1
|
Guzman A, Kawase T, Devanny AJ, Efe G, Navaridas R, Yu K, Regunath K, Mercer IG, Avard RC, Muniz de Queiroz R, Rustgi AK, Kaufman LJ, Prives C. Mutant p53 regulates cancer cell invasion in complex three-dimensional environments through mevalonate pathway-dependent Rho/ROCK signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618100. [PMID: 39464132 PMCID: PMC11507699 DOI: 10.1101/2024.10.13.618100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Certain mutations can confer neomorphic gain of function (GOF) activities to the p53 protein that affect cancer progression. Yet the concept of mutant p53 GOF has been challenged. Here, using various strategies to alter the status of mutant versions of p53 in different cell lines, we demonstrate that mutant p53 stimulates cancer cell invasion in three-dimensional environments. Mechanistically, mutant p53 enhances RhoA/ROCK-dependent cell contractility and cell-mediated extracellular matrix (ECM) re-organization via increasing mevalonate pathway-dependent RhoA localization to the membrane. In line with this, RhoA-dependent pro-invasive activity is also mediated by IDI-1, a mevalonate pathway product. Further, the invasion-enhancing effect of mutant p53 is dictated by the biomechanical properties of the surrounding ECM, thereby adding a cell-independent layer of regulation to mutant p53 GOF activity that is mediated by dynamic reciprocal cell-ECM interactions. Together our findings link mutant p53 metabolic GOF activity with an invasive cellular phenotype in physiologically relevant and context-dependent settings. Significance This study addresses the contribution of mutant p53 to the process of cancer cell dissemination in physiologically relevant three-dimensional environments - a key characteristic of metastatic disease. Several mutant p53 proteins display pro-oncogenic activity with respect to cancer cell invasion in 3D environments via mevalonate pathway-dependent Rho/ROCK signaling axis.
Collapse
|
2
|
Qayoom H, Haq BU, Sofi S, Jan N, Jan A, Mir MA. Targeting mutant p53: a key player in breast cancer pathogenesis and beyond. Cell Commun Signal 2024; 22:484. [PMID: 39390510 PMCID: PMC11466041 DOI: 10.1186/s12964-024-01863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
The p53 mutation is the most common genetic mutation associated with human neoplasia. TP53 missense mutations, which frequently arise early in breast cancer, are present in over thirty percent of breast tumors. In breast cancer, p53 mutations are linked to a more aggressive course of the disease and worse overall survival rates. TP53 mutations are mostly seen in triple-negative breast cancer, a very diverse kind of the disease. The majority of TP53 mutations originate in the replacement of individual amino acids within the p53 protein's core domain, giving rise to a variety of variations referred to as "mutant p53s." In addition to gaining carcinogenic qualities through gain-of-function pathways, these mutants lose the typical tumor-suppressive features of p53 to variable degrees. The gain-of-function impact of stabilized mutant p53 causes tumor-specific dependency and resistance to therapy. P53 is a prospective target for cancer therapy because of its tumor-suppressive qualities and the numerous alterations that it experiences in tumors. Phenotypic abnormalities in breast cancer, notably poorly differentiated basal-like tumors are frequently linked to high-grade tumors. By comparing data from cell and animal models with clinical outcomes in breast cancer, this study investigates the molecular mechanisms that convert gene alterations into the pathogenic consequences of mutant p53's tumorigenic activity. The study delves into current and novel treatment approaches aimed at targeting p53 mutations, taking into account the similarities and differences in p53 regulatory mechanisms between mutant and wild-type forms, as well.
Collapse
Affiliation(s)
- Hina Qayoom
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Burhan Ul Haq
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Shazia Sofi
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Nusrat Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Asma Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Manzoor A Mir
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India.
| |
Collapse
|
3
|
Meng W, Yu S, Li Y, Wang H, Feng Y, Sun W, Liu Y, Sun S, Liu H. Mutant p53 achieves function by regulating EGR1 to induce epithelial mesenchymal transition. Tissue Cell 2024; 90:102510. [PMID: 39126833 DOI: 10.1016/j.tice.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The epithelial-mesenchymal transition (EMT) plays a crucial role in lung cancer metastasis, rendering it a promising therapeutic target. Research has shown that non-small cell lung cancer (NSCLC) with p53 mutations exhibits an increased tendency for cancer metastasis. However, the exact contribution of the p53-R273H mutation to tumor metastasis remains uncertain in the current literature. Our study established the H1299-p53-R273H cell model successfully by transfecting the p53-R273H plasmid into H1299 cells. We observed that p53-R273H promotes cell proliferation, migration, invasion, and EMT through CCK-8, wound healing, transwell, western blot and immunofluorescence assays. Notably, the expression of EGR1 was increased in H1299-p53-R273H cells. Knocking out EGR1 in these cells hindered the progression of EMT. ChIP-PCR experiments revealed that p53-R273H binds to the EGR1 promoter sequence, thereby regulating its expression. These findings suggest that p53-R273H triggers EMT by activating EGR1, thereby offering a potential therapeutic approach for lung cancer treatment.
Collapse
Affiliation(s)
- Weipei Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Yu
- Interventional Center, Jilin Cancer Hospital, No. 1018 Huguang Rd, Chaoyang, Changchun 130012, China
| | - Yan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Haichen Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Yuqing Feng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Wanyue Sun
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Haifeng Liu
- Interventional Center, Jilin Cancer Hospital, No. 1018 Huguang Rd, Chaoyang, Changchun 130012, China.
| |
Collapse
|
4
|
Mehrtabar E, Khalaji A, Pandeh M, Farhoudian A, Shafiee N, Shafiee A, Ojaghlou F, Mahdavi P, Soleymani-Goloujeh M. Impact of microRNA variants on PI3K/AKT signaling in triple-negative breast cancer: comprehensive review. Med Oncol 2024; 41:222. [PMID: 39120634 DOI: 10.1007/s12032-024-02469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Breast cancer (BC) is a significant cause of cancer-related mortality, and triple-negative breast cancer (TNBC) is a particularly aggressive subtype associated with high mortality rates, especially among younger females. TNBC poses a considerable clinical challenge due to its aggressive tumor behavior and limited therapeutic options. Aberrations within the PI3K/AKT pathway are prevalent in TNBC and correlate with increased therapeutic intervention resistance and poor outcomes. MicroRNAs (miRs) have emerged as crucial PI3K/AKT pathway regulators influencing various cellular processes involved in TNBC pathogenesis. The levels of miRs, including miR-193, miR-4649-5p, and miR-449a, undergo notable changes in TNBC tumor tissues, emphasizing their significance in cancer biology. This review explored the intricate interplay between miR variants and PI3K/AKT signaling in TNBC. The review focused on the molecular mechanisms underlying miR-mediated dysregulation of this pathway and highlighted specific miRs and their targets. In addition, we explore the clinical implications of miR dysregulation in TNBC, particularly its correlation with TNBC prognosis and therapeutic resistance. Elucidating the roles of miRs in modulating the PI3K/AKT signaling pathway will enhance our understanding of TNBC biology and unveil potential therapeutic targets. This comprehensive review aims to discuss current knowledge and open promising avenues for future research, ultimately facilitating the development of precise and effective treatments for patients with TNBC.
Collapse
Affiliation(s)
- Ehsan Mehrtabar
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Pandeh
- School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Aram Farhoudian
- School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nadia Shafiee
- Children's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefe Shafiee
- Board-Certified Cardiologist, Rajaie Cardiovascular Medical and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ojaghlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Mahdavi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Soleymani-Goloujeh
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Park JH, Seo AN, Kim M. Diagnostic Usefulness of p53 Immunostaining in Gastric Cancer and Dysplasia: A Real-world Clinical Experience. In Vivo 2024; 38:1865-1874. [PMID: 38936896 PMCID: PMC11215596 DOI: 10.21873/invivo.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM Gastric cancer and its precancerous lesions represent a significant public health concern. A subset of gastric cancers exhibits mutations in the TP53 gene, often accompanying distinctive morphologic alterations. This study aimed to assess the diagnostic efficacy of p53 immunostaining in real-world clinical settings. PATIENTS AND METHODS A retrospective analysis was conducted on 50 cases of gastric tumors and tumor-like lesions, wherein p53 immunostaining played a pivotal diagnostic role. The staining pattern of p53 was examined in conjunction with clinicopathologic parameters. RESULTS Mutant p53 staining pattern demonstrated a significant association with high-grade nuclear atypia (p<0.001), high-grade dysplasia, and tubular adenocarcinoma (p<0.001), as well as microsatellite instability status (p=0.034). Furthermore, the diagnostic utility of p53 immunostaining was evident in scenarios where: 1) biopsy specimens contained few tumor cells, 2) pathologic evaluation of resection margins was limited by cauterization artifacts, and 3) distinction between low-grade and high-grade gastric dysplasia was challenging. CONCLUSION P53 immunostaining can be helpful for the diagnosis of gastric tumor and tumor-like lesions, and accurate pathologic margin evaluation, particularly in lesions demonstrating intestinal-type differentiation and some degree of nuclear atypia.
Collapse
Affiliation(s)
- Ji Hyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Moonsik Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
6
|
Lin S, Chen Q, Tan C, Su M, Min L, Ling L, Zhou J, Zhu T. ZEB family is a prognostic biomarker and correlates with anoikis and immune infiltration in kidney renal clear cell carcinoma. BMC Med Genomics 2024; 17:153. [PMID: 38840097 PMCID: PMC11151722 DOI: 10.1186/s12920-024-01895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Zinc finger E-box binding homEeobox 1 (ZEB1) and ZEB2 are two anoikis-related transcription factors. The mRNA expressions of these two genes are significantly increased in kidney renal clear cell carcinoma (KIRC), which are associated with poor survival. Meanwhile, the mechanisms and clinical significance of ZEB1 and ZEB2 upregulation in KIRC remain unknown. METHODS Through the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database, expression profiles, prognostic value and receiver operating characteristic curves (ROCs) of ZEB1 and ZEB2 were evaluated. The correlations of ZEB1 and ZEB2 with anoikis were further assessed in TCGA-KIRC database. Next, miRTarBase, miRDB, and TargetScan were used to predict microRNAs targeting ZEB1 and ZEB2, and TCGA-KIRC database was utilized to discern differences in microRNAs and establish the association between microRNAs and ZEBs. TCGA, TIMER, TISIDB, and TISCH were used to analyze tumor immune infiltration. RESULTS It was found that ZEB1 and ZEB2 expression were related with histologic grade in KIRC patient. Kaplan-Meier survival analyses showed that KIRC patients with low ZEB1 or ZEB2 levels had a significantly lower survival rate. Meanwhile, ZEB1 and ZEB2 are closely related to anoikis and are regulated by microRNAs. We constructed a risk model using univariate Cox and LASSO regression analyses to identify two microRNAs (hsa-miR-130b-3p and hsa-miR-138-5p). Furthermore, ZEB1 and ZEB2 regulate immune cell invasion in KIRC tumor microenvironments. CONCLUSIONS Anoikis, cytotoxic immune cell infiltration, and patient survival outcomes were correlated with ZEB1 and ZEB2 mRNA upregulation in KIRC. ZEB1 and ZEB2 are regulated by microRNAs.
Collapse
Affiliation(s)
- Sheng Lin
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qi Chen
- Department of Urology, Foshan First People's Hospital, Foshan City, Guangdong Province, China
| | - Canliang Tan
- Department of general surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Manyi Su
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ling Min
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lv Ling
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Junhao Zhou
- Department of general surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
- KingMed school of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
- KingMed school of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Sharma S, Rani H, Mahesh Y, Jolly MK, Dixit J, Mahadevan V. Loss of p53 epigenetically modulates epithelial to mesenchymal transition in colorectal cancer. Transl Oncol 2024; 43:101848. [PMID: 38412660 PMCID: PMC10907866 DOI: 10.1016/j.tranon.2023.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 02/29/2024] Open
Abstract
Epithelial to Mesenchymal transition (EMT) drives cancer metastasis and is governed by genetic and epigenetic alterations at multiple levels of regulation. It is well established that loss/mutation of p53 confers oncogenic function to cancer cells and promotes metastasis. Though transcription factors like ZEB1, SLUG, SNAIL and TWIST have been implied in EMT signalling, p53 mediated alterations in the epigenetic machinery accompanying EMT are not clearly understood. This work attempts to explore epigenetic signalling during EMT in colorectal cancer (CRC) cells with varying status of p53. Towards this, we have induced EMT using TGFβ on CRC cell lines with wild type, null and mutant p53 and have assayed epigenetic alterations after EMT induction. Transcriptomic profiling of the four CRC cell lines revealed that the loss of p53 confers more mesenchymal phenotype with EMT induction than its mutant counterparts. This was also accompanied by upregulation of epigenetic writer and eraser machinery suggesting an epigenetic signalling cascade triggered by TGFβ signalling in CRC. Significant agonist and antagonistic relationships observed between EMT factor SNAI1 and SNAI2 with epigenetic enzymes KDM6A/6B and the chromatin organiser SATB1 in p53 null CRC cells suggest a crosstalk between epigenetic and EMT factors. The observed epigenetic regulation of EMT factor SNAI1 correlates with poor clinical outcomes in 270 colorectal cancer patients taken from TCGA-COAD. This unique p53 dependent interplay between epigenetic enzymes and EMT factors in CRC cells may be exploited for development of synergistic therapies for CRC patients presenting to the clinic with loss of p53.
Collapse
Affiliation(s)
- Shreya Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, India
| | - Harsha Rani
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, India
| | | | | | | | | |
Collapse
|
8
|
Gong L, Voon DC, Nakayama J, Takahashi C, Kohno S. RB1 loss induces quiescent state through downregulation of RAS signaling in mammary epithelial cells. Cancer Sci 2024; 115:1576-1586. [PMID: 38468443 PMCID: PMC11093197 DOI: 10.1111/cas.16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
While loss of function (LOF) of retinoblastoma 1 (RB1) tumor suppressor is known to drive initiation of small-cell lung cancer and retinoblastoma, RB1 mutation is rarely observed in breast cancers at their initiation. In this study, we investigated the impact on untransformed mammary epithelial cells given by RB1 LOF. Depletion of RB1 in anon-tumorigenic MCF10A cells induced reversible growth arrest (quiescence) featured by downregulation of multiple cyclins and MYC, upregulation of p27KIP1, and lack of expression of markers which indicate cellular senescence or epithelial-mesenchymal transition (EMT). We observed a similar phenomenon in human mammary epithelial cells (HMEC) as well. Additionally, we found that RB1 depletion attenuated the activity of RAS and the downstream MAPK pathway in an RBL2/p130-dependent manner. The expression of farnesyltransferase β, which is essential for RAS maturation, was found to be downregulated following RB1 depletion also in an RBL2/p130-dependent manner. These findings unveiled an unexpected mechanism whereby normal mammary epithelial cells resist to tumor initiation upon RB1 LOF.
Collapse
Affiliation(s)
- Linxiang Gong
- Division of Oncology and Molecular BiologyCancer Research Institute, Kanazawa UniversityKanazawaIshikawaJapan
| | | | - Joji Nakayama
- Division of Oncology and Molecular BiologyCancer Research Institute, Kanazawa UniversityKanazawaIshikawaJapan
| | - Chiaki Takahashi
- Division of Oncology and Molecular BiologyCancer Research Institute, Kanazawa UniversityKanazawaIshikawaJapan
| | - Susumu Kohno
- Division of Oncology and Molecular BiologyCancer Research Institute, Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
9
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
10
|
Bates M, Mullen D, Lee E, Costigan D, Heron EA, Kernan N, Barry-O'Crowley J, Martin C, Keegan H, Malone V, Brooks RD, Brooks DA, Logan JM, Martini C, Selemidis S, McFadden J, O'Riain C, Spillane CD, Gallagher MF, McCann A, O'Toole S, O'Leary JJ. P53 and TLR4 expression are prognostic markers informing progression free survival of advanced stage high grade serous ovarian cancer. Pathol Res Pract 2024; 253:155020. [PMID: 38103365 DOI: 10.1016/j.prp.2023.155020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVE New prognostic biomarkers, and bio-signatures, are urgently needed to facilitate a precision medicine-based approach to more effectively treat patients with high-grade serous ovarian cancer (HGSC). In this study, we analysed the expression patterns of a series of candidate protein biomarkers. METHODS The panel of markers which included MyD88, TLR4, MAD2, PR, OR, WT1, p53, p16, CD10 and Ki67 was assessed using immunohistochemistry in a tissue microarray (TMA) cohort of n = 80 patients, composed of stage 3-4 HGSCs. Each marker was analysed for their potential to predict both overall survival (OS) and progression-free survival (PFS). RESULTS TLR4 and p53 were found to be individually predictive of poorer PFS (Log Rank, p = 0.017, p = 0.030 respectively). Cox regression analysis also identified high p53 and TLR4 expression as prognostic factors for reduced PFS (p53; HR=1.785, CI=1.036-3.074, p = 0.037 and TLR4; HR=2.175, CI=1.112-4.253, p = 0.023). Multivariate forward conditional Cox regression analysis, examining all markers, identified a combined signature composed of p53 and TLR4 as prognostic for reduced PFS (p = 0.023). CONCLUSION Combined p53 and TLR4 marker assessment may help to aid treatment stratification for patients diagnosed with advanced-stage HGSC.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland.
| | - Dorinda Mullen
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Eimear Lee
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Danielle Costigan
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Elizabeth A Heron
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Niamh Kernan
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | | | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Helen Keegan
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Victoria Malone
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Robert D Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Doug A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Carmela Martini
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Bundoora, Australia
| | - Julie McFadden
- Department of Histopathology, St James's Hospital, Dublin, Ireland
| | - Ciaran O'Riain
- Department of Histopathology, St James's Hospital, Dublin, Ireland
| | - Cathy D Spillane
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland
| | - Michael F Gallagher
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland
| | - Amanda McCann
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin and UCD School of Medicine, University College Dublin, UCD, Belfield Dublin 4, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| |
Collapse
|
11
|
Hu S, Wang M, Ji A, Yang J, Gao R, Li X, Sun L, Wang J, Zhang Y, Liu H. Mutant p53 and ELK1 co-drive FRA-1 expression to induce metastasis in breast cancer. FEBS Lett 2023; 597:3087-3101. [PMID: 37971884 DOI: 10.1002/1873-3468.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 10/02/2023] [Indexed: 11/19/2023]
Abstract
Tumor-associated p53 mutations induce activities different from wild-type p53, thus causing loss of the protein's tumor inhibition function. The cells carrying p53 mutations have more aggressive characteristics related to invasion, metastasis, proliferation, and cell survival. By comparing the gene expression profiles of mutant p53 (mutp53) and mutp53 silenced cohorts, we found that FOS-related antigen-1 (FRA-1), which is encoded by FOSL1, is a potential effector of mutp53-mediated metastasis. We demonstrate that the expression of FRA-1, a gatekeeper of mesenchymal-epithelial transition, is elevated in the presence of p53 mutations. Mechanistically, mutant p53 cooperates with the transcription factor ELK1 in binding and activating the promoter of FOSL1, thus fostering lung metastasis. This study reveals new insights into how mutant p53 contributes to metastasis in breast cancer.
Collapse
Affiliation(s)
- Sike Hu
- Tianjin Institute of Medical and Pharmaceutical Sciences, China
| | - Manxue Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences, China
| | - Ailing Ji
- Tianjin Institute of Medical and Pharmaceutical Sciences, China
| | - Jie Yang
- Tianjin Institute of Medical and Pharmaceutical Sciences, China
| | - Ruifang Gao
- Tianjin Institute of Medical and Pharmaceutical Sciences, China
| | - Xia Li
- Tianjin Institute of Medical and Pharmaceutical Sciences, China
| | - Lili Sun
- Tianjin Medicine and Health Research Center, China
| | - Jing Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences, China
| | - Ying Zhang
- Tianjin Medicine and Health Research Center, China
| | - Hongbin Liu
- Tianjin Medicine and Health Research Center, China
| |
Collapse
|
12
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
13
|
Gu X, Huang Z, Chen J, Luo Y, Ge S, Jia R, Song X, Chai P, Xu S, Fan X. Establishment and Characterization of a TP53-Mutated Eyelid Sebaceous Carcinoma Cell Line. Invest Ophthalmol Vis Sci 2023; 64:16. [PMID: 38095907 PMCID: PMC10723222 DOI: 10.1167/iovs.64.15.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose Eyelid sebaceous carcinoma (SeC) is the third most frequent eyelid malignancy worldwide and is relatively prevalent in Asian patients. An eyelid SeC cell line model is necessary for experimental research to explore the etiology and pathogenesis of eyelid SeC. This study established and characterized an eyelid SeC cell line with a TP53 mutation that might be useful for analyzing potential treatment options for eyelid SeC. Methods The eyelid SeC cell line SHNPH-SeC was obtained from a patient with eyelid SeC at Shanghai Ninth People's Hospital (SHNPH), Shanghai JiaoTong University School of Medicine. Immunofluorescence staining was employed to detect the origination and proliferation activity. Short tandem repeat (STR) profiling was performed for verification. Chromosome analysis was implemented to investigate chromosome aberrations. Whole exome sequencing (WES) was used to discover genomic mutations. Cell proliferation assays were performed to identify sensitivity to mitomycin-C (MMC) and 5-fluorouracil (5-FU). Results SHNPH-SeC cells were successively subcultured for more than 100 passages and demonstrated rapid proliferation and migration. Karyotype analysis revealed abundant chromosome aberrations, and WES revealed SeC-related mutations in TP53, KMT2C, and ERBB2. An in vivo tumor model was successfully established in NOD/SCID mice. Biomarkers of eyelid SeC, including cytokeratin 5 (CK5), epithelial membrane antigen (EMA), adipophilin, p53, and Ki-67, were detected in SHNPH-SeC cells, original tumors, and xenografts. MMC and 5-FU inhibited the proliferation and migration of SHNPH-SeC cells, and SHNPH-SeC cells presented a greater drug response than non-TP53-mutated SeC cells. Conclusions The newly established eyelid SeC cell line SHNPH-SeC demonstrates mutation in TP53, the most commonly mutated gene in SeC. It presents SeC properties and malignant characteristics that may facilitate the investigation of cellular behaviors and molecular mechanisms of SeC to explore promising therapeutic strategies.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ziyue Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yingxiu Luo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
14
|
Rithvik A, Samarpita S, Rasool M. Unleashing the pathological imprinting of cancer in autoimmunity: Is ZEB1 the answer? Life Sci 2023; 332:122115. [PMID: 37739160 DOI: 10.1016/j.lfs.2023.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The intriguing scientific relationship between autoimmunity and cancer immunology have been traditionally indulged to throw spotlight on novel pathological targets. Understandably, these "slowly killing" diseases are on the opposite ends of the immune spectrum. However, the immune regulatory mechanisms between autoimmunity and cancer are not always contradictory and sometimes mirror each other based on disease stage, location, and timepoint. Moreover, the blockade of immune checkpoint molecules or signalling pathways that unleashes the immune response against cancer is being leveraged to preserve self-tolerance and treat many autoimmune disorders. Therefore, understanding the common crucial factors involved in cancer is of paramount importance to paint the autoimmune disease spectrum and validate novel drug candidates. In the current review, we will broadly describe how ZEB1, or Zinc-finger E-box Binding Homeobox 1, reinforces immune exhaustion in cancer or contributes to loss of self-tolerance in auto-immune conditions. We made an effort to exchange information about the molecular pathways and pathological responses (immune regulation, cell proliferation, senescence, autophagy, hypoxia, and circadian rhythm) that can be regulated by ZEB1 in the context of autoimmunity. This will help untwine the intricate and closely postured pathogenesis of ZEB1, that is less explored from the perspective of autoimmunity than its counterpart, cancer. This review will further consider several approaches for targeting ZEB1 in autoimmunity.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India
| | - Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India.
| |
Collapse
|
15
|
Moutabian H, Radi UK, Saleman AY, Adil M, Zabibah RS, Chaitanya MNL, Saadh MJ, Jawad MJ, Hazrati E, Bagheri H, Pal RS, Akhavan-Sigari R. MicroRNA-155 and cancer metastasis: Regulation of invasion, migration, and epithelial-to-mesenchymal transition. Pathol Res Pract 2023; 250:154789. [PMID: 37741138 DOI: 10.1016/j.prp.2023.154789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Among the leading causes of death globally has been cancer. Nearly 90% of all cancer-related fatalities are attributed to metastasis, which is the growing of additional malignant growths out of the original cancer origin. Therefore, a significant clinical need for a deeper comprehension of metastasis exists. Beginning investigations are being made on the function of microRNAs (miRNAs) in the metastatic process. Tiny non-coding RNAs called miRNAs have a crucial part in controlling the spread of cancer. Some miRNAs regulate migration, invasion, colonization, cancer stem cells' properties, the epithelial-mesenchymal transition (EMT), and the microenvironment, among other processes, to either promote or prevent metastasis. One of the most well-conserved and versatile miRNAs, miR-155 is primarily distinguished by overexpression in a variety of illnesses, including malignant tumors. It has been discovered that altered miR-155 expression is connected to a number of physiological and pathological processes, including metastasis. As a result, miR-155-mediated signaling pathways were identified as possible cancer molecular therapy targets. The current research on miR-155, which is important in controlling cancer cells' invasion, and metastasis as well as migration, will be summarized in the current work. The crucial significance of the lncRNA/circRNA-miR-155-mRNA network as a crucial regulator of carcinogenesis and a player in the regulation of signaling pathways or related genes implicated in cancer metastasis will be covered in the final section. These might provide light on the creation of fresh treatment plans for controlling cancer metastasis.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mv N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | | | - Ebrahi Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
16
|
Navarange SS, Bane SM, Mehta D, Shah S, Gupta S, Waghmare SK. Epithelial-to-mesenchymal transition status correlated with ultrastructural features, and TP53 mutation in patient-derived oral cancer cell lines. Mol Biol Rep 2023; 50:8469-8481. [PMID: 37639153 DOI: 10.1007/s11033-023-08720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Oral Squamous Cell Carcinoma (OSCC) is a highly prevalent cancer in the Indian subcontinent. The major cause of mortality in OSCC patients is metastasis. Epithelial-to-mesenchymal transition (EMT) marks an important step in the metastatic process. Additionally, TP53, an important tumor suppressor gene, is also a significant determinant of the treatment outcome, and also plays a role in EMT. Therefore, understanding the interconnections between ultrastructural features, EMT status and TP53 mutational status is of vital importance. METHODS AND RESULTS The ultrastructure of five OSCC cell lines was visualized by transmission electron microscopy. Trans-well invasion and migration assays as well as scratch-wound assay, and the expression of various EMT-related genes were utilized to assess the EMT status of the cell lines. The TP53 exons were amplified for the ACOSC3, ACOSC4 and ACOSC16 cell lines and sequenced and the mutations in the gene were identified by sequence alignment. The TP53 mutation in the UPCI:SCC029B cell line has been previously reported, while UPCI:SCC040 has been reported to harbor a wild type TP53. The ACOSC4 cell line which showed the shortest intercellular gaps, also had the least invasive and migratory potential. Interestingly, ACOSC4 showed the highest expression of E-cadherin and the lowest expression of Vimentin, TWIST1, ZEB1, and MMPs. Additionally, TP53 gene of ACOSC4 was unmutated, whereas the ACOSC3 and ACOSC16 harbored TP53 mutations. The mutation in ACOSC3 (R196*) was also found in 7 TCGA samples. Similarly, the UPCI:SCC040 cell line that harbors a wild type TP53 showed shorter intracellular gaps. CONCLUSIONS Cellular migratory properties are associated with cellular ultrastructure, epithelial-to-mesenchymal transition status and the status of TP53 mutation in the genome.
Collapse
Affiliation(s)
- Sushant S Navarange
- Waghmare Lab, Stem Cell Biology Group, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Cancer Research Institute, Navi Mumbai, 410210, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400085, India
| | - Sanjay M Bane
- Waghmare Lab, Stem Cell Biology Group, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Cancer Research Institute, Navi Mumbai, 410210, India
| | - Darshan Mehta
- Waghmare Lab, Stem Cell Biology Group, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Cancer Research Institute, Navi Mumbai, 410210, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400085, India
| | - Sanket Shah
- Gupta Lab, Epigenetics and chromatin Biology Group, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Cancer Research Institute, Navi Mumbai, 410210, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400085, India
| | - Sanjay Gupta
- Gupta Lab, Epigenetics and chromatin Biology Group, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Cancer Research Institute, Navi Mumbai, 410210, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400085, India
| | - Sanjeev K Waghmare
- Waghmare Lab, Stem Cell Biology Group, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Cancer Research Institute, Navi Mumbai, 410210, India.
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
17
|
Coan M, Toso M, Cesaratto L, Rigo I, Borgna S, Dalla Pietà A, Zandonà L, Iuri L, Zucchetto A, Piazza C, Baldassarre G, Spizzo R, Nicoloso MS. LINC01605 Is a Novel Target of Mutant p53 in Breast and Ovarian Cancer Cell Lines. Int J Mol Sci 2023; 24:13736. [PMID: 37762037 PMCID: PMC10531163 DOI: 10.3390/ijms241813736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
TP53 is the most frequently mutated gene in human cancers. Most TP53 genomic alterations are missense mutations, which cause a loss of its tumour suppressor functions while providing mutant p53 (mut_p53) with oncogenic features (gain-of-function). Loss of p53 tumour suppressor functions alters the transcription of both protein-coding and non-protein-coding genes. Gain-of-function of mut_p53 triggers modification in gene expression as well; however, the impact of mut_p53 on the transcription of the non-protein-coding genes and whether these non-protein-coding genes affect oncogenic properties of cancer cell lines are not fully explored. In this study, we suggested that LINC01605 (also known as lincDUSP) is a long non-coding RNA regulated by mut_p53 and proved that mut_p53 directly regulates LINC01605 by binding to an enhancer region downstream of the LINC01605 locus. We also showed that the loss or downregulation of LINC01605 impairs cell migration in a breast cancer cell line. Eventually, by performing a combined analysis of RNA-seq data generated in mut_TP53-silenced and LINC01605 knockout cells, we showed that LINC01605 and mut_p53 share common gene pathways. Overall, our findings underline the importance of ncRNAs in the mut_p53 network in breast and ovarian cancer cell lines and in particular the importance of LINC01605 in mut_p53 pro-migratory pathways.
Collapse
Affiliation(s)
- Michela Coan
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Martina Toso
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Laura Cesaratto
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Ilenia Rigo
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Silvia Borgna
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Anna Dalla Pietà
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Luigi Zandonà
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Lorenzo Iuri
- Department of Mathematics, Informatics and Physics, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Antonella Zucchetto
- Division of Clinical and Experimental Onco-Hematology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Carla Piazza
- Department of Mathematics, Informatics and Physics, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Riccardo Spizzo
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Milena Sabrina Nicoloso
- Division of Molecular Oncology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| |
Collapse
|
18
|
Lam YK, Yu J, Huang H, Ding X, Wong AM, Leung HH, Chan AW, Ng KK, Xu M, Wang X, Wong N. TP53 R249S mutation in hepatic organoids captures the predisposing cancer risk. Hepatology 2023; 78:727-740. [PMID: 36221953 PMCID: PMC10086078 DOI: 10.1002/hep.32802] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Major genomic drivers of hepatocellular carcinoma (HCC) are nowadays well recognized, although models to establish their roles in human HCC initiation remain scarce. Here, we used human liver organoids in experimental systems to mimic the early stages of human liver carcinogenesis from the genetic lesions of TP53 loss and L3 loop R249S mutation. In addition, chromatin immunoprecipitation sequencing (ChIP-seq) of HCC cell lines shed important functional insights into the initiation of HCC consequential to the loss of tumor-suppressive function from TP53 deficiency and gain-of-function activities from mutant p53. APPROACH AND RESULTS Human liver organoids were generated from surgical nontumor liver tissues. CRISPR knockout of TP53 in liver organoids consistently demonstrated tumor-like morphological changes, increased in stemness and unrestricted in vitro propagation. To recapitulate TP53 status in human HCC, we overexpressed mutant R249S in TP53 knockout organoids. A spontaneous increase in tumorigenic potentials and bona fide HCC histology in xenotransplantations were observed. ChIP-seq analysis of HCC cell lines underscored gain-of-function properties from L3 loop p53 mutants in chromatin remodeling and overcoming extrinsic stress. More importantly, direct transcriptional activation of PSMF1 by mutant R249S could increase organoid resistance to endoplasmic reticulum stress, which was readily abrogated by PSMF1 knockdown in rescue experiments. In a patient cohort of primary HCC tumors and genome-edited liver organoids, quantitative polymerase chain reaction corroborated ChIP-seq findings and verified preferential genes modulated by L3 mutants, especially those enriched by R249S. CONCLUSIONS We showed differential tumorigenic effects from TP53 loss and L3 mutations, which together confer normal hepatocytes with early clonal advantages and prosurvival functions.
Collapse
Affiliation(s)
- Yin Kau Lam
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianqing Yu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiaofan Ding
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Alissa M. Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Howard H. Leung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony W. Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelvin K. Ng
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingjing Xu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Nathalie Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Zivotic M, Kovacevic S, Nikolic G, Mioljevic A, Filipovic I, Djordjevic M, Jovicic V, Topalovic N, Ilic K, Radojevic Skodric S, Dundjerovic D, Nesovic Ostojic J. SLUG and SNAIL as Potential Immunohistochemical Biomarkers for Renal Cancer Staging and Survival. Int J Mol Sci 2023; 24:12245. [PMID: 37569620 PMCID: PMC10418944 DOI: 10.3390/ijms241512245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Renal cell carcinoma (RCC) is the deadliest urological neoplasm. Up to date, no validated biomarkers are included in clinical guidelines for the screening and follow up of patients suffering from RCC. Slug (Snail2) and Snail (Snail1) belong to the Snail superfamily of zinc finger transcriptional factors that take part in the epithelial-mesenchymal transition, a process important during embryogenesis but also involved in tumor progression. We examined Slug and Snail immunohistochemical expression in patients with different stages of renal cell carcinomas with the aim to investigate their potential role as staging and prognostic factors. A total of 166 samples of malignant renal cell neoplasms were analyzed using tissue microarray and immunohistochemistry. Slug and Snail expressions were evaluated qualitatively (presence or absence), in nuclear and cytoplasmic cell compartments and compared in relation to clinical parameters. The Kaplan-Meier survival analysis showed the impact of the sarcomatoid component and Slug expression on the survival longevity. Cox regression analysis separated Slug as the only independent prognostic factor (p = 0.046). The expression of Snail was associated with higher stages of the disease (p = 0.004), especially observing nuclear Snail expression (p < 0.001). All of the tumors that had metastasized showed nuclear immunoreactivity (p < 0.001). In clear cell RCC, we showed a significant relationship between a high nuclear grade and nuclear Snail expression (p = 0.039). Our results suggest that Slug and Snail could be useful immunohistochemical markers for staging and prognosis in patients suffering from various RCCs, representing potential targets for further therapy strategies of renal cancer.
Collapse
Affiliation(s)
- Maja Zivotic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 1 Dr. Subotic Street, 11000 Belgrade, Serbia; (M.Z.); (G.N.); (A.M.); (I.F.); (K.I.); (S.R.S.)
| | - Sanjin Kovacevic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, 9 Dr. Subotic Street, 11000 Belgrade, Serbia;
| | - Gorana Nikolic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 1 Dr. Subotic Street, 11000 Belgrade, Serbia; (M.Z.); (G.N.); (A.M.); (I.F.); (K.I.); (S.R.S.)
| | - Ana Mioljevic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 1 Dr. Subotic Street, 11000 Belgrade, Serbia; (M.Z.); (G.N.); (A.M.); (I.F.); (K.I.); (S.R.S.)
| | - Isidora Filipovic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 1 Dr. Subotic Street, 11000 Belgrade, Serbia; (M.Z.); (G.N.); (A.M.); (I.F.); (K.I.); (S.R.S.)
| | - Marija Djordjevic
- Faculty of Organization Sciences, University of Belgrade, 11010 Belgrade, Serbia;
| | - Vladimir Jovicic
- Clinic for Cardiac Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nikola Topalovic
- Department of Medical Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Kristina Ilic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 1 Dr. Subotic Street, 11000 Belgrade, Serbia; (M.Z.); (G.N.); (A.M.); (I.F.); (K.I.); (S.R.S.)
| | - Sanja Radojevic Skodric
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 1 Dr. Subotic Street, 11000 Belgrade, Serbia; (M.Z.); (G.N.); (A.M.); (I.F.); (K.I.); (S.R.S.)
| | - Dusko Dundjerovic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 1 Dr. Subotic Street, 11000 Belgrade, Serbia; (M.Z.); (G.N.); (A.M.); (I.F.); (K.I.); (S.R.S.)
| | - Jelena Nesovic Ostojic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, 9 Dr. Subotic Street, 11000 Belgrade, Serbia;
| |
Collapse
|
20
|
Abdelmaksoud NM, El-Mahdy HA, Ismail A, Elsakka EGE, El-Husseiny AA, Khidr EG, Ali EM, Rashed MH, El-Demerdash FES, Doghish AS. The role of miRNAs in the pathogenesis and therapeutic resistance of endometrial cancer: a spotlight on the convergence of signaling pathways. Pathol Res Pract 2023; 244:154411. [PMID: 36921547 DOI: 10.1016/j.prp.2023.154411] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Endometrial cancer (EC) is the 2nd common cancer in females after breast cancer. Besides, it's the most common among gynecological cancers. Several epigenetic factors such as miRNAs have been reported to affect EC aspects including initiation, progression, angiogenesis, and resistance to therapy. miRNAs could regulate the expression of various genes involved in EC pathogenesis. This effect is attributed to miRNAs' effects in proliferation, apoptosis, cell cycle, angiogenesis, invasion, and metastasis. miRNAs also influence crucial EC-related mechanistic pathways such as JAK/STAT axis, EGFR, TGF-β signaling, and P53. Beside pathogenesis, miRNAs also have the potential to affect EC response to treatments including radio and chemotherapy. Thus, this review aims to illustrate the link between miRNAs and EC; focusing on the effects of miRNAs on EC signaling pathways.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Esraa M Ali
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed Helmy Rashed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Fatma El-Saeed El-Demerdash
- Department of Zoology and Entomology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| |
Collapse
|
21
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 304] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
22
|
Asl ER, Rostamzadeh D, Duijf PHG, Mafi S, Mansoori B, Barati S, Cho WC, Mansoori B. Mutant P53 in the formation and progression of the tumor microenvironment: Friend or foe. Life Sci 2023; 315:121361. [PMID: 36608871 DOI: 10.1016/j.lfs.2022.121361] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. It encodes the tumor suppressor protein p53, which suppresses tumorigenesis by acting as a critical transcription factor that can induce the expression of many genes controlling a plethora of fundamental cellular processes, including cell cycle progression, survival, apoptosis, and DNA repair. Missense mutations are the most frequent type of mutations in the TP53 gene. While these can have variable effects, they typically impair p53 function in a dominant-negative manner, thereby altering intra-cellular signaling pathways and promoting cancer development. Additionally, it is becoming increasingly apparent that p53 mutations also have non-cell autonomous effects that influence the tumor microenvironment (TME). The TME is a complex and heterogeneous milieu composed of both malignant and non-malignant cells, including cancer-associated fibroblasts (CAFs), adipocytes, pericytes, different immune cell types, such as tumor-associated macrophages (TAMs) and T and B lymphocytes, as well as lymphatic and blood vessels and extracellular matrix (ECM). Recently, a large body of evidence has demonstrated that various types of p53 mutations directly affect TME. They fine-tune the inflammatory TME and cell fate reprogramming, which affect cancer progression. Notably, re-educating the p53 signaling pathway in the TME may be an effective therapeutic strategy in combating cancer. Therefore, it is timely to here review the recent advances in our understanding of how TP53 mutations impact the fate of cancer cells by reshaping the TME.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia; Cancer and Aging Research Program, Queensland University of Technology, Brisbane, QLD, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States.
| |
Collapse
|
23
|
Prime SS, Cirillo N, Parkinson EK. Escape from Cellular Senescence Is Associated with Chromosomal Instability in Oral Pre-Malignancy. BIOLOGY 2023; 12:biology12010103. [PMID: 36671795 PMCID: PMC9855962 DOI: 10.3390/biology12010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
An escape from cellular senescence through the development of unlimited growth potential is one of the hallmarks of cancer, which is thought to be an early event in carcinogenesis. In this review, we propose that the molecular effectors of senescence, particularly the inactivation of TP53 and CDKN2A, together with telomere attrition and telomerase activation, all lead to aneuploidy in the keratinocytes from oral potentially malignant disorders (OPMD). Premalignant keratinocytes, therefore, not only become immortal but also develop genotypic and phenotypic cellular diversity. As a result of these changes, certain clonal cell populations likely gain the capacity to invade the underlying connective tissue. We review the clinical implications of these changes and highlight a new PCR-based assay to identify aneuploid cell in fluids such as saliva, a technique that is extremely sensitive and could facilitate the regular monitoring of OPMD without the need for surgical biopsies and may avoid potential biopsy sampling errors. We also draw attention to recent studies designed to eliminate aneuploid tumour cell populations that, potentially, is a new therapeutic approach to prevent malignant transformations in OPMD.
Collapse
Affiliation(s)
- Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Melbourne, VIC 3053, Australia
| | - E. Kenneth Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| |
Collapse
|
24
|
Ageing at Molecular Level: Role of MicroRNAs. Subcell Biochem 2023; 102:195-248. [PMID: 36600135 DOI: 10.1007/978-3-031-21410-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The progression of age triggers a vast number of diseases including cardiovascular, cancer, and neurodegenerative disorders. Regardless of our plentiful knowledge about age-related diseases, little is understood about molecular pathways that associate the ageing process with various diseases. Several cellular events like senescence, telomere dysfunction, alterations in protein processing, and regulation of gene expression are common between ageing and associated diseases. Accumulating information on the role of microRNAs (miRNAs) suggests targeting miRNAs can aid our understanding of the interplay between ageing and associated diseases. In the present chapter, we have attempted to explore the information available on the role of miRNAs in ageing of various tissues/organs and diseases and understand the molecular mechanism of ageing.
Collapse
|
25
|
Sengupta S, Ghufran SM, Khan A, Biswas S, Roychoudhury S. Transition of amyloid/mutant p53 from tumor suppressor to an oncogene and therapeutic approaches to ameliorate metastasis and cancer stemness. Cancer Cell Int 2022; 22:416. [PMID: 36567312 PMCID: PMC9791775 DOI: 10.1186/s12935-022-02831-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022] Open
Abstract
The tumor suppressor p53 when undergoes amyloid formation confers several gain-of-function (GOF) activities that affect molecular pathways crucial for tumorigenesis and progression like some of the p53 mutants. Even after successful cancer treatment, metastasis and recurrence can result in poor survival rates. The major cause of recurrence is mainly the remnant cancer cells with stem cell-like properties, which are resistant to any chemotherapy treatment. Several studies have demonstrated the role of p53 mutants in exacerbating cancer stemness properties and epithelial-mesenchymal transition in these remnant cancer cells. Analyzing the amyloid/mutant p53-mediated signaling pathways that trigger metastasis, relapse or chemoresistance may be helpful for the development of novel or improved individualized treatment plans. In this review, we discuss the changes in the metabolic pathways such as mevalonate pathway and different signaling pathways such as TGF-β, PI3K/AKT/mTOR, NF-κB and Wnt due to p53 amyloid formation, or mutation. In addition to this, we have discussed the role of the regulatory microRNAs and lncRNAs linked with the mutant or amyloid p53 in human malignancies. Such changes promote tumor spread, potential recurrence, and stemness. Importantly, this review discusses the cancer therapies that target either mutant or amyloid p53, restore wild-type functions, and exploit the synthetic lethal interactions with mutant p53.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Shaikh Maryam Ghufran
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Aqsa Khan
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Subhrajit Biswas
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Susanta Roychoudhury
- grid.489176.50000 0004 1803 6730Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, 700063 India ,grid.417635.20000 0001 2216 5074Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
26
|
Deciphering the Role of p53 and TAp73 in Neuroblastoma: From Pathogenesis to Treatment. Cancers (Basel) 2022; 14:cancers14246212. [PMID: 36551697 PMCID: PMC9777536 DOI: 10.3390/cancers14246212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma (NB) is an embryonic cancer that develops from neural crest stem cells, being one of the most common malignancies in children. The clinical manifestation of this disease is highly variable, ranging from spontaneous regression to increased aggressiveness, which makes it a major therapeutic challenge in pediatric oncology. The p53 family proteins p53 and TAp73 play a key role in protecting cells against genomic instability and malignant transformation. However, in NB, their activities are commonly inhibited by interacting proteins such as murine double minute (MDM)2 and MDMX, mutant p53, ΔNp73, Itch, and Aurora kinase A. The interplay between the p53/TAp73 pathway and N-MYC, a known biomarker of poor prognosis and drug resistance in NB, also proves to be decisive in the pathogenesis of this tumor. More recently, a strong crosstalk between microRNAs (miRNAs) and p53/TAp73 has been established, which has been the focused of great attention because of its potential for developing new therapeutic strategies. Collectively, this review provides an updated overview about the critical role of the p53/TAp73 pathway in the pathogenesis of NB, highlighting encouraging clues for the advance of alternative NB targeted therapies.
Collapse
|
27
|
Li H, Liu P, Li D, Wang Z, Ding Z, Zhou M, Chen X, Miao M, Ding J, Lin W, Liu Y, Zha X. STAT3/miR-130b-3p/MBNL1 feedback loop regulated by mTORC1 signaling promotes angiogenesis and tumor growth. J Exp Clin Cancer Res 2022; 41:297. [PMID: 36217202 PMCID: PMC9552455 DOI: 10.1186/s13046-022-02513-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Aberrantly activated mammalian target of rapamycin complex 1 (mTORC1) plays a vital role in tumor angiogenesis, but its precise mechanisms are still unclear. METHODS Micro-RNA-130b-3p (miR-130b-3p) expression in mTORC1-activated and control cells was examined by quantitative real-time PCR (qRT-PCR). MiR-130b-3p levels and their correlation with mTORC1 activity were evaluated by analyzing publicly available databases and in-house head and neck squamous cell carcinoma (HNSCC) tissues. The role of miR-130b-3p in mTORC1-mediated angiogenesis and tumor growth was examined using tube formation assay, chicken chorioallantoic membrane assay, cell line - derived xenograft models, and an HNSCC patient-derived xenograft (PDX) model. The regulatory mechanisms among signal transducer and activator of transcription 3 (STAT3), miR-130b-3p, and muscleblind-like protein 1 (MBNL1) were investigated via bioinformatics analyses, qRT-PCR, western blot, RNA immunoprecipitation, immunofluorescence, luciferase reporter assay, and chromatin immunoprecipitation assay. RESULTS Elevated miR-130b-3p enhanced the angiogenic and tumorigenic abilities of mTORC1-activated cells both in vitro and in vivo. STAT3, a downstream effector of mTORC1, transactivated miR-130b-3p by direct binding promoter of the miR-130b gene. MBNL1 was identified as a direct target of miR-130b-3p. MBNL1 depletion rescued the compromised angiogenesis and tumor growth caused by miR-130b-3p inhibition. MiR-130b-3p levels were significantly upregulated and positively correlated with mTORC1 signaling in multiple cancers. MiR-130b-3p inhibition attenuated tumor angiogenesis and growth in an HNSCC PDX model. MBNL1 feedback inhibited STAT3 activation in mTORC1-activated cells. CONCLUSIONS The STAT3/miR-130b-3p/MBNL1 feedback loop plays a vital role in mTORC1-mediated angiogenesis and tumor progression. This pathway could be targeted for therapeutic intervention of mTORC1-related cancers.
Collapse
Affiliation(s)
- Hongwu Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Anhui Public Health Clinical Center, Hefei, 230032, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Ping Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Anhui Public Health Clinical Center, Hefei, 230032, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Dapeng Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zixi Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Zhao Ding
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Meng Zhou
- Department of Pharmacy, Genertec Universal Medical Maanshan Shiqiye Hospital, Maanshan, 243000, Anhui Province, China
| | - Xu Chen
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Manli Miao
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Junli Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Wei Lin
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Yehai Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
28
|
Xie Q, Zhang D, Ye H, Wu Z, Sun Y, Shen H. Identification of key snoRNAs serves as biomarkers for hepatocellular carcinoma by bioinformatics methods. Medicine (Baltimore) 2022; 101:e30813. [PMID: 36181013 PMCID: PMC9524901 DOI: 10.1097/md.0000000000030813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignancy with high mortality and poor prognosis due to a lack of predictive markers. However, research on small nuclear RNAs (snoRNAs) in HCC were very little. This study aimed to identify a potential diagnostic and prognostic snoRNA signature for HCC. METHODS HCC datasets from the cancer genome atlas (TCGA) and international cancer genome consortium (ICGC) cohorts were used. Differentially expressed snoRNA (DEs) were identified using the limma package. Based on the DEs, diagnostic and prognostic models were established by the least absolute shrinkage and selection operator (LASSO) regression and COX analysis, and Kaplan-Meier (K-M) survival analysis and receiver operating characteristic (ROC) curve analysis were conducted to evaluate the efficiency of signatures. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were used to analyze the risk score and further explore the potential correlation between the risk groups and tumor immune status in TCGA. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine the functions of key snoRNAs. RESULTS We constructed a 6-snoRNAs signature which could classify patients into high- or low-risk groups and found that patients in the high-risk group had a worse prognosis than those in the low-risk group and were significantly involved in p53 processes. Tumor immune status analysis revealed that CTLA4 and PDCD1 (PD1) were highly expressed in the high-risk group, which responded to PD1 inhibitor therapy. Additionally, a 25-snoRNAs diagnostic signature was constructed with an area under the curve (AUC) of 0.933 for distinguishing HCCs from normal controls. Finally, 3 key snoRNAs (SNORA11, SNORD124, and SNORD46) were identified with both diagnostic and prognostic efficacy, some of which were closely related to the spliceosome and Notch signaling pathways. CONCLUSIONS Our study identified 6 snoRNAs that may serve as novel prognostic models and 3 key snoRNAs with both diagnostic and prognostic efficacy for HCC.
Collapse
Affiliation(s)
- Qingqing Xie
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, Guangxi, China
| | - Di Zhang
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Hunan, China
| | - Huifeng Ye
- Department of Clinical Laboratory, Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People’s Hospital, Guigang, Guangxi, China
| | - Zhitong Wu
- Department of Clinical Laboratory, Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People’s Hospital, Guigang, Guangxi, China
| | - Yifan Sun
- Department of Clinical Laboratory, Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People’s Hospital, Guigang, Guangxi, China
| | - Haoming Shen
- Department of Clinical Laboratory, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
- *Correspondence: Haoming Shen, Department of Clinical Laboratory, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Xianjia Lake Street 410031, Changsha, Hunan, China (e-mail: )
| |
Collapse
|
29
|
Vadakekolathu J, Boocock DJ, Pandey K, Guinn BA, Legrand A, Miles AK, Coveney C, Ayala R, Purcell AW, McArdle SE. Multi-Omic Analysis of Two Common P53 Mutations: Proteins Regulated by Mutated P53 as Potential Targets for Immunotherapy. Cancers (Basel) 2022; 14:cancers14163975. [PMID: 36010968 PMCID: PMC9406384 DOI: 10.3390/cancers14163975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary TP53 is the most frequently mutated gene in many cancers, but it has failed to be a very effective target for treatment to date. To overcome this, we have examined what else changes in cells when the TP53 gene is mutated. We modified cells that had no TP53 expression to have one of the two most common mutations, either R175H or R273H. We examined how the presence of these TP53 mutations caused cellular changes including microscopic, gene expression and peptide presentation to the immune system. This has allowed us to identify new (secondary) targets that could be used to facilitate the treatment of tumors that harbor p53 mutations. Abstract The p53 protein is mutated in more than 50% of human cancers. Mutated p53 proteins not only lose their normal function but often acquire novel oncogenic functions, a phenomenon termed mutant p53 gain-of-function. Mutant p53 has been shown to affect the transcription of a range of genes, as well as protein–protein interactions with transcription factors and other effectors; however, no one has intensively investigated and identified these proteins, or their MHC presented epitopes, from the viewpoint of their ability to act as targets for immunotherapeutic interventions. We investigated the molecular changes that occurred after the TP53 null osteosarcoma cells, SaOS-2, were transfected with one of two conformational p53-mutants, either R175H or R273H. We then examined the phenotypic and functional changes using macroscopic observations, proliferation, gene expression and proteomics alongside immunopeptidome profiling of peptide antigen presentation in the context of major histocompatibility complex (MHC) class I molecules. We identified several candidate proteins in both TP53 mutant cell lines with differential expression when compared to the TP53 null vector control, SaOS-V. Quantitative SWATH proteomics combined with immune-peptidome analysis of the class-I eluted peptides identified several epitopes presented on pMHC and in silico analysis shortlisted which antigens were expressed in a range of cancerous but not adjacent healthy tissues. Out of all the candidates, KLC1 and TOP2A showed high levels of expression in every tumor type examined. From these proteins, three A2 and four pan HLA-A epitopes were identified in both R175H and R273H from TOP2A. We have now provided a short list of future immunotherapy targets for the treatment of cancers harboring mutated TP53.
Collapse
Affiliation(s)
- Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
| | - David J. Boocock
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Kirti Pandey
- Infection and Immunology Program, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Barbara-ann Guinn
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, UK
| | - Antoine Legrand
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
| | - Amanda K. Miles
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Clare Coveney
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
| | - Rochelle Ayala
- Infection and Immunology Program, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Anthony W. Purcell
- Infection and Immunology Program, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Stephanie E. McArdle
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
- Correspondence:
| |
Collapse
|
30
|
Semenov O, Daks A, Fedorova O, Shuvalov O, Barlev NA. Opposing Roles of Wild-type and Mutant p53 in the Process of Epithelial to Mesenchymal Transition. Front Mol Biosci 2022; 9:928399. [PMID: 35813818 PMCID: PMC9261265 DOI: 10.3389/fmolb.2022.928399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/01/2022] [Indexed: 12/05/2022] Open
Abstract
The central role of an aberrantly activated EMT program in defining the critical features of aggressive carcinomas is well documented and includes cell plasticity, metastatic dissemination, drug resistance, and cancer stem cell-like phenotypes. The p53 tumor suppressor is critical for leashing off all the features mentioned above. On the molecular level, the suppression of these effects is exerted by p53 via regulation of its target genes, whose products are involved in cell cycle, apoptosis, autophagy, DNA repair, and interactions with immune cells. Importantly, a set of specific mutations in the TP53 gene (named Gain-of-Function mutations) converts this tumor suppressor into an oncogene. In this review, we attempted to contrast different regulatory roles of wild-type and mutant p53 in the multi-faceted process of EMT.
Collapse
Affiliation(s)
- Oleg Semenov
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Alexandra Daks
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Olga Fedorova
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Oleg Shuvalov
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Nickolai A. Barlev
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
- Laboratory of Intracellular Signalling, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- The Group of Targeted Delivery Mechanisms of Nanosystems, Institute of Biomedical Chemistry, Moscow, Russia
- *Correspondence: Nickolai A. Barlev,
| |
Collapse
|
31
|
Yang X, Qin C, Zhao B, Li T, Wang Y, Li Z, Li T, Wang W. Long Noncoding RNA and Circular RNA: Two Rising Stars in Regulating Epithelial-Mesenchymal Transition of Pancreatic Cancer. Front Oncol 2022; 12:910678. [PMID: 35719940 PMCID: PMC9204003 DOI: 10.3389/fonc.2022.910678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with especially poor prognosis. However, the molecular mechanisms of pancreatic oncogenesis and malignant progression are not fully elucidated. Epithelial-mesenchymal transition (EMT) process is important to drive pancreatic carcinogenesis. Recently, long noncoding RNAs (lncRNAs) and circular RNAs(circRNAs) have been characterized to participate in EMT in PDAC, which can affect the migration and invasion of tumor cells by playing important roles in epigenetic processes, transcription, and post-transcriptional regulation. LncRNAs can act as competing endogenous RNAs (ceRNA) to sequester target microRNAs(miRNAs), bind to the genes which localize physically nearby, and directly interact with EMT-related proteins. Currently known circRNAs mostly regulate the EMT process in PDAC also by acting as a miRNA sponge, directly affecting the protein degradation process. Therefore, exploring the functions of lncRNAs and circRNAs in EMT during pancreatic cancer might help pancreatic cancer treatments.
Collapse
Affiliation(s)
- Xiaoying Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianhao Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyang Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Dong P, Wang F, Taheri M, Xiong Y, Ihira K, Kobayashi N, Konno Y, Yue J, Watari H. Long Non-Coding RNA TMPO-AS1 Promotes GLUT1-Mediated Glycolysis and Paclitaxel Resistance in Endometrial Cancer Cells by Interacting With miR-140 and miR-143. Front Oncol 2022; 12:912935. [PMID: 35712514 PMCID: PMC9195630 DOI: 10.3389/fonc.2022.912935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023] Open
Abstract
Increased glycolysis in tumor cells is frequently associated with drug resistance. Overexpression of glucose transporter-1 (GLUT1) promotes the Warburg effect and mediates chemoresistance in various cancers. Aberrant GLUT1 expression is considered as an essential early step in the development of endometrial cancer (EC). However, its role in EC glycolysis and chemoresistance and the upstream mechanisms underlying GLUT1 overexpression, remain undefined. Here, we demonstrated that GLUT1 was highly expressed in EC tissues and cell lines and that high GLUT1 expression was associated with poor prognosis in EC patients. Both gain-of-function and loss-of-function studies showed that GLUT1 increased EC cell proliferation, invasion, and glycolysis, while also making them resistant to paclitaxel. The long non-coding RNA TMPO-AS1 was found to be overexpressed in EC tissues and to be negatively associated with EC patient outcomes. RNA-immunoprecipitation and luciferase reporter assays confirmed that TMPO-AS1 elevated GLUT1 expression by directly binding to two critical tumor suppressor microRNAs (miR-140 and miR-143). Downregulation of TMPO-AS1 remarkably reduced EC cell proliferation, invasion, glycolysis, and paclitaxel resistance in EC cells. This study established that dysregulation of the TMPO-AS1-miR-140/miR-143 axis contributes to glycolysis and drug resistance in EC cells by up-regulating GLUT1 expression. Thus, inhibiting TMPO-AS1 and GLUT1 may prove beneficial in overcoming glycolysis-induced paclitaxel resistance in patients with EC.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
33
|
Wang Z, Strasser A, Kelly GL. Should mutant TP53 be targeted for cancer therapy? Cell Death Differ 2022; 29:911-920. [PMID: 35332311 PMCID: PMC9091235 DOI: 10.1038/s41418-022-00962-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in the TP53 tumour suppressor gene are found in ~50% of human cancers [1-6]. TP53 functions as a transcription factor that directly regulates the expression of ~500 genes, some of them involved in cell cycle arrest/cell senescence, apoptotic cell death or DNA damage repair, i.e. the cellular responses that together prevent tumorigenesis [1-6]. Defects in TP53 function not only cause tumour development but also impair the response of malignant cells to anti-cancer drugs, particularly those that induce DNA damage [1-6]. Most mutations in TP53 in human cancers cause a single amino acid substitution, usually within the DNA binding domain of the TP53 protein. These mutant TP53 proteins are often expressed at high levels in the malignant cells. Three cancer causing attributes have been postulated for mutant TP53 proteins: the inability to activate target genes controlled by wt TP53 (loss-of-function, LOF) that are critical for tumour suppression, dominant negative effects (DNE), i.e. blocking the function of wt TP53 in cells during early stages of transformation when mutant and wt TP53 proteins are co-expressed, and gain-of-function (GOF) effects whereby mutant TP53 impacts diverse cellular pathways by interacting with proteins that are not normally engaged by wt TP53 [1-6]. The GOF effects of mutant TP53 were reported to be essential for the sustained proliferation and survival of malignant cells and it was therefore proposed that agents that can remove mutant TP53 protein would have substantial therapeutic impact [7-9]. In this review article we discuss evidence for and against the value of targeting mutant TP53 protein for cancer therapy.
Collapse
Affiliation(s)
- Zilu Wang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
34
|
Islam SU, Ahmed MB, Sonn JK, Jin EJ, Lee YS. PRP4 Induces Epithelial–Mesenchymal Transition and Drug Resistance in Colon Cancer Cells via Activation of p53. Int J Mol Sci 2022; 23:ijms23063092. [PMID: 35328513 PMCID: PMC8955441 DOI: 10.3390/ijms23063092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Pre-mRNA processing factor 4B (PRP4) promotes pre-mRNA splicing and signal transduction. Recent studies have shown that PRP4 modulates the assembly of actin cytoskeleton in cancer cells and induces epithelial–mesenchymal transition (EMT) and drug resistance. PRP4 displays kinase domain-like cyclin-dependent kinases and mitogen-activated protein kinases, making it capable of phosphorylating p53 and other target proteins. In the current study, we report that PRP4 induces drug resistance and EMT via direct binding to the p53 protein, inducing its phosphorylation. Moreover, PRP4 overexpression activates the transcription of miR-210 in a hypoxia-inducible factor 1α (HIF-1α)-dependent manner, which activates p53. The involvement of miR-210 in the activation of p53 was confirmed by utilizing si-miR210. si-miR210 blocked the PRP4-activated cell survival pathways and reversed the PRP4-induced EMT phenotype. Moreover, we used deferoxamine as a hypoxia-mimetic agent, and si-HIF to silence HIF-1α. This procedure demonstrated that PRP4-induced EMT and drug resistance emerged in response to consecutive activation of HIF-1α, miR-210, and p53 by PRP4 overexpression. Collectively, our findings suggest that the PRP4 contributes to EMT and drug resistance induction via direct interactions with p53 and actions that promote upregulation of HIF-1α and miR-210. We conclude that PRP4 is an essential factor promoting cancer development and progression. Specific PRP4 inhibition could benefit patients with colon cancer.
Collapse
Affiliation(s)
- Salman Ul Islam
- Department of Pharmacy, Cecos University, Hayatabad, Peshawar 25000, Pakistan;
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Jong-Kyung Sonn
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Eun-Jung Jin
- Department of Biological Science, College of Natural Science, Wonkwang University, Iksan 54538, Korea
- Correspondence: (E.-J.J.); (Y.-S.L.); Tel.: +82-63-8500-6197(E.-J.J.); +82-53-950-6353 (Y.-S.L.); Fax: +82-53-943-2762 (E.-J.J.)
| | - Young-Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: (E.-J.J.); (Y.-S.L.); Tel.: +82-63-8500-6197(E.-J.J.); +82-53-950-6353 (Y.-S.L.); Fax: +82-53-943-2762 (E.-J.J.)
| |
Collapse
|
35
|
Noncanonical roles of p53 in cancer stemness and their implications in sarcomas. Cancer Lett 2022; 525:131-145. [PMID: 34742870 DOI: 10.1016/j.canlet.2021.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Impairment of the prominent tumor suppressor p53, well known for its canonical role as the "guardian of the genome", is found in almost half of human cancers. More recently, p53 has been suggested to be a crucial regulator of stemness, orchestrating the differentiation of embryonal and adult stem cells, suppressing reprogramming into induced pluripotent stem cells, or inhibiting cancer stemness (i.e., cancer stem cells, CSCs), which underlies the development of therapy-resistant tumors. This review addresses these noncanonical roles of p53 and their implications in sarcoma initiation and progression. Indeed, dysregulation of p53 family proteins is a common event in sarcomas and is associated with poor survival. Additionally, emerging studies have demonstrated that loss of wild-type p53 activity hinders the terminal differentiation of mesenchymal stem cells and leads to the development of aggressive sarcomas. This review summarizes recent findings on the roles of aberrant p53 in sarcoma development and stemness and further describes therapeutic approaches to restore normal p53 activity as a promising anti-CSC strategy to treat refractory sarcomas.
Collapse
|
36
|
Madrigal T, Hernández-Monge J, Herrera LA, González-De la Rosa CH, Domínguez-Gómez G, Candelaria M, Luna-Maldonado F, Calderón González KG, Díaz-Chávez J. Regulation of miRNAs Expression by Mutant p53 Gain of Function in Cancer. Front Cell Dev Biol 2021; 9:695723. [PMID: 34957087 PMCID: PMC8697023 DOI: 10.3389/fcell.2021.695723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
The p53 roles have been largely described; among them, cell proliferation and apoptosis control are some of the best studied and understood. Interestingly, the mutations on the six hotspot sites within the region that encodes the DNA-binding domain of p53 give rise to other very different variants. The particular behavior of these variants led to consider p53 mutants as separate oncogene entities; that is, they do not retain wild type functions but acquire new ones, namely Gain-of-function p53 mutants. Furthermore, recent studies have revealed how p53 mutants regulate gene expression and exert oncogenic effects by unbalancing specific microRNAs (miRNAs) levels that provoke epithelial-mesenchymal transition, chemoresistance, and cell survival, among others. In this review, we discuss recent evidence of the crosstalk between miRNAs and mutants of p53, as well as the consequent cellular processes dysregulated.
Collapse
Affiliation(s)
- Tzitzijanik Madrigal
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
- Departamento de Ciencias Biológicas y de La Salud, UAM Iztapalapa, Mexico City, Mexico
| | - Jesús Hernández-Monge
- Cátedra-CONACyT Laboratorio de Biomarcadores Moleculares, Instituto de Física, UASLP, San Luis Potosí, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | | | - Myrna Candelaria
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Fernando Luna-Maldonado
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Karla G Calderón González
- Laboratorio de Interacciones Biomoleculares y Cáncer, Instituto de Física, UASLP, San Luis Potosi, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
37
|
Zhang X, Katsakhyan L, LiVolsi VA, Roth JJ, Rassekh CH, Bagley SJ, Nasrallah MP. TP53 Mutation and Extraneural Metastasis of Glioblastoma: Insights From an Institutional Experience and Comprehensive Literature Review. Am J Surg Pathol 2021; 45:1516-1526. [PMID: 34366423 DOI: 10.1097/pas.0000000000001762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Extraneural metastases of glioblastoma (GBM), although rare, are becoming an increasingly recognized occurrence. Currently, the biological mechanism underlying this rare occurrence is not understood. To explore the potential genomic drivers of extraneural metastasis in GBM, we present the molecular features of 4 extraneural metastatic GBMs, along with a comprehensive review and analysis of previously reported cases that had available molecular characterization. In addition to our 4 cases, 42 patients from 35 publications are reviewed. To compare the molecular profiles between GBM cases with extraneural metastasis and the general GBM population, genomic data from GBM samples in The Cancer Genome Atlas (TCGA) database were also analyzed. We found that 64.5% (20/31) of the cases with extraneural metastasis that were tested for TP53 changes had at least 1 TP53 pathogenic variant detected in either 1 or both primary and metastatic tumors. In contrast, TP53 mutation was significantly less frequent in the unselected GBM from TCGA (22.6%, 56/248) (P=0.000). In addition, O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation was more common in unselected TCGA GBM cases (48.6%, 170/350) than in cases with extraneural metastasis (31.8%, 7/22), although not statistically significant. Although isocitrate dehydrogenase (IDH) mutation is a rare occurrence in high-grade astrocytomas, IDH-mutant grade 4 astrocytomas are at least as likely to metastasize as IDH wild-type GBMs; 3 metastatic cases definitively harbored an IDH1 (p.R132H) mutation in our analysis. Our findings not only provide potential biomarkers for earlier screening of extraneural metastasis, but could also suggest clues to understanding biological mechanisms underlying GBM metastasis, and for the development of therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen J Bagley
- Hematology Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
38
|
Contribution of p53 in sensitivity to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Sci Rep 2021; 11:19667. [PMID: 34608255 PMCID: PMC8490392 DOI: 10.1038/s41598-021-99267-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/13/2021] [Indexed: 11/08/2022] Open
Abstract
The emergence of resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) with activating EGFR mutations is a major hindrance to treatment. We investigated the effects of p53 in primary sensitivity and acquired resistance to EGFR-TKIs in NSCLC cells. Changes in sensitivity to EGFR-TKIs were determined using p53 overexpression or knockdown in cells with activating EGFR mutations. We investigated EMT-related molecules, morphologic changes, and AXL induction to elucidate mechanisms of acquired resistance to EGFR-TKIs according to p53 status. Changes in p53 status affected primary sensitivity as well as acquired resistance to EGFR-TKIs according to cell type. Firstly, p53 silencing did not affect primary and acquired resistance to EGFR-TKIs in PC-9 cells, but it led to primary resistance to EGFR-TKIs through AXL induction in HCC827 cells. Secondly, p53 silencing in H1975 cells enhanced the sensitivity to osimertinib through the emergence of mesenchymal-to-epithelial transition, and the emergence of acquired resistance to osimertinib in p53 knockout cells was much slower than in H1975 cells. Furthermore, two cell lines (H1975 and H1975/p53KO) demonstrated the different mechanisms of acquired resistance to osimertinib. Lastly, the introduction of mutant p53-R273H induced the epithelial-to-mesenchymal transition and exerted resistance to EGFR-TKIs in cells with activating EGFR mutations. These findings indicate that p53 mutations can be associated with primary or acquired resistance to EGFR-TKIs. Thus, the status or mutations of p53 may be considered as routes to improving the therapeutic effects of EGFR-TKIs in NSCLC.
Collapse
|
39
|
Hu J, Cao J, Topatana W, Juengpanich S, Li S, Zhang B, Shen J, Cai L, Cai X, Chen M. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol 2021; 14:157. [PMID: 34583722 PMCID: PMC8480024 DOI: 10.1186/s13045-021-01169-0] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
TP53 is a critical tumor-suppressor gene that is mutated in more than half of all human cancers. Mutations in TP53 not only impair its antitumor activity, but also confer mutant p53 protein oncogenic properties. The p53-targeted therapy approach began with the identification of compounds capable of restoring/reactivating wild-type p53 functions or eliminating mutant p53. Treatments that directly target mutant p53 are extremely structure and drug-species-dependent. Due to the mutation of wild-type p53, multiple survival pathways that are normally maintained by wild-type p53 are disrupted, necessitating the activation of compensatory genes or pathways to promote cancer cell survival. Additionally, because the oncogenic functions of mutant p53 contribute to cancer proliferation and metastasis, targeting the signaling pathways altered by p53 mutation appears to be an attractive strategy. Synthetic lethality implies that while disruption of either gene alone is permissible among two genes with synthetic lethal interactions, complete disruption of both genes results in cell death. Thus, rather than directly targeting p53, exploiting mutant p53 synthetic lethal genes may provide additional therapeutic benefits. Additionally, research progress on the functions of noncoding RNAs has made it clear that disrupting noncoding RNA networks has a favorable antitumor effect, supporting the hypothesis that targeting noncoding RNAs may have potential synthetic lethal effects in cancers with p53 mutations. The purpose of this review is to discuss treatments for cancers with mutant p53 that focus on directly targeting mutant p53, restoring wild-type functions, and exploiting synthetic lethal interactions with mutant p53. Additionally, the possibility of noncoding RNAs acting as synthetic lethal targets for mutant p53 will be discussed.
Collapse
Affiliation(s)
- Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | | | - Shijie Li
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhang
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiliang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
| | - Liuxin Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China.
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Cognitive Healthcare of Zhejiang Province, Zhejiang Province, Hangzhou, China.
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No. 3 East Qingchun Road, Hangzhou, 310016, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China.
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Cognitive Healthcare of Zhejiang Province, Zhejiang Province, Hangzhou, China.
| |
Collapse
|
40
|
Crosslink between p53 and metastasis: focus on epithelial-mesenchymal transition, cancer stem cell, angiogenesis, autophagy, and anoikis. Mol Biol Rep 2021; 48:7545-7557. [PMID: 34519942 DOI: 10.1007/s11033-021-06706-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/07/2021] [Indexed: 01/05/2023]
Abstract
INTRODUCTION P53, as a tumor suppressor gene, is believed to be one of the most mutated genes in cancer cells. The mutant forms of this protein often play a tumorigenic role in cancer cells. Recent evidence shows that p53 plays a critical role in the migration, metastasis, and invasion of cancer cells. The present article aims to investigate the molecular mechanism that induces metastasis in cancer cells generated by the mutant P53, and to highlight the compounds targeting mutant-p53 together with their clinical applications. METHODS A detailed literature search was conducted to find information about the role of the mutant-p53 in the processes involved in metastasis in various databases. RESULTS A growing body of evidence suggests that Mutant-p53 enhances tumor metastasis affecting the Epithelial-mesenchymal transition (EMT) process, cancer stem cells, angiogenesis, autophagy, anoikis, and any other mechanisms regarding metastasis. CONCLUSIONS Taken together, targeting mutant-p53 by altering the processes involved in metastasis could be a potential therapeutic strategy in the treatment of metastatic cancer.
Collapse
|
41
|
Zhang C, Liu J, Xu D, Zhang T, Hu W, Feng Z. Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol 2021; 12:674-687. [PMID: 32722796 PMCID: PMC7749743 DOI: 10.1093/jmcb/mjaa040] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
p53 is a key tumor suppressor, and loss of p53 function is frequently a prerequisite for cancer development. The p53 gene is the most frequently mutated gene in human cancers; p53 mutations occur in >50% of all human cancers and in almost every type of human cancers. Most of p53 mutations in cancers are missense mutations, which produce the full-length mutant p53 (mutp53) protein with only one amino acid difference from wild-type p53 protein. In addition to loss of the tumor-suppressive function of wild-type p53, many mutp53 proteins acquire new oncogenic activities independently of wild-type p53 to promote cancer progression, termed gain-of-function (GOF). Mutp53 protein often accumulates to very high levels in cancer cells, which is critical for its GOF. Given the high mutation frequency of the p53 gene and the GOF activities of mutp53 in cancer, therapies targeting mutp53 have attracted great interest. Further understanding the mechanisms underlying mutp53 protein accumulation and GOF will help develop effective therapies treating human cancers containing mutp53. In this review, we summarize the recent advances in the studies on mutp53 regulation and GOF as well as therapies targeting mutp53 in human cancers.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Dandan Xu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Tianliang Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
42
|
Xia Y, Li X, Sun W. Applications of Recombinant Adenovirus-p53 Gene Therapy for Cancers in the Clinic in China. Curr Gene Ther 2021; 20:127-141. [PMID: 32951572 DOI: 10.2174/1566523220999200731003206] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 01/30/2023]
Abstract
Suppression of TP53 function is nearly ubiquitous in human cancers, and a significant fraction of cancers have mutations in the TP53 gene itself. Therefore, the wild-type TP53 gene has become an important target gene for transformation research of cancer gene therapy. In 2003, the first anti-tumor gene therapy drug rAd-p53 (recombinant human p53 adenovirus), trade name Gendicine™, was approved by the China Food and Drug Administration (CFDA) for treatment of head and neck squamous cell carcinoma (HNSCC) in combination with radiotherapy. The recombinant human TP53 gene is delivered into cancer cells by an adenovirus vector constructed to express the functional p53 protein. Although the only currently approved used of Gendicine is in combination with radiotherapy for treatment of HNSCC, clinical studies have been carried out for more than 20 other applications of Gendicine in treating cancer, including treatment of advanced lung cancer, advanced liver cancer, malignant gynecological tumors, and soft tissue sarcomas. Currently more than 30,000 patients have been treated with Gendicine. This review provides an overview of the clinical applications of Gendicine in China. We summarize a total of 48 studies with 2,561 patients with solid tumors, including 34 controlled clinical studies and 14 open clinical studies, i.e., clinical studies without a control group. There are 11 studies for head and neck cancer, 10 for liver cancer, 6 for malignant gynecological tumors, 4 for non-small cell lung cancer, 4 for soft tissue sarcoma, 4 for malignant effusion, 2 for gastrointestinal tumors, and 7 for other types of cancer. In all the reported clinical studies, the most common side effect was self-limited fever. Intratumoral injection and intra-arterial infusion were the most common routes of administration. Overall, Gendicine combined with chemotherapy, radiotherapy, or other conventional treatment regimens demonstrated significantly higher response rates compared to standard therapies alone. Some of the published studies also showed that Gendicine combination regimens demonstrated longer progression-free survival times than conventional treatments alone. To date, Gendicine has been clinically used in China for treatment of cancers other than HNSCC for more than ten years, mainly for patients with advanced or unresectable malignant tumors. However, the establishment of standard treatment regimens using TP53 gene therapy is still needed in order to advance its use in clinical practice.
Collapse
Affiliation(s)
- Yu Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Xiuqin Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Wei Sun
- Radiology Department, Shengjing Hospital of China Medical University, Sanhao, China
| |
Collapse
|
43
|
Chiang YT, Chien YC, Lin YH, Wu HH, Lee DF, Yu YL. The Function of the Mutant p53-R175H in Cancer. Cancers (Basel) 2021; 13:4088. [PMID: 34439241 PMCID: PMC8391618 DOI: 10.3390/cancers13164088] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Wild-type p53 is known as "the guardian of the genome" because of its function of inducing DNA repair, cell-cycle arrest, and apoptosis, preventing the accumulation of gene mutations. TP53 is highly mutated in cancer cells and most TP53 hotspot mutations are missense mutations. Mutant p53 proteins, encoded by these hotspot mutations, lose canonical wild-type p53 functions and gain functions that promote cancer development, including promoting cancer cell proliferation, migration, invasion, initiation, metabolic reprogramming, angiogenesis, and conferring drug resistance to cancer cells. Among these hotspot mutations, p53-R175H has the highest occurrence. Although losing the transactivating function of the wild-type p53 and prone to aggregation, p53-R175H gains oncogenic functions by interacting with many proteins. In this review, we summarize the gain of functions of p53-R175H in different cancer types, the interacting proteins of p53-R175H, and the downstream signaling pathways affected by p53-R175H to depict a comprehensive role of p53-R175H in cancer development. We also summarize treatments that target p53-R175H, including reactivating p53-R175H with small molecules that can bind to p53-R175H and alter it into a wild-type-like structure, promoting the degradation of p53-R175H by targeting heat-shock proteins that maintain the stability of p53-R175H, and developing immunotherapies that target the p53-R175H-HLA complex presented by tumor cells.
Collapse
Affiliation(s)
- Yen-Ting Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
| | - Yi-Chung Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
- Program for Translational Medicine, China Medical University, Taichung 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
- Drug Development Center, Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yu-Heng Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
| | - Hui-Hsuan Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
- Program for Translational Medicine, China Medical University, Taichung 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
- Drug Development Center, Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
44
|
Huang G, Zhong X, Yao L, Ma Q, Liao H, Xu L, Zou J, Sun R, Wang D, Guo X. MicroRNA-449a inhibits cell proliferation and migration by regulating mutant p53 in MDA-MB-468 cells. Exp Ther Med 2021; 22:1020. [PMID: 34373706 PMCID: PMC8343910 DOI: 10.3892/etm.2021.10452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the role of microRNA (miR)-449a in the proliferation, migration and apoptosis of MDA-MB-468 breast cancer cells and examine the association between miR-449a and mutant p53 in these cells. Cell proliferation, migration and invasion were examined using a crystal violet staining assay, wound healing scratch assay and Transwell assay, respectively. The expression level of miR-449a and p53 was detected by reverse transcription-quantitative PCR or western blotting. The results indicated that knockdown of mutant p53 suppressed the proliferation and migration of MDA-MB-468 cells by inhibiting the PI3K/AKT/mTOR signaling pathway. In addition, miR-449a suppressed proliferation and migration via downregulation of mutant p53 expression in MDA-MB-468 cells. Therefore, miR-449a may function as a tumor suppressor by regulating p53 expression in breast cancer cells, which may have potential implications in the treatment of patients with triple-negative breast cancer carrying mutant p53.
Collapse
Affiliation(s)
- Guangcheng Huang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaowu Zhong
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Lihua Yao
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Hebin Liao
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Lei Xu
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Jiang Zou
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Ru Sun
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Dongsheng Wang
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| |
Collapse
|
45
|
Klicka K, Grzywa TM, Klinke A, Mielniczuk A, Włodarski PK. The Role of miRNAs in the Regulation of Endometrial Cancer Invasiveness and Metastasis-A Systematic Review. Cancers (Basel) 2021; 13:3393. [PMID: 34298609 PMCID: PMC8304659 DOI: 10.3390/cancers13143393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Endometrial cancer (EC) is the most common genital cancer in women with increasing death rates. MiRNAs are short non-coding RNAs that regulate gene expression on the post-transcriptional levels. Multiple studies demonstrated a fundamental role of miRNAs in the regulation of carcinogenesis. This systematic review is a comprehensive overview of the role of miRNAs in the regulation of cancer cell invasiveness and metastasis in EC. The literature was searched for studies investigating the role of miRNAs in the regulation of invasiveness and metastasis in EC. We explored PubMed, Embase, and Scopus using the following keywords: miRNA, metastasis, invasiveness, endometrial cancer. Data were collected from 163 articles that described the expression and role of 106 miRNAs in the regulation of EC invasiveness and metastasis out of which 63 were tumor suppressor miRNAs, and 38 were oncomiRNAs. Five miRNAs had a discordant role in different studies. Moreover, we identified 66 miRNAs whose expression in tumor tissue or concentration in serum correlated with at least one clinical parameter. These findings suggest a crucial role of miRNAs in the regulation of EC invasiveness and metastasis and present them as potential prognostic factors for patients with EC.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
| | - Aleksandra Mielniczuk
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
| |
Collapse
|
46
|
Dong P, Xiong Y, Konno Y, Ihira K, Kobayashi N, Yue J, Watari H. Long non-coding RNA DLEU2 drives EMT and glycolysis in endometrial cancer through HK2 by competitively binding with miR-455 and by modulating the EZH2/miR-181a pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:216. [PMID: 34174908 PMCID: PMC8235565 DOI: 10.1186/s13046-021-02018-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 01/27/2023]
Abstract
Background Epithelial-to-mesenchymal transition (EMT) and aerobic glycolysis are fundamental processes implicated in cancer metastasis. Although increasing evidence demonstrates an association between EMT induction and enhanced aerobic glycolysis in human cancer, the mechanisms linking these two conditions in endometrial cancer (EC) cells remain poorly defined. Methods We characterized the role and molecular mechanism of the glycolytic enzyme hexokinase 2 (HK2) in mediating EMT and glycolysis and investigated how long noncoding RNA DLEU2 contributes to the stimulation of EMT and glycolysis via upregulation of HK2 expression. Results HK2 was highly expressed in EC tissues, and its expression was associated with poor overall survival. Overexpression of HK2 effectively promoted EMT phenotypes and enhanced aerobic glycolysis in EC cells via activating FAK and its downstream ERK1/2 signaling. Moreover, microRNA-455 (miR-455) served as a tumor suppressor by directly interacting with HK2 mRNA and inhibiting its expression. Furthermore, DLEU2 displayed a significantly higher expression in EC tissues, and increased DLEU2 expression was correlated with worse overall survival. DLEU2 acted as an upstream activator for HK2-induced EMT and glycolysis in EC cells through two distinct mechanisms: (i) DLEU2 induced HK2 expression by competitively binding with miR-455, and (ii) DLEU2 also interacted with EZH2 to silence a direct inhibitor of HK2, miR-181a. Conclusions This study identified DLEU2 as an upstream activator of HK2-driven EMT and glycolysis in EC cells and provided significant mechanistic insights for the potential treatment of EC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02018-1.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan.
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan.
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| |
Collapse
|
47
|
Pan J, Huang Z, Xu Y. m5C RNA Methylation Regulators Predict Prognosis and Regulate the Immune Microenvironment in Lung Squamous Cell Carcinoma. Front Oncol 2021; 11:657466. [PMID: 34195072 PMCID: PMC8237756 DOI: 10.3389/fonc.2021.657466] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
RNA methylation is a novel epigenetic modification that can be used to evaluate tumor prognosis. However, the underlying mechanisms are unclear. This study aimed to investigate the genetic characteristics of 5-methylcytosine (m5C) and N1-methyladenosine (m1A) regulators in lung squamous cell carcinoma (LUSC) and the prognostic value and immune-related effects of m5C regulators. To this end, we selected the public LUSC dataset from the Cancer Genome Atlas and Gene Expression Omnibus. The least absolute shrinkage and selection operator regression model was used to identify prognostic risk signatures. We used the UALCAN and Human Protein Atlas databases to study the expression of target gene mRNA/protein expression. Furthermore, the Tumor Immune Single Cell Hub and the Tumor Immune Estimation Resource were used to evaluate the degree of immune cell infiltration. Most of the m5C and m1A regulators showed significantly different expression between LUSC and normal samples. The m5C regulators were associated with poor prognosis. In addition, a prognostic risk signature was developed based on two m5C regulators, NOP2/Sun RNA methyltransferase 3 (NSUN3), and NOP2/Sun RNA methyltransferase 4 (NSUN4). Compared with normal lung tissues, the expression of NSUN3 and NSUN4 in the LUSC TCGA dataset was increased, which was related to clinicopathological characteristics and survival. NSUN3 and NSUN4 were related to the infiltration of six major immune cells; especially NSUN3, which was closely related to CD8+ T cells, while NSUN4 was closely related to neutrophils. Our findings suggest that m5C regulators can predict the clinical prognosis risk and regulate the tumor immune microenvironment in LUSC.
Collapse
Affiliation(s)
- Junfan Pan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zhidong Huang
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Yiquan Xu
- Department of Thoracic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
48
|
Navalkar A, Pandey S, Singh N, Patel K, Datta D, Mohanty B, Jadhav S, Chaudhari P, Maji SK. Direct evidence of cellular transformation by prion-like p53 amyloid infection. J Cell Sci 2021; 134:269011. [PMID: 34085695 DOI: 10.1242/jcs.258316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/21/2021] [Indexed: 11/20/2022] Open
Abstract
Tumor suppressor p53 mutations are associated with more than 50% of cancers. Aggregation and amyloid formation of p53 is also implicated in cancer pathogenesis, but direct evidence for aggregated p53 amyloids acting as an oncogene is lacking. Here, we conclusively demonstrate that wild-type p53 amyloid formation imparts oncogenic properties to non-cancerous cells. p53 amyloid aggregates were transferred through cell generations, contributing to enhanced survival, apoptotic resistance with increased proliferation and migration. The tumorigenic potential of p53 amyloid-transformed cells was further confirmed in mouse xenografts, wherein the tumors showed p53 amyloids. p53 disaggregation rescued the cellular transformation and inhibited tumor development in mice. We propose that wild-type p53 amyloid formation contributes to tumorigenesis and can be a potential target for therapeutic intervention. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| | - Satyaprakash Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| | - Namrata Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| | - Komal Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| | - Debalina Datta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| | - Bhabani Mohanty
- Small Animal Imaging Facility, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, India410210
| | | | - Pradip Chaudhari
- Small Animal Imaging Facility, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, India410210.,Department of Life Sciences, Homi Bhabha National Institute, Anushaktinagar, Mumbai, India400094
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India400076
| |
Collapse
|
49
|
Nicotinamide N-Methyltransferase in Acquisition of Stem Cell Properties and Therapy Resistance in Cancer. Int J Mol Sci 2021; 22:ijms22115681. [PMID: 34073600 PMCID: PMC8197977 DOI: 10.3390/ijms22115681] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The activity of nicotinamide N-methyltransferase (NNMT) is tightly linked to the maintenance of the nicotinamide adenine dinucleotide (NAD+) level. This enzyme catalyzes methylation of nicotinamide (NAM) into methyl nicotinamide (MNAM), which is either excreted or further metabolized to N1-methyl-2-pyridone-5-carboxamide (2-PY) and H2O2. Enzymatic activity of NNMT is important for the prevention of NAM-mediated inhibition of NAD+-consuming enzymes poly-adenosine -diphosphate (ADP), ribose polymerases (PARPs), and sirtuins (SIRTs). Inappropriately high expression and activity of NNMT, commonly present in various types of cancer, has the potential to disrupt NAD+ homeostasis and cellular methylation potential. Largely overlooked, in the context of cancer, is the inhibitory effect of 2-PY on PARP-1 activity, which abrogates NNMT's positive effect on cellular NAD+ flux by stalling liberation of NAM and reducing NAD+ synthesis in the salvage pathway. This review describes, and discusses, the mechanisms by which NNMT promotes NAD+ depletion and epigenetic reprogramming, leading to the development of metabolic plasticity, evasion of a major tumor suppressive process of cellular senescence, and acquisition of stem cell properties. All these phenomena are related to therapy resistance and worse clinical outcomes.
Collapse
|
50
|
Eichelmann AK, Mayne GC, Chiam K, Due SL, Bastian I, Butz F, Wang T, Sykes PJ, Clemons NJ, Liu DS, Michael MZ, Karapetis CS, Hummel R, Watson DI, Hussey DJ. Mutant p53 Mediates Sensitivity to Cancer Treatment Agents in Oesophageal Adenocarcinoma Associated with MicroRNA and SLC7A11 Expression. Int J Mol Sci 2021; 22:5547. [PMID: 34074015 PMCID: PMC8197322 DOI: 10.3390/ijms22115547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
TP53 gene mutations occur in 70% of oesophageal adenocarcinomas (OACs). Given the central role of p53 in controlling cellular response to therapy we investigated the role of mutant (mut-) p53 and SLC7A11 in a CRISPR-mediated JH-EsoAd1 TP53 knockout model. Response to 2 Gy irradiation, cisplatin, 5-FU, 4-hydroxytamoxifen, and endoxifen was assessed, followed by a TaqMan OpenArray qPCR screening for differences in miRNA expression. Knockout of mut-p53 resulted in increased chemo- and radioresistance (2 Gy survival fraction: 38% vs. 56%, p < 0.0001) and in altered miRNA expression levels. Target mRNA pathways analyses indicated several potential mechanisms of treatment resistance. SLC7A11 knockdown restored radiosensitivity (2 Gy SF: 46% vs. 73%; p = 0.0239), possibly via enhanced sensitivity to oxidative stress. Pathway analysis of the mRNA targets of differentially expressed miRNAs indicated potential involvement in several pathways associated with apoptosis, ribosomes, and p53 signaling pathways. The data suggest that mut-p53 in JH-EsoAd1, despite being classified as non-functional, has some function related to radio- and chemoresistance. The results also highlight the important role of SLC7A11 in cancer metabolism and redox balance and the influence of p53 on these processes. Inhibition of the SLC7A11-glutathione axis may represent a promising approach to overcome resistance associated with mut-p53.
Collapse
Affiliation(s)
- Ann-Kathrin Eichelmann
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of General, Visceral and Transplant Surgery, University Hospital of Münster, Waldeyerstrasse 1, 48149 Münster, Germany
| | - George C. Mayne
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of Surgery, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia
| | - Karen Chiam
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Steven L. Due
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Isabell Bastian
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Frederike Butz
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Tingting Wang
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Pamela J. Sykes
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Nicholas J. Clemons
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; (N.J.C.); (D.S.L.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - David S. Liu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; (N.J.C.); (D.S.L.)
- Department of Surgery, Austin Health, Heidelberg, VIC 3084, Australia
| | - Michael Z. Michael
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of Gastroenterology, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia
| | - Christos S. Karapetis
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of Medical Oncology, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia
| | - Richard Hummel
- Department of Surgery, University Hospital of Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany;
| | - David I. Watson
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of Surgery, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia
| | - Damian J. Hussey
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (G.C.M.); (K.C.); (S.L.D.); (I.B.); (F.B.); (T.W.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of Surgery, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia
| |
Collapse
|