1
|
Kareem RA, Sameer HN, Yaseen A, Athab ZH, Adil M, Ahmed HH. A review of the immunomodulatory properties of mesenchymal stem cells and their derived extracellular vesicles in small-cell and non-small-cell lung cancer cells. Int Immunopharmacol 2025; 146:113848. [PMID: 39689606 DOI: 10.1016/j.intimp.2024.113848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Among the most challenging diseases to treat is lung cancer (LC). While immunotherapy has a checkered history, it has lately shown great promise in the treatment of LC, and interest in this promising new approach is on the rise around the globe. Immunotherapy using mesenchymal stem cells (MSCs) is gaining popularity. Regenerative medicine, cell therapy, and immune modulation are three areas that have shown significant interest in MSCs. More than that, MSCs have recently attracted attention as potential anti-cancer drug delivery vehicles due to their inherent ability to go home to tumor locations. Making MSCs a double-edged sword in the fight against neoplastic illnesses, they are also known to impart pro-oncogenic properties. Additionally, multiple studies have proposed extracellular vesicles (EVs) secreted by MSCs as a potential therapeutic agent or method for delivering anti-cancer drugs. However, there has been conflicting evidence regarding the impact of MSCs or MSC-EV on the behavior of cancer cells, and the exact mechanism for this effect is still unknown. Our research has focused on MSCs and their key characteristics, such as their immunomodulatory capabilities for cancer therapy. Our research has also explored the potential of MSCs and their derivatives to treat small-cell and non-small-cell lung cancers (NSCLC and SCLC, respectively) by leveraging MSCs' immunomodulatory characteristics. At the end of this article, we covered the pros and cons of this therapy procedure, as well as what researchers want to do in the future to make it more suitable for clinical application in LC treatment.
Collapse
Affiliation(s)
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | | | |
Collapse
|
2
|
Humphries S, Burnard SM, Eggins CD, Keely S, Bond DR, Lee HJ. Hypoxia impairs decitabine-induced expression of HLA-DR in acute myeloid leukaemia cell lines. Clin Epigenetics 2025; 17:8. [PMID: 39825372 PMCID: PMC11748578 DOI: 10.1186/s13148-025-01812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low. In this study, we investigate the effects of hypoxia on HMA responses in AML cells. RESULTS AML cell lines (MOLM-13, MV-4-11, HL-60) were treated with DAC (100 nM) or AZA (500-2000 nM) in normoxic (21% O2) and hypoxic (1% O2) conditions. Hypoxia significantly reduced AML cell growth across all cell lines, with no additional effects observed upon HMA treatment. Hypoxia had no impact on the extent of DNA hypomethylation induced by DAC treatment, but limited AZA-induced loss of methylation from the genome. Transcriptional responses to HMA treatment were also altered, with HMAs failing to up-regulate antigen presentation pathways in hypoxia. In particular, cell surface expression of the MHC class II receptor, HLA-DR, was increased by DAC treatment in normoxia, but not hypoxia. CONCLUSION Our results suggest that HMA-induced antigen presentation may be impaired by hypoxia. This study highlights the need to consider microenvironmental factors when designing co-treatment strategies to improve HMA therapeutic efficacy.
Collapse
Affiliation(s)
- Sam Humphries
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Sean M Burnard
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Courtney D Eggins
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Danielle R Bond
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Heather J Lee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
3
|
Hajipirloo LK, Nabigol M, Khayami R, Karami N, Farsani MA, Navidinia AA. Construction of a stromal-related prognostic model in acute myeloid leukemia by comprehensive bioinformatics analysis. Curr Res Transl Med 2025; 73:103492. [PMID: 39818173 DOI: 10.1016/j.retram.2025.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/10/2024] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Stromal cells play a pivotal role in the tumor microenvironment (TME), significantly impacting the progression of acute myeloid leukemia (AML). This study sought to develop a stromal-related prognostic model for AML, aiming to uncover novel prognostic markers and therapeutic targets. METHODS RNA expression data and clinical profiles of AML patients were retrieved from the Cancer Genome Atlas (TCGA). The extent of stromal cell infiltration within the TME was quantified using the ESTIMATE algorithm. Associations between stromal scores and the French-American-British (FAB) classification, overall survival (OS), and the Cancer and Leukemia Group B (CALGB) cytogenetic risk categories were analyzed. Differentially expressed genes (DEGs) were identified, and gene ontology (GO) and protein-protein interaction (PPI) networks were constructed. Prognostic DEGs were selected through LASSO-cox regression analysis. A risk score model was then developed based on these DEGs. A stromal-related prognostic model (SPM) was constructed from the patients' risk scores (RS), and its efficacy was evaluated using Receiver Operating Characteristic (ROC) curves and a nomogram. The association between FAB, CALGB, age, and common mutations and SPM was also assessed. Ultimately, the SPM was validated using an external dataset from 246 patients in the TARGET-AML study. RESULTS Kaplan-Meier analysis revealed a significant association between stromal scores and patient survival (p = 0.04). LASSOCox regression identified four genes (MAP7D2, CDRT1, HOXB9, and IRX5) as highly predictive of survival. The prognostic model showed a strong correlation with overall survival, with higher scores indicating poorer outcomes (p = 1.48e-07). Older patients (over 60 years) faced significantly worse prognoses (p = 0.0055). Although no significant association was found between the SPM and the FAB classification (p = 0.063), both poor and intermediate/normal cytogenetic groups had significantly higher SPM risk scores than the favorable group (p = 0.0057 and 0.0026). External validation of the SPM in the TARGET-AML dataset confirmed a significant association with survival (p = 0.00035), with the area under the curve (AUC) for 10-year survival at 75.81 %. CONCLUSION Our research successfully established a stromal-related prognostic model in AML, offering new perspectives for prognostic evaluation and identifying potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Laya Khodayi Hajipirloo
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nabigol
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Khayami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najibe Karami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Allahbakhshian Farsani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Navidinia
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ladikou EE, Sharp K, Simoes FA, Jones JR, Burley T, Stott L, Vareli A, Kennedy E, Vause S, Chevassut T, Devi A, Ashworth I, Ross DM, Hartmann TN, Mitchell SA, Pepper CJ, Best G, Pepper AGS. A Novel In Vitro Model of the Bone Marrow Microenvironment in Acute Myeloid Leukemia Identifies CD44 and Focal Adhesion Kinase as Therapeutic Targets to Reverse Cell Adhesion-Mediated Drug Resistance. Cancers (Basel) 2025; 17:135. [PMID: 39796762 PMCID: PMC11719579 DOI: 10.3390/cancers17010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential. METHODS Using both primary donor AML cells and cell lines, we developed an in vitro co-culture model of the AML BMME. We used this model to identify the most effective agent(s) to block AML cell adherence and reverse adhesion-mediated treatment resistance. RESULTS We identified that anti-CD44 treatment significantly increased the efficacy of cytarabine. However, some AML cells remained adhered, and transcriptional analysis identified focal adhesion kinase (FAK) signaling as a contributing factor; the adhered cells showed elevated FAK phosphorylation that was reduced by the FAK inhibitor, defactinib. Importantly, we demonstrated that anti-CD44 and defactinib were highly synergistic at diminishing the adhesion of the most primitive CD34high AML cells in primary autologous co-cultures. CONCLUSIONS Taken together, we identified anti-CD44 and defactinib as a promising therapeutic combination to release AML cells from the chemoprotective AML BMME. As anti-CD44 is already available as a recombinant humanized monoclonal antibody, the combination of this agent with defactinib could be rapidly tested in AML clinical trials.
Collapse
Affiliation(s)
- Eleni E. Ladikou
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Kim Sharp
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Fabio A. Simoes
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - John R. Jones
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Thomas Burley
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Lauren Stott
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Aimilia Vareli
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Emma Kennedy
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Sophie Vause
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Timothy Chevassut
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Amarpreet Devi
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Iona Ashworth
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - David M. Ross
- Department of Haematology, Flinders Medical Centre, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (D.M.R.); (G.B.)
| | - Tanja Nicole Hartmann
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany;
| | - Simon A. Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Chris J. Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Giles Best
- Department of Haematology, Flinders Medical Centre, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (D.M.R.); (G.B.)
| | - Andrea G. S. Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| |
Collapse
|
5
|
Safi R, Mohsen-Kanson T, Kouzi F, El-Saghir J, Dermesrobian V, Zugasti I, Zibara K, Menéndez P, El Hajj H, El-Sabban M. Direct Interaction Between CD34 + Hematopoietic Stem Cells and Mesenchymal Stem Cells Reciprocally Preserves Stemness. Cancers (Basel) 2024; 16:3972. [PMID: 39682159 DOI: 10.3390/cancers16233972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES A specialized microenvironment in the bone marrow, composed of stromal cells including mesenchymal stem cells (MSCs), supports hematopoietic stem cell (HSC) self-renewal, and differentiation bands play an important role in leukemia development and progression. The reciprocal direct interaction between MSCs and CD34+ HSCs under physiological and pathological conditions is yet to be fully characterized. METHODS Here, we established a direct co-culture model between MSCs and CD34+ HSCs or MSCs and acute myeloid leukemia cells (THP-1, Molm-13, and primary cells from patients) to study heterocellular communication. RESULTS Following MSCs-CD34+ HSCs co-culture, the expression of adhesion markers N-Cadherin and connexin 43 increased in both cell types, forming gap junction channels. Moreover, the clonogenic potential of CD34+ HSCs was increased. However, direct contact of acute myeloid leukemia cells with MSCs reduced the expression levels of connexin 43 and N-Cadherin in MSCs. The impairment in gap junction formation may potentially be due to a defect in the acute myeloid leukemia-derived MSCs. Interestingly, CD34+ HSCs and acute myeloid leukemia cell lines attenuated MSC osteoblastic differentiation upon prolonged direct cell-cell contact. CONCLUSIONS In conclusion, under physiological conditions, connexin 43 and N-Cadherin interaction preserves stemness of both CD34+ HSCs and MSCs, a process that is compromised in acute myeloid leukemia, pointing to the possible role of gap junctions in modulating stemness.
Collapse
Affiliation(s)
- Rémi Safi
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
- Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain
| | - Tala Mohsen-Kanson
- Faculty of Science, Lebanese University, Zahle 1801, Lebanon
- Faculty of Science, Lebanese University, Hadath 40016, Lebanon
| | - Farah Kouzi
- Faculty of Science, Lebanese University, Zahle 1801, Lebanon
- Faculty of Science, Lebanese University, Hadath 40016, Lebanon
| | - Jamal El-Saghir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vera Dermesrobian
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
- Laboratory of Adaptive Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Inés Zugasti
- Department of Hematology, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Kazem Zibara
- Faculty of Science, Lebanese University, Zahle 1801, Lebanon
- Faculty of Science, Lebanese University, Hadath 40016, Lebanon
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Consorcio Investigación Biomédica en Red de Cancer, CIBER-ONC, ISCIII, 28029 Barcelona, Spain
- Spanish Network for Advanced Cell Therapies (TERAV), 08028 Barcelona, Spain
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
| |
Collapse
|
6
|
Smoljo T, Lalic H, Dembitz V, Tomic B, Batinic J, Vrhovac R, Bedalov A, Visnjic D. Bone marrow stromal cells enhance differentiation of acute myeloid leukemia induced by pyrimidine synthesis inhibitors. Am J Physiol Cell Physiol 2024; 327:C1202-C1218. [PMID: 39279497 PMCID: PMC11559649 DOI: 10.1152/ajpcell.00413.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of hematological malignancies characterized by differentiation arrest, high relapse rates, and poor survival. The bone marrow (BM) microenvironment is recognized as a critical mediator of drug resistance and a primary site responsible for AML relapse. Our previous study reported that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAr) induces AML cell differentiation by inhibiting pyrimidine synthesis and activating Checkpoint kinase 1. Although the protective effect of BM stroma on leukemia cells in response to cytotoxic drugs is well-documented, its effect on AML differentiation remains less explored. In this study, we investigated the impact of stromal cell lines and primary mesenchymal stromal cells (MSCs) on AML cell line differentiation triggered by AICAr and brequinar, a known dihydroorotate dehydrogenase (DHODH) inhibitor. Our findings indicate that the mouse MS-5 stromal cell line, known for its cytoprotective effects, does not inhibit AML cell differentiation induced by pyrimidine synthesis inhibitors. Interestingly, AICAr caused morphological changes and growth arrest in MS-5 stromal cells via an AMP-activated protein kinase (AMPK)-dependent pathway. Human stromal cell lines HS-5 and HS-27, as well as primary MSCs isolated from patient bone marrow, were superior in promoting AML differentiation compared with mouse cells in response to AICAr and brequinar, with the inhibitors not significantly affecting the stromal cells themselves. In conclusion, our study highlights the supportive role of human BM MSCs in enhancing the differentiation effects of pyrimidine synthesis inhibitors on AML cells, suggesting that AML treatment strategies focusing on differentiation rather than cell killing may be successful in clinical settings.NEW & NOTEWORTHY This study is the first to demonstrate that human stromal cell lines and primary mesenchymal stromal cells from patients enhance the in vitro differentiation of acute myeloid leukemia (AML) cells induced by pyrimidine synthesis inhibitors, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAr), and brequinar. Furthermore, this is the first report to show that AICAr affects mouse bone marrow stromal cells by activating AMP-activated protein kinase (AMPK) and that human stromal cells are superior to mouse cells for testing the effects of drugs on AML differentiation.
Collapse
Affiliation(s)
- Tomislav Smoljo
- Laboratory for Cell Biology, Department of Physiology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Hrvoje Lalic
- Laboratory for Cell Biology, Department of Physiology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Laboratory Immunology, Clinical Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Vilma Dembitz
- Laboratory for Cell Biology, Department of Physiology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Barbara Tomic
- Laboratory for Cell Biology, Department of Physiology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Josip Batinic
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Radovan Vrhovac
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington, United States
| | - Dora Visnjic
- Laboratory for Cell Biology, Department of Physiology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
7
|
Kegyes D, Thiagarajan PS, Ghiaur G. MRD in Acute Leukemias: Lessons Learned from Acute Promyelocytic Leukemia. Cancers (Basel) 2024; 16:3208. [PMID: 39335179 PMCID: PMC11430625 DOI: 10.3390/cancers16183208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Introduction: Advances in molecular biology, polymerase chain reaction (PCR), and next-generation sequencing (NGS) have transformed the concept of minimal residual disease (MRD) from a philosophical idea into a measurable reality. Current Treatment Paradigms and Lessons Learned from APL: Acute promyelocytic leukemia (APL) leads the way in this transformation, initially using PCR to detect MRD in patients in remission, and more recently, aiming to eliminate it entirely with modern treatment strategies. Along the way, we have gained valuable insights that, when applied to other forms of acute leukemia, hold the potential to significantly improve the outcomes of these challenging diseases. Does the BM Microenvironment Play a Role in MRD?: In this review, we explore the current use of MRD in the management of acute leukemia and delve into the biological processes that contribute to MRD persistence, including its overlap with leukemia stem cells and the role of the bone marrow microenvironment.
Collapse
Affiliation(s)
- David Kegyes
- MedFuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- The Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Gabriel Ghiaur
- The Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Mochmann LH, Treue D, Bockmayr M, Silva P, Zasada C, Mastrobuoni G, Bayram S, Forbes M, Jurmeister P, Liebig S, Blau O, Schleich K, Splettstoesser B, Nordmann TM, von der Heide EK, Isaakidis K, Schulze V, Busch C, Siddiq H, Schlee C, Hester S, Fransecky L, Neumann M, Kempa S, Klauschen F, Baldus CD. Proteomic profiling reveals ACSS2 facilitating metabolic support in acute myeloid leukemia. Cancer Gene Ther 2024; 31:1344-1356. [PMID: 38851813 PMCID: PMC11405269 DOI: 10.1038/s41417-024-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 06/10/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by genomic aberrations in oncogenes, cytogenetic abnormalities, and an aberrant epigenetic landscape. Nearly 50% of AML cases will relapse with current treatment. A major source of therapy resistance is the interaction of mesenchymal stroma with leukemic cells resulting in therapeutic protection. We aimed to determine pro-survival/anti-apoptotic protein networks involved in the stroma protection of leukemic cells. Proteomic profiling of cultured primary AML (n = 14) with Hs5 stroma cell line uncovered an up-regulation of energy-favorable metabolic proteins. Next, we modulated stroma-induced drug resistance with an epigenetic drug library, resulting in reduced apoptosis with histone deacetylase inhibitor (HDACi) treatment versus other epigenetic modifying compounds. Quantitative phosphoproteomic probing of this effect further revealed a metabolic-enriched phosphoproteome including significant up-regulation of acetyl-coenzyme A synthetase (ACSS2, S30) in leukemia-stroma HDACi treated cocultures compared with untreated monocultures. Validating these findings, we show ACSS2 substrate, acetate, promotes leukemic proliferation, ACSS2 knockout in leukemia cells inhibits leukemic proliferation and ACSS2 knockout in the stroma impairs leukemic metabolic fitness. Finally, we identify ACSS1/ACSS2-high expression AML subtype correlating with poor overall survival. Collectively, this study uncovers the leukemia-stroma phosphoproteome emphasizing a role for ACSS2 in mediating AML growth and drug resistance.
Collapse
Affiliation(s)
- Liliana H Mochmann
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Denise Treue
- Institute of Pathology Berlin, Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Michael Bockmayr
- Institute of Pathology Berlin, Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patricia Silva
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Christin Zasada
- Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Guido Mastrobuoni
- Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Safak Bayram
- Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Martin Forbes
- Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Philipp Jurmeister
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sven Liebig
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Olga Blau
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Konstanze Schleich
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bianca Splettstoesser
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | - Thierry M Nordmann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | - Eva K von der Heide
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Konstandina Isaakidis
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Veronika Schulze
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Caroline Busch
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Hafsa Siddiq
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Cornelia Schlee
- Department of Hematology and Oncology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Svenja Hester
- Department of Biochemistry, Oxford University, Oxford, UK
| | - Lars Fransecky
- Department of Hematology and Oncology, UKSH, Campus Kiel, Kiel, Germany
| | - Martin Neumann
- Department of Hematology and Oncology, UKSH, Campus Kiel, Kiel, Germany
| | - Stefan Kempa
- Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbruck Center for Molecular Medicine, Berlin, Germany.
| | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany.
- Institute of Pathology Berlin, Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Claudia D Baldus
- Department of Hematology and Oncology, UKSH, Campus Kiel, Kiel, Germany.
| |
Collapse
|
9
|
Konopleva MY, Dail M, Daver NG, Garcia JS, Jonas BA, Yee KWL, Kelly KR, Vey N, Assouline S, Roboz GJ, Paolini S, Pollyea DA, Tafuri A, Brandwein JM, Pigneux A, Powell BL, Fenaux P, Olin RL, Visani G, Martinelli G, Onishi M, Wang J, Huang W, Dunshee DR, Hamidi H, Ott MG, Hong WJ, Andreeff M. Venetoclax and Cobimetinib in Relapsed/Refractory AML: A Phase 1b Trial. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:364-374. [PMID: 38378362 DOI: 10.1016/j.clml.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Therapies for relapsed/refractory acute myeloid leukemia remain limited and outcomes poor, especially amongst patients who are ineligible for cytotoxic chemotherapy or targeted therapies. PATIENTS AND METHODS This phase 1b trial evaluated venetoclax, a B-cell lymphoma-2 (BCL-2) inhibitor, plus cobimetinib, a MEK1/2 inhibitor, in patients with relapsed/refractory acute myeloid leukemia, ineligible for cytotoxic chemotherapy. Two-dimensional dose-escalation was performed for venetoclax dosed daily, and for cobimetinib dosed on days 1-21 of each 28-day cycle. RESULTS Thirty patients (median [range] age: 71.5 years [60-84]) received venetoclax-cobimetinib. The most common adverse events (AEs; in ≥40.0% of patients) were diarrhea (80.0%), nausea (60.0%), vomiting (40.0%), febrile neutropenia (40.0%), and fatigue (40.0%). Overall, 66.7% and 23.3% of patients experienced AEs leading to dose modification/interruption or treatment withdrawal, respectively. The composite complete remission (CRc) rate (complete remission [CR] + CR with incomplete blood count recovery + CR with incomplete platelet recovery) was 15.6%; antileukemic response rate (CRc + morphologic leukemia-free state/partial remission) was 18.8%. For the recommended phase 2 dose (venetoclax: 600 mg; cobimetinib: 40 mg), CRc and antileukemic response rates were both 12.5%. Failure to achieve an antileukemic response was associated with elevated baseline phosphorylated ERK and MCL-1 levels, but not BCL-xL. Baseline mutations in ≥1 signaling gene or TP53 were noted in nonresponders and emerged on treatment. Pharmacodynamic biomarkers revealed inconsistent, transient inhibition of the mitogen-activated protein kinase (MAPK) pathway. CONCLUSION Venetoclax-cobimetinib showed limited preliminary efficacy similar to single-agent venetoclax, but with added toxicity. Our findings will inform future trials of BCL-2/MAPK pathway inhibitor combinations.
Collapse
Affiliation(s)
| | | | - Naval G Daver
- University of Texas, MD Anderson Cancer Center, Houston, TX
| | | | - Brian A Jonas
- University of California Davis Comprehensive Cancer Center, Sacramento, CA
| | - Karen W L Yee
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | - Norbert Vey
- Hematologie Clinique, Institut Paoli Calmettes, Marseille, France
| | | | - Gail J Roboz
- Weill-Cornell Medical College, New York Presbyterian, New York, NY
| | - Stefania Paolini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | | | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, University Hospital Sant'Andrea-Sapienza, Rome, Italy
| | | | - Arnaud Pigneux
- Bordeaux Haut-Leveque University Hospital, Pessac, France
| | - Bayard L Powell
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | - Pierre Fenaux
- Hôpital Saint-Louis, Université Paris Diderot, Paris, France
| | - Rebecca L Olin
- University of California San Francisco, San Francisco, CA
| | | | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | - Jue Wang
- Genentech, Inc., South San Francisco, CA
| | | | | | | | | | | | | |
Collapse
|
10
|
Miller AB, Rodriguez FH, Langenbucher A, Lin L, Bray C, Duquette S, Zhang Y, Goulet D, Lane AA, Weinstock DM, Hemann MT, Manalis SR. Leukemia circulation kinetics revealed through blood exchange method. Commun Biol 2024; 7:483. [PMID: 38643279 PMCID: PMC11032325 DOI: 10.1038/s42003-024-06181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Leukemias and their bone marrow microenvironments undergo dynamic changes over the course of disease. However, little is known about the circulation kinetics of leukemia cells, nor the impact of specific factors on the clearance of circulating leukemia cells (CLCs) from the blood. To gain a basic understanding of CLC dynamics over the course of disease progression and therapeutic response, we apply a blood exchange method to mouse models of acute leukemia. We find that CLCs circulate in the blood for 1-2 orders of magnitude longer than solid tumor circulating tumor cells. We further observe that: (i) leukemia presence in the marrow can limit the clearance of CLCs in a model of acute lymphocytic leukemia (ALL), and (ii) CLCs in a model of relapsed acute myeloid leukemia (AML) can clear faster than their untreated counterparts. Our approach can also directly quantify the impact of microenvironmental factors on CLC clearance properties. For example, data from two leukemia models suggest that E-selectin, a vascular adhesion molecule, alters CLC clearance. Our research highlights that clearance rates of CLCs can vary in response to tumor and treatment status and provides a strategy for identifying basic processes and factors that govern the kinetics of circulating cells.
Collapse
Affiliation(s)
- Alex B Miller
- Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felicia H Rodriguez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam Langenbucher
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Computation and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Bray
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Duquette
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ye Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dan Goulet
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Merck and Co., Rahway, NJ, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Scott R Manalis
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Palani HK, Ganesan S, Balasundaram N, Venkatraman A, Korula A, Abraham A, George B, Mathews V. Ablation of Wnt signaling in bone marrow stromal cells overcomes microenvironment-mediated drug resistance in acute myeloid leukemia. Sci Rep 2024; 14:8404. [PMID: 38600158 PMCID: PMC11006665 DOI: 10.1038/s41598-024-58860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
The survival of leukemic cells is significantly influenced by the bone marrow microenvironment, where stromal cells play a crucial role. While there has been substantial progress in understanding the mechanisms and pathways involved in this crosstalk, limited data exist regarding the impact of leukemic cells on bone marrow stromal cells and their potential role in drug resistance. In this study, we identify that leukemic cells prime bone marrow stromal cells towards osteoblast lineage and promote drug resistance. This biased differentiation of stroma is accompanied by dysregulation of the canonical Wnt signaling pathway. Inhibition of Wnt signaling in stroma reversed the drug resistance in leukemic cells, which was further validated in leukemic mice models. This study evaluates the critical role of leukemic cells in establishing a drug-resistant niche by influencing the bone marrow stromal cells. Additionally, it highlights the potential of targeting Wnt signaling in the stroma by repurposing an anthelmintic drug to overcome the microenvironment-mediated drug resistance.
Collapse
Affiliation(s)
- Hamenth Kumar Palani
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India
| | - Saravanan Ganesan
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India
| | - Nithya Balasundaram
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India
| | - Arvind Venkatraman
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India
| | - Aby Abraham
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India
| | - Biju George
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India.
| |
Collapse
|
12
|
Vukotić M, Kapor S, Simon F, Cokic V, Santibanez JF. Mesenchymal stromal cells in myeloid malignancies: Immunotherapeutic opportunities. Heliyon 2024; 10:e25081. [PMID: 38314300 PMCID: PMC10837636 DOI: 10.1016/j.heliyon.2024.e25081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Myeloid malignancies are clonal disorders of the progenitor cells or hematopoietic stem cells, including acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic cells affect the proliferation and differentiation of other hematopoietic lineages in the bone marrow and peripheral blood, leading to severe and life-threatening complications. Mesenchymal stromal cells (MSCs) residing in the bone marrow exert immunosuppressive functions by suppressing innate and adaptive immune systems, thus creating a supportive and tolerant microenvironment for myeloid malignancy progression. This review summarizes the significant features of MSCs in myeloid malignancies, including their role in regulating cell growth, cell death, and antineoplastic resistance, in addition to their immunosuppressive contributions. Understanding the implications of MSCs in myeloid malignancies could pave the path for potential use in immunotherapy.
Collapse
Affiliation(s)
- Milica Vukotić
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Suncica Kapor
- Department of Hematology, Clinical Hospital Center “Dr. Dragisa Misovic-Dedinje,” University of Belgrade, Serbia
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases, Universidad de Chile, Santiago, Chile
| | - Vladan Cokic
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Juan F. Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
13
|
Miari KE, Williams MTS. Stromal bone marrow fibroblasts and mesenchymal stem cells support acute myeloid leukaemia cells and promote therapy resistance. Br J Pharmacol 2024; 181:216-237. [PMID: 36609915 DOI: 10.1111/bph.16028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
The bone marrow (BM) is the primary site of adult haematopoiesis, where stromal elements (e.g. fibroblasts and mesenchymal stem cells [MSCs]) work in concert to support blood cell development. However, the establishment of an abnormal clone can lead to a blood malignancy, such as acute myeloid leukaemia (AML). Despite our increased understanding of the pathophysiology of the disease, patient survival remains suboptimal, mainly driven by the development of therapy resistance. In this review, we highlight the importance of bone marrow fibroblasts and MSCs in health and acute myeloid leukaemia and their impact on patient prognosis. We discuss how stromal elements reduce the killing effects of therapies via a combination of contact-dependent (e.g. integrins) and contact-independent (i.e. secreted factors) mechanisms, accompanied by the establishment of an immunosuppressive microenvironment. Importantly, we underline the challenges of therapeutically targeting the bone marrow stroma to improve acute myeloid leukaemia patient outcomes, due to the inherent heterogeneity of stromal cell populations. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Katerina E Miari
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Mark T S Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
14
|
Smoljo T, Tomic B, Lalic H, Dembitz V, Batinic J, Bedalov A, Visnjic D. Bone marrow stromal cells reduce low-dose cytarabine-induced differentiation of acute myeloid leukemia. Front Pharmacol 2023; 14:1258151. [PMID: 37954840 PMCID: PMC10637411 DOI: 10.3389/fphar.2023.1258151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Low-dose cytarabine (LDAC) is a standard therapy for elderly acute myeloid leukemia (AML) patients unfit for intensive chemotherapy. While high doses of cytarabine induce cytotoxicity, the precise mechanism of action of LDAC in AML remains elusive. In vitro studies have demonstrated LDAC-induced differentiation; however, such differentiation is seldom observed in vivo. We hypothesize that this discrepancy may be attributed to the influence of bone marrow (BM) stromal cells on AML cells. Thus, this study aimed to investigate the impact of BM stromal cells on LDAC-induced differentiation of AML cell lines and primary samples. Our results demonstrate that the presence of MS-5 stromal cells prevented LDAC-induced cell cycle arrest, DNA damage signaling and differentiation of U937 and MOLM-13 cell lines. Although transcriptomic analysis revealed that the stroma reduces the expression of genes involved in cytokine signaling and oxidative stress, data obtained with pharmacological inhibitors and neutralizing antibodies did not support the role for CXCL12, TGF-β1 or reactive oxygen species. The presence of stromal cells reduces LDAC-induced differentiation in primary samples from AML-M4 and myelodysplastic syndrome/AML patients. In conclusion, our study demonstrates that BM stroma reduces differentiation of AML induced by LDAC. These findings provide insights into the limited occurrence of terminal differentiation observed in AML patients, and suggest a potential explanation for this observation.
Collapse
Affiliation(s)
- Tomislav Smoljo
- Laboratory for Cell Biology, Department of Physiology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Barbara Tomic
- Laboratory for Cell Biology, Department of Physiology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Hrvoje Lalic
- Laboratory for Cell Biology, Department of Physiology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vilma Dembitz
- Laboratory for Cell Biology, Department of Physiology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Josip Batinic
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Centre, Seattle, WA, United States
| | - Dora Visnjic
- Laboratory for Cell Biology, Department of Physiology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
15
|
Herbst SA, Kim V, Roider T, Schitter EC, Bruch PM, Liebers N, Kolb C, Knoll M, Lu J, Dreger P, Müller-Tidow C, Zenz T, Huber W, Dietrich S. Comparing the value of mono- vs coculture for high-throughput compound screening in hematological malignancies. Blood Adv 2023; 7:5925-5936. [PMID: 37352275 PMCID: PMC10558604 DOI: 10.1182/bloodadvances.2022009652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
Large-scale compound screens are a powerful model system for understanding variability of treatment response and discovering druggable tumor vulnerabilities of hematological malignancies. However, as mostly performed in a monoculture of tumor cells, these assays disregard modulatory effects of the in vivo microenvironment. It is an open question whether and to what extent coculture with bone marrow stromal cells could improve the biological relevance of drug testing assays over monoculture. Here, we established a high-throughput platform to measure ex vivo sensitivity of 108 primary blood cancer samples to 50 drugs in monoculture and coculture with bone marrow stromal cells. Stromal coculture conferred resistance to 52% of compounds in chronic lymphocytic leukemia (CLL) and 36% of compounds in acute myeloid leukemia (AML), including chemotherapeutics, B-cell receptor inhibitors, proteasome inhibitors, and Bromodomain and extraterminal domain inhibitors. Only the JAK inhibitors ruxolitinib and tofacitinib exhibited increased efficacy in AML and CLL stromal coculture. We further confirmed the importance of JAK-STAT signaling for stroma-mediated resistance by showing that stromal cells induce phosphorylation of STAT3 in CLL cells. We genetically characterized the 108 cancer samples and found that drug-gene associations strongly correlated between monoculture and coculture. However, effect sizes were lower in coculture, with more drug-gene associations detected in monoculture than in coculture. Our results justify a 2-step strategy for drug perturbation testing, with large-scale screening performed in monoculture, followed by focused evaluation of potential stroma-mediated resistances in coculture.
Collapse
Affiliation(s)
- Sophie A. Herbst
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Vladislav Kim
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Tobias Roider
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Eva C. Schitter
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter-Martin Bruch
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Nora Liebers
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carolin Kolb
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mareike Knoll
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Junyan Lu
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Peter Dreger
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M, Pornour M. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 2023; 21:252. [PMID: 37735675 PMCID: PMC10512514 DOI: 10.1186/s12964-023-01282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Halimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
17
|
Miller AB, Langenbucher A, Rodriguez FH, Lin L, Bray C, Duquette S, Zhang Y, Goulet D, Lane AA, Weinstock DM, Hemann MT, Manalis SR. Leukemia circulation kinetics revealed through blood exchange method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.03.556043. [PMID: 37732189 PMCID: PMC10508764 DOI: 10.1101/2023.09.03.556043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Leukemias and their bone marrow microenvironment are known to undergo dynamic changes over the course of disease. However, relatively little is known about the circulation kinetics of leukemia cells, nor the impact of specific factors on the clearance of circulating leukemia cells (CLCs) from the blood. To gain a basic understanding of leukemia cell dynamics over the course of disease progression and therapeutic response, we apply a blood exchange method to mouse models of acute leukemia. We find that CLCs circulate in the blood for 1-2 orders of magnitude longer than solid tumor circulating tumor cells. We further observe that: i) leukemia presence in the marrow can limit the clearance of CLCs in a model of acute lymphocytic leukemia (ALL), and ii) CLCs in a model of relapsed acute myeloid leukemia (AML) can clear faster than their untreated counterparts. Our approach can also directly quantify the impact of microenvironmental factors on CLC clearance properties. For example, data from two leukemia models suggest that E-selectin, a vascular adhesion molecule, alters CLC clearance. Our research highlights that clearance rates of CLCs can vary in response to tumor and treatment status and provides a strategy for identifying basic processes and factors that govern the kinetics of circulating cells.
Collapse
Affiliation(s)
- Alex B Miller
- Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam Langenbucher
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Computation and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felicia H Rodriguez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Bray
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Duquette
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ye Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dan Goulet
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
18
|
Pandey S, Singh R, Habib N, Singh V, Kushwaha R, Tripathi AK, Mahdi AA. Expression of CXCL8 (IL-8) in the Pathogenesis of T-Cell Acute Lymphoblastic Leukemia Patients. Cureus 2023; 15:e45929. [PMID: 37885528 PMCID: PMC10599407 DOI: 10.7759/cureus.45929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Background Inflammation plays a very important role in the pathogenesis of a wide range of diseases, such as atherosclerosis myocardial infarction, sepsis, rheumatoid arthritis, and cancer. This study aimed to investigate the association of IL-8 in T-cell acute lymphoblastic leukemia (T-ALL) patients. Methodology IL-8 levels were estimated in 52 individuals. Of the study population, 26 were T-ALL patients (all phases of leukemia were included in the study) and 26 were disease-free healthy volunteers. In this study, we employed flow cytometry, enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction test, and western blot analysis. Results IL-8 was significantly higher in all T-ALL patients than in healthy volunteers. IL-8 levels showed a significant positive correlation in T-ALL patients at the genomic and proteomic levels. Conclusions Higher serum IL-8 levels were associated with the advanced disease stage of the clinicopathological parameters. Our results indicate that monitoring IL-8 has a role in modulating disease sensing in T-ALL and may represent a target for innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sandeep Pandey
- Biochemistry, King George's Medical University, Lucknow, IND
| | - Ranjana Singh
- Biochemistry, King George's Medical University, Lucknow, IND
| | - Nimra Habib
- Biochemistry, King George's Medical University, Lucknow, IND
| | - Vivek Singh
- Biochemistry, King George's Medical University, Lucknow, IND
| | | | - Anil K Tripathi
- Clinical Hematology, King George's Medical University, Lucknow, IND
| | - Abbas A Mahdi
- Biochemistry, King George's Medical University, Lucknow, IND
| |
Collapse
|
19
|
Slama Y, Ah-Pine F, Khettab M, Arcambal A, Begue M, Dutheil F, Gasque P. The Dual Role of Mesenchymal Stem Cells in Cancer Pathophysiology: Pro-Tumorigenic Effects versus Therapeutic Potential. Int J Mol Sci 2023; 24:13511. [PMID: 37686315 PMCID: PMC10488262 DOI: 10.3390/ijms241713511] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells involved in numerous physiological events, including organogenesis, the maintenance of tissue homeostasis, regeneration, or tissue repair. MSCs are increasingly recognized as playing a major, dual, and complex role in cancer pathophysiology through their ability to limit or promote tumor progression. Indeed, these cells are known to interact with the tumor microenvironment, modulate the behavior of tumor cells, influence their functions, and promote distant metastasis formation through the secretion of mediators, the regulation of cell-cell interactions, and the modulation of the immune response. This dynamic network can lead to the establishment of immunoprivileged tissue niches or the formation of new tumors through the proliferation/differentiation of MSCs into cancer-associated fibroblasts as well as cancer stem cells. However, MSCs exhibit also therapeutic effects including anti-tumor, anti-proliferative, anti-inflammatory, or anti-oxidative effects. The therapeutic interest in MSCs is currently growing, mainly due to their ability to selectively migrate and penetrate tumor sites, which would make them relevant as vectors for advanced therapies. Therefore, this review aims to provide an overview of the double-edged sword implications of MSCs in tumor processes. The therapeutic potential of MSCs will be reviewed in melanoma and lung cancers.
Collapse
Affiliation(s)
- Youssef Slama
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Franck Ah-Pine
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Mohamed Khettab
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Angelique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Mickael Begue
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Fabien Dutheil
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
| |
Collapse
|
20
|
Nevárez-Ramírez AJ, Guzmán-Ortiz AL, Cortes-Reynosa P, Perez-Salazar E, Jaimes-Ortega GA, Valle-Rios R, Marín-Hernández Á, Rodríguez-Zavala JS, Ruiz-May E, Castrejón-Flores JL, Quezada H. Shotgun Proteomics of Co-Cultured Leukemic and Bone Marrow Stromal Cells from Different Species as a Preliminary Approach to Detect Intercellular Protein Transfer. Proteomes 2023; 11:proteomes11020015. [PMID: 37092456 PMCID: PMC10123657 DOI: 10.3390/proteomes11020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Cellular interactions within the bone marrow microenvironment modulate the properties of subsets of leukemic cells leading to the development of drug-resistant phenotypes. The intercellular transfer of proteins and organelles contributes to this process but the set of transferred proteins and their effects in the receiving cells remain unclear. This study aimed to detect the intercellular protein transfer from mouse bone marrow stromal cells (OP9 cell line) to human T-lymphoblasts (CCRF-CEM cell line) using nanoLC-MS/MS-based shotgun proteomics in a 3D co-culture system. After 24 h of co-culture, 1513 and 67 proteins from human and mouse origin, respectively, were identified in CCRF-CEM cells. The presence of mouse proteins in the human cell line, detected by analyzing the differences in amino acid sequences of orthologous peptides, was interpreted as the result of intercellular transfer. The transferred proteins might have contributed to the observed resistance to vincristine, methotrexate, and hydrogen peroxide in the co-cultured leukemic cells. Our results suggest that shotgun proteomic analyses of co-cultured cells from different species could be a simple option to get a preliminary survey of the proteins exchanged among interacting cells.
Collapse
Affiliation(s)
- Abraham Josué Nevárez-Ramírez
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Doctores, Mexico City 06720, Mexico
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna, Mexico City 07340, Mexico
| | - Ana Laura Guzmán-Ortiz
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Doctores, Mexico City 06720, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biología Celular, CINVESTAV-IPN, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Eduardo Perez-Salazar
- Departamento de Biología Celular, CINVESTAV-IPN, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Gustavo Alberto Jaimes-Ortega
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Doctores, Mexico City 06720, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Circuito interior, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Ricardo Valle-Rios
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Doctores, Mexico City 06720, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Circuito interior, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Álvaro Marín-Hernández
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Belisario Domínguez—Sección XVI, Mexico City 14080, Mexico
| | - José S. Rodríguez-Zavala
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Belisario Domínguez—Sección XVI, Mexico City 14080, Mexico
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Mexico
| | - José Luis Castrejón-Flores
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna, Mexico City 07340, Mexico
| | - Héctor Quezada
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Doctores, Mexico City 06720, Mexico
| |
Collapse
|
21
|
Sandoval C, Calle Y, Godoy K, Farías J. An Updated Overview of the Role of CYP450 during Xenobiotic Metabolization in Regulating the Acute Myeloid Leukemia Microenvironment. Int J Mol Sci 2023; 24:ijms24076031. [PMID: 37047003 PMCID: PMC10094375 DOI: 10.3390/ijms24076031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Oxidative stress is associated with several acute and chronic disorders, including hematological malignancies such as acute myeloid leukemia, the most prevalent acute leukemia in adults. Xenobiotics are usually harmless compounds that may be detrimental, such as pharmaceuticals, environmental pollutants, cosmetics, and even food additives. The storage of xenobiotics can serve as a defense mechanism or a means of bioaccumulation, leading to adverse effects. During the absorption, metabolism, and cellular excretion of xenobiotics, three steps may be distinguished: (i) inflow by transporter enzymes, (ii) phases I and II, and (iii) phase III. Phase I enzymes, such as those in the cytochrome P450 superfamily, catalyze the conversion of xenobiotics into more polar compounds, contributing to an elevated acute myeloid leukemia risk. Furthermore, genetic polymorphism influences the variability and susceptibility of related myeloid neoplasms, infant leukemias associated with mixed-lineage leukemia (MLL) gene rearrangements, and a subset of de novo acute myeloid leukemia. Recent research has shown a sustained interest in determining the regulators of cytochrome P450, family 2, subfamily E, member 1 (CYP2E1) expression and activity as an emerging field that requires further investigation in acute myeloid leukemia evolution. Therefore, this review suggests that CYP2E1 and its mutations can be a therapeutic or diagnostic target in acute myeloid leukemia.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Yolanda Calle
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - Karina Godoy
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
22
|
Bouligny IM, Maher KR, Grant S. Mechanisms of myeloid leukemogenesis: Current perspectives and therapeutic objectives. Blood Rev 2023; 57:100996. [PMID: 35989139 PMCID: PMC10693933 DOI: 10.1016/j.blre.2022.100996] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic neoplasm which results in clonal proliferation of abnormally differentiated hematopoietic cells. In this review, mechanisms contributing to myeloid leukemogenesis are summarized, highlighting aberrations of epigenetics, transcription factors, signal transduction, cell cycling, and the bone marrow microenvironment. The mechanisms contributing to AML are detailed to spotlight recent findings that convey clinical impact. The applications of current and prospective therapeutic targets are accentuated in addition to reviews of treatment paradigms stratified for each characteristic molecular lesion - with a focus on exploring novel treatment approaches and combinations to improve outcomes in AML.
Collapse
Affiliation(s)
- Ian M Bouligny
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Keri R Maher
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
23
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Bone Marrow Microenvironment as a Source of New Drug Targets for the Treatment of Acute Myeloid Leukaemia. Int J Mol Sci 2022; 24:563. [PMID: 36614005 PMCID: PMC9820412 DOI: 10.3390/ijms24010563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease with one of the worst survival rates of all cancers. The bone marrow microenvironment is increasingly being recognised as an important mediator of AML chemoresistance and relapse, supporting leukaemia stem cell survival through interactions among stromal, haematopoietic progenitor and leukaemic cells. Traditional therapies targeting leukaemic cells have failed to improve long term survival rates, and as such, the bone marrow niche has become a promising new source of potential therapeutic targets, particularly for relapsed and refractory AML. This review briefly discusses the role of the bone marrow microenvironment in AML development and progression, and as a source of novel therapeutic targets for AML. The main focus of this review is on drugs that modulate/target this bone marrow microenvironment and have been examined in in vivo models or clinically.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa F. Lincz
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| |
Collapse
|
24
|
Yüce M, Albayrak E. Hyperthermia-stimulated tonsil-mesenchymal stromal cells suppress hematological cancer cells through downregulation of IL-6. J Cell Biochem 2022; 123:1966-1979. [PMID: 36029519 DOI: 10.1002/jcb.30322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022]
Abstract
There are contradictory reports on the use of mesenchymal stromal cells (MSCs) in cancer therapy. Variable outcomes have been associated with several factors including cancer pathology, experimental procedure, MSC source tissue, and individual genetic differences. It is also known that MSCs exert their therapeutic effects with various paracrine factors released from these cells. The profiles of the factors released from MSCs are altered by heat shock, hypoxia, oxidative stress, starvation or various agents such as inflammatory cytokines, and their therapeutic potential is affected. In this study, the antitumor potential of conditioned media (CM), which contains paracrine factors, of mild hyperthermia-stimulated mesenchymal stromal cells derived from lymphoid organ tonsil tissue (T-MSC) was investigated in comparison with CM obtained from T-MSCs grew under normal culture conditions. CM was obtained from T-MSCs that were successfully isolated from palatine tonsil tissue and characterized. The cytotoxic effect of CM on the growth of hematological cancer cell lines at different concentrations (1:1 and 1:2) was demonstrated by methylthiazoldiphenyl-tetrazolium bromide analysis. In addition, the apoptotic effect of T-MSC-CM treatment was evaluated on the cancer cells using Annexin-V/PI detection method by flow cytometry. The pro/anti-apoptotic and cytokine-related gene expressions were also analyzed by real-time polymerase chain reaction post T-MSC-CM treatment. In conclusion, we demonstrated that the factors released from hyperthermia-stimulated T-MSCs induced apoptosis in hematological cancer cell lines in a dose-dependent manner. Importantly, our results at the transcriptional level support that the factors and cytokines released from hyperthermia-stimulated T-MSC may exert antitumoral effects in cancer cells by downregulation of IL-6 that promotes tumorigenesis. These findings reveal that T-MSC-CM can be a powerful cell-free therapeutical strategy for cancer therapy.
Collapse
Affiliation(s)
- Melek Yüce
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, Atakum/Samsun, Turkey
| | - Esra Albayrak
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, Atakum/Samsun, Turkey
| |
Collapse
|
25
|
Pre-Existing and Acquired Resistance to PARP Inhibitor-Induced Synthetic Lethality. Cancers (Basel) 2022; 14:cancers14235795. [PMID: 36497275 PMCID: PMC9741207 DOI: 10.3390/cancers14235795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The advanced development of synthetic lethality has opened the doors for specific anti-cancer medications of personalized medicine and efficient therapies against cancers. One of the most popular approaches being investigated is targeting DNA repair pathways as the implementation of the PARP inhibitor (PARPi) into individual or combinational therapeutic schemes. Such treatment has been effectively employed against homologous recombination-defective solid tumors as well as hematopoietic malignancies. However, the resistance to PARPi has been observed in both preclinical research and clinical treatment. Therefore, elucidating the mechanisms responsible for the resistance to PARPi is pivotal for the further success of this intervention. Apart from mechanisms of acquired resistance, the bone marrow microenvironment provides a pre-existing mechanism to induce the inefficiency of PARPi in leukemic cells. Here, we describe the pre-existing and acquired mechanisms of the resistance to PARPi-induced synthetic lethality. We also discuss the potential rationales for developing effective therapies to prevent/repress the PARPi resistance in cancer cells.
Collapse
|
26
|
Nachmias B, Zimran E, Avni B. Mesenchymal stroma/stem cells: Haematologists' friend or foe? Br J Haematol 2022; 199:175-189. [PMID: 35667616 PMCID: PMC9796884 DOI: 10.1111/bjh.18292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023]
Abstract
Mesenchymal stromal cells (MSCs) are non-haematopoietic cells found in fetal and adult organs, that play important roles in tissue repair, inflammation and immune modulation. MSCs residing in the bone marrow interact closely with haematopoietic cells and comprise an important component of the microenvironment supporting haematopoiesis, in both health and disease states. Since their identification in 1970, basic scientific and preclinical research efforts have shed light on the role of MSCs in the regulation of haematopoiesis and evoked interest in their clinical application in haematopoietic stem cell transplantation (HSCT) and malignant haematology. Over the last two decades, these research efforts have led to numerous clinical trials, which have established the safety of MSC therapy; however, the optimal mode of administration and the benefit remain inconclusive. In this paper, we will review the clinical experience with use of MSCs in HSCT for enhancement of engraftment, prevention and treatment of graft-versus-host disease and haemorrhagic cystitis. Then, we will discuss the contradictory evidence regarding tumour-promoting versus tumour-suppressing effects of MSCs in haematological malignancies, which may have relevance for future clinical applications.
Collapse
Affiliation(s)
- Boaz Nachmias
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Eran Zimran
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Batia Avni
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| |
Collapse
|
27
|
Luciano M, Krenn PW, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia. Front Immunol 2022; 13:1000996. [PMID: 36248849 PMCID: PMC9554002 DOI: 10.3389/fimmu.2022.1000996] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous malignancy of the blood and bone marrow, characterized by clonal expansion of myeloid stem and progenitor cells and rapid disease progression. Chemotherapy has been the first-line treatment for AML for more than 30 years. Application of recent high-throughput next-generation sequencing technologies has revealed significant molecular heterogeneity to AML, which in turn has motivated efforts to develop new, targeted therapies. However, due to the high complexity of this disease, including multiple driver mutations and the coexistence of multiple competing tumorigenic clones, the successful incorporation of these new agents into clinical practice remains challenging. These continuing difficulties call for the identification of innovative therapeutic approaches that are effective for a larger cohort of AML patients. Recent studies suggest that chronic immune stimulation and aberrant cytokine signaling act as triggers for AML initiation and progression, facets of the disease which might be exploited as promising targets in AML treatment. However, despite the greater appreciation of cytokine profiles in AML, the exact functions of cytokines in AML pathogenesis are not fully understood. Therefore, unravelling the molecular basis of the complex cytokine networks in AML is a prerequisite to develop new therapeutic alternatives based on targeting cytokines and their receptors.
Collapse
Affiliation(s)
- Michela Luciano
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Peter W. Krenn
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
28
|
Ramuta TŽ, Kreft ME. Mesenchymal Stem/Stromal Cells May Decrease Success of Cancer Treatment by Inducing Resistance to Chemotherapy in Cancer Cells. Cancers (Basel) 2022; 14:cancers14153761. [PMID: 35954425 PMCID: PMC9367361 DOI: 10.3390/cancers14153761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Tumours consist of different cell types and an extracellular matrix, all of which together form a complex microenvironment. The tumour microenvironment plays a critical role in various aspects of tumour development and progression. Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells that have a tri-lineage differentiation capacity and are one of the key stromal cells in the tumour microenvironment. Following the interaction with cancer cells, they are transformed from naïve MSCs to tumour-associated MSCs, which substantially affect tumour growth and progression as well as the development of chemoresistance in cancer cells. The aim of this review article is to provide an overview of studies that have investigated how MSCs affect the susceptibility of cancer cells to chemotherapeutics. Their results show that MSCs protect cancer cells from chemotherapeutics by influencing several signalling pathways. This knowledge is crucial for the development of new treatment approaches that will lead to improved treatment outcomes. Abstract The tumour microenvironment, which is comprised of various cell types and the extracellular matrix, substantially impacts tumour initiation, progression, and metastasis. Mesenchymal stem/stromal cells (MSCs) are one of the key stromal cells in the tumour microenvironment, and their interaction with cancer cells results in the transformation of naïve MSCs to tumour-associated MSCs. The latter has an important impact on tumour growth and progression. Recently, it has been shown that they can also contribute to the development of chemoresistance in cancer cells. This review provides an overview of 42 studies published between 1 January 2001 and 1 January 2022 that examined the effect of MSCs on the susceptibility of cancer cells to chemotherapeutics. The studies showed that MSCs affect various signalling pathways in cancer cells, leading to protection against chemotherapy-induced damage. Promising results emerged from the use of inhibitors of various signalling pathways that are affected in cancer cells due to interactions with MSCs in the tumour microenvironment. These studies present a good starting point for the investigation of novel treatment approaches and demonstrate the importance of targeting the stroma in the tumour microenvironment to improve treatment outcomes.
Collapse
|
29
|
Hino C, Pham B, Park D, Yang C, Nguyen MH, Kaur S, Reeves ME, Xu Y, Nishino K, Pu L, Kwon SM, Zhong JF, Zhang KK, Xie L, Chong EG, Chen CS, Nguyen V, Castillo DR, Cao H. Targeting the Tumor Microenvironment in Acute Myeloid Leukemia: The Future of Immunotherapy and Natural Products. Biomedicines 2022; 10:biomedicines10061410. [PMID: 35740430 PMCID: PMC9219790 DOI: 10.3390/biomedicines10061410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) plays an essential role in the development, proliferation, and survival of leukemic blasts in acute myeloid leukemia (AML). Within the bone marrow and peripheral blood, various phenotypically and functionally altered cells in the TME provide critical signals to suppress the anti-tumor immune response, allowing tumor cells to evade elimination. Thus, unraveling the complex interplay between AML and its microenvironment may have important clinical implications and are essential to directing the development of novel targeted therapies. This review summarizes recent advancements in our understanding of the AML TME and its ramifications on current immunotherapeutic strategies. We further review the role of natural products in modulating the TME to enhance response to immunotherapy.
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.H.); (B.P.); (K.N.); (L.P.); (S.M.K.)
| | - Bryan Pham
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.H.); (B.P.); (K.N.); (L.P.); (S.M.K.)
| | - Daniel Park
- Department of Internal Medicine, School of Medicine, University of California San Francisco–Fresno, Fresno, CA 93701, USA;
| | - Chieh Yang
- Department of Internal Medicine, School of Medicine, University of California Riverside, Riverside, CA 92521, USA;
| | - Michael H.K. Nguyen
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Simmer Kaur
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Mark E. Reeves
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Yi Xu
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Kevin Nishino
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.H.); (B.P.); (K.N.); (L.P.); (S.M.K.)
| | - Lu Pu
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.H.); (B.P.); (K.N.); (L.P.); (S.M.K.)
| | - Sue Min Kwon
- Department of Internal Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.H.); (B.P.); (K.N.); (L.P.); (S.M.K.)
| | - Jiang F. Zhong
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA;
| | - Ke K. Zhang
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA; (K.K.Z.); (L.X.)
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA; (K.K.Z.); (L.X.)
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Esther G. Chong
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Chien-Shing Chen
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
| | - Vinh Nguyen
- Department of Biology, University of California Riverside, Riverside, CA 92521, USA;
| | - Dan Ran Castillo
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
- Correspondence: (D.R.C.); (H.C.)
| | - Huynh Cao
- Department of Oncology/Hematology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (M.H.K.N.); (S.K.); (M.E.R.); (Y.X.); (E.G.C.); (C.-S.C.)
- Correspondence: (D.R.C.); (H.C.)
| |
Collapse
|
30
|
Zhang L, Zhao Q, Cang H, Wang Z, Hu X, Pan R, Yang Y, Chen Y. Acute Myeloid Leukemia Cells Educate Mesenchymal Stromal Cells toward an Adipogenic Differentiation Propensity with Leukemia Promotion Capabilities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:2105811. [PMID: 35686138 PMCID: PMC9165478 DOI: 10.1002/advs.202105811] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/16/2022] [Indexed: 05/14/2023]
Abstract
Mesenchymal stromal cells (MSCs) are essential elements of the bone marrow (BM) microenvironment, which have been widely implicated in pathways that contribute to leukemia growth and resistance. Recent reports showed genotypic and phenotypic alterations in leukemia patient-derived MSCs, indicating that MSCs might be educated/reprogrammed. However, the results have been inconclusive, possibly due to the heterogeneity of leukemia. Here, the authors report that acute myeloid leukemia (AML) induces MSCs towards an adipogenic differentiation propensity. RNAseq analysis reveal significant upregulation of gene expression enriched in the adipocyte differentiation process and reduction in osteoblast differentiation. The alteration is accompanied by a metabolic switch from glycolysis to a more oxidative phosphorylation-dependent manner. Mechanistic studies identify that AML cell-derived exosomes play a vital role during the AML cell-mediated MSCs education/reprogramming process. Pre-administration of mice BM microenvironment with AML-derived exosomes greatly enhance leukemia engraftment in vivo. The quantitative proteomic analysis identified a list of exosomal protein components that are differently expressed in AML-derived exosomes, which represent an opportunity for novel therapeutic strategies based on the targeting of exosome-based AML cells-MSCs communication. Collectively, the data show that AML-educated MSCs tend to differentiate into adipocytes contributing to disease progression, which suggests complex interactions of leukemia with microenvironment components.
Collapse
Affiliation(s)
- Luwen Zhang
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| | - Qiong Zhao
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| | - Hui Cang
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| | - Ziqiang Wang
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| | - Xiaojia Hu
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| | - Ruolang Pan
- Zhejiang Provincial Key Laboratory of Cell‐Based Drug and Applied Technology DevelopmentInstitute for Cell‐Based Drug Development of Zhejiang ProvinceS‐Evans BiosciencesHangzhouZhejiang310023China
| | - Yang Yang
- Bone Marrow Transplantation Center, Institute of Hematology, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310004China
| | - Ye Chen
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
31
|
Ruiz-Aparicio PF, Vernot JP. Bone Marrow Aging and the Leukaemia-Induced Senescence of Mesenchymal Stem/Stromal Cells: Exploring Similarities. J Pers Med 2022; 12:jpm12050716. [PMID: 35629139 PMCID: PMC9147878 DOI: 10.3390/jpm12050716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Bone marrow aging is associated with multiple cellular dysfunctions, including perturbed haematopoiesis, the propensity to haematological transformation, and the maintenance of leukaemia. It has been shown that instructive signals from different leukemic cells are delivered to stromal cells to remodel the bone marrow into a supportive leukemic niche. In particular, cellular senescence, a physiological program with both beneficial and deleterious effects on the health of the organisms, may be responsible for the increased incidence of haematological malignancies in the elderly and for the survival of diverse leukemic cells. Here, we will review the connection between BM aging and cellular senescence and the role that these processes play in leukaemia progression. Specifically, we discuss the role of mesenchymal stem cells as a central component of the supportive niche. Due to the specificity of the genetic defects present in leukaemia, one would think that bone marrow alterations would also have particular changes, making it difficult to envisage a shared therapeutic use. We have tried to summarize the coincident features present in BM stromal cells during aging and senescence and in two different leukaemias, acute myeloid leukaemia, with high frequency in the elderly, and B-acute lymphoblastic leukaemia, mainly a childhood disease. We propose that mesenchymal stem cells are similarly affected in these different leukaemias, and that the changes that we observed in terms of cellular function, redox balance, genetics and epigenetics, soluble factor repertoire and stemness are equivalent to those occurring during BM aging and cellular senescence. These coincident features may be used to explore strategies useful to treat various haematological malignancies.
Collapse
Affiliation(s)
- Paola Fernanda Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
32
|
Sidorova OA, Sayed S, Paszkowski-Rogacz M, Seifert M, Camgöz A, Roeder I, Bornhäuser M, Thiede C, Buchholz F. RNAi-Mediated Screen of Primary AML Cells Nominates MDM4 as a Therapeutic Target in NK-AML with DNMT3A Mutations. Cells 2022; 11:cells11050854. [PMID: 35269477 PMCID: PMC8909053 DOI: 10.3390/cells11050854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/22/2022] Open
Abstract
DNA-methyltransferase 3A (DNMT3A) mutations belong to the most frequent genetic aberrations found in adult acute myeloid leukemia (AML). Recent evidence suggests that these mutations arise early in leukemogenesis, marking leukemic progenitors and stem cells, and persist through consolidation chemotherapy, providing a pool for AML relapse. Currently, there are no therapeutic approaches directed specifically against this cell population. To unravel therapeutically actionable targets in mutant DNMT3A-driven AML cells, we have performed a focused RNAi screen in a panel of 30 primary AML samples, all carrying a DNMT3A R882 mutation. As one of the strongest hits, we identified MDM4 as a gene essential for proliferation of primary DNMT3AWT/R882X AML cells. We analyzed a publicly available RNA-Seq dataset of primary normal karyotype (NK) AML samples and found a trend towards MDM4 transcript overexpression particularly in DNMT3A-mutant samples. Moreover, we found that the MDM2/4 inhibitor ALRN-6924 impairs growth of DNMT3AWT/R882X primary cells in vitro by inducing cell cycle arrest through upregulation of p53 target genes. Our results suggest that MDM4 inhibition is a potential target in NK-AML patients bearing DNMT3A R882X mutations.
Collapse
Affiliation(s)
- Olga Alexandra Sidorova
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
| | - Shady Sayed
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (I.R.)
| | - Aylin Camgöz
- Hopp Children’s Cancer Center Heidelberg, 69120 Heidelberg, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (I.R.)
| | - Martin Bornhäuser
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01328 Dresden, Germany
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Christian Thiede
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01328 Dresden, Germany
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Correspondence:
| |
Collapse
|
33
|
Freudenreich M, Tischer J, Kroell T, Kremser A, Dreyßig J, Beibl C, Liepert A, Kolb HJ, Schmid C, Schmetzer H. In Vitro Generated Dendritic Cells of Leukemic Origin Predict Response to Allogeneic Stem Cell Transplantation in Patients With AML and MDS. J Immunother 2022; 45:104-118. [PMID: 34864807 DOI: 10.1097/cji.0000000000000404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022]
Abstract
Allogeneic stem cell transplantation (alloSCT) is the treatment of choice for many patients with acute myeloid leukemia (AML) and myelodysplastic syndrome. The presentation of leukemic or allospecific antigens by malignant blasts is regarded as a crucial trigger for an effective allogeneic immune response. Conversely, insufficient stimulatory capacity by the leukemic blasts is thought to be a relevant escape mechanism from cellular immunotherapy (alloSCT). Our purpose was to test, whether the ability of malignant blasts to differentiate in vitro toward dendritic cells of leukemic origin (DCleu) is associated with clinical outcome. We isolated leukemic blasts from peripheral blood or bone marrow of AML and myelodysplastic syndrome patients before alloSCT (n=47) or at relapse after alloSCT (n=22). A panel of 6 different assays was used to generate DCleu in vitro. Results were correlated with clinical outcome. DCleu could be generated from all 69 samples. Significantly higher mean frequencies of DCleu were found in clinical long-term responders versus nonresponders to SCT (76.8% vs. 58.8%, P=0.006). Vice versa, the chance for response to SCT was significantly higher, if a DCleu+/dendritic cells (DC) ratio of >50% could be reached in vitro (P=0.004). Those patients were characterized by a longer time to relapse (P=0.04) and by a higher probability for leukemia-free survival (P=0.005). In vitro generation of DC and DCleu from leukemic blasts correlated with the clinical outcome. This observation may support a role of leukemic antigen presentation by "leukemia-derived DC" for the stimulation of an allogeneic immune response in AML.
Collapse
Affiliation(s)
- Markus Freudenreich
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Johanna Tischer
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Tanja Kroell
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Andreas Kremser
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Julia Dreyßig
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Christine Beibl
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Anja Liepert
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Hans J Kolb
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Christoph Schmid
- Department of Hematology and Oncology, Universitäts-Klinikum Augsburg, Augsburg, Germany
| | - Helga Schmetzer
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
- Helmholtz Center Munich, German Research Center for Environmental Health/Clinical Cooperative Group Haematopoetic Cell Transplantation (CCG-HCT), Munich
| |
Collapse
|
34
|
Ganesan S, Mathews V, Vyas N. Microenvironment and drug resistance in acute myeloid leukemia: Do we know enough? Int J Cancer 2021; 150:1401-1411. [PMID: 34921734 DOI: 10.1002/ijc.33908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
Abstract
Acute myeloid leukemia (AMLs), as the name suggests, often develop suddenly and are very progressive forms of cancer. Unlike in acute promyelocytic leukemia, a subtype of AML, the outcomes in most other AMLs remain poor. This is mainly attributed to the acquired drug resistance and lack of targeted therapy. Different studies across laboratories suggest that the cellular mechanisms to impart therapy resistance are often very dynamic and should be identified in a context-specific manner. Our review highlights the progress made so far in identifying the different cellular mechanisms of mutation-independent therapy resistance in AML. It reiterates that for more effective outcomes cancer therapies should acquire a more tailored approach where the protective interactions between the cancer cells and their niches are identified and targeted.
Collapse
Affiliation(s)
- Saravanan Ganesan
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Neha Vyas
- Division of Molecular Medicine, St. John's Research Institute, SJNAHS, Bengaluru, India
| |
Collapse
|
35
|
Emerging Bone Marrow Microenvironment-Driven Mechanisms of Drug Resistance in Acute Myeloid Leukemia: Tangle or Chance? Cancers (Basel) 2021; 13:cancers13215319. [PMID: 34771483 PMCID: PMC8582363 DOI: 10.3390/cancers13215319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Despite high rates of remission obtained with conventional chemotherapy, the persistence of leukemic cells after treatments, eventually exiting in disease relapse, remains the main challenge in acute myeloid leukemia (AML). Increasing evidence indicates that, besides AML cell mutations, stromal and immune cells, as leukemic microenvironment components, may protect AML cells from therapies. Here, we will recapitulate emerging bone marrow (BM) microenvironment-dependent mechanisms of therapy resistance. The understanding of these processes will help find new drug combinations and conceive novel and more effective treatments. Abstract Acute myeloid leukemia (AML) has been considered for a long time exclusively driven by critical mutations in hematopoietic stem cells. Recently, the contribution of further players, such as stromal and immune bone marrow (BM) microenvironment components, to AML onset and progression has been pointed out. In particular, mesenchymal stromal cells (MSCs) steadily remodel the leukemic niche, not only favoring leukemic cell growth and development but also tuning their responsiveness to treatments. The list of mechanisms driven by MSCs to promote a leukemia drug-resistant phenotype has progressively expanded. Moreover, the relative proportion and the activation status of immune cells in the BM leukemic microenvironment may vary by influencing their reactivity against leukemic cells. In that, the capacity of the stroma to re-program immune cells, thus promoting and/or hampering therapeutic efficacy, is emerging as a crucial aspect in AML biology, adding an extra layer of complexity. Current treatments for AML have mainly focused on eradicating leukemia cells, with little consideration for the leukemia-damaged BM niche. Increasing evidence on the contribution of stromal and immune cells in response to therapy underscores the need to hold the mutual interplay, which takes place in the BM. A careful dissection of these interactions will help provide novel applications for drugs already under experimentation and open a wide array of opportunities for new drug discovery.
Collapse
|
36
|
Gynn LE, Anderson E, Robinson G, Wexler SA, Upstill-Goddard G, Cox C, May JE. Primary mesenchymal stromal cells in co-culture with leukaemic HL-60 cells are sensitised to cytarabine-induced genotoxicity, whilst leukaemic cells are protected. Mutagenesis 2021; 36:419-428. [PMID: 34505878 PMCID: PMC8633936 DOI: 10.1093/mutage/geab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
Tumour microenvironments are hallmarked in many cancer types. In haematological malignancies, bone marrow (BM) mesenchymal stromal cells (MSC) protect malignant cells from drug-induced cytotoxicity. However, less is known about malignant impact on supportive stroma. Notably, it is unknown whether these interactions alter long-term genotoxic damage in either direction. The nucleoside analogue cytarabine (ara-C), common in haematological therapies, remains the most effective agent for acute myeloid leukaemia, yet one third of patients develop resistance. This study aimed to evaluate the bidirectional effect of MSC and malignant cell co-culture on ara-C genotoxicity modulation. Primary MSC, isolated from patient BM aspirates for haematological investigations, and malignant haematopoietic cells (leukaemic HL-60) were co-cultured using trans-well inserts, prior to treatment with physiological dose ara-C. Co-culture genotoxic effects were assessed by micronucleus and alkaline comet assays. Patient BM cells from chemotherapy-treated patients had reduced ex vivo survival (P = 0.0049) and increased genotoxicity (P = 0.3172) than untreated patients. It was shown for the first time that HL-60 were protected by MSC from ara-C-induced genotoxicity, with reduced MN incidence in co-culture as compared to mono-culture (P = 0.0068). Comet tail intensity also significantly increased in ara-C-treated MSC with HL-60 influence (P = 0.0308). MSC sensitisation to ara-C genotoxicity was also demonstrated following co-culture with HL60 (P = 0.0116), which showed significantly greater sensitisation when MSC-HL-60 co-cultures were exposed to ara-C (P = 0.0409). This study shows for the first time that malignant HSC and MSC bidirectionally modulate genotoxicity, providing grounding for future research identifying mechanisms of altered genotoxicity in leukaemic microenvironments. MSC retain long-term genotoxic and functional damage following chemotherapy exposure. Understanding the interactions perpetuating such damage may inform modifications to reduce therapy-related complications, such as secondary malignancies and BM failure.
Collapse
Affiliation(s)
- Liana E Gynn
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Elizabeth Anderson
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Gareth Robinson
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Sarah A Wexler
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Royal United Hospitals Bath NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Gillian Upstill-Goddard
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Royal United Hospitals Bath NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Christine Cox
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Royal United Hospitals Bath NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Jennifer E May
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
37
|
Joshi SK, Nechiporuk T, Bottomly D, Piehowski PD, Reisz JA, Pittsenbarger J, Kaempf A, Gosline SJC, Wang YT, Hansen JR, Gritsenko MA, Hutchinson C, Weitz KK, Moon J, Cendali F, Fillmore TL, Tsai CF, Schepmoes AA, Shi T, Arshad OA, McDermott JE, Babur O, Watanabe-Smith K, Demir E, D'Alessandro A, Liu T, Tognon CE, Tyner JW, McWeeney SK, Rodland KD, Druker BJ, Traer E. The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance. Cancer Cell 2021; 39:999-1014.e8. [PMID: 34171263 PMCID: PMC8686208 DOI: 10.1016/j.ccell.2021.06.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/22/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022]
Abstract
Our study details the stepwise evolution of gilteritinib resistance in FLT3-mutated acute myeloid leukemia (AML). Early resistance is mediated by the bone marrow microenvironment, which protects residual leukemia cells. Over time, leukemia cells evolve intrinsic mechanisms of resistance, or late resistance. We mechanistically define both early and late resistance by integrating whole-exome sequencing, CRISPR-Cas9, metabolomics, proteomics, and pharmacologic approaches. Early resistant cells undergo metabolic reprogramming, grow more slowly, and are dependent upon Aurora kinase B (AURKB). Late resistant cells are characterized by expansion of pre-existing NRAS mutant subclones and continued metabolic reprogramming. Our model closely mirrors the timing and mutations of AML patients treated with gilteritinib. Pharmacological inhibition of AURKB resensitizes both early resistant cell cultures and primary leukemia cells from gilteritinib-treated AML patients. These findings support a combinatorial strategy to target early resistant AML cells with AURKB inhibitors and gilteritinib before the expansion of pre-existing resistance mutations occurs.
Collapse
MESH Headings
- Aniline Compounds/pharmacology
- Aurora Kinase B/genetics
- Aurora Kinase B/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Drug Resistance, Neoplasm
- Exome
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Metabolome
- Protein Kinase Inhibitors/pharmacology
- Proteome
- Pyrazines/pharmacology
- Tumor Cells, Cultured
- Tumor Microenvironment
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Department of Physiology & Pharmacology, School of Medicine, Oregon Health & Science University, Portland, OR, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Tamilla Nechiporuk
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Paul D Piehowski
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Janét Pittsenbarger
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Andy Kaempf
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Sara J C Gosline
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Joshua R Hansen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chelsea Hutchinson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas L Fillmore
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Osama A Arshad
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ozgun Babur
- Department of Computer Science, University of Massachusetts, Boston, MA, USA
| | - Kevin Watanabe-Smith
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
| | - Emek Demir
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA; Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
38
|
Yao Y, Li F, Huang J, Jin J, Wang H. Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development. Exp Hematol Oncol 2021; 10:39. [PMID: 34246314 PMCID: PMC8272391 DOI: 10.1186/s40164-021-00233-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the advances in intensive chemotherapy regimens and targeted therapies, overall survival (OS) of acute myeloid leukemia (AML) remains unfavorable due to inevitable chemotherapy resistance and high relapse rate, which mainly caused by the persistence existence of leukemia stem cells (LSCs). Bone marrow microenvironment (BMM), the home of hematopoiesis, has been considered to play a crucial role in both hematopoiesis and leukemogenesis. When interrupted by the AML cells, a malignant BMM formed and thus provided a refuge for LSCs and protecting them from the cytotoxic effects of chemotherapy. In this review, we summarized the alterations in the bidirectional interplay between hematopoietic cells and BMM in the normal/AML hematopoietic environment, and pointed out the key role of these alterations in pathogenesis and chemotherapy resistance of AML. Finally, we focused on the current potential BMM-targeted strategies together with future prospects and challenges. Accordingly, while further research is necessary to elucidate the underlying mechanisms behind LSC–BMM interaction, targeting the interaction is perceived as a potential therapeutic strategy to eradicate LSCs and ultimately improve the outcome of AML.
Collapse
Affiliation(s)
- Yiyi Yao
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310000, Zhejiang, People's Republic of China.
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310000, Zhejiang, People's Republic of China.
| |
Collapse
|
39
|
Li B, Jia R, Li W, Zhou Y, Guo D, Teng Q, Du S, Li M, Li W, Sun T, Ma D, Ji M, Ji C. PAK1 Mediates Bone Marrow Stromal Cell-Induced Drug Resistance in Acute Myeloid Leukemia via ERK1/2 Signaling Pathway. Front Cell Dev Biol 2021; 9:686695. [PMID: 34307365 PMCID: PMC8297649 DOI: 10.3389/fcell.2021.686695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background Chemoresistance is emerging as a major barrier to successful treatment in acute myeloid leukemia (AML), and bone marrow stromal cells (BMSCs) protect leukemia cells from chemotherapy eventually leading to recurrence. This study was designed to investigate the role of p21-activated kinase 1 (PAK1) in AML progression and chemosensitivity, highlighting the mechanism of stroma-mediated chemoresistance. Methods The GEPIA and TCGA datasets were used to analyze the relationship between PAK1 mRNA expression and various clinical parameters of AML patients. Cell proliferation and apoptosis were examined to evaluate the role of PAK1 on chemosensitivity in AML by silencing PAK1 with shRNA or small molecular inhibitor. Human BMSC (HS-5) was utilized to mimic the leukemia bone marrow microenvironment (BMM) in vitro, and co-culture model was established to investigate the role of PAK1 in BMSC-mediated drug resistance. Results p21-activated kinase 1 high expression was shown to be associated with shorter overall survival in AML patients. The silence of PAK1 could repress cell proliferation, promote apoptosis, and enhance the sensitivity of AML cells to chemotherapeutic agents. More importantly, BMSCs induced PAK1 up-regulation in AML cells, subsequently activating the ERK1/2 signaling pathway. The effect of BMSC-mediated apoptotic-resistance could be partly reversed by knock down of PAK1. Conclusion p21-activated kinase 1 is a potential prognostic predictor for AML patients. PAK1 may play a pivotal role in mediating BMM-induced drug resistance, representing a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Banban Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Taian City Central Hospital, Taian, China
| | - Ruinan Jia
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongmei Guo
- Department of Hematology, Taian City Central Hospital, Taian, China
| | - Qingliang Teng
- Department of Hematology, Taian City Central Hospital, Taian, China
| | - Shenghong Du
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Taian City Central Hospital, Taian, China
| | - Mingying Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wěi Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Min Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
40
|
Kapor S, Santibanez JF. Myeloid-Derived Suppressor Cells and Mesenchymal Stem/Stromal Cells in Myeloid Malignancies. J Clin Med 2021; 10:2788. [PMID: 34202907 PMCID: PMC8268878 DOI: 10.3390/jcm10132788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Myeloid malignancies arise from an altered hematopoietic stem cell and mainly comprise acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic leukemic cells may influence the growth and differentiation of other hematopoietic cell lineages in peripheral blood and bone marrow. Myeloid-derived suppressor cells (MDSCs) and mesenchymal stromal cells (MSCs) display immunoregulatory properties by controlling the innate and adaptive immune systems that may induce a tolerant and supportive microenvironment for neoplasm development. This review analyzes the main features of MDSCs and MSCs in myeloid malignancies. The number of MDSCs is elevated in myeloid malignancies exhibiting high immunosuppressive capacities, whereas MSCs, in addition to their immunosuppression contribution, regulate myeloid leukemia cell proliferation, apoptosis, and chemotherapy resistance. Moreover, MSCs may promote MDSC expansion, which may mutually contribute to the creation of an immuno-tolerant neoplasm microenvironment. Understanding the implication of MDSCs and MSCs in myeloid malignancies may favor their potential use in immunotherapeutic strategies.
Collapse
Affiliation(s)
- Suncica Kapor
- Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan F. Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, 8370993 Santiago, Chile
| |
Collapse
|
41
|
Kapor S, Santibanez JF. Myeloid-Derived Suppressor Cells and Mesenchymal Stem/Stromal Cells in Myeloid Malignancies. J Clin Med 2021. [PMID: 34202907 DOI: 10.3390/jcm10132788.pmid:34202907;pmcid:pmc8268878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Myeloid malignancies arise from an altered hematopoietic stem cell and mainly comprise acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic leukemic cells may influence the growth and differentiation of other hematopoietic cell lineages in peripheral blood and bone marrow. Myeloid-derived suppressor cells (MDSCs) and mesenchymal stromal cells (MSCs) display immunoregulatory properties by controlling the innate and adaptive immune systems that may induce a tolerant and supportive microenvironment for neoplasm development. This review analyzes the main features of MDSCs and MSCs in myeloid malignancies. The number of MDSCs is elevated in myeloid malignancies exhibiting high immunosuppressive capacities, whereas MSCs, in addition to their immunosuppression contribution, regulate myeloid leukemia cell proliferation, apoptosis, and chemotherapy resistance. Moreover, MSCs may promote MDSC expansion, which may mutually contribute to the creation of an immuno-tolerant neoplasm microenvironment. Understanding the implication of MDSCs and MSCs in myeloid malignancies may favor their potential use in immunotherapeutic strategies.
Collapse
Affiliation(s)
- Suncica Kapor
- Clinical Hospital Center "Dr Dragisa Misovic-Dedinje", Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan F Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993 Santiago, Chile
| |
Collapse
|
42
|
Michelozzi IM, Kirtsios E, Giustacchini A. Driving CAR T Stem Cell Targeting in Acute Myeloid Leukemia: The Roads to Success. Cancers (Basel) 2021; 13:2816. [PMID: 34198742 PMCID: PMC8201025 DOI: 10.3390/cancers13112816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Current treatment outcome for acute myeloid leukemia (AML) patients is unsatisfactory and characterized by high rates of relapse and poor overall survival. Increasing evidence points to a crucial role of leukemic stem cells (LSC) and the bone marrow (BM) leukemic niche, in which they reside, in AML evolution and chemoresistance. Thus, future strategies aiming at improving AML therapeutic protocols are likely to be directed against LSC and their niche. Chimeric antigen receptor (CAR) T-cells have been extremely successful in the treatment of relapsed/refractory acute lymphoblastic leukemia and B-cell non-Hodgkin lymphoma and comparable results in AML are highly desirable. At present, we are at the dawn of CAR T-cell application in AML, with several preclinical studies and few early phase clinical trials. However, the lack of leukemia-specific targets and the genetic and phenotypic heterogeneity of the disease combined with the leukemia-induced remodeling of the BM microenvironment are limiting CAR T-cell exploitation in AML. Here, we reviewed AML-LSC and AML-BM niche features in the context of their therapeutic targeting using CAR T-cells. We summarized recent progress in CAR T-cell application to the treatment of AML, and we discussed the remaining therapeutic challenges and promising novel strategies to overcome them.
Collapse
Affiliation(s)
- Ilaria M. Michelozzi
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London WC1N 1DZ, UK;
| | | | - Alice Giustacchini
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London WC1N 1DZ, UK;
| |
Collapse
|
43
|
Deeg HJ. Chimerism, the Microenvironment and Control of Leukemia. Front Immunol 2021; 12:652105. [PMID: 33968052 PMCID: PMC8100309 DOI: 10.3389/fimmu.2021.652105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022] Open
Abstract
Transplantation of allogeneic hematopoietic cells faces two barriers: failure of engraftment due to a host versus graft reaction, and the attack of donor cells against the patient, the graft versus host (GVH) reaction. This reaction may lead to GVH disease (GVHD), but in patients transplanted due to leukemia or other malignant disorders, this may also convey the benefit of a graft versus leukemia (GVL) effect. The interplay of transplant conditioning with donor and host cells and the environment in the patient is complex. The microbiome, particularly in the intestinal tract, profoundly affects these interactions, directly and via soluble mediators, which also reach other host organs. The microenvironment is further altered by the modifying effect of malignant cells on marrow niches, favoring the propagation of the malignant cells. The development of stable mixed donor/host chimerism has the potential of GVHD prevention without necessarily increasing the risk of relapse. There has been remarkable progress with novel conditioning regimens and selective T-cell manipulation aimed at securing engraftment while preventing GVHD without ablating the GVL effect. Interventions to alter the microenvironment and change the composition of the microbiome and its metabolic products may modify graft/host interactions, thereby further reducing GVHD, while enhancing the GVL effect. The result should be improved transplant outcome.
Collapse
Affiliation(s)
- H. Joachim Deeg
- Fred Hutchinson Cancer Research Center and the University of Washington, Seattle, WA, United States
| |
Collapse
|
44
|
Li L, Zhao L, Man J, Liu B. CXCL2 benefits acute myeloid leukemia cells in hypoxia. Int J Lab Hematol 2021; 43:1085-1092. [PMID: 33793061 DOI: 10.1111/ijlh.13512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Drug resistance and relapse of acute myeloid leukemia (AML) is still an important problem in the treatment of leukemia. Leukemia outbreak causes severe hypoxia in bone marrow (BM), remolding BM microenvironment (niche), and transforming hematopoietic stem cell (HSC) niche into leukemia stem cell (LSC) niche. AML cells and the microenvironment usually conduct "cross-talk" through cytokines to anchor resistant AML cells into LSC niche, thus supporting their survival. Therefore, this study was aimed to investigate the role of CXCL2 in the hypoxic AML niche. METHODS AML hypoxic niche was simulated by hypoxic culture of THP-1 and HL-60 cells in vitro, thus to study the effects of CXCL2 on the proliferation and migration of AML cells. The expression of hypoxia-inducible factor-1α (HIF-1α) and the activation of survival-related kinases such as PIM2 and mTOR under CoCl2 -simulated hypoxic conditions were detected. The correlation between CXCL2 and the prognosis of AML with big data was verified. RESULTS (a) CXCL2 promoted the proliferation and migration of AML cells. (b) CXCL2 up-regulated the expression of PIM2 by enhancing the transcriptional activity of HIF-1α. (c) CXCL2 activated mTOR in AML cells. (d) CXCL2 was associated with poor prognosis in AML. CONCLUSION CXCL2 promotes survival, migration, and drug resistance pathway of AML cells in hypoxia and is associated with poor prognosis in AML. Therefore, CXCL2 can be considered as an important factor in promoting the development of AML cells in hypoxia.
Collapse
Affiliation(s)
- Lijun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Li Zhao
- Central Laboratory, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - Jiancheng Man
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
45
|
Sletta KY, Castells O, Gjertsen BT. Colony Stimulating Factor 1 Receptor in Acute Myeloid Leukemia. Front Oncol 2021; 11:654817. [PMID: 33842370 PMCID: PMC8027480 DOI: 10.3389/fonc.2021.654817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive heterogeneous blood cancer derived from hematopoietic stem cells. Tumor-stromal interactions in AML are of importance for disease development and therapy resistance, and bone marrow stroma seem like an attractive therapeutic target. Of particular interest is colony stimulating factor 1 receptor (CSF1R, M-CSFR, c-FMS, CD115) and its role in regulating plasticity of tumor-associated macrophages. We discuss first the potential of CSF1R-targeted therapy as an attractive concept with regards to the tumor microenvironment in the bone marrow niche. A second therapy approach, supported by preclinical research, also suggests that CSF1R-targeted therapy may increase the beneficial effect of conventional and novel therapeutics. Experimental evidence positioning inhibitors of CSF1R as treatment should, together with data from preclinical and early phase clinical trials, facilitate translation and clinical development of CSF1R-targeted therapy for AML.
Collapse
Affiliation(s)
- Kristine Yttersian Sletta
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
| | - Oriol Castells
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Tore Gjertsen
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
46
|
Pullarkat VA, Lacayo NJ, Jabbour E, Rubnitz JE, Bajel A, Laetsch TW, Leonard J, Colace SI, Khaw SL, Fleming SA, Mattison RJ, Norris R, Opferman JT, Roberts KG, Zhao Y, Qu C, Badawi M, Schmidt M, Tong B, Pesko JC, Sun Y, Ross JA, Vishwamitra D, Rosenwinkel L, Kim SY, Jacobson A, Mullighan CG, Alexander TB, Stock W. Venetoclax and Navitoclax in Combination with Chemotherapy in Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Cancer Discov 2021; 11:1440-1453. [PMID: 33593877 DOI: 10.1158/2159-8290.cd-20-1465] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
Combining venetoclax, a selective BCL2 inhibitor, with low-dose navitoclax, a BCL-XL/BCL2 inhibitor, may allow targeting of both BCL2 and BCL-XL without dose-limiting thrombocytopenia associated with navitoclax monotherapy. The safety and preliminary efficacy of venetoclax with low-dose navitoclax and chemotherapy was assessed in this phase I dose-escalation study (NCT03181126) in pediatric and adult patients with relapsed/refractory (R/R) acute lymphoblastic leukemia or lymphoblastic lymphoma. Forty-seven patients received treatment. A recommended phase II dose of 50 mg navitoclax for adults and 25 mg for patients <45 kg with 400 mg adult-equivalent venetoclax was identified. Delayed hematopoietic recovery was the primary safety finding. The complete remission rate was 60%, including responses in patients who had previously received hematopoietic cell transplantation or immunotherapy. Thirteen patients (28%) proceeded to transplantation or CAR T-cell therapy on study. Venetoclax with navitoclax and chemotherapy was well tolerated and had promising efficacy in this heavily pretreated patient population. SIGNIFICANCE: In this phase I study, venetoclax with low-dose navitoclax and chemotherapy was well tolerated and had promising efficacy in patients with relapsed/refractory acute lymphoblastic leukemia or lymphoblastic lymphoma. Responses were observed in patients across histologic and genomic subtypes and in those who failed available therapies including stem cell transplant.See related commentary by Larkin and Byrd, p. 1324.This article is highlighted in the In This Issue feature, p. 1307.
Collapse
Affiliation(s)
- Vinod A Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California.
| | - Norman J Lacayo
- Department of Pediatrics - Hematology/Oncology, Stanford University, Palo Alto, California
| | - Elias Jabbour
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ashish Bajel
- Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Theodore W Laetsch
- Department of Pediatrics, The University of Texas Southwestern Medical Center/Children's Health, Dallas, Texas.,Division of Oncology, Children's Hospital of Philadelphia/University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica Leonard
- Department of Hematology/Medical Oncology, Oregon Health Sciences University, Portland, Oregon
| | - Susan I Colace
- Pediatrics - Hematology and Oncology, Nationwide Children's Hospital, Columbus, Ohio
| | | | - Shaun A Fleming
- Department of Hematology, The Alfred Hospital and Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Ryan J Mattison
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Robin Norris
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yaqi Zhao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | - Bo Tong
- AbbVie Inc., North Chicago, Illinois
| | | | - Yan Sun
- AbbVie Inc., North Chicago, Illinois
| | | | | | | | | | | | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Thomas B Alexander
- Department of Pediatrics, The University of North Carolina, Chapel Hill, North Carolina
| | - Wendy Stock
- The University of Chicago Medicine, Chicago, Illinois
| |
Collapse
|
47
|
Miranda MA, Marcato PD, Mondal A, Chowdhury N, Gebeyehu A, Surapaneni SK, Bentley MVLB, Amaral R, Pan CX, Singh M. Cytotoxic and chemosensitizing effects of glycoalkaloidic extract on 2D and 3D models using RT4 and patient derived xenografts bladder cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111460. [PMID: 33321591 PMCID: PMC8694857 DOI: 10.1016/j.msec.2020.111460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 01/06/2023]
Abstract
Glycoalkaloids have been widely demonstrated as potential anticancer agents. However, the chemosensitizing effect of these compounds with traditional chemotherapeutic agents has not been explored yet. In a quest for novel effective therapies to treat bladder cancer (BC), we evaluated the chemosensitizing potential of glycoalkaloidic extract (GE) with cisplatin (cDDP) in RT4 and PDX cells using 2D and 3D cell culture models. Additionally, we also investigated the underlying molecular mechanism behind this effect in RT4 cells. Herein, we observed that PDX cells were highly resistant to cisplatin when compared to RT4 cells. IC50 values showed at least 2.16-folds and 1.4-folds higher in 3D cultures when compared to 2D monolayers in RT4 cells and PDX cells, respectively. GE + cDDP inhibited colony formation (40%) and migration (28.38%) and induced apoptosis (57%) in RT4 cells. Combination therapy induced apoptosis by down-regulating the expression of Bcl-2 (p < 0.001), Bcl-xL (p < 0.001) and survivin (p < 0.01), and activating the caspase cascade in RT4 cells. Moreover, decreased expression of MMP-2 and 9 (p < 0.01) were observed with combination therapy, implying its effect on cell invasion/migration. Furthermore, we used 3D bioprinting to grow RT4 spheroids using sodium alginate-gelatin as a bioink and evaluated the effect of GE + cDDP on this system. Cell viability assay showed the chemosensitizing effect of GE with cDDP on bio-printed spheroids. In summary, we showed the cytotoxicity effect of GE on BC cells and also demonstrated that GE could sensitize BC cells to chemotherapy.
Collapse
Affiliation(s)
- Mariza Abreu Miranda
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Priscyla Daniely Marcato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| | - Arindam Mondal
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Nusrat Chowdhury
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Aragaw Gebeyehu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | - Robson Amaral
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Chong-Xian Pan
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
48
|
Chong SJF, Iskandar K, Lai JXH, Qu J, Raman D, Valentin R, Herbaux C, Collins M, Low ICC, Loh T, Davids M, Pervaiz S. Serine-70 phosphorylated Bcl-2 prevents oxidative stress-induced DNA damage by modulating the mitochondrial redox metabolism. Nucleic Acids Res 2021; 48:12727-12745. [PMID: 33245769 PMCID: PMC7736805 DOI: 10.1093/nar/gkaa1110] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Bcl-2 phosphorylation at serine-70 (S70pBcl2) confers resistance against drug-induced apoptosis. Nevertheless, its specific mechanism in driving drug-resistance remains unclear. We present evidence that S70pBcl2 promotes cancer cell survival by acting as a redox sensor and modulator to prevent oxidative stress-induced DNA damage and execution. Increased S70pBcl2 levels are inversely correlated with DNA damage in chronic lymphocytic leukemia (CLL) and lymphoma patient-derived primary cells as well as in reactive oxygen species (ROS)- or chemotherapeutic drug-treated cell lines. Bioinformatic analyses suggest that S70pBcl2 is associated with lower median overall survival in lymphoma patients. Empirically, sustained expression of the redox-sensitive S70pBcl2 prevents oxidative stress-induced DNA damage and cell death by suppressing mitochondrial ROS production. Using cell lines and lymphoma primary cells, we further demonstrate that S70pBcl2 reduces the interaction of Bcl-2 with the mitochondrial complex-IV subunit-5A, thereby reducing mitochondrial complex-IV activity, respiration and ROS production. Notably, targeting S70pBcl2 with the phosphatase activator, FTY720, is accompanied by an enhanced drug-induced DNA damage and cell death in CLL primary cells. Collectively, we provide a novel facet of the anti-apoptotic Bcl-2 by demonstrating that its phosphorylation at serine-70 functions as a redox sensor to prevent drug-induced oxidative stress-mediated DNA damage and execution with potential therapeutic implications.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kartini Iskandar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jolin Xiao Hui Lai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jianhua Qu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Deepika Raman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Rebecca Valentin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charles Herbaux
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mary Collins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ivan Cherh Chiet Low
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Thomas Loh
- Department of Otolaryngology, National University of Healthcare System (NUHS), Singapore, Singapore
| | - Matthew Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,NUS Graduate School of Integrative Science and Engineering, NUS, Singapore, Singapore.,National University Cancer Institute, NUHS, Singapore, Singapore.,Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
49
|
Lee HR, Lee GY, Kim EW, Kim HJ, Lee M, Humphries RK, Oh IH. Reversible switching of leukemic cells to a drug-resistant, stem-like subset via IL-4 mediated cross-talk with mesenchymal stroma. Haematologica 2021; 107:381-392. [PMID: 33440923 PMCID: PMC8804570 DOI: 10.3324/haematol.2020.269944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 11/13/2022] Open
Abstract
Chemoresistance of leukemic cells has largely been attributed to clonal evolution secondary to accumulating mutations. Here, we show that a subset of leukemic blasts in contact with the mesenchymal stroma undergo cellular conversion into a distinct cell type that exhibits a stem cell-like phenotype and chemoresistance. These stroma-induced changes occur in a reversible and stochastic manner driven by cross-talk, whereby stromal contact induces interleukin-4 in leukemic cells that in turn targets the mesenchymal stroma to facilitate the development of new subset. This mechanism was dependent on interleukin-4-mediated upregulation of vascular cell adhesion molecule- 1 in mesenchymal stroma, causing tight adherence of leukemic cells to mesenchymal progenitors for generation of new subsets. Together, our study reveals another class of chemoresistance in leukemic blasts via functional evolution through stromal cross-talk, and demonstrates dynamic switching of leukemic cell fates that could cause a non-homologous response to chemotherapy in concert with the patient-specific microenvironment.
Collapse
Affiliation(s)
- Hae-Ri Lee
- Catholic High-Performance Cell Therapy Center and Department of Medical Life Science, College of Medicine, The Catholic University, Seoul
| | - Ga-Young Lee
- Catholic High-Performance Cell Therapy Center and Department of Medical Life Science, College of Medicine, The Catholic University, Seoul
| | - Eung-Won Kim
- Catholic High-Performance Cell Therapy Center and Department of Medical Life Science, College of Medicine, The Catholic University, Seoul
| | - Hee-Je Kim
- Division of Hematology, Department of Internal Medicine, St Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang-si, Gyeonggi-do
| | - R Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada; Department of Medicine, University of British Columbia, Vancouver
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center and Department of Medical Life Science, College of Medicine, The Catholic University, Seoul.
| |
Collapse
|
50
|
Yu Z, Du J, Hui H, Kan S, Huo T, Zhao K, Wu T, Guo Q, Lu N. LT-171-861, a novel FLT3 inhibitor, shows excellent preclinical efficacy for the treatment of FLT3 mutant acute myeloid leukemia. Am J Cancer Res 2021; 11:93-106. [PMID: 33391463 PMCID: PMC7681098 DOI: 10.7150/thno.46593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Acute myeloid leukemia (AML) is a common type of haematological malignancy. Several studies have shown that neoplasia in AML is enhanced by tyrosine kinase pathways. Recently, given that aberrant activation of Fms-like tyrosine receptor kinase 3 (FLT3) acts as a critical survival signal for cancer cells in 20‒30% patients with AML, inhibition of FLT3 may be a potential therapeutic strategy. Therefore, we identified LT-171-861, a novel kinase inhibitor with remarkable inhibitory activity against FLT3, in preclinical models of AML. Methods: We determined the inhibitory effects of LT-171-861 in vitro using AML cell lines and transformed BaF3 cells. Target engagement assays were used to verify the interaction between LT-171-861 and FLT3. Finally, a subcutaneous model and a bone marrow engrafted model were used to evaluate the antitumor effects of LT‑171‑861 in vivo. Results: Our data demonstrated that LT-171-861 had high affinity for FLT3 protein. We also showed that LT-171-861 had an inhibitory effect on FLT3 mutants in cellular assays. Moreover, LT-171-861 had a growth-inhibitory effect on human AML cell lines harboring FLT3 internal tandem duplications (FLT3-ITD) such as FLT3-D835Y, FLT3‑ITD-N676D, FLT3-ITD-D835Y, FLT3-ITD-F691L, FLT3-ITD-Y842C and AML blasts from patients with FLT3-ITD. Furthermore, LT-171-861 showed potent antileukemic efficacy against AML cells. We also show the efficacy of LT‑171-861 in a subcutaneous implantation model and a bone marrow engrafted model in vivo, where administration of LT-171-861 led to almost complete tumor regression and increased survival. Conclusions: Overall, this study not only identifies LT-171-861 as a potent FLT3 inhibitor, but also provides a rationale for the upcoming clinical trial of LT-171-861 in patients with AML and FLT3-ITD mutations.
Collapse
|