1
|
Zhang T, Li M, Dong F, Huang F, Chuyo K, Wu J. Coalescence and Rebound Dynamics in Two Droplets Train Impacting on a Heterogeneous Wettability Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22190-22201. [PMID: 39395012 DOI: 10.1021/acs.langmuir.4c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Droplets that can be steered and rebound off surfaces are fundamentally interesting and important due to their promising potential in numerous applications, such as anti-icing and -fogging, spray coating, and self-cleaning. Heterogeneous wettability surfaces have been shown to be an effective means of droplet manipulation. This paper combines numerical simulation with theoretical analysis to investigate the dynamics of two droplets training impacting on and bouncing off a heterogeneous surface (superhydrophobic substrate decorated with a hydrophilic strip). First, the time evolutions of the droplet morphology and velocity vectors are examined to explore the particular dynamic behaviors. At different ratios of the impact velocity, three distinct rebound patterns are observed, and a regime diagram is established. After that, the effects of the impact conditions and surface wettability on the rebound performance of the coalesced droplet are studied systematically. Special attention is paid to the variations of the rebound height and the lateral transportation distance with the Weber number of two droplets and the distance between the impacting point and the hydrophilic stripe. Moreover, a theoretical analysis of two droplets' impact is performed based on the energy conservation. The obtained scaling laws match well with the numerical data in the trend. Our research may strengthen the understanding of the interactions between droplets, which is valuable for the manipulation of multiple droplets in related fields.
Collapse
Affiliation(s)
- Tongwei Zhang
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Meixuan Li
- Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Fei Dong
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fuxiang Huang
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaku Chuyo
- R&D Center, Jiangsu Chaoli Electric Co. Ltd., Zhenjiang 212321, China
| | - Jie Wu
- Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
2
|
Gan Z, Liu H, Qin X, Wang K, Li X, Xie F, Qin J. Microfluidic-Assisted Pneumatic Droplet Generators Designed for Multiscenario Biomanufacturing with Favorable Biocompatibility and Extendibility. ACS Biomater Sci Eng 2024; 10:6721-6733. [PMID: 39231535 DOI: 10.1021/acsbiomaterials.4c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Droplets, tiny liquid compartments, are increasingly emerging in the biomedical and biomanufacturing fields due to their unique properties to serve as templates or independent reaction units. Currently, the straightforward and efficient generation of various functional droplets in a biofriendly manner remains challenging. Herein, a novel microfluidic-assisted pneumatic strategy is described for the customizable and high-throughput production of monodispersed droplets, and the droplet size can be precisely controlled via a simplified gas pressure regulation module. In particular, numerous uniform alginate microcarriers can be rapidly fabricated in an all-aqueous manner, wherein the encapsulated islet or liver cells exhibit favorable viability and biological functions. Furthermore, by changing the microchannel configuration, several fluid manipulation functions developed by microfluidic technology, such as mixing and laminar flow, can be successfully incorporated into this platform. The droplet generators with scalable functionality are demonstrated in many biomanufacturing scenarios, including on-demand distribution of cell-mimetic particles, continuous synthesis of biomedical metal-organic framework (MOF), controllable preparation of compartmental microgel, etc. These may provide sustainable inspiration for developing droplet generators and their applications in tissue and organ engineering, biomaterials design, bioprinting nozzles, and other fields.
Collapse
Affiliation(s)
- Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaituo Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
3
|
Xing L, Guan S, Jiang M, Zhao L, Li X. Dynamic Behavior of Impacting Droplet on the Edges of Different Wettability Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20995-21009. [PMID: 39321088 DOI: 10.1021/acs.langmuir.4c02253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The dynamic behavior of impacting droplet shearing by the surface edge with different wettabilities is complicated and has great significance for engineering application. The morphological evolution of droplet with various Weber numbers (We) and wettability impacting on the edge of square substrate is investigated by high-speed photography. Moreover, the effects of the contact angle (α) and Weber numbers (We) on the shear breaking process of droplets are obtained. There are three types morphological evolution of impacting droplet are observed experimentally, including unbroken, tensile breakup, and shear breakup. Contact angle and Weber number have been proved to be the significant factors affecting the type of droplet morphological evolution. Meanwhile, the critical Weber number of different types are obtained quantitatively. Moreover, as α increases, the critical Weber numbers for breakup increase. In the shear breakup process, the mass ratio between the droplets remaining on the substrate and the initial droplets is maintained at 50%. Particularly, a reliable prediction model for the spreading of droplet impacting the side wall is proposed and compared with the experimental data. Overall, this study provides new direction and guidance for exploring droplet breakup kinetics.
Collapse
Affiliation(s)
- Lei Xing
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
- Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing 163318, Heilongjiang, China
- Postdoctoral Research Workstation in Daqing Oilfield, Daqing 163458, Heilongjiang, China
| | - Shuai Guan
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Minghu Jiang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
- Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing 163318, Heilongjiang, China
| | - Lixin Zhao
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
- Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing 163318, Heilongjiang, China
| | - Xinya Li
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
- Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing 163318, Heilongjiang, China
| |
Collapse
|
4
|
Zhang R, Li S, Zhan C, Zhang Z, Guo Z. Efficient Fog-Harvesting Origami Fan. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39365002 DOI: 10.1021/acsami.4c14849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Fog harvesting represents a promising strategy to address the global freshwater shortage. To enhance the water collection efficiency, diverse geometric structures that can effectively drive water droplet movement are essential. Inspired by the Livistona chinensis leaf, which naturally facilitates directional droplet motion through its unique gradually varying V-groove structure, we have developed a novel origami fan structure for fog harvesting through theoretical analysis. A key feature is that we can modulate the speed of droplet transport by adjusting the opening angle of the V-shaped grooves positioned at the outer circumference. Interestingly, the water collection efficiency exhibits a linear correlation with the opening angle. The highest efficiency of the origami fan can reach 5.75 times that of the control group calculated by the projected area and 3.76 times that of the control group calculated by the real area, showcasing its significant potential for enhancing water collection from fog. The simulations demonstrate that the hollow structure enhances the condensation rate of droplets, the geometric gradient of the gradual-variation V-groove drives the condensed droplets to move rapidly on the surface, and the Janus membrane permits the aggregated droplets to transit to the fan's rear side. The synergistic action of these three components ensures a clean surface for the subsequent water-collecting cycle, contributing to the high fog-harvesting efficiency. Given its simple fabrication and superior water transfer efficiency, the origami fan holds substantial promise for widespread application in the field of droplet manipulation.
Collapse
Affiliation(s)
- Ruihua Zhang
- College of Engineering, Lishui University, Lishui 323000, China
| | - Shanpeng Li
- College of Engineering, Lishui University, Lishui 323000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Chengkai Zhan
- College of Engineering, Lishui University, Lishui 323000, China
| | - Zhenya Zhang
- School of Architecture and Transportation Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| |
Collapse
|
5
|
Chu F, Hu Z, Feng Y, Lai NC, Wu X, Wang R. Advanced Anti-Icing Strategies and Technologies by Macrostructured Photothermal Storage Superhydrophobic Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402897. [PMID: 38801015 DOI: 10.1002/adma.202402897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Water is the source of life and civilization, but water icing causes catastrophic damage to human life and diverse industrial processes. Currently, superhydrophobic surfaces (inspired by the lotus effect) aided anti-icing attracts intensive attention due to their energy-free property. Here, recent advances in anti-icing by design and functionalization of superhydrophobic surfaces are reviewed. The mechanisms and advantages of conventional, macrostructured, and photothermal superhydrophobic surfaces are introduced in turn. Conventional superhydrophobic surfaces, as well as macrostructured ones, easily lose the icephobic property under extreme conditions, while photothermal superhydrophobic surfaces strongly rely on solar illumination. To address the above issues, a potentially smart strategy is found by developing macrostructured photothermal storage superhydrophobic (MPSS) surfaces, which integrate the functions of macrostructured superhydrophobic materials, photothermal materials, and phase change materials (PCMs), and are expected to achieve all-day anti-icing in various fields. Finally, the latest achievements in developing MPSS surfaces, showcasing their immense potential, are highlighted. Besides, the perspectives on the future development of MPSS surfaces are provided and the problems that need to be solved in their practical applications are proposed.
Collapse
Affiliation(s)
- Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhifeng Hu
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanhui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaomin Wu
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Ruzhu Wang
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Dhar M, Sarkar D, Das A, Rahaman SKA, Ghosh D, Manna U. 'Rewritable' and 'liquid-specific' recognizable wettability pattern. Nat Commun 2024; 15:5838. [PMID: 38992010 PMCID: PMC11239882 DOI: 10.1038/s41467-024-49807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Bio-inspired surfaces with wettability patterns display a unique ability for liquid manipulations. Sacrificing anti-wetting property for confining liquids irrespective of their surface tension (γLV), remains a widely accepted basis for developing wettability patterns. In contrast, we introduce a 'liquid-specific' wettability pattern through selectively sacrificing the slippery property against only low γLV (<30 mN m-1) liquids. This design includes a chemically reactive crystalline network of phase-transitioning polymer, which displays an effortless sliding of both low and high γLV liquids. Upon its strategic chemical modification, droplets of low γLV liquids fail to slide, rather spill arbitrarily on the tilted interface. In contrast, droplets of high γLV liquids continue to slide on the same modified interface. Interestingly, the phase-transition driven rearrangement of crystalline network allows to revert the slippery property against low γLV liquids. Here, we report a 'rewritable' and 'liquid-specific' wettability pattern for high throughput screening, separating, and remoulding non-aqueous liquids.
Collapse
Affiliation(s)
- Manideepa Dhar
- Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India
| | - Debasmita Sarkar
- Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India
| | - Avijit Das
- Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India
| | - S K Asif Rahaman
- Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India
| | - Dibyendu Ghosh
- Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India
| | - Uttam Manna
- Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India.
- Jyoti and Bhupat Mehta School of Health Science & Technology, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
7
|
Xue L, Li A, Li H, Yu X, Li K, Yuan R, Deng X, Li R, Liu Q, Song Y. Droplet-based mechanical transducers modulated by the symmetry of wettability patterns. Nat Commun 2024; 15:4225. [PMID: 38762537 PMCID: PMC11102432 DOI: 10.1038/s41467-024-48538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Asymmetric mechanical transducers have important applications in energy harvesting, signal transmission, and micro-mechanics. To achieve asymmetric transformation of mechanical motion or energy, active robotic metamaterials, as well as materials with asymmetric microstructures or internal orientation, are usually employed. However, these strategies usually require continuous energy supplement and laborious fabrication, and limited transformation modes are achieved. Herein, utilizing wettability patterned surfaces for precise control of the droplet contact line and inner flow, we demonstrate a droplet-based mechanical transducer system, and achieve multimodal responses to specific vibrations. By virtue of the synergistic effect of surface tension and solid-liquid adhesion on the liquid dynamics, the droplet on the patterned substrate can exhibit symmetric/asymmetric vibration transformation when the substrate vibrates horizontally. Based on this, we construct arrayed patterns with distinct arrangements on the substrate, and employ the swarm effect of the arrayed droplets to achieve three-dimensional and multimodal actuation of the target plate under a fixed input vibration. Further, we demonstrate the utilization of the mechanical transducers for vibration management, object transport, and laser modulation. These findings provide a simple yet efficient strategy to realize a multimodal mechanical transducer, which shows significant potential for aseismic design, optical molding, as well as micro-electromechanical systems (MEMS).
Collapse
Affiliation(s)
- Luanluan Xue
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - An Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Xinye Yu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaixuan Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Renxuan Yuan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Deng
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rujun Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quan Liu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Xiangfu Laboratory, Jiashan, Zhejiang, 314102, China.
| |
Collapse
|
8
|
Gao C, Zhang C, Liu S, Yu C, Jiang L, Dong Z. Pontederia crassipes inspired bottom overflow for fast and stable drainage. SOFT MATTER 2024; 20:2232-2242. [PMID: 37909256 DOI: 10.1039/d3sm01013a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fast and stable water drainage is essential for living organisms, drainage plane construction, and protection of infrastructure from damage during rainfall. Unlike traditional anti-overflow drainage methods that rely on hydrophobic or sharped edges, this study demonstrates a bottom overflow-induced drainage model inspired by the water path employed by Pontederia crassipes leaves, leading to fast and stable drainage. A superhydrophilic bottom surface guides water to overflow and pin at the bottom of a thin sheet, resulting in dripping at a higher frequency and reduced water retention. This bottom drainage idea assists large-scale thin sheets to function as efficient and stable drainage surfaces in simulated rain environments. The flexible thin sheet can also be feasibly attached to dusty substrates to effectively remove dusty rainwater with slight dust residue. The bioinspired approach presented herein suggests a promising potential for efficient water drainage on outdoor functional photovoltaic surfaces, such as solar panels and radomes, thus ensuring effective energy conversion and stable signal transmission.
Collapse
Affiliation(s)
- Can Gao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengqi Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shijie Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cunlong Yu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Li P, Zhan F, Wang L. Velocity-Switched Droplet Rebound Direction on Anisotropic Superhydrophobic Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305568. [PMID: 37752749 DOI: 10.1002/smll.202305568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Indexed: 09/28/2023]
Abstract
Droplet well-controlled directional motion being an essential function has attracted much interest in academic and industrial applications, such as self-cleaning, micro-/nano-electro-mechanical systems, drug delivery, and heat-transferring. Conventional understanding has it that a droplet impacted on an anisotropic surface tends to bounce along the microstructural direction, which is mainly dictated by surface properties rather than initial conditions. In contrast to previous findings, it demonstrates that the direction of a droplet's rebound on an anisotropic surface can be switched by designing the initial impacting velocity. With an increase in impacting height from 2 to 10 cm, the droplet successively shows a backward, vertical, and forward motion on anisotropic surfaces. Theoretical demonstrations establish that the transition of droplet bouncing on the anisotropic surface is related to its dynamic wettability during impacting process. Characterized by the liquid-solid interaction, it is demonstrated that the contact state at small and large impacting heights induces an opposite resultant force in microstructures. Furthermore, energy balance analysis reveals that the energy conversion efficiency of backward motion is almost three times as that of traditional bouncing. This work, including experiments, theoretical models, and energy balance analysis provides insight view in droplet motions on the anisotropic surfaces and opens a new way for the droplet transport.
Collapse
Affiliation(s)
- Peiliu Li
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Biomechanics and Biomaterials Laboratory, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fei Zhan
- School of Electrical and Electronic Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China
| | - Lei Wang
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
10
|
Hu Z, Chu F, Shan H, Wu X, Dong Z, Wang R. Understanding and Utilizing Droplet Impact on Superhydrophobic Surfaces: Phenomena, Mechanisms, Regulations, Applications, and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310177. [PMID: 38069449 DOI: 10.1002/adma.202310177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Droplet impact is a ubiquitous liquid behavior that closely tied to human life and production, making indispensable impacts on the big world. Nature-inspired superhydrophobic surfaces provide a powerful platform for regulating droplet impact dynamics. The collision between classic phenomena of droplet impact and the advanced manufacture of superhydrophobic surfaces is lighting up the future. Accurately understanding, predicting, and tailoring droplet dynamic behaviors on superhydrophobic surfaces are progressive steps to integrate the droplet impact into versatile applications and further improve the efficiency. In this review, the progress on phenomena, mechanisms, regulations, and applications of droplet impact on superhydrophobic surfaces, bridging the gap between droplet impact, superhydrophobic surfaces, and engineering applications are comprehensively summarized. It is highlighted that droplet contact and rebound are two focal points, and their fundamentals and dynamic regulations on elaborately designed superhydrophobic surfaces are discussed in detail. For the first time, diverse applications are classified into four categories according to the requirements for droplet contact and rebound. The remaining challenges are also pointed out and future directions to trigger subsequent research on droplet impact from both scientific and applied perspectives are outlined. The review is expected to provide a general framework for understanding and utilizing droplet impact.
Collapse
Affiliation(s)
- Zhifeng Hu
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - He Shan
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaomin Wu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruzhu Wang
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Wu Z, Sun L, Chen H, Zhao Y. Bioinspired Surfaces Derived from Acoustic Waves for On-Demand Droplet Manipulations. RESEARCH (WASHINGTON, D.C.) 2023; 6:0263. [PMID: 39290236 PMCID: PMC11407685 DOI: 10.34133/research.0263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/13/2023] [Indexed: 09/19/2024]
Abstract
The controllable manipulation and transfer of droplets are fundamental in a wide range of chemical reactions and even life processes. Herein, we present a novel, universal, and straightforward acoustic approach to fabricating biomimetic surfaces for on-demand droplet manipulations like many natural creatures. Based on the capillary waves induced by surface acoustic waves, various polymer films could be deformed into pre-designed structures, such as parallel grooves and grid-like patterns. These structured and functionalized surfaces exhibit impressive ability in droplet transportation and water collection, respectively. Besides these static surfaces, the tunability of acoustics could also endow polymer surfaces with dynamic controllability for droplet manipulations, including programming wettability, mitigating droplet evaporation, and accelerating chemical reactions. Our approach is capable of achieving universal surface manufacturing and droplet manipulation simultaneously, which simplifies the fabrication process and eliminates the need for additional chemical modifications. Thus, we believe that our acoustic-derived surfaces and technologies could provide a unique perspective for various applications, including microreactor integration, biochemical reaction control, tissue engineering, and so on.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hanxu Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Sun P, Hao X, Jin Y, Yin Y, Wu C, Zhang J, Gao L, Wang S, Wang Z. Heterogenous Slippery Surfaces: Enabling Spontaneous and Rapid Transport of Viscous Liquids with Viscosities Exceeding 10 000 mPa s. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304218. [PMID: 37649201 DOI: 10.1002/smll.202304218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Superhydrophobic and slippery lubricant-infused surfaces have garnered significant attention for their potential to passively transport low-viscosity liquids like water (1 mPa s). Despite exciting progress, these designs have proven ineffective for transporting high-viscosity liquids such as polydimethylsiloxane (5500 mPa s) due to their inherent limitations imposed by the homogenous surface design, resulting in high viscous drags and compromised capillary forces. Here, a heterogenous water-infused divergent surface (WIDS) is proposed that achieves spontaneous, rapid, and long-distance transport of viscous liquids. WIDS reduces viscous drag by spatially isolating the viscous liquids and surface roughness through its heterogenous, slippery topological design, and generates capillary forces through its heterogenous wetting distributions. The essential role of surface heterogeneity in viscous liquid transport is theoretically and experimentally verified. Remarkably, such a heterogenous paradigm enables transporting liquids with viscosities exceeding 12 500 mPa s, which is two orders of magnitude higher than state-of-the-art techniques. Furthermore, this heterogenous design is generic for various viscous liquids and can be made flexible, making it promising for various systems that require viscous liquid management, such as micropatterning.
Collapse
Affiliation(s)
- Pengcheng Sun
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Xiuqing Hao
- Department of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210000, P. R. China
| | - Yuankai Jin
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yingying Yin
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Chenyang Wu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jie Zhang
- Department of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210000, P. R. China
| | - Lujia Gao
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Steven Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| |
Collapse
|
13
|
Li X, Zhang L, Feng Y, Zhang Y, Xu H, Zhou F, Wang D. Visualization of Charge Dynamics when Water Droplets Bounce on a Hydrophobic Surface. ACS NANO 2023. [PMID: 38010973 DOI: 10.1021/acsnano.3c08742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Visualizing the motion of water droplets and understanding their electrification behavior holds significance for applications related to droplet transport, self-cleaning, and anti-icing/deicing and for providing a comprehensive explanation of the solid-liquid triboelectrification mechanism. Here, by constructing microcolumnar structures on the polytetrafluoroethylene surface, a water droplet-based single electrode triboelectric nanogenerator was fabricated for visualizing charge dynamics when a water droplet bounces on a hydrophobic surface. The motion state of the water droplet is closely linked to its electrification behavior through the integration of a high-speed camera and an ammeter. The electrification behavior stemming from the bounce of the water droplet is dynamically captured in real-time. The results show that the magnitude and polarity of the electrical signal have strong dependence on the motion state of the water droplet. For instance, when a water droplet approaches or moves away from the substrate in a single direction, a unipolar electrical signal is generated. However, when the water droplet reaches its limit in the initial motion direction, it signifies a static equilibrium state, resulting in the electrical signal being at zero. Furthermore, we examine the impact of factors such as impact speed, drop contact area, contact line spreading/retraction speed, and impact angle on electrification. Finally, based on the close relationship between poly(ethylene oxide) (PEO) droplet bounce dynamics and electrical signals, the bouncing details of PEO droplets with different concentrations are tracked by electrical signals. This study digitally presents the whole process of droplet bounce in situ and provides a means for monitoring and tracking droplet movement.
Collapse
Affiliation(s)
- Xiaojuan Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqiang Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Yange Feng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, China
| | - Youlin Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haozhe Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Daoai Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Liu W, Jing D. Droplet Rolling Transport on Hydrophobic Surfaces Under Rotating Electric Fields: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14660-14669. [PMID: 37802133 DOI: 10.1021/acs.langmuir.3c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Driving droplets by electric fields is usually achieved by controlling their wettability, and realizing a flexible operation requires complex electrode designs. Here, we show by molecular dynamics methods the droplet transport on hydrophobic surfaces in a rolling manner under a rotating electric field, which provides a simpler and promising way to manipulate droplets. The droplet internal velocity field shows the rolling mode. When the contact angle on the solid surface is 144.4°, the droplet can be transported steadily at a high velocity under the rotating electric field (E = 0.5 V nm-1, ω = π/20 ps-1). The droplet center-of-mass velocities and trajectories, deformation degrees, dynamic contact angles, and surface energies were analyzed regarding the electric field strength and rotational angular frequency. Droplet transport with a complex trajectory on a two-dimensional surface is achieved by setting the electric field, which reflects the programmability of the driving method. Nonuniform wettability stripes can assist in controlling droplet trajectories. The droplet transport on the three-dimensional surface is studied, and the critical conditions for the droplet passing through the surface corners and the motion law on the curved surface are obtained. Droplet coalescence has been achieved by surface designs.
Collapse
Affiliation(s)
- Wenchuan Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dengwei Jing
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
15
|
Wu C, Qin X, Zheng H, Xu Z, Song Y, Jin Y, Zhang H, Mo J, Li W, Lu J, Wang Z. Self-Adaptive Droplet Bouncing on a Dual Gradient Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304635. [PMID: 37786271 DOI: 10.1002/smll.202304635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Rapid detachment of impacting droplets from underlying substrate is highly preferred for mass, momentum, and energy exchange in many practical applications. Driven by this, the past several years have witnessed a surge in engineering macrotexture to reduce solid-liquid contact time. Despite these advances, these strategies in reducing contact time necessitate the elegant control of either the spatial location for droplet contact or the range of impacting velocity. Here, this work circumvents these limitations by designing a dual gradient surface consisting of a vertical spacing gradient made of tapered pillar arrays and a lateral curvature gradient characterized as macroscopic convex. This design enables the impacting droplets to self-adapt to asymmetric or pancake bouncing mode accordingly, which renders significant contact time reduction (up to ≈70%) for a broad range of impacting velocities (≈0.4-1.4 m s-1 ) irrespective of the spatial impacting location. This new design provides a new insight for designing liquid-repellent surfaces, and offers opportunities for applications including dropwise condensation, energy conversion, and anti-icing.
Collapse
Affiliation(s)
- Chenyang Wu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077, China
| | - Xuezhi Qin
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin, 130025, China
| | - Huanxi Zheng
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zhenyu Xu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Yuxin Song
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Yuankai Jin
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Huanhuan Zhang
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiaying Mo
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077, China
| | - Wanbo Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Jian Lu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Zuankai Wang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077, China
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
16
|
Gao C, Zhang L, Hou Y, Zheng Y. A UV-Resistant Heterogeneous Wettability-Patterned Surface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304080. [PMID: 37442804 DOI: 10.1002/adma.202304080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
Preparing UV-resistant heterogeneous wettability patterns is critical for the practical application of surfaces with heterogeneous wettability. However, combining UV-resistant superhydrophobic and superhydrophilic materials on heterogeneous surfaces is challenging. Inspired by the structure of cell membranes, a UV-resistant heterogeneous wettability-patterned surface (UPS) is designed via laser ablation of the coating of multilayer structures. UV-resistant superhydrophobic silica patterns can be created in situ on surfaces covered with superhydrophilic TiO2 nanoparticles. The UV resistance time of the UPS with a TiO2 -based surface is more than two orders of magnitude higher than that obtained with other surface molecular modification methods that require a mask. The cell-membrane-like structure of the UPS regulates the migration of internal siloxane chain segments in the hydrophilic and hydrophobic regions of the surface. The UPS enables efficient patterning of functional materials under UV irradiation, controlling the wetting behavior of liquids in open-air systems. Furthermore, its heterogeneous wettability remains stable even after 50 h of intense UV irradiation (365 nm, 500 mW cm-2 ). These UV-resistant heterogeneous wettability patterned surfaces will likely be applied in microfluidics, cell culture, energy conversion, and water collection in the future.
Collapse
Affiliation(s)
- Chunlei Gao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, P.R. China
| | - Lei Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
| | - Yongping Hou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
| | - Yongmei Zheng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
| |
Collapse
|
17
|
Li A, Li H, Lyu S, Zhao Z, Xue L, Li Z, Li K, Li M, Sun C, Song Y. Tailoring vapor film beneath a Leidenfrost drop. Nat Commun 2023; 14:2646. [PMID: 37156802 PMCID: PMC10167315 DOI: 10.1038/s41467-023-38366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
For a drop on a very hot solid surface, a vapor film will form beneath the drop, which has been discovered by Leidenfrost in 1756. The vapor escaping from the Leidenfrost film causes uncontrollable flows, and actuates the drop to move around. Recently, although numerous strategies have been used to regulate the Leidenfrost vapor, the understanding of surface chemistry for modulating the phase-change vapor dynamics remains incomplete. Here, we report how to rectify vapor by "cutting" the Leidenfrost film using chemically heterogeneous surfaces. We demonstrate that the segmented film cut by a Z-shaped pattern can spin a drop, since the superhydrophilic region directly contacts the drop and vaporizes the water, while a vapor film is formed on the superhydrophobic surrounding to jet vapor and reduce heat transfer. Furthermore, we reveal the general principle between the pattern symmetry design and the drop dynamics. This finding provides new insights into the Leidenfrost dynamics modulation, and opens a promising avenue for vapor-driven miniature devices.
Collapse
Affiliation(s)
- An Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China.
| | - Sijia Lyu
- Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Zhipeng Zhao
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Luanluan Xue
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Kaixuan Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Chao Sun
- Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, 100084, Beijing, P. R. China.
- Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, 100084, Beijing, P. R. China.
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| |
Collapse
|
18
|
Zhu S, Ren H, Li X, Xiao Y, Li C. Bouncing dynamics of droplets on nanopillar-arrayed surfaces: the effect of impact position. Phys Chem Chem Phys 2023; 25:4969-4979. [PMID: 36722908 DOI: 10.1039/d2cp04608c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The impact behaviors of droplets on nanostructure-arrayed surfaces are ubiquitous in nature and engineering applications. And the influence of the impact position of a droplet on its bouncing dynamics is of great significance since there is inevitable randomness in the impact position of droplets on the surface of nanostructured arrays, but the difference in the dynamics process caused by this randomness has not been recognized. Here, by using molecular dynamics simulations, the effect of impact position on the bouncing dynamics of a water droplet on nanopillar-arrayed surfaces is systematically investigated. The simulation results highlight that the impact position plays an important role in droplet dynamics after impact, especially at the retraction stage, and the effect of impact position on the bouncing behavior is highly sensitive to the impact velocity. Importantly, from the point of energy conversion, the droplet deformation and contact state jointly determine whether the droplet can bounce back or not, which reveals the mechanism of impact position effects on the bouncing behavior of the droplet. Interestingly, the effect of impact position would be weakened with an increase in the size ratio of the droplet diameter to nanopillar spacing, and this effect becomes negligible when the size ratio is greater than 5.2. These findings demonstrate the key role played by the impact position and may provide new insights into the practical application of nanostructure-arrayed surfaces.
Collapse
Affiliation(s)
- Shengya Zhu
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hongru Ren
- School of Science, Chang'an University, Xi'an 710064, China
| | - Xuhao Li
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Ye Xiao
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Chun Li
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
19
|
Shu Y, Chu F, Hu Z, Gao J, Wu X, Dong Z, Feng Y. Superhydrophobic Strategy for Nature-Inspired Rotating Microfliers: Enhancing Spreading, Reducing Contact Time, and Weakening Impact Force of Raindrops. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57340-57349. [PMID: 36512411 DOI: 10.1021/acsami.2c16662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wind-dispersal of seeds is a remarkable strategy in nature, enlightening the construction of microfliers for environmental monitoring. However, the flight of these microfliers is greatly affected by climatic conditions, especially in rainy days, they suffer serious raindrop impact. Here, a hierarchical superhydrophobic surface is fabricated and a novel strategy is demonstrated that the superhydrophobic coating can enhance spreading while reduce contact time and impact force of raindrops, all of which are beneficial for the rotating microfliers. When the surface rotating speed exceeds a critical value, the effect of centrifugal force becomes considerable so that the droplet spreading is enhanced. The rotating superhydrophobic surface can rotate an impacting droplet by the tangential drag force from the air boundary layer, and the rotation of the droplet generates a negative pressure zone inside it, reducing the contact time by more than 30%. The impact force by the droplet on the rotating superhydrophobic surface also has a remarkable reduction of 53% compared to that on unprocessed hydrophilic surfaces, which helps maintain the flight stability of the microfliers. This work pioneers in revealing the droplet impact effect on rotating microflier surfaces and demonstrates the effectiveness of protecting microfliers with superhydrophobic coatings, which shall guide the manufacture and flight of microfliers in rainy conditions.
Collapse
Affiliation(s)
- Yifu Shu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Zhifeng Hu
- Department of Energy and Power Engineering, Tsinghua University, Beijing100084, China
| | - Jie Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Xiaomin Wu
- Department of Energy and Power Engineering, Tsinghua University, Beijing100084, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Yanhui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing100083, China
| |
Collapse
|
20
|
Yu X, Li H, Song Y. Ink-Drop Dynamics on Chemically Modified Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15453-15462. [PMID: 36502385 DOI: 10.1021/acs.langmuir.2c03108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inkjet printing provides an efficient routine for distributing functional materials into locations with well-designed arrangements. As one of the most critical factors in determining the printing quality, the impacting and depositing behaviors of ink drops largely depend on the wettability of the target surface. In addition to printing on solids with intrinsic wettability, various ink-drop impact dynamics and deposition morphologies have been reported through modifying the surface wettability including both homogeneous and heterogeneous, which opens up possibilities for applications such as advanced optic/electric device fabrication and highly sensitive detection. In this Perspective, we summarize recent progress in the modification methods of solid surface wettability and their capability in modulating the ink-drop impacting and depositing dynamics. The challenges facing ink-drop regulation by chemical modification methodologies are also envisaged at the end of the Perspective.
Collapse
Affiliation(s)
- Xinye Yu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
21
|
Yang K, Liu Q, Lin Z, Liang Y, Liu C. Bouncing dynamics of impact droplets on bioinspired surfaces with mixed wettability and directional transport control. J Colloid Interface Sci 2022; 626:193-207. [DOI: 10.1016/j.jcis.2022.06.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
|
22
|
Chu Y, Liao S, Wang Q, Ma Y, Wang Y. Floating Hydrogel Beads Made by Droplet Impact. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203355. [PMID: 35871504 DOI: 10.1002/smll.202203355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Droplet impact is a ubiquitous natural phenomenon that has been widely utilized to inspire and facilitate many industrial applications. Compared to the widely studied water droplet impact onto identical liquid surfaces, the water droplet impact onto an oil layer floating on a water bath (OLW) receives far less attention and its potential application has never been exploited. Herein, the process of water droplet impact onto the OLW is investigated with emphasis on the metastable states and potential applications. It is found that the dramatic deformation of the oil-water interface caused by the water droplet impact leads to two metastable states: oil in water in oil in water (O/W/O/W) and oil in water in oil (O/W/O). Through the subsequent introduction of gelation process, the metastable states can be frozen into floating hydrogel beads with similar shape to the roly-poly toys, which are attempted in gastric retentive drug delivery and algae bloom control. Specifically, the floating hydrogel beads perform well in gastric retentive drug delivery in vitro due to their inherent slow-release properties and floating capability. In addition, the floating hydrogel beads loading photocatalysts can capture more sunshine, and exhibit high photocatalytic efficiency, which is thus responsible for efficient algae bloom control.
Collapse
Affiliation(s)
- Yanji Chu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Shenglong Liao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Qianci Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yingchao Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
23
|
Wang J, Xing Y, Gui X, Li G, Cao Y. Experimental and molecular dynamics simulation study on wetting interaction between water droplets and kaolinite surface. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Zhao W, Jiang Y, Yu W, Yu Z, Liu X. Wettability Controlled Surface for Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202906. [PMID: 35793418 DOI: 10.1002/smll.202202906] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
To achieve clean and high-efficiency utilization of renewable energy, functional surfaces with controllable and patternable wettability are becoming a fast-growing research focus. In this work, a laser scribing strategy to fabricate patterned graphene surfaces that are capable of energy conversion in different forms is demonstrated. Using the laser raster-scanning and vector-scanning modes, two distinct surface structures are constructed on polybenzoxazine substrate, yielding a superhydrophilic (LSHL) surface and superhydrophobic (LSHB) surface, respectively. Of particular note is that the unique hierarchical structure of LSHB surface has endowed it with quite a robust superwetting behaviors. Further profiting from the flexibility of the processing method, wettability patterns with spatially resolved LSHL and LSHB regions are designed, achieving the conversion of surface energy to liquid kinetic energy. This also offers a tractable approach to fabricate wettability-engineered devices that enable the directional, pumpless transport of water by capillary pressure gradient and the selective surface cooling via jet impingement. In addition, the LSHB surface demonstrates the high conversion of electric-to-thermal energy (222 °C cm2 W-1 ) and light-to-thermal energy (88%). Overall, the material system and processing method present a promising step forward to developing easy-fabricated graphene surfaces with spatially controlled wettability for efficient energy utilization and conversion.
Collapse
Affiliation(s)
- Weiwei Zhao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, 315201, P. R. China
| | - Ye Jiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjie Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zeqi Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoqing Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, 315201, P. R. China
- Key Laboratory of Marine Materials and Related Technologies, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| |
Collapse
|
25
|
Mehrizi AA, Lin S, Sun L, Wang Y, Chen L. Penetration and ligament formation of viscoelastic droplets impacting on the superhydrophobic mesh. Sci Rep 2022; 12:11920. [PMID: 35831383 PMCID: PMC9278331 DOI: 10.1038/s41598-022-15645-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
Spraying occurs by the impact of water droplets on the superhydrophobic wire meshes by liquid penetration during the spreading and recoiling. We have shown that adding a small amount of high molecular weight polymer (PEO) alters the ligaments formation and stabilizes them due to its high elasticity. Consequently, it suppresses droplet spray during droplet spreading and recoiling (recoil penetration). In the wide range of the impact velocities, the penetrated ligaments retracted back to the mesh after reaching the maximum length and eventually merged with the droplet on the mesh. The empirical fitting shows that the ligament evolution follows the parallel spring-dashpot model of Kelvin–Voigt. The additive polymer also changes the recoil penetration mechanisms from cavity collapse to cavity detachment due to the higher retraction velocity of the cavity near the mesh that is induced by the upward flow formed by the retraction of the ligaments to the mother droplet. A model based on mass conservation is proposed to calculate the variation of the maximum ligament size.
Collapse
Affiliation(s)
- Abbasali Abouei Mehrizi
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Shiji Lin
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lijie Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yile Wang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Longquan Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
26
|
Wang J, Cao Y, Li G. Comparative Study on the Spreading Behavior of Oil Droplets over Teflon Substrates in Different Media Environments. Polymers (Basel) 2022; 14:polym14142828. [PMID: 35890608 PMCID: PMC9316502 DOI: 10.3390/polym14142828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
This paper comparatively investigated the spreading process of an oil droplet on the surface of highly hydrophobic solid (Teflon) in air and water media using a high-speed imaging technology, and analyzed their differences in spreading behavior from the perspective of empirical relations and energy conservation. Furthermore, the classical HD and MKT wetting models were applied to describe the oil droplet spreading dynamics to reveal the spreading mechanism of oil droplets on the Teflon in different media environments. Results showed that the entire spreading process of oil droplets on Teflon in air could be separated into three stages: the early linear fast spreading stage following θ(t)=θ0+kt , the intermediate exponential slow spreading stage obeying θ(t)=bt−3α, and the late spreading stage described by θ(t)=θeq+a×exp(−t/T). However, the dynamics behavior of dynamic contact angle during the oil droplet spreading on Teflon in water could be well described by these expressions, θ(t)=θ0+kt and θ(t)=θeq+a×exp(−t/T). Clearly, a significant difference in the oil droplet spreading behavior in air and water media was found, and the absence of the intermediate exponential spreading stage in the oil–water–Teflon system could be attributed to the difference in the dissipated energy of the system because the dissipation energy in the oil–water–solid system included not only the viscous dissipation energy of the boundary layer of oil droplet, but also that of the surrounding water which was not included in the dissipation energy of the oil–air–solid system. Moreover, the quantitative analysis of wetting models suggested that the MKT model could reasonably describe the late spreading dynamics of oil droplets (low TPCL velocities), while the HD model may be more suitable for describing the oil droplet spreading dynamics at the early and intermediate spreading stages (high TPCL velocities).
Collapse
Affiliation(s)
- Junchao Wang
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China;
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Yijun Cao
- Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China;
- School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China;
- Correspondence:
| | - Guosheng Li
- School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
27
|
Fan B, Xiong J, Zhang Y, Gong C, Li F, Meng X, Hu X, Yuan Z, Wang F, Chen Y. A Bionic Interface to Suppress the Coffee-Ring Effect for Reliable and Flexible Perovskite Modules with a Near-90% Yield Rate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201840. [PMID: 35584299 DOI: 10.1002/adma.202201840] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The inhomogeneity, poor interfacial contact, and pinholes caused by the coffee-ring effect severely affect the printing reliability of flexible perovskite solar cells (PSCs). Herein, inspired by the bio-glue of barnacles, a bionic interface layer (Bio-IL) of NiOx /levodopa is introduced to suppress the coffee-ring effect during printing perovskite modules. The coordination effect of the sticky functional groups in Bio-IL can pin the three-phase contact line and restrain the transport of perovskite colloidal particles during the printing and evaporation process. Moreover, the sedimentation rate of perovskite precursor is accelerated due to the electrostatic attraction and rapid volatilization from an extraordinary wettability. The superhydrophilic Bio-IL affords an even spread over a large-area substrate, which boosts a complete and uniform liquid film for heterogeneous nucleation as well as crystallization. Perovskite films on different large-area substrates with negligible coffee-ring effect are printed. Consequently, inverted flexible PSCs and perovskite solar modules achieve a high efficiency of 21.08% and 16.87%, respectively. This strategy ensures a highly reliable reproducibility of printing PSCs with a near 90% yield rate.
Collapse
Affiliation(s)
- Baojin Fan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jian Xiong
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Yanyan Zhang
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Chenxiang Gong
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Feng Li
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiangchuan Meng
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiaotian Hu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| | - Zhongyi Yuan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Fuyi Wang
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
28
|
Xu P, Zhang Y, Li L, Lin Z, Zhu B, Chen W, Li G, Liu H, Xiao K, Xiong Y, Yang S, Lei Y, Xue L. Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces. BIOINSPIRATION & BIOMIMETICS 2022; 17:041003. [PMID: 35561670 DOI: 10.1088/1748-3190/ac6fa5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The adhesion behaviors of droplets on surfaces are attracting increasing attention due to their various applications. Many bioinspired superhydrophobic surfaces with different adhesion states have been constructed in order to mimic the functions of natural surfaces such as a lotus leaf, a rose petal, butterfly wings, etc. In this review, we first present a brief introduction to the fundamental theories of the adhesion behaviors of droplets on various surfaces, including low adhesion, high adhesion and anisotropic adhesion states. Then, different techniques to characterize droplet adhesion on these surfaces, including the rotating disk technique, the atomic force microscope cantilever technique, and capillary sensor-based techniques, are described. Wetting behaviors, and the switching between different adhesion states on bioinspired surfaces, are also summarized and discussed. Subsequently, the diverse applications of bioinspired surfaces, including water collection, liquid transport, drag reduction, and oil/water separation, are discussed. Finally, the challenges of using liquid adhesion behaviors on various surfaces, and future applications of these surfaces, are discussed.
Collapse
Affiliation(s)
- Peng Xu
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Yurong Zhang
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Lijun Li
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Zhen Lin
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Bo Zhu
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Wenhui Chen
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Gang Li
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Hongtao Liu
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Kangjian Xiao
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Yunhe Xiong
- Urology Department, Renmin Hospital of Wuhan University, Zhangzhidong Road 99, 430060, Wuhan, Hubei Province, People's Republic of China
| | - Sixing Yang
- Urology Department, Renmin Hospital of Wuhan University, Zhangzhidong Road 99, 430060, Wuhan, Hubei Province, People's Republic of China
| | - Yifeng Lei
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| | - Longjian Xue
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, 430072, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
29
|
Han X, Li J, Tang X, Li W, Zhao H, Yang L, Wang L. Droplet Bouncing: Fundamentals, Regulations, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200277. [PMID: 35306734 DOI: 10.1002/smll.202200277] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Droplet impact is a ubiquitous phenomenon in nature, daily life, and industrial processes. It is thus crucial to tune the impact outcomes for various applications. As a special outcome of droplet impact, the bouncing of droplets keeps the form of the droplets after the impact and minimizes the energy loss during the impact, being beneficial in many applications. A unified understanding of droplet bouncing is in high demand for effective development of new techniques to serve applications. This review shows the fundamentals, regulations, and applications of millimeter-sized droplet bouncing on solid surfaces and same/miscible liquids (liquid pool and another droplet). Regulation methods and current applications are summarized, and potential directions are proposed.
Collapse
Affiliation(s)
- Xing Han
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Jiaqian Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Xin Tang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Wei Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Haibo Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ling Yang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| |
Collapse
|
30
|
Zhang J, Liu J, Li H, Li X, Zhao Y, Zhao P, Cui J, Yang B, Song Y, Zheng Y. Programming Hydrogels with Complex Transient Behaviors via Autocatalytic Cascade Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20073-20082. [PMID: 35439417 DOI: 10.1021/acsami.2c03177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is challenging to design complex synthetic life-like systems that can show both autoevolution and fuel-driven transient behaviors. Here, we report a new class of chemical reaction networks (CRNs) to construct life-like polymer hydrogels. The CRNs are constituted of autocatalytic cascade reactions and fuel-driven reaction networks. The reactions start with only two compounds, that is, thiol of 4-arm-PEG-SH and thiuram disulfides, and undergo thiol oxidation (k1), disulfide metathesis (k2), and thionate hydrolysis-coupling reactions (k3) subsequently, leading to a four-state autonomous transition of sol(I) → soft gel → sol(II) → stiff gel. Moreover, thiuram disulfides can be applied as a fuel to drive the repeated occurrence of metathesis and hydrolysis-coupling reactions, generating dissipative stiff gel → sol(II) → stiff gel cycles. Systematic kinetics studies reveal that the event and lifetime of every transient state could be delicately tailored-up by varying the thiuram disulfide concentration, pH of the system, and thiuram structures. Since the consecutive transient behaviors are precisely predictable, we envision the strategy's potential in guiding the molecular designs of autonomous and adaptive materials for many fields.
Collapse
Affiliation(s)
- Jingyi Zhang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Xiaohe Li
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Yuanfeng Zhao
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Peng Zhao
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Yijun Zheng
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| |
Collapse
|
31
|
Xue L, Li H, Li A, Zhao Z, Li K, Li M, Song Y. Non-Hookean Droplet Spring for Enhancing Hydropower Harvest. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200875. [PMID: 35385220 DOI: 10.1002/smll.202200875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Nonlinear elastic materials are significant for engineering and micromechanics. Droplets with the merits of easy-accessibility, diversity, and energy-absorption capability exhibit a variety of non-Hookean elastic behaviors. Herein, benefiting from the confinement of heterogeneous-wettable parallel plates, the non-Hookean mechanics of the droplet-based spring are systematically investigated. Experimental results and theoretical analysis reveal that the force generated by the spring varies nonlinearly with its deformation, and a force model is accordingly built to depict the mechanics of springs with different sized/numbered droplets and confined by different wettability patterns. Importantly, for the droplet-based spring, the droplet-plate contact area expands nonlinearly with the pressing force, which is employed to optimize the output performance of the droplet-based triboelectric nanogenerator to 226% compared with the control test. This finding deepens the understanding of the non-Hookean behavior of droplet-based springs, and sheds light on applications in energy harvesting, micromechanics, and miniature optic/electric devices.
Collapse
Affiliation(s)
- Luanluan Xue
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - An Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhipeng Zhao
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kaixuan Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
32
|
Yin K, Wang L, Deng Q, Huang Q, Jiang J, Li G, He J. Femtosecond Laser Thermal Accumulation-Triggered Micro-/Nanostructures with Patternable and Controllable Wettability Towards Liquid Manipulating. NANO-MICRO LETTERS 2022; 14:97. [PMID: 35394233 PMCID: PMC8993985 DOI: 10.1007/s40820-022-00840-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/07/2022] [Indexed: 05/03/2023]
Abstract
Versatile liquid manipulating surfaces combining patternable and controllable wettability have recently motivated considerable attention owing to their significant advantages in droplet-solid impacting behaviors, microdroplet self-removal, and liquid-liquid interface reaction applications. However, developing a facile and efficient method to fabricate these versatile surfaces remains an enormous challenge. In this paper, a strategy for the fabrication of liquid manipulating surfaces with patternable and controllable wettability on Polyimide (PI) film based on femtosecond laser thermal accumulation engineering is proposed. Because of its controllable micro-/nanostructures and chemical composition through adjusting the local thermal accumulation, the wettability of PI film can be tuned from superhydrophilicity (~ 3.6°) to superhydrophobicity (~ 151.6°). Furthermore, three diverse surfaces with patternable and heterogeneous wettability were constructed and various applications were successfully realized, including water transport, droplet arrays, and liquid wells. This work may provide a facile strategy for achieving patternable and controllable wettability efficiently and developing multifunctional liquid steering surfaces.
Collapse
Affiliation(s)
- Kai Yin
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, People's Republic of China
- The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Lingxiao Wang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, People's Republic of China
| | - Qinwen Deng
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, People's Republic of China
| | - Qiaoqiao Huang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, People's Republic of China
| | - Jie Jiang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, People's Republic of China.
| | - Guoqiang Li
- Key Laboratory of Testing Technology for Manufacturing Process of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
33
|
|
34
|
Adjustable object floating states based on three-segment three-phase contact line evolution. Proc Natl Acad Sci U S A 2022; 119:e2201665119. [PMID: 35316136 PMCID: PMC9060461 DOI: 10.1073/pnas.2201665119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adjusting the floating states when objects float on water shows great potential for assembly, mineral flotation, nanostructured construction, and floating robot design, but the real-time regulation of floating states is challenging. Inspired by the different floating states of a falling fruit, we propose a facile strategy to transform the object between different floating states based on a three-segment three-phase contact line evolution. In addition, the potential of floating state transformation in solar-powered water evaporation, interface catalysis, and drug delivery is demonstrated. These findings provide insights into floating regulation and show great potential for floating-related applications. Objects floating on water are ubiquitous in nature and daily life. The floating states of objects are significant for a wide range of fields, including assembly, mineral flotation, nanostructured construction, and floating robot design. Generally, an object exhibits a unique and fixed floating state. The real-time regulation of floating states by a simple method is attractive but challenging. Based on in-depth analysis of the different floating states of fruits falling on water, we reveal that the mutable floating states are caused by the three-segment three-phase contact line dynamics. Accordingly, we propose a “buoyancy hysteresis loop” for the transformation of objects between different floating states. More importantly, we demonstrate the potential applications of floating state transformation in solar-powered water evaporation and interface catalysis. The evaporation and catalytic efficiencies can be changed several times by switching the floating state. These findings deepen the understanding of the interfacial effect to the floating of micro-objects and show great potential for floating-related fields.
Collapse
|
35
|
Wang Y, Zhao Y, Sun L, Mehrizi AA, Lin S, Guo J, Chen L. Successive Rebounds of Impinging Water Droplets on Superhydrophobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3860-3867. [PMID: 35293214 DOI: 10.1021/acs.langmuir.2c00114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
When a water droplet strikes a superhydrophobic surface, there may be several to a few tens of rebounds before it comes to rest. Although this intriguing multiphase flow phenomenon has received a great deal of attention from interfacial scientists and engineers, the underlying dynamics have not yet been completely resolved. In this paper, we report on an experimental investigation into the bouncing behavior of water droplets impinging on macroscopically flat superhydrophobic surfaces. We show that the restitution coefficient, which quantifies the energy consumed during impact and rebound, exhibits a nonmonotonic dependence on the Weber number. It is the droplet-surface friction that restricts the rebound height of the impinging droplet, so its restitution coefficient increases with the Weber number when the impact velocity is below a critical value. Above this value, the viscous friction within a thin liquid layer close to the superhydrophobic surface becomes dominant, and thus, the restitution coefficient decreases sharply. On the basis of energy analyses, semiempirical formulas are proposed to describe the restitution coefficient, and these can be employed to predict the number of successive rebounds of impinging droplets on superhydrophobic surfaces.
Collapse
Affiliation(s)
- Yile Wang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yage Zhao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Lijie Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Abbasali Abouei Mehrizi
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Shiji Lin
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, People's Republic of China
| | - Jianwei Guo
- School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Longquan Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, People's Republic of China
| |
Collapse
|
36
|
Qian C, Zhou F, Wang T, Li Q, Hu D, Chen X, Wang Z. Pancake Jumping of Sessile Droplets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103834. [PMID: 35032105 PMCID: PMC8895051 DOI: 10.1002/advs.202103834] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Indexed: 05/26/2023]
Abstract
Rapid droplet shedding from surfaces is fundamentally interesting and important in numerous applications such as anti-icing, anti-fouling, dropwise condensation, and electricity generation. Recent efforts have demonstrated the complete rebound or pancake bouncing of impinging droplets by tuning the physicochemical properties of surfaces and applying external control, however, enabling sessile droplets to jump off surfaces in a bottom-to-up manner is challenging. Here, the rapid jumping of sessile droplets, even cold droplets, in a pancake shape is reported by engineering superhydrophobic magnetically responsive blades arrays. This largely unexplored droplet behavior, termed as pancake jumping, exhibits many advantages such as short interaction time and high energy conversion efficiency. The critical conditions for the occurrence of this new phenomenon are also identified. This work provides a new toolkit for the attainment of well-controlled and active steering of both sessile and impacting droplets for a wide range of applications.
Collapse
Affiliation(s)
- Chenlu Qian
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Fan Zhou
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Ting Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Qiang Li
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Dinghua Hu
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Xuemei Chen
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Zuankai Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| |
Collapse
|
37
|
Jin Y, Xu W, Zhang H, Li R, Sun J, Yang S, Liu M, Mao H, Wang Z. Electrostatic tweezer for droplet manipulation. Proc Natl Acad Sci U S A 2022; 119:e2105459119. [PMID: 34992136 PMCID: PMC8764671 DOI: 10.1073/pnas.2105459119] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
Various physical tweezers for manipulating liquid droplets based on optical, electrical, magnetic, acoustic, or other external fields have emerged and revolutionized research and application in medical, biological, and environmental fields. Despite notable progress, the existing modalities for droplet control and manipulation are still limited by the extra responsive additives and relatively poor controllability in terms of droplet motion behaviors, such as distance, velocity, and direction. Herein, we report a versatile droplet electrostatic tweezer (DEST) for remotely and programmatically trapping or guiding the liquid droplets under diverse conditions, such as in open and closed spaces and on flat and tilted surfaces as well as in oil medium. DEST, leveraging on the coulomb attraction force resulting from its electrostatic induction to a droplet, could manipulate droplets of various compositions, volumes, and arrays on various substrates, offering a potential platform for a series of applications, such as high-throughput surface-enhanced Raman spectroscopy detection with single measuring time less than 20 s.
Collapse
Affiliation(s)
- Yuankai Jin
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region 999077, People's Republic of China
| | - Wanghuai Xu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region 999077, People's Republic of China
| | - Huanhuan Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region 999077, People's Republic of China
| | - Ruirui Li
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
| | - Jing Sun
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region 999077, People's Republic of China
| | - Siyan Yang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region 999077, People's Republic of China
| | - Minjie Liu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region 999077, People's Republic of China
| | - Haiyang Mao
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region 999077, People's Republic of China;
- Research Center for Nature-Inspired Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region 999077, People's Republic of China
| |
Collapse
|
38
|
Park J, Gao L. Continuously streaming compressed high-speed photography using time delay integration. OPTICA 2021; 8:1620-1623. [PMID: 35720736 PMCID: PMC9202649 DOI: 10.1364/optica.437736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/04/2021] [Indexed: 06/15/2023]
Abstract
An imaging system capable of acquiring high-resolution data at a high speed is in demand. However, the amount of optical information captured by a modern camera is limited by the data transfer bandwidth of electronics, resulting in a reduced spatial and temporal resolution. To overcome this problem, we developed continuously streaming compressed high-speed photography, which can record a dynamic scene with an unprecedented space-bandwidth-time product. By performing compressed imaging in a time-delay-integration manner, we continuously recorded a 0.85 megapixel video at 200 kHz, corresponding to an information flux of 170 gigapixels per second.
Collapse
|
39
|
Breaking the symmetry to suppress the Plateau-Rayleigh instability and optimize hydropower utilization. Nat Commun 2021; 12:6899. [PMID: 34824263 PMCID: PMC8635411 DOI: 10.1038/s41467-021-27237-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Droplet impact on solid surfaces is essential for natural and industrial processes. Particularly, controlling the instability after droplet impact, and avoiding the satellite drops generation, have aroused great interest for its significance in inkjet printing, pesticide spraying, and hydroelectric power collection. Herein, we found that breaking the symmetry of the droplet impact dynamics using patterned-wettability surfaces can suppress the Plateau-Rayleigh instability during the droplet rebounding and improve the energy collection efficiency. Systematic experimental investigation, together with mechanical modeling and numerical simulation, revealed that the asymmetric wettability patterns can regulate the internal liquid flow and reduce the vertical velocity gradient inside the droplet, thus suppressing the instability during droplet rebounding and eliminating the satellite drops. Accordingly, the droplet energy utilization was promoted, as demonstrated by the improved hydroelectric power generation efficiency by 36.5%. These findings deepen the understanding of the wettability-induced asymmetrical droplet dynamics during the liquid-solid interactions, and facilitate related applications such as hydroelectric power generation and materials transportation.
Collapse
|
40
|
Song M, Zhao H, Wang T, Wang S, Wan J, Qin X, Wang Z. A new scaling number reveals droplet dynamics on vibratory surfaces. J Colloid Interface Sci 2021; 608:2414-2420. [PMID: 34753623 DOI: 10.1016/j.jcis.2021.10.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023]
Abstract
HYPOTHESIS Droplet spreading on surfaces is a ubiquitous phenomenon in nature and is relevant with a wide range of applications. In practical scenarios, surfaces are usually associated with certain levels of vibration. Although vertical or horizontal modes of vibration have been used to promote droplet dewetting, bouncing from immiscible medium, directional transport, etc., a quantitative understanding of how external vibration mediates the droplet behaviors remains to be revealed. METHODS We studied droplets impacting on stationary and vibratory surfaces, respectively. In analogy to the Weber number We=ρUi2D0/γWe = ρUi2D0/γ, we define the vibration Weber number We*=ρUv2D0/γ to quantitively analyze the vibration-induced dynamic pressure on droplet behaviors on vibratory surfaces, where ρ,γ,D0,UiandUv are liquid density, surface tension, initial droplet diameter, impact velocity of the droplet, and velocity amplitude of vibration, respectively. FINDINGS We demonstrate that the effect of vibration on promoting droplet spreading can be captured by a new scaling number expressed as We*/[We1\2sin(θ/2)], leading to (Dm - Dm0)/Dm0 ∝ We*/[We1\2sin(θ/2)], where θ is the contact angle, and Dm0 and Dm are the maximum diameter of the droplet on stationary and vibratory surfaces, respectively. The scaling number illustrates the relative importance of vibration-induced dynamic pressure compared to inertial force and surface tension. Together with other well-established non-dimensional numbers, this scaling number provides a new dimension and framework for understanding and controlling droplet dynamics. Our findings can also find applications such as improving the power generation efficiency, intensifying the deposition of paint, and enhancing the heat transfer of droplets.
Collapse
Affiliation(s)
- Mingkai Song
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, PR China
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, PR China; Key Laboratory of CNC Equipment Reliability, Ministry of Education, Changchun 130025, PR China.
| | - Ting Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, PR China
| | - Shunbo Wang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, PR China
| | - Jie Wan
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, PR China
| | - Xuezhi Qin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, PR China; Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, PR China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, PR China.
| |
Collapse
|
41
|
Yu Z, Kadir M, Liu Y, Huang J. Droplet-capturing coatings on environmental surfaces based on cosmetic ingredients. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Han X, Gong X. In Situ, One-Pot Method to Prepare Robust Superamphiphobic Cotton Fabrics for High Buoyancy and Good Antifouling. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31298-31309. [PMID: 34156810 DOI: 10.1021/acsami.1c08844] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multifunctional superamphiphobic cotton fabrics are in high demand. However, preparation of such fabrics is often difficult or complicated. Herein, a novel superamphiphobic fabric is constructed by a simple one-pot method with an in situ growth process. Under suitable alkaline conditions, dopamine (DA) can be oxidized to benzoquinone. Meanwhile, 3-aminopropyltriethoxysilane (APTES), 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS-17) molecules undergo the hydrolysis reaction and bond together. Besides, benzoquinone can react with APTES by Schiff base and hollow nanoclusters can be finally obtained because of the steric hindrance effect of benzene ring and long alkyl chain. Such nanoclusters are formed on the surface of fabric, which endows the fabric with extreme liquid repellence. The effects of pH value and DA concentration on the surface morphology and lyophobic properties of the fabric are systematically studied. The water and pump oil contact angles of the superamphiphobic fabric obtained under the optimal reaction conditions can reach 160 and 151°, respectively. The lyophobicity of the fabric is maintained even after undergoing various harsh tests, showing significant durability and stability. In addition, the superamphiphobic fabric exhibits good antifouling and strong buoyancy ability. The superamphiphobic fabric can load 35 and 27.4 times its own weight in water and oil, respectively, which shows great potential in the field of functional textiles such as swimming suits, protective clothing, and life jackets in the future.
Collapse
Affiliation(s)
- Xinting Han
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
43
|
Ji T, Pan Y, Shao Y, He B, Wen B. Lateral Drop Rebound on a Hydrophobic and Chemically Heterogeneous Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6905-6914. [PMID: 34060835 DOI: 10.1021/acs.langmuir.1c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, the process of a drop rebounding from a hydrophobic and chemically heterogeneous surface is investigated using the multiphase lattice Boltzmann method. The bounce behavior of drops is dependent on the degree of hydrophobicity and heterogeneity of the surface. When the surface is homogeneous, the drop rebounds vertically and the height increases with the enhancement of the surface hydrophobicity. For the heterogeneous surface with two different hydrophobic parts, the drop rebounds laterally toward the lower hydrophobic side. Because the high hydrophobic side exerts the stronger unbalanced Young's force on the contact line compared with the low hydrophobic side, the difference of the forces results in the asymmetrical rebound. A phase diagram displays the rebound numbers of a drop impacting on the various chemically homogeneous and heterogeneous surfaces. A simply quantitative estimation is made to predict the rebound heights and flying times through the contact angles of the surface. This work promotes the understanding of the rebound mechanism of a drop impacting on a chemically heterogeneous surface and provides a guiding strategy for the precise control of the lateral behavior of rebounding drops by hydrophobic and heterogeneous surfaces.
Collapse
Affiliation(s)
- Tingting Ji
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- College of Computer Science and Information Engineering, Guangxi Normal University, Guilin 541004, China
| | - Yongcai Pan
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- College of Computer Science and Information Engineering, Guangxi Normal University, Guilin 541004, China
| | - Yufu Shao
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- College of Computer Science and Information Engineering, Guangxi Normal University, Guilin 541004, China
| | - Bing He
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- College of Computer Science and Information Engineering, Guangxi Normal University, Guilin 541004, China
| | - Binghai Wen
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- College of Computer Science and Information Engineering, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
44
|
Liang X, Li D, Li S, Xu C, Guo Z. Artificial Leaf for Switchable Droplet Manipulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5745-5752. [PMID: 33929871 DOI: 10.1021/acs.langmuir.1c00799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Droplet manipulation plays an important role in scientific research, daily life, and practical production such as biological and chemical analysis. Inspired by the structure and function of three typical leaf veins, the bionic texture was replicated by the template method, and the artificial leaf was selectively treated by nanoparticles to obtain a quasi-three-dimensional hybrid superhydrophobic-hydrophilic surface. When the droplet touches the surface of the leaf, it will be attracted to the bottom of the main vein from different directions even in horizontal conditions due to the Laplace pressure gradient and energy gradient. The simulation analysis demonstrates that the reason for directional transportation is the energy gradient of the droplets on the different levels of veins, including the thin veins, lateral veins, and main vein. Meanwhile, the experimental result of water collection also showed an outstanding directional transportation effect and excellent water collection efficiency. In addition, when the sample is tilted upside down, the droplet will flow back to the main vein along the lateral vein and then flow down the main vein, showing a good droplet pumping effect. Therefore, the directional and polydirectional transportation of droplets on the same sample is successfully realized, and the conversion between executing single and multiple tasks simultaneously can be realized only by upright and inverted samples. This work provided a new strategy for directional and polydirectional water manipulation, water collection, directional drainage, and microfluidic devices.
Collapse
Affiliation(s)
- Xiaojing Liang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Deke Li
- School of Materials Engineering, Lanzhou Institute of Technology, Lanzhou 730050, People's Republic of China
| | - ShanPeng Li
- College of Engineering, Lishui University, Lishui 323000, People's Republic of China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| |
Collapse
|
45
|
Wang Z, Wang X, Miao Q, Gao F, Zhao YP. Spontaneous Motion and Rotation of Acid Droplets on the Surface of a Liquid Metal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4370-4379. [PMID: 33792321 DOI: 10.1021/acs.langmuir.1c00455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-propulsion of droplets is of great significance in many fields. The spontaneous horizontal motion and self-jumping of droplets have been well realized in various ways. However, there is still a lack of an effective method to enable a droplet to rotate spontaneously and steadily. In this paper, by employing an acid droplet and a liquid metal, the spontaneous and steady rotation of droplets is achieved. For an acid droplet, it may spontaneously move when it is deposited on the surface of the liquid metal. By adjusting experimental parameters to the proper range, the self-rotation of droplet happens. This phenomenon originates from the fluctuation of the droplet boundary and the collective movement of bubbles that are generated by the chemical reactions between the acid droplet and liquid metal. This rotation has a simpler implementation method and more steady rotation state. Its angular velocity is much higher than that driven by other mechanisms. Moreover, the movements of acid droplets on the liquid metal are classified according to experimental conditions. The internal flow fields, the movements and distribution of bubbles, and the fluctuation of the droplet boundary are also explored and discussed. The theoretical model describing the rotational droplet is given. Our work may deepen the understanding of the physical system transition affected by chemical reactions and provide a new way for the design of potential applications, e.g., micro- and nanodevices.
Collapse
Affiliation(s)
- Zhanlong Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaohe Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qing Miao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Feifei Gao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Ya-Pu Zhao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
46
|
Luo H, Yang M, Li D, Wang Q, Zou W, Xu J, Zhao N. Transparent Super-Repellent Surfaces with Low Haze and High Jet Impact Resistance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13813-13821. [PMID: 33687189 DOI: 10.1021/acsami.0c23055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transparent superhydrophobic surfaces are of vital significance for rising applications in optoelectronics, outdoor displays, building windows, and so on. However, facile fabrication of surfaces combining stable superhydrophobicity and high transparency with particularly low haze remains a challenge. Here, we demonstrate a nonfluorinated hierarchical surface, simply prepared by sequential spraying of a primer of poly(ethylene-co-acrylic acid) (EAA) and silica nanoparticles (SiO2). The resultant surface shows remarkable liquid repellency (e.g., an apparent contact angle of >160° and a sliding angle of <2° for honey) and high transparency (a transmittance of ∼91% and a haze of ∼6%). Especially, flexible EAA adhesive enables the surface to resist water impinging (up to ∼15.0 m s-1, higher than the terminal velocities of raindrops) and mechanical damaging. This super-repellent surface also presents excellent UV and chemical stability, sustaining a superhydrophobic state upon UVA exposure for 60 days and acidic corrosion or oil contamination for 7 days. With multirobustness and scalability, our coatings show great potential in related fields.
Collapse
Affiliation(s)
- Heng Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Meng Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongdong Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qianxiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weizhi Zou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Xu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
47
|
Liu C, Legchenkova I, Han L, Ge W, Lv C, Feng S, Bormashenko E, Liu Y. Directional Droplet Transport Mediated by Circular Groove Arrays. Part II: Theory of Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1948-1953. [PMID: 33506681 DOI: 10.1021/acs.langmuir.0c03462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the first part of this research, we reported the experimental study of the drop impact on the superhydrophobic circular groove arrays, which resulted in a directional droplet transport. In the second part, we further explored the influence of the Weber number (We), ridge height (H), and the deviation distance (r) between the impacting point and the center of curvature on the lateral offset distance (ΔL) of bouncing drops. The suggested theoretical analysis is in reasonable agreement with the experimental observations. We demonstrate that a Cassie-Wenzel wetting transition occurred within the microstructures of the relief under the threshold Weber number, for example, We ≅ 19-25, which switched the nature of drop bouncing. The dynamic pressure plays a decisive role in the directional droplet transport. The reported investigation may shed light on the solid-liquid interactions occurring on the patterned hierarchical surfaces and open up new opportunities for directional droplet transportation.
Collapse
Affiliation(s)
- Cong Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Irina Legchenkova
- Chemical Engineering Department, Engineering Faculty, Ariel University, Ariel 40700, Israel
| | - Libao Han
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Wenna Ge
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Cunjing Lv
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shile Feng
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Edward Bormashenko
- Chemical Engineering Department, Engineering Faculty, Ariel University, Ariel 40700, Israel
| | - Yahua Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
48
|
Zhang T, Wu J, Lin X. Lateral motion of a droplet impacting on a wettability-patterned surface: numerical and theoretical studies. SOFT MATTER 2021; 17:724-737. [PMID: 33220671 DOI: 10.1039/d0sm01858a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surfaces with nonuniform wettability have attracted much attention recently due to their academic significance and applications in droplet lateral motion. In this study, numerical simulations and theoretical analyses are conducted to investigate the dynamic behaviors of a droplet impacting on a wettability-patterned surface, in which the superhydrophobic substrate is decorated with a hydrophilic pattern. An improved diffuse interface method coupled with the adaptive mesh-refinement technique and Kistler dynamic contact angle model is adopted to capture the interfacial evolution. After the validation of the numerical method, the dynamic mechanisms of impacting droplets are explored by analyzing the variation of the contact line and velocity profile. Then, systematic simulations are conducted using hydrophilic patterns with different geometric parameters. And the parameter of effective retraction area S is introduced to quantify the wettability patterns. On this basis, the general rules between the patterns and droplet lateral motion are established, and the design principles of hydrophilic patterns are obtained. The numerical results indicate that arc-shape hydrophilic patterns are more appropriate for realizing the droplet lateral motion, which can produce a larger lateral velocity and less residual liquid. In addition, the relevant motion parameters of the droplet are predicted more accurately by using the previous theoretical method. And the mechanism of energy transformation and dissipation is further revealed. Moreover, a simple and practical model is proposed to predict the lateral velocity using the effective retraction area.
Collapse
Affiliation(s)
- Tongwei Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, China. and Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, China and Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, China
| | - Jie Wu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, China. and Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, China and Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, China and Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, South Second Ring Road 6, Mianyang, Sichuan 621000, China
| | - Xingjian Lin
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, China. and Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, China and Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, China
| |
Collapse
|
49
|
Li Z, Huang Z, Cai Z, Li H, Li A, Qiao Y, Yang J, Song Y. Vapor-Induced Liquid Collection and Microfluidics on Superlyophilic Substrates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3454-3462. [PMID: 33423458 DOI: 10.1021/acsami.0c20546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid manipulation on solid surfaces has attracted a lot of attention for liquid collection and droplet-based microfluidics. However, manipulation strategies mainly depend on chemical modification and artificial structures. Here, we demonstrate a feasible and general strategy based on the self-shrinkage of the droplet induced via specific vapors to efficiently collect liquids and flexibly carry out droplet-based reactions. The vapor-induced self-shrinkage is driven by Marangoni flow originating from molecular adsorption and diffusion. Under a specific vapor environment, the self-shrinking droplet exhibits unique features including reversible responsiveness, high mobility, and autocoalescence. Accordingly, by building a specific vapor environment, the thin liquid films and random liquid films on superlyophilic substrates can be recovered with a collection rate of more than 95%. Moreover, the vapor system can be used to construct a high-efficiency chemical reaction device. The findings and profound understandings are significant for the development of the liquid collection and droplet-based microfluidics.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Zhandong Huang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Zheren Cai
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - An Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yali Qiao
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Jun Yang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
50
|
Chen Y, Liu J, Song J, Liu R, Zhao D, Hua S, Lu Y. Energy conversion based on superhydrophobic surfaces. Phys Chem Chem Phys 2020; 22:25430-25444. [PMID: 33169125 DOI: 10.1039/d0cp04257a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Covering about 70% of the earth's surface, water contains considerable energy that remains unexploited. Superhydrophobic surfaces (SHSs) possess excellent water repellency, and energy conversion based on SHSs has opened up a new avenue for efficient collection and utilization of water energy. Therefore, it is of great significance to efficiently prepare SHSs and apply them for energy conversion in different fields. In this review, we first summarize the fabrication methods of SHSs, and then provide an overview of the energy conversion forms based on SHSs. Finally, the related applications corresponding to the energy conversion forms are introduced, including renewable energy collection and utilization, wearable device design, use of liquid sensors, surface cooling and heat dissipation, self-propelled devices, droplet manipulation and lab-on-a-chip devices; and their challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Yang Chen
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | | | | | | | | | | | | |
Collapse
|