: 10.1016/j.str.2009.03.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 11/26/2022]
|
44
|
From Atomic-Level Structure to Supramolecular Organization in the Photosynthetic Unit of Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Fromme P, Grotjohann I. Chapter 9 Crystallization of Photosynthetic Membrane Proteins. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)63009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Brecht M, Radics V, Nieder JB, Studier H, Bittl R. Red Antenna States of Photosystem I from Synechocystis PCC 6803. Biochemistry 2008; 47:5536-43. [DOI: 10.1021/bi800121t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marc Brecht
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | - Volker Radics
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | - Jana B. Nieder
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | - Hauke Studier
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | - Robert Bittl
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| |
Collapse
|
47
|
Brecht M, Nieder JB, Studier H, Schlodder E, Bittl R. Red antenna states of photosystem I from Synechococcus sp. PCC 7002. PHOTOSYNTHESIS RESEARCH 2008; 95:155-162. [PMID: 17924203 DOI: 10.1007/s11120-007-9241-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/06/2007] [Indexed: 05/25/2023]
Abstract
Absorption, fluorescence and single-molecule spectroscopy at low temperatures were used to elucidate spectral properties, heterogeneities and dynamics of the red-shifted chlorophyll a (Chla) molecules responsible for the fluorescence in photosystem I (PSI) from the cyanobacterium Synechoccocus sp. PCC 7002. The 77 K absorption spectrum indicates the presence of 2-3 red-shifted Chla's absorbing at about 708 nm. The fluorescence emission spectrum is dominated by a broad band at 714 nm. The emission spectra of single PSI complexes show zero-phonon lines (ZPLs) as well as a broad intensity distribution without ZPLs. The spectral region below 710 nm often shows ZPLs, they form a spectral band with a maximum at 698 nm (F698). The region above 710 nm is dominated by broad intensity distributions and the observation of ZPLs is less frequent. The broad distributions are due to the emission of the C708 Chla's and the emission from F698 stems from a Chla species absorbing at the blue side of P700. The properties of these two emissions show a close relation to those of the C708 and C719 pools observed in T. elongatus. Therefore an assignment of F698 and C708 to Chla-species with similarities to C708 and C719 in T. elongatus is proposed.
Collapse
Affiliation(s)
- Marc Brecht
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195, Berlin, Germany
| | | | | | | | | |
Collapse
|
48
|
Chu CC, Bassani DM. Challenges and opportunities for photochemists on the verge of solar energy conversion. Photochem Photobiol Sci 2008; 7:521-30. [DOI: 10.1039/b800113h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Renger T, Holzwarth AR. Theory of Excitation Energy Transfer and Optical Spectra of Photosynthetic Systems. BIOPHYSICAL TECHNIQUES IN PHOTOSYNTHESIS 2008. [DOI: 10.1007/978-1-4020-8250-4_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Şener MK, Olsen JD, Hunter CN, Schulten K. Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proc Natl Acad Sci U S A 2007; 104:15723-8. [PMID: 17895378 PMCID: PMC2000399 DOI: 10.1073/pnas.0706861104] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The photosynthetic unit (PSU) of purple photosynthetic bacteria consists of a network of bacteriochlorophyll-protein complexes that absorb solar energy for eventual conversion to ATP. Because of its remarkable simplicity, the PSU can serve as a prototype for studies of cellular organelles. In the purple bacterium Rhodobacter sphaeroides the PSU forms spherical invaginations of the inner membrane, approximately 70 nm in diameter, composed mostly of light-harvesting complexes, LH1 and LH2, and reaction centers (RCs). Atomic force microscopy studies of the intracytoplasmic membrane have revealed the overall spatial organization of the PSU. In the present study these atomic force microscopy data were used to construct three-dimensional models of an entire membrane vesicle at the atomic level by using the known structure of the LH2 complex and a structural model of the dimeric RC-LH1 complex. Two models depict vesicles consisting of 9 or 18 dimeric RC-LH1 complexes and 144 or 101 LH2 complexes, representing a total of 3,879 or 4,464 bacteriochlorophylls, respectively. The in silico reconstructions permit a detailed description of light absorption and electronic excitation migration, including computation of a 50-ps excitation lifetime and a 95% quantum efficiency for one of the model membranes, and demonstration of excitation sharing within the closely packed RC-LH1 dimer arrays.
Collapse
Affiliation(s)
- Melih K. Şener
- *Beckman Institute and
- Department of Physiology and Biophysics, Weill Medical College, Cornell University, New York, NY 10021; and
- To whom correspondence may be addressed. E-mail: or
| | - John D. Olsen
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - C. Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Klaus Schulten
- *Beckman Institute and
- Department of Physics, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|