1
|
Orlandini M, Bonacini A, Favero A, Secchi A, Lazzarini L, Verucchi R, Dalcanale E, Pedrini A, Sidoli S, Pinalli R. Enrichment of histone tail methylated lysine residues via cavitand-decorated magnetic nanoparticles for ultra-sensitive proteomics. Chem Sci 2024; 15:13102-13110. [PMID: 39148787 PMCID: PMC11322979 DOI: 10.1039/d4sc02076f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Nearly every protein in the human body is modified with post-translational modifications (PTMs). PTMs affect proteins on many levels, including their function, interaction, half-life, and localization. Specifically, for histone proteins, PTMs such as lysine methylation and acetylation play essential roles in chromatin dynamic regulations. For this reason, methods to accurately detect and quantify PTMs are of paramount importance in cell biology, biochemistry, and disease biology. Most protein modifications are sub-stoichiometric, so, to be analyzed, they need methods of enrichment, which are mostly based on antibodies. Antibodies are produced using animals, resulting in high costs, ecological concerns, significant batch variations, and ethical implications. We propose using ferromagnetic nanoparticles functionalized with synthetic receptors, namely tetraphosphonate cavitands, as a tool for selective enrichment of methylated lysines present on histone tails. Before the enrichment step, histone proteins from calf thymus were digested to facilitate the recognition process and to obtain small peptides suitable for mass analyses. Cavitands were anchored on ferromagnetic nanoparticles to easily separate the PTM-peptides of interest from the rest of the proteolytic peptides. Our approach detects more modified peptides with higher signal intensity, rivaling commercial antibodies. This chemical strategy offers a cost-effective and efficient alternative for PTM detection, potentially advancing proteomic research.
Collapse
Affiliation(s)
- Martina Orlandini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, INSTM, UdR Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Alex Bonacini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, INSTM, UdR Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Alessia Favero
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, INSTM, UdR Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Andrea Secchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, INSTM, UdR Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Laura Lazzarini
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, National Research Council Parco Area delle Scienze 37/A 43124 Parma Italy
| | - Roberto Verucchi
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, National Research Council, Trento Unit via alla Cascata 56/C 38123 Trento Italy
| | - Enrico Dalcanale
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, INSTM, UdR Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Alessandro Pedrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, INSTM, UdR Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine Bronx NY 10461 USA
| | - Roberta Pinalli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, INSTM, UdR Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
2
|
Crain AT, Butler MB, Hill CA, Huynh M, McGinty RK, Duronio RJ. Drosophila melanogaster Set8 and L(3)mbt function in gene expression independently of histone H4 lysine 20 methylation. Genes Dev 2024; 38:455-472. [PMID: 38866557 PMCID: PMC11216177 DOI: 10.1101/gad.351698.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Monomethylation of lysine 20 of histone H4 (H4K20me1) is catalyzed by Set8 and thought to play important roles in many aspects of genome function that are mediated by H4K20me binding proteins. We interrogated this model in a developing animal by comparing in parallel the transcriptomes of Set8 null , H4 K20R/A , and l(3)mbt mutant Drosophila melanogaster We found that the gene expression profiles of H4 K20A and H4 K20R larvae are markedly different than Set8 null larvae despite similar reductions in H4K20me1. Set8 null mutant cells have a severely disrupted transcriptome and fail to proliferate in vivo, but these phenotypes are not recapitulated by mutation of H4 K20 , indicating that the developmental defects of Set8 null animals are largely due to H4K20me1-independent effects on gene expression. Furthermore, the H4K20me1 binding protein L(3)mbt is recruited to the transcription start sites of most genes independently of H4K20me even though genes bound by L(3)mbt have high levels of H4K20me1. Moreover, both Set8 and L(3)mbt bind to purified H4K20R nucleosomes in vitro. We conclude that gene expression changes in Set8 null and H4 K20 mutants cannot be explained by loss of H4K20me1 or L(3)mbt binding to chromatin and therefore that H4K20me1 does not play a large role in gene expression.
Collapse
Affiliation(s)
- Aaron T Crain
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 USA
| | - Megan B Butler
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 USA
| | - Christina A Hill
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 USA
| | - Mai Huynh
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599 USA
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599 USA
| | - Robert K McGinty
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599 USA
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599 USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599 USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599 USA;
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599 USA
| |
Collapse
|
3
|
Crain AT, Butler MB, Hill CA, Huynh M, McGinty RK, Duronio RJ. Drosophila melanogaster Set8 and L(3)mbt function in gene expression independently of histone H4 lysine 20 methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584710. [PMID: 38559189 PMCID: PMC10980064 DOI: 10.1101/2024.03.12.584710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mono-methylation of Lysine 20 of histone H4 (H4K20me1) is catalyzed by Set8 and thought to play important roles in many aspects of genome function that are mediated by H4K20me-binding proteins. We interrogated this model in a developing animal by comparing in parallel the transcriptomes of Set8 null , H4 K20R/A , and l(3)mbt mutant Drosophila melanogaster . We found that the gene expression profiles of H4 K20A and H4 K20R larvae are markedly different than Set8 null larvae despite similar reductions in H4K20me1. Set8 null mutant cells have a severely disrupted transcriptome and fail to proliferate in vivo , but these phenotypes are not recapitulated by mutation of H4 K20 indicating that the developmental defects of Set8 null animals are largely due to H4K20me1-independent effects on gene expression. Further, the H4K20me1 binding protein L(3)mbt is recruited to the transcription start sites of most genes independently of H4K20me even though genes bound by L(3)mbt have high levels of H4K20me1. Moreover, both Set8 and L(3)mbt bind to purified H4K20R nucleosomes in vitro. We conclude that gene expression changes in Set8 null and H4 K20 mutants cannot be explained by loss of H4K20me1 or L(3)mbt binding to chromatin, and therefore that H4K20me1 does not play a large role in gene expression.
Collapse
|
4
|
Gungi A, Saha S, Pal M, Galande S. H4K20me1 plays a dual role in transcriptional regulation of regeneration and axis patterning in Hydra. Life Sci Alliance 2023; 6:e202201619. [PMID: 36944423 PMCID: PMC10031314 DOI: 10.26508/lsa.202201619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
The evolution of the first body axis in the animal kingdom and its extensive ability to regenerate makes Hydra, a Cnidarian, an excellent model system for understanding the underlying epigenetic mechanisms. We identify that monomethyltransferase SETD8 is critical for regeneration in Hydra because of its conserved interaction with β-catenin to fine-tune the associated gene regulatory network. Inhibition of SETD8 activity abolishes head and foot regeneration in Hydra Furthermore, we show that H4K20me1, the histone mark imparted by SETD8, colocalizes with the transcriptional activation machinery locally at the β-catenin-bound TCF/LEF-binding sites on the promoters of head-associated genes, marking an epigenetic activation mode. In contrast, genome-wide analysis of the H4K20me1 occupancy revealed a negative correlation with transcriptional activation. We propose that H4K20me1 acts as a general repressive histone mark in Cnidaria and describe its dichotomous role in transcriptional regulation in Hydra.
Collapse
Affiliation(s)
- Akhila Gungi
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Shagnik Saha
- Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar University, Delhi-NCR, India
| | - Mrinmoy Pal
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Sanjeev Galande
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
- Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar University, Delhi-NCR, India
| |
Collapse
|
5
|
Kukita A, Sone K, Kaneko S, Kawakami E, Oki S, Kojima M, Wada M, Toyohara Y, Takahashi Y, Inoue F, Tanimoto S, Taguchi A, Fukuda T, Miyamoto Y, Tanikawa M, Mori-Uchino M, Tsuruga T, Iriyama T, Matsumoto Y, Nagasaka K, Wada-Hiraike O, Oda K, Hamamoto R, Osuga Y. The Histone Methyltransferase SETD8 Regulates the Expression of Tumor Suppressor Genes via H4K20 Methylation and the p53 Signaling Pathway in Endometrial Cancer Cells. Cancers (Basel) 2022; 14:5367. [PMID: 36358786 PMCID: PMC9655767 DOI: 10.3390/cancers14215367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/01/2023] Open
Abstract
The histone methyltransferase SET domain-containing protein 8 (SETD8), which methylates histone H4 lysine 20 (H4K20) and non-histone proteins such as p53, plays key roles in human carcinogenesis. Our aim was to determine the involvement of SETD8 in endometrial cancer and its therapeutic potential and identify the downstream genes regulated by SETD8 via H4K20 methylation and the p53 signaling pathway. We examined the expression profile of SETD8 and evaluated whether SETD8 plays a critical role in the proliferation of endometrial cancer cells using small interfering RNAs (siRNAs). We identified the prognostically important genes regulated by SETD8 via H4K20 methylation and p53 signaling using chromatin immunoprecipitation sequencing, RNA sequencing, and machine learning. We confirmed that SETD8 expression was elevated in endometrial cancer tissues. Our in vitro results suggest that the suppression of SETD8 using siRNA or a selective inhibitor attenuated cell proliferation and promoted the apoptosis of endometrial cancer cells. In these cells, SETD8 regulates genes via H4K20 methylation and the p53 signaling pathway. We also identified the prognostically important genes related to apoptosis, such as those encoding KIAA1324 and TP73, in endometrial cancer. SETD8 is an important gene for carcinogenesis and progression of endometrial cancer via H4K20 methylation.
Collapse
Affiliation(s)
- Asako Kukita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Eiryo Kawakami
- Graduate School of Medicine, Chiba University, Chiba 263-8522, Japan
| | - Shinya Oki
- National Hospital Organization Tokyo Medical Center, Tokyo 152-8902, Japan
| | - Machiko Kojima
- Tazuke Kofukai, Medical Research Institute, Kitano Hospital, Osaka 530-8480, Japan
| | - Miku Wada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yusuke Toyohara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yu Takahashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Futaba Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Saki Tanimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomohiko Fukuda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsushi Tsuruga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoko Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Division of Integrated Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
6
|
Bloskie T, Storey KB. Epigenetics of the frozen brain: roles for lysine methylation in hypometabolism. FEBS Lett 2022; 596:2007-2020. [PMID: 35770350 DOI: 10.1002/1873-3468.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/08/2022]
Abstract
Wood frog (Rana sylvatica) freeze tolerance necessitates metabolic rate depression, where costly processes such as gene transcription are commonly suppressed. Epigenetic mechanisms, such as histone lysine methylation, have recently been implicated in hypometabolic states of various animals, although they are underreported in nervous tissues. In the present study, we track the expression of eight lysine methyltransferases, as well as the activity on, and abundance of putative histone products across the freeze-thaw cycle and freeze-associated sub-stresses (anoxia, dehydration) of wood frog brains. Our results suggest that hypomethylation of transcriptionally repressive H3K9 may be a key facet of metabolic recovery during the thawing of nervous tissue, which we speculate may have a positive effect on global gene transcription. Some non-histone roles for lysine methylation are also proposed.
Collapse
Affiliation(s)
- Tighe Bloskie
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
7
|
Crain AT, Klusza S, Armstrong RL, Santa Rosa P, Temple BRS, Strahl BD, McKay DJ, Matera AG, Duronio RJ. Distinct developmental phenotypes result from mutation of Set8/KMT5A and histone H4 lysine 20 in Drosophila melanogaster. Genetics 2022; 221:iyac054. [PMID: 35404465 PMCID: PMC9157153 DOI: 10.1093/genetics/iyac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Mono-methylation of histone H4 lysine 20 (H4K20me1) is catalyzed by Set8/KMT5A and regulates numerous aspects of genome organization and function. Loss-of-function mutations in Drosophila melanogaster Set8 or mammalian KMT5A prevent H4K20me1 and disrupt development. Set8/KMT5A also has non-histone substrates, making it difficult to determine which developmental functions of Set8/KMT5A are attributable to H4K20me1 and which to other substrates or to non-catalytic roles. Here, we show that human KMT5A can functionally substitute for Set8 during Drosophila development and that the catalytic SET domains of the two enzymes are fully interchangeable. We also uncovered a role in eye development for the N-terminal domain of Set8 that cannot be complemented by human KMT5A. Whereas Set820/20 null mutants are inviable, we found that an R634G mutation in Set8 predicted from in vitro experiments to ablate catalytic activity resulted in viable adults. Additionally, Set8(R634G) mutants retain significant, albeit reduced, H4K20me1, indicating that the R634G mutation does not eliminate catalytic activity in vivo and is functionally hypomorphic rather than null. Flies engineered to express only unmodifiable H4 histones (H4K20A) can also complete development, but are phenotypically distinct from H4K20R, Set820/20 null, and Set8R634G mutants. Taken together, our results demonstrate functional conservation of KMT5A and Set8 enzymes, as well as distinct roles for Set8 and H4K20me1 in Drosophila development.
Collapse
Affiliation(s)
- Aaron T Crain
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Stephen Klusza
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
| | | | - Brenda R S Temple
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| |
Collapse
|
8
|
Alsagaby SA. Transcriptomics-Based Investigation of Molecular Mechanisms Underlying Apoptosis Induced by ZnO Nanoparticles in Human Diffuse Large B-Cell Lymphoma. Int J Nanomedicine 2022; 17:2261-2281. [PMID: 35611214 PMCID: PMC9124502 DOI: 10.2147/ijn.s355408] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Zinc oxide nanoparticles (ZnO NPs) show anti-cancer activity. Diffuse Large B-cell Lymphoma (DLBCL) is a type of B-cell malignancies with unsatisfying treatment outcomes. This study was set to assess the potential of ZnO NPs to selectively induce apoptosis in human DLBCL cells (OCI-LY3), and to describe possible molecular mechanisms of action. Methods The impact of ZnO NPs on DLBCL cells and normal peripheral blood mononuclear cells (PBMCs) was studied using cytotoxicity assay and flow-cytometry. Transcriptomics analysis was conducted to identify ZnO NPs-dependent changes in the transcriptomic profiles of DLBCL cells. Results ZnO NPs selectively induced apoptosis in DLBCL cells, and caused changes in their transcriptomes. Deferential gene expression (DGE) with fold change (FC) ≥3 and p ≤ 0.008 with corrected p ≤ 0.05 was identified for 528 genes; 125 genes were over-expressed and 403 genes were under-expressed in ZnO NPs-treated DLBCL cells. The over-expressed genes involved in biological processes and pathways like stress response to metal ion, cellular response to zinc ion, metallothioneins bind metals, oxidative stress, and negative regulation of growth. In contrast, the under-expressed genes were implicated in DNA packaging complex, signaling by NOTCH, negative regulation of gene expression by epigenetic, signaling by WNT, M phase of cell cycle, and telomere maintenance. Setting the FC to ≥1.5 with p ≤ 0.05 and corrected p ≤ 0.1 showed ZnO NPs to induce over-expression of anti-oxidant genes and under-expression of oncogenes; target B-cell receptor (BCR) signaling pathway and NF-κB pathway; and promote apoptosis by intrinsic and extrinsic pathways. Discussion Overall, ZnO NPs selectively induced apoptosis in DLBCL cells, and possible molecular mechanisms of action were described.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11932, Saudi Arabia
- Correspondence: Suliman A Alsagaby, Email
| |
Collapse
|
9
|
Bonitto K, Sarathy K, Atai K, Mitra M, Coller HA. Is There a Histone Code for Cellular Quiescence? Front Cell Dev Biol 2021; 9:739780. [PMID: 34778253 PMCID: PMC8586460 DOI: 10.3389/fcell.2021.739780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Many of the cells in our bodies are quiescent, that is, temporarily not dividing. Under certain physiological conditions such as during tissue repair and maintenance, quiescent cells receive the appropriate stimulus and are induced to enter the cell cycle. The ability of cells to successfully transition into and out of a quiescent state is crucial for many biological processes including wound healing, stem cell maintenance, and immunological responses. Across species and tissues, transcriptional, epigenetic, and chromosomal changes associated with the transition between proliferation and quiescence have been analyzed, and some consistent changes associated with quiescence have been identified. Histone modifications have been shown to play a role in chromatin packing and accessibility, nucleosome mobility, gene expression, and chromosome arrangement. In this review, we critically evaluate the role of different histone marks in these processes during quiescence entry and exit. We consider different model systems for quiescence, each of the most frequently monitored candidate histone marks, and the role of their writers, erasers and readers. We highlight data that support these marks contributing to the changes observed with quiescence. We specifically ask whether there is a quiescence histone “code,” a mechanism whereby the language encoded by specific combinations of histone marks is read and relayed downstream to modulate cell state and function. We conclude by highlighting emerging technologies that can be applied to gain greater insight into the role of a histone code for quiescence.
Collapse
Affiliation(s)
- Kenya Bonitto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kirthana Sarathy
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kaiser Atai
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Shoaib M, Chen Q, Shi X, Nair N, Prasanna C, Yang R, Walter D, Frederiksen KS, Einarsson H, Svensson JP, Liu CF, Ekwall K, Lerdrup M, Nordenskiöld L, Sørensen CS. Histone H4 lysine 20 mono-methylation directly facilitates chromatin openness and promotes transcription of housekeeping genes. Nat Commun 2021; 12:4800. [PMID: 34417450 PMCID: PMC8379281 DOI: 10.1038/s41467-021-25051-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Histone lysine methylations have primarily been linked to selective recruitment of reader or effector proteins that subsequently modify chromatin regions and mediate genome functions. Here, we describe a divergent role for histone H4 lysine 20 mono-methylation (H4K20me1) and demonstrate that it directly facilitates chromatin openness and accessibility by disrupting chromatin folding. Thus, accumulation of H4K20me1 demarcates highly accessible chromatin at genes, and this is maintained throughout the cell cycle. In vitro, H4K20me1-containing nucleosomal arrays with nucleosome repeat lengths (NRL) of 187 and 197 are less compact than unmethylated (H4K20me0) or trimethylated (H4K20me3) arrays. Concordantly, and in contrast to trimethylated and unmethylated tails, solid-state NMR data shows that H4K20 mono-methylation changes the H4 conformational state and leads to more dynamic histone H4-tails. Notably, the increased chromatin accessibility mediated by H4K20me1 facilitates gene expression, particularly of housekeeping genes. Altogether, we show how the methylation state of a single histone H4 residue operates as a focal point in chromatin structure control. While H4K20me1 directly promotes chromatin openness at highly transcribed genes, it also serves as a stepping-stone for H4K20me3-dependent chromatin compaction. The effect of histone H4 lysine 20 methylation (H4K20me) on chromatin accessibility are not well established. Here the authors show how H4K20 methylation regulates chromatin structure and accessibility to ensure precise transcriptional outputs through the cell cycle using genome-wide approaches, in vitro biophysical assays, and NMR.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Qinming Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiangyan Shi
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nidhi Nair
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chinmayi Prasanna
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Renliang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Wilmar International Limited, Jurong Island, Singapore
| | - David Walter
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hjorleifur Einarsson
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Chuan Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Mads Lerdrup
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Wang Y, Iwamori T, Kaneko T, Iida H, Iwamori N. Comparative distributions of RSBN1 and methylated histone H4 Lysine 20 in the mouse spermatogenesis. PLoS One 2021; 16:e0253897. [PMID: 34185806 PMCID: PMC8241091 DOI: 10.1371/journal.pone.0253897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
During spermatogenesis, nuclear architecture of male germ cells is dynamically changed and epigenetic modifications, in particular methylation of histones, highly contribute to its regulation as well as differentiation of male germ cells. Although several methyltransferases and demethylases for histone H3 are involved in the regulation of spermatogenesis, roles of either histone H4 lysine 20 (H4K20) methyltransferases or H4K20 demethylases during spermatogenesis still remain to be elucidated. Recently, RSBN1 which is a testis-specific gene expressed in round spermatids was identified as a demethylase for dimethyl H4K20. In this study, therefore, we confirm the demethylase function of RSBN1 and compare distributions between RSBN1 and methylated H4K20 in the seminiferous tubules. Unlike previous report, expression analyses for RSBN1 reveal that RSBN1 is not a testis-specific gene and is expressed not only in round spermatids but also in elongated spermatids. In addition, RSBN1 can demethylate not only dimethyl H4K20 but also trimethyl H4K20 and could convert both dimethyl H4K20 and trimethyl H4K20 into monomethyl H4K20. When distribution pattern of RSBN1 in the seminiferous tubule is compared to that of methylated H4K20, both dimethyl H4K20 and trimethyl H4K20 but not monomethyl H4K20 are disappeared from RSBN1 positive germ cells, suggesting that testis-specific distribution patterns of methylated H4K20 might be constructed by RSBN1. Thus, novel expression and function of RSBN1 could be useful to comprehend epigenetic regulation during spermatogenesis.
Collapse
Affiliation(s)
- Youtao Wang
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Tokuko Iwamori
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Takane Kaneko
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Hiroshi Iida
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Naoki Iwamori
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka-shi, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
12
|
Histone lysine methyltransferase SET8 is a novel therapeutic target for cancer treatment. Drug Discov Today 2021; 26:2423-2430. [PMID: 34022460 DOI: 10.1016/j.drudis.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
SET8 is the only lysine methyltransferase that can specifically monomethylate the histone H4K20. SET8-mediated protein modifications are largely involved in the regulation of cell cycle, DNA repair, gene transcription, cell apoptosis, and other vital physiological processes. The aberrant expression of SET8 is closely linked to the proliferation, invasion, metastasis, and prognosis of a variety of cancers. As a consequence, targeting SET8 could be an appealing strategy for cancer therapy. In this article, we introduce the molecular structure of SET8, followed by summarizing its roles in various biological pathways. Crucially, we highlight the potential functions of SET8 in tumors, as well as progress in the development of SET inhibitors for cancer treatment.
Collapse
|
13
|
Tjalsma SJD, Hori M, Sato Y, Bousard A, Ohi A, Raposo AC, Roensch J, Le Saux A, Nogami J, Maehara K, Kujirai T, Handa T, Bagés‐Arnal S, Ohkawa Y, Kurumizaka H, da Rocha ST, Żylicz JJ, Kimura H, Heard E. H4K20me1 and H3K27me3 are concurrently loaded onto the inactive X chromosome but dispensable for inducing gene silencing. EMBO Rep 2021; 22:e51989. [PMID: 33605056 PMCID: PMC7926250 DOI: 10.15252/embr.202051989] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
During X chromosome inactivation (XCI), in female placental mammals, gene silencing is initiated by the Xist long non-coding RNA. Xist accumulation at the X leads to enrichment of specific chromatin marks, including PRC2-dependent H3K27me3 and SETD8-dependent H4K20me1. However, the dynamics of this process in relation to Xist RNA accumulation remains unknown as is the involvement of H4K20me1 in initiating gene silencing. To follow XCI dynamics in living cells, we developed a genetically encoded, H3K27me3-specific intracellular antibody or H3K27me3-mintbody. By combining live-cell imaging of H3K27me3, H4K20me1, the X chromosome and Xist RNA, with ChIP-seq analysis we uncover concurrent accumulation of both marks during XCI, albeit with distinct genomic distributions. Furthermore, using a Xist B and C repeat mutant, which still shows gene silencing on the X but not H3K27me3 deposition, we also find a complete lack of H4K20me1 enrichment. This demonstrates that H4K20me1 is dispensable for the initiation of gene silencing, although it may have a role in the chromatin compaction that characterises facultative heterochromatin.
Collapse
Affiliation(s)
- Sjoerd J D Tjalsma
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Mayako Hori
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Yuko Sato
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Aurelie Bousard
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Akito Ohi
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Ana Cláudia Raposo
- Faculdade de MedicinaInstituto de Medicina MolecularJoão Lobo AntunesUniversidade de LisboaLisboaPortugal
| | - Julia Roensch
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Agnes Le Saux
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Jumpei Nogami
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Kazumitsu Maehara
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Tomoya Kujirai
- Institute for Quantitative BiosciencesThe University of TokyoTokyoJapan
| | - Tetsuya Handa
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Sandra Bagés‐Arnal
- The Novo Nordisk Foundation Center for Stem Cell BiologyCopenhagenDenmark
| | - Yasuyuki Ohkawa
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | | | - Simão Teixeira da Rocha
- Faculdade de MedicinaInstituto de Medicina MolecularJoão Lobo AntunesUniversidade de LisboaLisboaPortugal
| | - Jan J Żylicz
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
- The Novo Nordisk Foundation Center for Stem Cell BiologyCopenhagenDenmark
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Hiroshi Kimura
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Edith Heard
- EMBL HeidelbergHeidelbergGermany
- Collège de FranceParisFrance
| |
Collapse
|
14
|
Corvalan AZ, Coller HA. Methylation of histone 4's lysine 20: a critical analysis of the state of the field. Physiol Genomics 2020; 53:22-32. [PMID: 33197229 DOI: 10.1152/physiolgenomics.00128.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin is a highly dynamic structure whose plasticity is achieved through multiple processes including the posttranslational modification of histone tails. Histone modifications function through the recruitment of nonhistone proteins to chromatin and thus have the potential to influence many fundamental biological processes. Here, we focus on the function and regulation of lysine 20 of histone H4 (H4K20) methylation in multiple biological processes including DNA repair, cell cycle regulation, and DNA replication. The purpose of this review is to highlight recent studies that elucidate the functions associated with each of the methylation states of H4K20, their modifying enzymes, and their protein readers. Based on our current knowledge of H4K20 methylation, we critically analyze the data supporting these functions and outline questions for future research.
Collapse
Affiliation(s)
- Adriana Z Corvalan
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, California.,Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California.,Department of Biological Chemistry, University of California, Los Angeles, California
| | - Hilary A Coller
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, California.,Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California.,Department of Biological Chemistry, University of California, Los Angeles, California
| |
Collapse
|
15
|
Szulik MW, Davis K, Bakhtina A, Azarcon P, Bia R, Horiuchi E, Franklin S. Transcriptional regulation by methyltransferases and their role in the heart: highlighting novel emerging functionality. Am J Physiol Heart Circ Physiol 2020; 319:H847-H865. [PMID: 32822544 DOI: 10.1152/ajpheart.00382.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methyltransferases are a superfamily of enzymes that transfer methyl groups to proteins, nucleic acids, and small molecules. Traditionally, these enzymes have been shown to carry out a specific modification (mono-, di-, or trimethylation) on a single, or limited number of, amino acid(s). The largest subgroup of this family, protein methyltransferases, target arginine and lysine side chains of histone molecules to regulate gene expression. Although there is a large number of functional studies that have been performed on individual methyltransferases describing their methylation targets and effects on biological processes, no analyses exist describing the spatial distribution across tissues or their differential expression in the diseased heart. For this review, we performed tissue profiling in protein databases of 199 confirmed or putative methyltransferases to demonstrate the unique tissue-specific expression of these individual proteins. In addition, we examined transcript data sets from human heart failure patients and murine models of heart disease to identify 40 methyltransferases in humans and 15 in mice, which are differentially regulated in the heart, although many have never been functionally interrogated. Lastly, we focused our analysis on the largest subgroup, that of protein methyltransferases, and present a newly emerging phenomenon in which 16 of these enzymes have been shown to play dual roles in regulating transcription by maintaining the ability to both activate and repress transcription through methyltransferase-dependent or -independent mechanisms. Overall, this review highlights a novel paradigm shift in our understanding of the function of histone methyltransferases and correlates their expression in heart disease.
Collapse
Affiliation(s)
- Marta W Szulik
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Kathryn Davis
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Anna Bakhtina
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Presley Azarcon
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Emilee Horiuchi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah.,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
16
|
Yu R, Wu H, Ismail H, Du S, Cao J, Wang J, Ward T, Yang F, Gui P, Ali M, Chu L, Mo F, Wang Q, Chu Y, Zang J, Zhao Y, Ye M, Fang G, Chen PR, Dou Z, Gao X, Wang W, Liu X, Yao X. Methylation of PLK1 by SET7/9 ensures accurate kinetochore-microtubule dynamics. J Mol Cell Biol 2020; 12:462-476. [PMID: 31863092 PMCID: PMC7333475 DOI: 10.1093/jmcb/mjz107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023] Open
Abstract
Faithful segregation of mitotic chromosomes requires bi-orientation of sister chromatids, which relies on the sensing of correct attachments between spindle microtubules and kinetochores. Although the mechanisms underlying PLK1 activation have been extensively studied, the regulatory mechanisms that couple PLK1 activity to accurate chromosome segregation are not well understood. In particular, PLK1 is implicated in stabilizing kinetochore-microtubule attachments, but how kinetochore PLK1 activity is regulated to avoid hyperstabilized kinetochore-microtubules in mitosis remains elusive. Here, we show that kinetochore PLK1 kinase activity is modulated by SET7/9 via lysine methylation during early mitosis. The SET7/9-elicited dimethylation occurs at the Lys191 of PLK1, which tunes down its activity by limiting ATP utilization. Overexpression of the non-methylatable PLK1 mutant or chemical inhibition of SET7/9 methyltransferase activity resulted in mitotic arrest due to destabilized kinetochore-microtubule attachments. These data suggest that kinetochore PLK1 is essential for stable kinetochore-microtubule attachments and methylation by SET7/9 promotes dynamic kinetochore-microtubule attachments for accurate error correction. Our findings define a novel homeostatic regulation at the kinetochore that integrates protein phosphorylation and methylation with accurate chromosome segregation for maintenance of genomic stability.
Collapse
Affiliation(s)
- Ruoying Yu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Huihui Wu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Hazrat Ismail
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shihao Du
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Jun Cao
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Jianyu Wang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Tarsha Ward
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Fengrui Yang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ping Gui
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mahboob Ali
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lingluo Chu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Harvard Medical School, Boston, MA 02115, USA
| | - Fei Mo
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Harvard Medical School, Boston, MA 02115, USA
| | - Qi Wang
- Dalian Institute for Physical Chemistry, Dalian 116023, China
| | - Youjun Chu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Jianye Zang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Yun Zhao
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingliang Ye
- Dalian Institute for Physical Chemistry, Dalian 116023, China
| | - Guowei Fang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Peng R Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xinjiao Gao
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Wenwen Wang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
17
|
Linhares BM, Grembecka J, Cierpicki T. Targeting epigenetic protein-protein interactions with small-molecule inhibitors. Future Med Chem 2020; 12:1305-1326. [PMID: 32551894 PMCID: PMC7421387 DOI: 10.4155/fmc-2020-0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetic protein-protein interactions (PPIs) play essential roles in regulating gene expression, and their dysregulations have been implicated in many diseases. These PPIs are comprised of reader domains recognizing post-translational modifications on histone proteins, and of scaffolding proteins that maintain integrities of epigenetic complexes. Targeting PPIs have become focuses for development of small-molecule inhibitors and anticancer therapeutics. Here we summarize efforts to develop small-molecule inhibitors targeting common epigenetic PPI domains. Potent small molecules have been reported for many domains, yet small domains that recognize methylated lysine side chains on histones are challenging in inhibitor development. We posit that the development of potent inhibitors for difficult-to-prosecute epigenetic PPIs may be achieved by interdisciplinary approaches and extensive explorations of chemical space.
Collapse
Affiliation(s)
- Brian M Linhares
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomasz Cierpicki
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Mao W, Salzberg AC, Uchigashima M, Hasegawa Y, Hock H, Watanabe M, Akbarian S, Kawasawa YI, Futai K. Activity-Induced Regulation of Synaptic Strength through the Chromatin Reader L3mbtl1. Cell Rep 2019; 23:3209-3222. [PMID: 29898393 DOI: 10.1016/j.celrep.2018.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/12/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023] Open
Abstract
Homeostatic synaptic downscaling reduces neuronal excitability by modulating the number of postsynaptic receptors. Histone modifications and the subsequent chromatin remodeling play critical roles in activity-dependent gene expression. Histone modification codes are recognized by chromatin readers that affect gene expression by altering chromatin structure. We show that L3mbtl1 (lethal 3 malignant brain tumor-like 1), a polycomb chromatin reader, is downregulated by neuronal activity and is essential for synaptic response and downscaling. Genome-scale mapping of L3mbtl1 occupancies identified Ctnnb1 as a key gene downstream of L3mbtl1. Importantly, the occupancy of L3mbtl1 on the Ctnnb1 gene was regulated by neuronal activity. L3mbtl1 knockout neurons exhibited reduced Ctnnb1 expression. Partial knockdown of Ctnnb1 in wild-type neurons reduced excitatory synaptic transmission and abolished homeostatic downscaling, and transfecting Ctnnb1 in L3mbtl1 knockout neurons enhanced synaptic transmission and restored homeostatic downscaling. These results highlight a role for L3mbtl1 in regulating homeostasis of synaptic efficacy.
Collapse
Affiliation(s)
- Wenjie Mao
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | - Anna C Salzberg
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, and Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Motokazu Uchigashima
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA; Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Yuto Hasegawa
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | - Hanno Hock
- Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School,185 Cambridge Street, Boston, MA 02114, USA
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Schahram Akbarian
- Mount Sinai Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, and Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Kensuke Futai
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA.
| |
Collapse
|
19
|
Peng X, Liao G, Sun P, Yu Z, Chen J. An Overview of HDAC Inhibitors and their Synthetic Routes. Curr Top Med Chem 2019; 19:1005-1040. [DOI: 10.2174/1568026619666190227221507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
Epigenetics play a key role in the origin, development and metastasis of cancer. Epigenetic processes include DNA methylation, histone acetylation, histone methylation, and histone phosphorylation, among which, histone acetylation is the most common one that plays important roles in the regulation of normal cellular processes, and is controlled by histone deacetylases (HDACs) and histone acetyltransferases (HATs). HDACs are involved in the regulation of many key cellular processes, such as DNA damage repair, cell cycle control, autophagy, metabolism, senescence and chaperone function, and can lead to oncogene activation. As a result, HDACs are considered to be an excellent target for anti-cancer therapeutics like histone deacetylase inhibitors (HDACi) which have attracted much attention in the last decade. A wide-ranging knowledge of the role of HDACs in tumorigenesis, and of the action of HDACi, has been achieved. The primary purpose of this paper is to summarize recent HDAC inhibitors and the synthetic routes as well as to discuss the direction for the future development of new HDAC inhibitors.
Collapse
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Guochao Liao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
The Role of Nucleosomes in Epigenetic Gene Regulation. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
21
|
Samir N, Matboli M, El-Tayeb H, El-Tawdi A, Hassan MK, Waly A, El-Akkad HAE, Ramadan MG, Al-Belkini TN, El-Khamisy S, El-Asmar F. Competing endogenous RNA network crosstalk reveals novel molecular markers in colorectal cancer. J Cell Biochem 2018; 119:6869-6881. [PMID: 29737552 DOI: 10.1002/jcb.26884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/21/2018] [Indexed: 01/09/2023]
Abstract
The competing endogenous RNA networks play a pivotal role in cancer diagnosis and progression. Novel properstrategies for early detection of colorectal cancer (CRC) are strongly needed. We investigated a novel CRC-specific RNA-based integrated competing endogenous network composed of lethal3 malignant brain tumor like1 (L3MBTL1) gene, long non-coding intergenic RNA- (lncRNA RP11-909B2.1) and homo sapiens microRNA-595 (hsa-miRNA-595) using in silico data analysis. RT-qPCR-based validation of the network was achieved in serum of 70 patients with CRC, 40 patients with benign colorectal neoplasm, and 20 healthy controls. Moreover, in cancer tissues of 20 of the 70 CRC cases were involved in the study. The expression of RNA-based biomarker network in both CRC and adjacent non-tumor tissues and their correlation with the serum levels of this network members was investigated. Lastly, the expression levels of the chosen ceRNA was verified in CRC cell line. Our results revealed that the three RNAs-based biomarker network (long non-coding intergenic RNA-[lncRNA RP11-909B2.1], Homo sapiens microRNA-595 [hsa-miRNA-595], and L3MBTL1 mRNA), had high sensitivity and specificity for discriminating CRC from healthy controls and also from benign colorectal neoplasm. The data suggest that among these three RNAs, serum lncRNA RP11-909B2.1 could be a promising independent prognostic factors in CRC. The circulatory RNA based biomarker panel can act as potential biomarker for CRC diagnosis and prognosis.
Collapse
Affiliation(s)
- Nehal Samir
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Hanaa El-Tayeb
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Ahmed El-Tawdi
- Department of General Surgery, Military Medical Academy, Cairo, Egypt
| | - Mohmed K Hassan
- Center for Genomics, Helmy Institute, Zewail City for Science and Technology, Giza, Egypt.,Biotechnology Program, Department of Zoology, Port Said Faculty of Science, Port Said, Egypt
| | - Amr Waly
- Center for Genomics, Helmy Institute, Zewail City for Science and Technology, Giza, Egypt
| | - Hesham A E El-Akkad
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed G Ramadan
- Department of Oncology Surgery, National Cancer Institute, Giza, Egypt
| | | | - Sherif El-Khamisy
- Center for Genomics, Helmy Institute, Zewail City for Science and Technology, Giza, Egypt
| | - Farid El-Asmar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
22
|
Chen X, Wang S, Zhou Y, Han Y, Li S, Xu Q, Xu L, Zhu Z, Deng Y, Yu L, Song L, Chen AP, Song J, Takahashi E, He G, He L, Li W, Chen CD. Phf8 histone demethylase deficiency causes cognitive impairments through the mTOR pathway. Nat Commun 2018; 9:114. [PMID: 29317619 PMCID: PMC5760733 DOI: 10.1038/s41467-017-02531-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/06/2017] [Indexed: 12/16/2022] Open
Abstract
Epigenomic abnormalities caused by genetic mutation in epigenetic regulators can result in neurodevelopmental disorders, deficiency in neural plasticity and mental retardation. As a histone demethylase, plant homeodomain finger protein 8 (Phf8) is a candidate gene for syndromal and non-specific forms of X-chromosome-linked intellectual disability (XLID). Here we report that Phf8 knockout mice displayed impaired learning and memory, and impaired hippocampal long-term potentiation (LTP) without gross morphological defects. We also show that mTOR signaling pathway is hyperactive in hippocampus in Phf8 knockout mouse. Mechanistically, we show that demethylation of H4K20me1 by Phf8 results in transcriptional suppression of RSK1 and homeostasis of mTOR signaling. Pharmacological suppression of mTOR signaling with rapamycin in Phf8 knockout mice recovers the weakened LTP and cognitive deficits. Together, our results indicate that loss of Phf8 in animals causes deficient learning and memory by epigenetic disruption of mTOR signaling, and provides a potential therapeutic drug target to treat XLID. Mutations in PHF8 gene are genetically associated with X-linked mental retardation. Here, Chen et al. show that Phf8 KO mouse have cognitive and synaptic plasticity impairment, and pharmacological inhibition of mTOR signaling can partially alleviate such defects.
Collapse
Affiliation(s)
- Xuemei Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,State Key Laboratory of Molecular Biology, Shanghai Key laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ying Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yanfei Han
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Discipline of Neuroscience and Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Shengtian Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qing Xu
- State Key Laboratory of Molecular Biology, Shanghai Key laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Longyong Xu
- State Key Laboratory of Molecular Biology, Shanghai Key laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ziqi Zhu
- State Key Laboratory of Molecular Biology, Shanghai Key laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Youming Deng
- State Key Laboratory of Molecular Biology, Shanghai Key laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lu Yu
- State Key Laboratory of Molecular Biology, Shanghai Key laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lulu Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Adele Pin Chen
- State Key Laboratory of Molecular Biology, Shanghai Key laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Juan Song
- Department of Pharmacology and Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27514, USA
| | - Eiki Takahashi
- Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
23
|
Tanaka H, Takebayashi SI, Sakamoto A, Igata T, Nakatsu Y, Saitoh N, Hino S, Nakao M. The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling. Cell Rep 2017; 18:2148-2161. [PMID: 28249161 DOI: 10.1016/j.celrep.2017.02.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/29/2016] [Accepted: 02/06/2017] [Indexed: 01/01/2023] Open
Abstract
Cellular senescence is an irreversible growth arrest that contributes to development, tumor suppression, and age-related conditions. Senescent cells show active metabolism compared with proliferating cells, but the underlying mechanisms remain unclear. Here we show that the SETD8/PR-Set7 methyltransferase, which catalyzes mono-methylation of histone H4 at lysine 20 (H4K20me1), suppresses nucleolar and mitochondrial activities to prevent cellular senescence. SETD8 protein was selectively downregulated in both oncogene-induced and replicative senescence. Inhibition of SETD8 alone was sufficient to trigger senescence. Under these states, the expression of genes encoding ribosomal proteins (RPs) and ribosomal RNAs as well as the cyclin-dependent kinase (CDK) inhibitor p16INK4A was increased, with a corresponding reduction of H4K20me1 at each locus. As a result, the loss of SETD8 concurrently stimulated nucleolar function and retinoblastoma protein-mediated mitochondrial metabolism. In conclusion, our data demonstrate that SETD8 acts as a barrier to prevent cellular senescence through chromatin-mediated regulation of senescence-associated metabolic remodeling.
Collapse
Affiliation(s)
- Hiroshi Tanaka
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shin-Ichiro Takebayashi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Akihisa Sakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tomoka Igata
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuko Nakatsu
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Noriko Saitoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan.
| |
Collapse
|
24
|
Turner AMW, Margolis DM. Chromatin Regulation and the Histone Code in HIV Latency
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:229-243. [PMID: 28656010 PMCID: PMC5482300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The formation of a latent reservoir of Human Immunodeficiency Virus (HIV) infection hidden from immune clearance remains a significant obstacle to approaches to eradicate HIV infection. Towards an understanding of the mechanisms of HIV persistence, there is a growing body of work implicating epigenetic regulation of chromatin in establishment and maintenance of this latent reservoir. Here we discuss recent advances in the field of chromatin regulation, specifically in our understanding of the histone code, and how these discoveries relate to our current knowledge of the chromatin mechanisms linked to HIV transcriptional repression and the reversal of latency. We also examine mechanisms unexplored in the context of HIV latency and briefly discuss current therapies aimed at the induction of proviral expression within latently infected cells. We aim to emphasize that a greater understanding of the epigenetic mechanisms which govern HIV latency could lead to new therapeutic targets for latency reversal and clearance cure strategies.
Collapse
Affiliation(s)
- Anne-Marie W. Turner
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David M. Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,To whom all correspondence should be addressed: David Margolis, University of North Carolina at Chapel Hill, 2016 Genetic Medicine Building, CB#7042, 120 Mason Farm Road, Chapel Hill, NC, 27599-7435, Tel: (919) 966-6388, .
| |
Collapse
|
25
|
McLoughlin KC, Kaufman AS, Schrump DS. Targeting the epigenome in malignant pleural mesothelioma. Transl Lung Cancer Res 2017; 6:350-365. [PMID: 28713680 DOI: 10.21037/tlcr.2017.06.06] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesotheliomas (MPM) are notoriously refractory to conventional treatment modalities. Recent insights regarding epigenetic alterations in MPM provide the preclinical rationale for the evaluation of novel combinatorial regimens targeting the epigenome in these neoplasms.
Collapse
Affiliation(s)
- Kaitlin C McLoughlin
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrew S Kaufman
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
26
|
Boehm D, Jeng M, Camus G, Gramatica A, Schwarzer R, Johnson JR, Hull PA, Montano M, Sakane N, Pagans S, Godin R, Deeks SG, Krogan NJ, Greene WC, Ott M. SMYD2-Mediated Histone Methylation Contributes to HIV-1 Latency. Cell Host Microbe 2017; 21:569-579.e6. [PMID: 28494238 PMCID: PMC5490666 DOI: 10.1016/j.chom.2017.04.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/07/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022]
Abstract
Transcriptional latency of HIV is a last barrier to viral eradication. Chromatin-remodeling complexes and post-translational histone modifications likely play key roles in HIV-1 reactivation, but the underlying mechanisms are incompletely understood. We performed an RNAi-based screen of human lysine methyltransferases and identified the SET and MYND domain-containing protein 2 (SMYD2) as an enzyme that regulates HIV-1 latency. Knockdown of SMYD2 or its pharmacological inhibition reactivated latent HIV-1 in T cell lines and in primary CD4+ T cells. SMYD2 associated with latent HIV-1 promoter chromatin, which was enriched in monomethylated lysine 20 at histone H4 (H4K20me1), a mark lost in cells lacking SMYD2. Further, we find that lethal 3 malignant brain tumor 1 (L3MBTL1), a reader protein with chromatin-compacting properties that recognizes H4K20me1, was recruited to the latent HIV-1 promoter in a SMYD2-dependent manner. We propose that a SMYD2-H4K20me1-L3MBTL1 axis contributes to HIV-1 latency and can be targeted with small-molecule SMYD2 inhibitors.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark Jeng
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gregory Camus
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrea Gramatica
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roland Schwarzer
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey R Johnson
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Philip A Hull
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mauricio Montano
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Naoki Sakane
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Pharmaceutical Frontier Research Laboratory, JT, 1-13-2 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Sara Pagans
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nevan J Krogan
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Warner C Greene
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institute for Virology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
27
|
Monomethyltransferase SETD8 regulates breast cancer metabolism via stabilizing hypoxia-inducible factor 1α. Cancer Lett 2017; 390:1-10. [DOI: 10.1016/j.canlet.2016.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/03/2016] [Accepted: 12/23/2016] [Indexed: 11/20/2022]
|
28
|
Navarro E, Funtikova AN, Fíto M, Schröder H. Prenatal nutrition and the risk of adult obesity: Long-term effects of nutrition on epigenetic mechanisms regulating gene expression. J Nutr Biochem 2017; 39:1-14. [DOI: 10.1016/j.jnutbio.2016.03.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/23/2016] [Accepted: 03/27/2016] [Indexed: 12/19/2022]
|
29
|
Sun L, Fang J. Epigenetic regulation of epithelial-mesenchymal transition. Cell Mol Life Sci 2016; 73:4493-4515. [PMID: 27392607 PMCID: PMC5459373 DOI: 10.1007/s00018-016-2303-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an essential process for morphogenesis and organ development which reversibly enables polarized epithelial cells to lose their epithelial characteristics and to acquire mesenchymal properties. It is now evident that the aberrant activation of EMT is also a critical mechanism to endow epithelial cancer cells with migratory and invasive capabilities associated with metastatic competence. This dedifferentiation program is mediated by a small cohort of pleiotropic transcription factors which orchestrate a complex array of epigenetic mechanisms for the wide-spread changes in gene expression. Here, we review major epigenetic mechanisms with an emphasis on histone modifications and discuss their implications in EMT and tumor progression. We also highlight mechanisms underlying transcription regulation concerted by various chromatin-modifying proteins and EMT-inducing transcription factors at different molecular layers. Owing to the reversible nature of epigenetic modifications, a thorough understanding of their functions in EMT will not only provide new insights into our knowledge of cancer progression and metastasis, but also facilitate the development of diagnostic and therapeutic strategies for human malignancy.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jia Fang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
30
|
Marsh AG, Cottrell MT, Goldman MF. Epigenetic DNA Methylation Profiling with MSRE: A Quantitative NGS Approach Using a Parkinson's Disease Test Case. Front Genet 2016; 7:191. [PMID: 27853465 PMCID: PMC5090125 DOI: 10.3389/fgene.2016.00191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/14/2016] [Indexed: 11/22/2022] Open
Abstract
Epigenetics is a rapidly developing field focused on deciphering chemical fingerprints that accumulate on human genomes over time. As the nascent idea of precision medicine expands to encompass epigenetic signatures of diagnostic and prognostic relevance, there is a need for methodologies that provide high-throughput DNA methylation profiling measurements. Here we report a novel quantification methodology for computationally reconstructing site-specific CpG methylation status from next generation sequencing (NGS) data using methyl-sensitive restriction endonucleases (MSRE). An integrated pipeline efficiently incorporates raw NGS metrics into a statistical discrimination platform to identify functional linkages between shifts in epigenetic DNA methylation and disease phenotypes in samples being analyzed. In this pilot proof-of-concept study we quantify and compare DNA methylation in blood serum of individuals with Parkinson's Disease relative to matched healthy blood profiles. Even with a small study of only six samples, a high degree of statistical discrimination was achieved based on CpG methylation profiles between groups, with 1008 statistically different CpG sites (p < 0.0025, after false discovery rate correction). A methylation load calculation was used to assess higher order impacts of methylation shifts on genes and pathways and most notably identified FGF3, FGF8, HTT, KMTA5, MIR8073, and YWHAG as differentially methylated genes with high relevance to Parkinson's Disease and neurodegeneration (based on PubMed literature citations). Of these, KMTA5 is a histone methyl-transferase gene and HTT is Huntington Disease Protein or Huntingtin, for which there are well established neurodegenerative impacts. The future need for precision diagnostics now requires more tools for exploring epigenetic processes that may be linked to cellular dysfunction and subsequent disease progression.
Collapse
Affiliation(s)
- Adam G Marsh
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of DelawareNewark, DE, USA; Genome Profiling LLC, Helen F. Graham Cancer Center and Research Institute, Center for Translational Cancer ResearchNewark, DE USA; Marine Biosciences, School of Marine Science and Policy, University of DelawareLewes, DE, USA
| | - Matthew T Cottrell
- Genome Profiling LLC, Helen F. Graham Cancer Center and Research Institute, Center for Translational Cancer ResearchNewark, DE USA; Marine Biosciences, School of Marine Science and Policy, University of DelawareLewes, DE, USA
| | - Morton F Goldman
- Genome Profiling LLC, Helen F. Graham Cancer Center and Research Institute, Center for Translational Cancer Research Newark, DE USA
| |
Collapse
|
31
|
Milite C, Feoli A, Viviano M, Rescigno D, Cianciulli A, Balzano AL, Mai A, Castellano S, Sbardella G. The emerging role of lysine methyltransferase SETD8 in human diseases. Clin Epigenetics 2016; 8:102. [PMID: 27688818 PMCID: PMC5034662 DOI: 10.1186/s13148-016-0268-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/14/2016] [Indexed: 01/07/2023] Open
Abstract
SETD8/SET8/Pr-SET7/KMT5A is the only known lysine methyltransferase (KMT) that monomethylates lysine 20 of histone H4 (H4K20) in vivo. Lysine residues of non-histone proteins including proliferating cell nuclear antigen (PCNA) and p53 are also monomethylated. As a consequence, the methyltransferase activity of the enzyme is implicated in many essential cellular processes including DNA replication, DNA damage response, transcription modulation, and cell cycle regulation. This review aims to provide an overview of the roles of SETD8 in physiological and pathological pathways and to discuss the progress made to date in inhibiting the activity of SETD8 by small molecules, with an emphasis on their discovery, selectivity over other methyltransferases and cellular activity.
Collapse
Affiliation(s)
- Ciro Milite
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy
| | - Alessandra Feoli
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Programma di Dottorato di Ricerca in Scienze del Farmaco, Università degli studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy
| | - Monica Viviano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy
| | - Donatella Rescigno
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Programma di Dottorato di Ricerca in Scienze del Farmaco, Università degli studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy
| | - Agostino Cianciulli
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Programma di Dottorato di Ricerca in Scienze del Farmaco, Università degli studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy
| | - Amodio Luca Balzano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Programma di Dottorato di Ricerca in Scienze del Farmaco, Università degli studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy
| | - Antonello Mai
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P.le A. Moro 5, I-00185 Rome, Italy
| | - Sabrina Castellano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno, Via Salvador Allende, Baronissi, I-84081 Salerno, Italy
| | - Gianluca Sbardella
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy ; Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fisciano, I-84084 Salerno, Italy
| |
Collapse
|
32
|
Structural aspects of small-molecule inhibition of methyllysine reader proteins. Future Med Chem 2016; 8:1681-702. [PMID: 27577975 DOI: 10.4155/fmc-2016-0082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Methyl reader proteins recognize and bind to post-translationally methylated residues. They execute the commands issued by protein methyltransferases and play functional roles in diverse cellular processes including gene regulation, development and oncogenesis. Efforts to inhibit these proteins are relatively new. Only a small number of methyl reader proteins belonging to the chromodomain, malignant brain tumor domain, plant homeodomain finger and Tudor domain families have been targeted by chemical inhibitors. This review summarizes inhibitors that have been reported to date, and provides a perspective for future progress. Structural determinants for methyl reader inhibition will be presented, along with an analysis of the molecular interactions that control potency and selectivity for inhibitors of each family.
Collapse
|
33
|
Milite C, Feoli A, Viviano M, Rescigno D, Mai A, Castellano S, Sbardella G. Progress in the Development of Lysine Methyltransferase SETD8 Inhibitors. ChemMedChem 2016; 11:1680-5. [PMID: 27411844 DOI: 10.1002/cmdc.201600272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/29/2016] [Indexed: 11/12/2022]
Abstract
SETD8/SET8/Pr-SET7/KMT5A is the only known lysine methyltransferase that monomethylates lysine 20 of histone H4 (H4K20) in vivo. The methyltransferase activity of SETD8 has been implicated in many essential cellular processes, including DNA replication, DNA damage response, transcription modulation, and cell cycle regulation. In addition to H4K20, SETD8 monomethylates non-histone substrates including proliferating cell nuclear antigen and p53. During the past decade, different structural classes of inhibitors targeting various lysine methyltransferases have been designed and developed. However, the development of SETD8 inhibitors is still in its infancy. This review covers the progress made to date in inhibiting the activity of SETD8 by small molecules, with an emphasis on their discovery, selectivity over other methyltransferases, and cellular activity.
Collapse
Affiliation(s)
- Ciro Milite
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.,Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Alessandra Feoli
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.,Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.,Programma di Dottorato di Ricerca in Scienze del Farmaco, Università degli studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Monica Viviano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.,Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Donatella Rescigno
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.,Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.,Programma di Dottorato di Ricerca in Scienze del Farmaco, Università degli studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Antonello Mai
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Sabrina Castellano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.,Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.,Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Gianluca Sbardella
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy. .,Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
34
|
Tran NT, Su H, Khodadadi-Jamayran A, Lin S, Zhang L, Zhou D, Pawlik KM, Townes TM, Chen Y, Mulloy JC, Zhao X. The AS-RBM15 lncRNA enhances RBM15 protein translation during megakaryocyte differentiation. EMBO Rep 2016; 17:887-900. [PMID: 27118388 DOI: 10.15252/embr.201541970] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/30/2016] [Indexed: 01/16/2023] Open
Abstract
Antisense RNAs regulate the transcription and translation of the corresponding sense genes. Here, we report that an antisense RNA, AS-RBM15, is transcribed in the opposite direction within exon 1 of RBM15 RBM15 is a regulator of megakaryocyte (MK) differentiation and is also involved in a chromosome translocation t(1;22) in acute megakaryocytic leukemia. MK terminal differentiation is enhanced by up-regulation of AS-RBM15 expression and attenuated by AS-RBM15 knockdown. At the molecular level, AS-RBM15 enhances RBM15 protein translation in a CAP-dependent manner. The region of the antisense AS-RBM15 RNA, which overlaps with the 5'UTR of RBM15, is sufficient for the up-regulation of RBM15 protein translation. In addition, we find that transcription of both RBM15 and AS-RBM15 is activated by the transcription factor RUNX1 and repressed by RUNX1-ETO, a leukemic fusion protein. Therefore, AS-RBM15 is a regulator of megakaryocyte differentiation and may play a regulatory role in leukemogenesis.
Collapse
Affiliation(s)
- Ngoc-Tung Tran
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hairui Su
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shan Lin
- Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Li Zhang
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dewang Zhou
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin M Pawlik
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tim M Townes
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yabing Chen
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | | | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
35
|
Brasa S, Mueller A, Jacquemont S, Hahne F, Rozenberg I, Peters T, He Y, McCormack C, Gasparini F, Chibout SD, Grenet O, Moggs J, Gomez-Mancilla B, Terranova R. Reciprocal changes in DNA methylation and hydroxymethylation and a broad repressive epigenetic switch characterize FMR1 transcriptional silencing in fragile X syndrome. Clin Epigenetics 2016; 8:15. [PMID: 26855684 PMCID: PMC4743126 DOI: 10.1186/s13148-016-0181-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/24/2016] [Indexed: 01/22/2023] Open
Abstract
Background Fragile X syndrome (FXS) is the most common form of inherited intellectual disability, resulting from the loss of function of the fragile X mental retardation 1 (FMR1) gene. The molecular pathways associated with FMR1 epigenetic silencing are still elusive, and their characterization may enhance the discovery of novel therapeutic targets as well as the development of novel clinical biomarkers for disease status. Results We have deployed customized epigenomic profiling assays to comprehensively map the FMR1 locus chromatin landscape in peripheral mononuclear blood cells (PBMCs) from eight FXS patients and in fibroblast cell lines derived from three FXS patient. Deoxyribonucleic acid (DNA) methylation (5-methylcytosine (5mC)) and hydroxymethylation (5-hydroxymethylcytosine (5hmC)) profiling using methylated DNA immunoprecipitation (MeDIP) combined with a custom FMR1 microarray identifies novel regions of DNA (hydroxy)methylation changes within the FMR1 gene body as well as in proximal flanking regions. At the region surrounding the FMR1 transcriptional start sites, increased levels of 5mC were associated to reciprocal changes in 5hmC, representing a novel molecular feature of FXS disease. Locus-specific validation of FMR1 5mC and 5hmC changes highlighted inter-individual differences that may account for the expected DNA methylation mosaicism observed at the FMR1 locus in FXS patients. Chromatin immunoprecipitation (ChIP) profiling of FMR1 histone modifications, together with 5mC/5hmC and gene expression analyses, support a functional relationship between 5hmC levels and FMR1 transcriptional activation and reveal cell-type specific differences in FMR1 epigenetic regulation. Furthermore, whilst 5mC FMR1 levels positively correlated with FXS disease severity (clinical scores of aberrant behavior), our data reveal for the first time an inverse correlation between 5hmC FMR1 levels and FXS disease severity. Conclusions We identify novel, cell-type specific, regions of FMR1 epigenetic changes in FXS patient cells, providing new insights into the molecular mechanisms of FXS. We propose that the combined measurement of 5mC and 5hmC at selected regions of the FMR1 locus may significantly enhance FXS clinical diagnostics and patient stratification. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0181-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Brasa
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Arne Mueller
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Sébastien Jacquemont
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
| | - Florian Hahne
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Izabela Rozenberg
- Neuroscience Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Thomas Peters
- BioMarker Development, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Cambridge, MA USA
| | - Yunsheng He
- BioMarker Development, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Cambridge, MA USA
| | - Christine McCormack
- Clinical Diagnostics, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Cambridge, MA USA
| | - Fabrizio Gasparini
- Neuroscience, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Salah-Dine Chibout
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Olivier Grenet
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Jonathan Moggs
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| | - Baltazar Gomez-Mancilla
- Neuroscience Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Rémi Terranova
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland
| |
Collapse
|
36
|
Abstract
Protein methylation is a common post-translational modification with diverse biological functions. Methyllysine reader proteins are increasingly a focus of epigenetics research and play important roles in regulating many cellular processes. These reader proteins are vital players in development, cell cycle regulation, stress responses, oncogenesis, and other disease pathways. The recent emergence of a small number of chemical inhibitors for methyllysine reader proteins supports the viability of these proteins as targets for drug development. This article introduces the biochemistry and biology of methyllysine reader proteins, provides an overview of functions for those families of readers that have been targeted to date (MBT, PHD, tudor, and chromodomains), and reviews the development of synthetic agents that directly block their methyllysine reading functions.
Collapse
Affiliation(s)
- Natalia Milosevich
- Department of Chemistry, University of Victoria , Victoria, British Columbia V8W 3V6, Canada
| | - Fraser Hof
- Department of Chemistry, University of Victoria , Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
37
|
Sound of silence: the properties and functions of repressive Lys methyltransferases. Nat Rev Mol Cell Biol 2015. [PMID: 26204160 DOI: 10.1038/nrm4029] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The methylation of histone Lys residues by Lys methyltransferases (KMTs) regulates chromatin organization and either activates or represses gene expression, depending on the residue that is targeted. KMTs are emerging as key components in several cellular processes, and their deregulation is often associated with pathogenesis. Here, we review the current knowledge on the main KMTs that are associated with gene silencing: namely, those responsible for methylating histone H3 Lys 9 (H3K9), H3K27 and H4K20. We discuss their biochemical properties and the various mechanisms by which they are targeted to the chromatin and regulate gene expression, as well as new data on the interplay between them and other chromatin modifiers.
Collapse
|
38
|
Méndez C, Ahlenstiel CL, Kelleher AD. Post-transcriptional gene silencing, transcriptional gene silencing and human immunodeficiency virus. World J Virol 2015; 4:219-244. [PMID: 26279984 PMCID: PMC4534814 DOI: 10.5501/wjv.v4.i3.219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/24/2015] [Accepted: 04/29/2015] [Indexed: 02/05/2023] Open
Abstract
While human immunodeficiency virus 1 (HIV-1) infection is controlled through continuous, life-long use of a combination of drugs targeting different steps of the virus cycle, HIV-1 is never completely eradicated from the body. Despite decades of research there is still no effective vaccine to prevent HIV-1 infection. Therefore, the possibility of an RNA interference (RNAi)-based cure has become an increasingly explored approach. Endogenous gene expression is controlled at both, transcriptional and post-transcriptional levels by non-coding RNAs, which act through diverse molecular mechanisms including RNAi. RNAi has the potential to control the turning on/off of specific genes through transcriptional gene silencing (TGS), as well as fine-tuning their expression through post-transcriptional gene silencing (PTGS). In this review we will describe in detail the canonical RNAi pathways for PTGS and TGS, the relationship of TGS with other silencing mechanisms and will discuss a variety of approaches developed to suppress HIV-1 via manipulation of RNAi. We will briefly compare RNAi strategies against other approaches developed to target the virus, highlighting their potential to overcome the major obstacle to finding a cure, which is the specific targeting of the HIV-1 reservoir within latently infected cells.
Collapse
|
39
|
Warns JA, Davie JR, Dhasarathy A. Connecting the dots: chromatin and alternative splicing in EMT. Biochem Cell Biol 2015; 94:12-25. [PMID: 26291837 DOI: 10.1139/bcb-2015-0053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.
Collapse
Affiliation(s)
- Jessica A Warns
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| | - James R Davie
- b Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Archana Dhasarathy
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| |
Collapse
|
40
|
Hung YL, Lee HJ, Jiang I, Lin SC, Lo WC, Lin YJ, Sue SC. The First Residue of the PWWP Motif Modulates HATH Domain Binding, Stability, and Protein-Protein Interaction. Biochemistry 2015; 54:4063-74. [PMID: 26067205 DOI: 10.1021/acs.biochem.5b00454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepatoma-derived growth factor (hHDGF) and HDGF-related proteins (HRPs) contain conserved N-terminal HATH domains with a characteristic structural motif, namely the PWWP motif. The HATH domain has attracted attention because of its ability to bind with heparin/heparan sulfate, DNA, and methylated histone peptide. Depending on the sequence of the PWWP motif, HRP HATHs are classified into P-type (Pro-His-Trp-Pro) and A-type (Ala-His-Trp-Pro) forms. A-type HATH is highly unstable and tends to precipitate in solution. We replaced the Pro residue in P-type HATHHDGF with Ala and evaluated the influence on structure, dynamics, and ligand binding. Nuclear magnetic resonance (NMR) hydrogen/deuterium exchange and circular dichroism (CD) measurements revealed reduced stability. Analysis of NMR backbone (15)N relaxations (R1, R2, and nuclear Overhauser effect) revealed additional backbone dynamics in the interface between the β-barrel and the C-terminal helix bundle. The β1-β2 loop, where the AHWP sequence is located, has great structural flexibility, which aids HATH-HATH interaction through the loop. A-type HATH, therefore, shows a stronger tendency to aggregate when binding with heparin and DNA oligomers. This study defines the role of the first residue of the PWWP motif in modulating HATH domain stability and oligomer formation in binding.
Collapse
Affiliation(s)
| | | | | | | | - Wei-Cheng Lo
- §Institute of Bioinformatics and Structural Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Jan Lin
- ∥Graduate Institute of Natural Products and Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | |
Collapse
|
41
|
Histone methyltransferase Setd8 represses Gata2 expression and regulates erythroid maturation. Mol Cell Biol 2015; 35:2059-72. [PMID: 25848090 DOI: 10.1128/mcb.01413-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
Setd8 is the sole histone methyltransferase in mammals capable of monomethylating histone H4 lysine 20 (H4K20me1). Setd8 is expressed at significantly higher levels in erythroid cells than any other cell or tissue type, suggesting that Setd8 has an erythroid-cell-specific function. To test this hypothesis, stable Setd8 knockdown was established in extensively self-renewing erythroblasts (ESREs), a well-characterized, nontransformed model of erythroid maturation. Knockdown of Setd8 resulted in impaired erythroid maturation characterized by a delay in hemoglobin accumulation, larger mean cell area, persistent ckit expression, incomplete nuclear condensation, and lower rates of enucleation. Setd8 knockdown did not alter ESRE proliferation or viability or result in accumulation of DNA damage. Global gene expression analyses following Setd8 knockdown demonstrated that in erythroid cells, Setd8 functions primarily as a repressor. Most notably, Gata2 expression was significantly higher in knockdown cells than in control cells and Gata2 knockdown rescued some of the maturation impairments associated with Setd8 disruption. Setd8 occupies critical regulatory elements in the Gata2 locus, and knockdown of Setd8 resulted in loss of H4K20me1 and gain of H4 acetylation at the Gata2 1S promoter. These results suggest that Setd8 is an important regulator of erythroid maturation that works in part through repression of Gata2 expression.
Collapse
|
42
|
Perna F, Vu LP, Themeli M, Kriks S, Hoya-Arias R, Khanin R, Hricik T, Mansilla-Soto J, Papapetrou EP, Levine RL, Studer L, Sadelain M, Nimer SD. The polycomb group protein L3MBTL1 represses a SMAD5-mediated hematopoietic transcriptional program in human pluripotent stem cells. Stem Cell Reports 2015; 4:658-69. [PMID: 25754204 PMCID: PMC4400644 DOI: 10.1016/j.stemcr.2015.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 01/11/2023] Open
Abstract
Epigenetic regulation of key transcriptional programs is a critical mechanism that controls hematopoietic development, and, thus, aberrant expression patterns or mutations in epigenetic regulators occur frequently in hematologic malignancies. We demonstrate that the Polycomb protein L3MBTL1, which is monoallelically deleted in 20q- myeloid malignancies, represses the ability of stem cells to drive hematopoietic-specific transcriptional programs by regulating the expression of SMAD5 and impairing its recruitment to target regulatory regions. Indeed, knockdown of L3MBTL1 promotes the development of hematopoiesis and impairs neural cell fate in human pluripotent stem cells. We also found a role for L3MBTL1 in regulating SMAD5 target gene expression in mature hematopoietic cell populations, thereby affecting erythroid differentiation. Taken together, we have identified epigenetic priming of hematopoietic-specific transcriptional networks, which may assist in the development of therapeutic approaches for patients with anemia. L3MBTL1 is a chromatin-binding protein that represses SMAD5 expression Lack of L3MBTL1 primes the hematopoietic development of pluripotent stem cells L3MBTL1 regulates erythroid differentiation
Collapse
Affiliation(s)
- Fabiana Perna
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Ly P Vu
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria Themeli
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Kriks
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruben Hoya-Arias
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raya Khanin
- Bioinformatics Core, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Todd Hricik
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge Mansilla-Soto
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Ross L Levine
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lorenz Studer
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michel Sadelain
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
43
|
Role of epigenetic mechanisms in epithelial-to-mesenchymal transition of breast cancer cells. Transl Res 2015; 165:126-42. [PMID: 24768944 DOI: 10.1016/j.trsl.2014.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/26/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a crucial process during normal development that allows dynamic and reversible shifts between epithelial and mesenchymal cell states. Cancer cells take advantage of the complex, interrelated cellular networks that regulate EMT to promote their migratory and invasive capabilities. During the past few years, evidence has accumulated that indicates that genetic mutations and changes to epigenetic mechanisms are key drivers of EMT in cancer cells. Recent studies have begun to shed light on the epigenetic reprogramming in cancer cells that enables them to switch from a noninvasive form to an invasive, metastatic form. The authors review the current knowledge of alterations of epigenetic machinery, including DNA methylation, histone modifications, nucleosome remodeling and expression of microRNAs, associated with EMT and tumor progression of breast cancer cells. Last, existing and upcoming drug therapies targeting epigenetic regulators and their potential benefit for developing novel treatment strategies are discussed.
Collapse
|
44
|
Thompson LL, Guppy BJ, Sawchuk L, Davie JR, McManus KJ. Regulation of chromatin structure via histone post-translational modification and the link to carcinogenesis. Cancer Metastasis Rev 2014; 32:363-76. [PMID: 23609752 DOI: 10.1007/s10555-013-9434-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The loss of genome integrity contributes to the development of tumors. Although genome instability is associated with virtually all tumor types including both solid and liquid tumors, the aberrant molecular origins that drive this instability are poorly understood. It is now becoming clear that epigenetics and specific histone post-translational modifications (PTMs) have essential roles in maintaining genome stability under normal conditions. A strong relationship exists between aberrant histone PTMs, genome instability, and tumorigenesis. Changes in the genomic location of specific histone PTMs or alterations in the steady-state levels of the PTM are the consequence of imbalances in the enzymes and their activities catalyzing the addition of PTMs ("writers") or removal of PTMs ("erasers"). This review focuses on the misregulation of three specific types of histone PTMs: histone H3 phosphorylation at serines 10 and 28, H4 mono-methylation at lysine 20, and H2B ubiquitination at lysine 120. We discuss the normal regulation of these PTMs by the respective "writers" and "erasers" and the impact of their misregulation on genome stability.
Collapse
Affiliation(s)
- Laura L Thompson
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
45
|
Meier K, Brehm A. Chromatin regulation: how complex does it get? Epigenetics 2014; 9:1485-95. [PMID: 25482055 PMCID: PMC4622878 DOI: 10.4161/15592294.2014.971580] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/18/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022] Open
Abstract
Gene transcription is tightly regulated at different levels to ensure that the transcriptome of the cell is appropriate for developmental stage and cell type. The chromatin state in which a gene is embedded determines its expression level to a large extent. Activation or repression of transcription is typically accomplished by the recruitment of chromatin-associated multisubunit protein complexes that combine several molecular tools, such as histone-binding and chromatin-modifying activities. Recent biochemical purifications of such complexes have revealed a substantial diversity. On the one hand, complexes that were thought to be unique have been revealed to be part of large complex families. On the other hand, protein subunits that were thought to only exist in separate complexes have been shown to coexist in novel assemblies. In this review we discuss our current knowledge of repressor complexes that contain MBT domain proteins and/or the CoREST co-repressor and use them as a paradigm to illustrate the unexpected heterogeneity and tool sharing of chromatin regulating protein complexes. These recent insights also challenge the ways we define and think about protein complexes in general.
Collapse
Key Words
- ATP, adenosine triphosphate
- BAP, brahma associated protein
- BHC80, BRAF-histone deacetylase complex 80
- BRG1, brahma Related Gene 1
- CHD, chromo domain helicase DNA binding
- CoREST
- CoREST REST, corepressor
- DNA, deoxyribonucleic acid
- DNMT, DNA methyltransferase
- DP-1, dimerization partner 1
- E2F, E2 transcription Factor
- ELM2, EGL-27 and MTA1 homology 2
- ES cell, embryonic stem cells
- H, histone
- HDAC, histone deacetylas
- HMTase, histone methylase
- HP1, heterochromatin protein 1
- K, lysine
- L3MBTL, lethal 3 malignant brain tumor-like
- LINT, l(3)mbt interacting
- LSD1, lysine-specific demethylase 1
- Lint-1, l(3)mbt interacting 1
- MBT protein
- MBT, malignant brain tumor
- MBTS, malignant brain tumor signature
- NPA1, nucleosome assembly protein
- NRSF, neural-restrictive silencing factor
- NuRD, nucleosome remodeling and deacetylase
- PBAP, polybromo-associated BAP
- PHD, plant homeo domain
- PRC1, polycomb repressive complex 1
- PRE, polycomb responsive element
- Pc, polycomb
- PcG, polycomb group
- Ph, polyhomeotic
- Pho, pleiohomeotic
- PhoRC, Pho repressive complex
- Psc, posterior sex combs
- RB, retinoblastoma
- REST, repressor element 1 silencing transcription factor
- RNA, ribonucleic acid
- Rpd3, reduced potassium dependency 3
- SANT, SWI/ADA2/N-CoR/TFIIIB
- SCML, sex combs on midleg-like
- SLC, SFMBT1, LSD1, CoREST
- SWH, Salvador-Warts-Hippo
- SWI/SNF, switching defective/sucrose non-fermenting
- Sce, sex combs extra
- Scm, sex combs on midleg
- Sfmbt, Scm-related gene containing 4 mbt domains
- TSS, transcription start site
- YY1, ying-yang 1
- ZNF, zinc finger
- complex family
- dL(3)mbt, Drosophila Lethal 3 malignant brain tumor
- hBRM, human Brahma
- l(3)mbt, lethal 3 malignant brain tumor
- protein complex
- transcriptional regulation
Collapse
Affiliation(s)
- Karin Meier
- Institut für Molekularbiologie und Tumorforschung; Philipps-Universität Marburg; Marburg, Germany
- Instituto de Fisiología Celular; Departamento de Genética Molecular; Universidad Nacional Autónoma de México; México City, México
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung; Philipps-Universität Marburg; Marburg, Germany
| |
Collapse
|
46
|
Chromatin reader L(3)mbt requires the Myb-MuvB/DREAM transcriptional regulatory complex for chromosomal recruitment. Proc Natl Acad Sci U S A 2014; 111:E4234-43. [PMID: 25249635 DOI: 10.1073/pnas.1416321111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lethal malignant brain tumors (lmbt) result from the loss of the conserved transcriptional repressor l(3)mbt, in Drosophila melanogaster. Similar mutations in the human homolog L3MBTL1 correlate with some cancers. The protein's C-terminal MBT repeats bind mono and dimethylated histones in vitro, which could influence recruitment of L3MBTL1 to its target sites. The L(3)mbt chromatin targeting mechanism, however, is controversial and several studies suggest insufficiency or a minor role for histone methylation in determining the site specificity for recruitment. We report that L(3)mbt colocalizes with core members of the Myb-MuvB/DREAM (MMB/DREAM) transcriptional regulatory complex genome-wide, and that L(3)mbt-mediated repression requires this complex in salivary glands and larval brains. Loss of l(3)mbt or of MMB components through mutation cause similar spurious expression of genes, including the transposon regulatory gene piwi, in terminally differentiated cells. The DNA-binding MMB core component Mip120 (Lin54) is required for L(3)mbt recruitment to chromosomes, whereas Mip130 (Lin9) (an MMB core protein) and E2f2 (an MMB transcriptional repressor) are not, but are essential for repression. Cytolocalization experiments suggest the presence of site-specific differential composition of MMB in polytene chromosomes where some loci were bound by a Myb-containing or alternatively, an E2f2 and L(3)mbt form of the complex.
Collapse
|
47
|
Hashemi M, Sheybani-Nasab M, Naderi M, Roodbari F, Taheri M. Association of functional polymorphism at the miR-502-binding site in the 3' untranslated region of the SETD8 gene with risk of childhood acute lymphoblastic leukemia, a preliminary report. Tumour Biol 2014; 35:10375-9. [PMID: 25048968 DOI: 10.1007/s13277-014-2359-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/14/2014] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs), a class of non-coding RNAs, bind to the 3' untranslated regions (UTRs) of mRNAs, where they interfere with translation of genes and are implicated in the pathogenesis of diverse diseases. In the present study, we evaluate the impact of rs16917496 polymorphism within the miR-502 miRNA seed region at the 3'UTR of SEDT8 on childhood acute lymphoblastic leukemia (ALL). This case-control study was done on 75 ALL and 115 healthy children. Genotyping of rs16917496 C/T polymorphism was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results showed that CT as well as CT + TT decreased the risk of ALL in comparison with CC genotype (odds ratio (OR) = 0.29, 95 % confidence intervals (95 % CI) = 0.11-0.78, P = 0.014 and OR = 0.31, 95 % CI = 0.12-0.82, P = 0.016, respectively). Our results demonstrated that SETD8 rs16917496 C/T polymorphism was associated with decreased risk of developing pediatric ALL in Zahedan, southeast Iran. Larger studies with different ethnicities are desired to validate our findings.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran,
| | | | | | | | | |
Collapse
|
48
|
Yao L, Li Y, Du F, Han X, Li X, Niu Y, Ren S, Sun Y. Histone H4 Lys 20 methyltransferase SET8 promotes androgen receptor-mediated transcription activation in prostate cancer. Biochem Biophys Res Commun 2014; 450:692-6. [PMID: 24937452 DOI: 10.1016/j.bbrc.2014.06.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/08/2014] [Indexed: 11/17/2022]
Abstract
Histone methylation status in different lysine residues has an important role in transcription regulation. The effect of H4K20 monomethylation (H4K20me1) on androgen receptor (AR)-mediated gene transcription remains unclear. Here we show that AR agonist stimulates the enrichment of H4K20me1 and SET8 at the promoter of AR target gene PSA in an AR dependent manner. Furthermore, SET8 is crucial for the transcription activation of PSA. Co-immunoprecipitation analyses demonstrate that SET8 interacts with AR. Therefore, we conclude that SET8 is involved in AR-mediated transcription activation, possibly through its interaction with AR and H4K20me1 modification.
Collapse
Affiliation(s)
- Lushuai Yao
- Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengxia Du
- Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Han
- Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohua Li
- Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanjie Niu
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300070, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Yingli Sun
- Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
49
|
Sahashi R, Crevel G, Pasko J, Suyari O, Nagai R, Saura MM, Yamaguchi M, Cotterill S. DNA polymerase α interacts with PrSet7 and mediates H4K20 monomethylation in Drosophila. J Cell Sci 2014; 127:3066-78. [PMID: 24806961 DOI: 10.1242/jcs.144501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In human cells, appropriate monomethylation of histone H4 lysine 20 by PrSet7 (also known as SET8 and SETD7) is important for the correct transcription of specific genes and timely progression through the cell cycle. Over-methylation appears to be prevented through the interaction of PrSet7 with proliferating cell nuclear antigen (PCNA), which targets PrSet7 for destruction through the pathway mediated by CRL4(C) (dt2) (the cullin ring finger ligase-4 complex containing Cdt2). However, the factors involved in positive regulation of PrSet7 histone methylation remain undefined. Here, we present biochemical and genetic evidence for a previously undocumented interaction between Drosophila PrSet7 (dPrSet7) and DNA polymerase α in Drosophila. Depletion of the polymerase reduces H4K20 monomethylation suggesting that it is required for dPrSet7 histone methylation activity. We also show that the interaction between PCNA and PrSet7 is conserved in Drosophila, but is only detectable in chromatin fractions. Consistent with this, S2 cells show a significant loss of chromatin-bound dPrSet7 protein as S phase progresses. Based on these data we suggest that interaction with the DNA polymerase represents an important route for stimulation of PrSet7 histone methylase activity that is mediated by allowing loading of dPrSet7 onto chromatin or its subsequent activation.
Collapse
Affiliation(s)
- Ritsuko Sahashi
- Department Basic Medical Sciences, St Georges University London, Cranmer Terrace, London SW17 0RE, UK Department of Applied Biology, Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Gilles Crevel
- Department Basic Medical Sciences, St Georges University London, Cranmer Terrace, London SW17 0RE, UK
| | - Jaroslaw Pasko
- Department Basic Medical Sciences, St Georges University London, Cranmer Terrace, London SW17 0RE, UK
| | - Osamu Suyari
- Department of Applied Biology, Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Rika Nagai
- Department of Applied Biology, Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mario Martinez Saura
- Department Basic Medical Sciences, St Georges University London, Cranmer Terrace, London SW17 0RE, UK
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Sue Cotterill
- Department Basic Medical Sciences, St Georges University London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
50
|
Liu Y, Liu K, Qin S, Xu C, Min J. Epigenetic targets and drug discovery: part 1: histone methylation. Pharmacol Ther 2014; 143:275-94. [PMID: 24704322 DOI: 10.1016/j.pharmthera.2014.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/24/2014] [Indexed: 01/10/2023]
Abstract
Dynamic chromatin structure is modulated by post-translational modifications on histones, such as acetylation, phosphorylation and methylation. Research on histone methylation has become the most flourishing area of epigenetics in the past fourteen years, and a large amount of data has been accumulated regarding its biology and disease implications. Correspondingly, a lot of efforts have been made to develop small molecule compounds that can specifically modulate histone methyltransferases and methylation reader proteins, aiming for potential therapeutic drugs. Here, we summarize recent progress in chemical probe and drug discovery of histone methyltransferases and methylation reader proteins. For each target, we will review their biological/biochemical functions first, and then focus on their disease implications and drug discovery. We can also see that structure-based compound design and optimization plays a critical role in facilitating the development of highly potent and selective chemical probes and inhibitors for these targets.
Collapse
Affiliation(s)
- Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Su Qin
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|