1
|
Martín-García D, García-Aranda M, Redondo M. Biomarker Identification through Proteomics in Colorectal Cancer. Int J Mol Sci 2024; 25:2283. [PMID: 38396959 PMCID: PMC10888664 DOI: 10.3390/ijms25042283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Colorectal cancer (CRC) is a devastating disease that ranks third in diagnosis and as the second leading cause of cancer-related deaths. The early detection of CRC has been shown to be the most effective strategy to improve treatment outcomes and patient survival. Therefore, current lines of research focus on the development of reliable diagnostic tools. Targeted therapies, in combination with standard chemotherapy and immune checkpoint inhibitors, have emerged as promising treatment protocols in CRC. However, their effectiveness is linked to the molecular characteristics of each patient. The importance of discovering biomarkers that help predict response to therapies and assess prognosis is evident as they allow for a fundamental step towards personalized care and successful treatments. Among the ongoing efforts to identify them, mass spectrometry-based translational proteomics presents itself as a unique opportunity as it enables the discovery and application of protein biomarkers that may revolutionize the early detection and treatment of CRC. Our objective is to show the most recent studies focused on the identification of CRC-related protein markers, as well as to provide an updated view of advances in the field of proteomics and cancer.
Collapse
Affiliation(s)
- Desirée Martín-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Universitario Costa del Sol, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Universitario Costa del Sol, 29602 Marbella, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Universitario Costa del Sol, 29602 Marbella, Spain
| |
Collapse
|
2
|
Nieddu G, Formato M, Lepedda AJ. Searching for Atherosclerosis Biomarkers by Proteomics: A Focus on Lesion Pathogenesis and Vulnerability. Int J Mol Sci 2023; 24:15175. [PMID: 37894856 PMCID: PMC10607641 DOI: 10.3390/ijms242015175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Plaque rupture and thrombosis are the most important clinical complications in the pathogenesis of stroke, coronary arteries, and peripheral vascular diseases. The identification of early biomarkers of plaque presence and susceptibility to ulceration could be of primary importance in preventing such life-threatening events. With the improvement of proteomic tools, large-scale technologies have been proven valuable in attempting to unravel pathways of atherosclerotic degeneration and identifying new circulating markers to be utilized either as early diagnostic traits or as targets for new drug therapies. To address these issues, different matrices of human origin, such as vascular cells, arterial tissues, plasma, and urine, have been investigated. Besides, proteomics was also applied to experimental atherosclerosis in order to unveil significant insights into the mechanisms influencing atherogenesis. This narrative review provides an overview of the last twenty years of omics applications to the study of atherogenesis and lesion vulnerability, with particular emphasis on lipoproteomics and vascular tissue proteomics. Major issues of tissue analyses, such as plaque complexity, sampling, availability, choice of proper controls, and lipoproteins purification, will be raised, and future directions will be addressed.
Collapse
Affiliation(s)
| | | | - Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.N.); (M.F.); Antonio Junior Lepedda (A.J.L.)
| |
Collapse
|
3
|
Punetha A, Kotiya D. Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice. Proteomes 2023; 11:2. [PMID: 36648960 PMCID: PMC9844371 DOI: 10.3390/proteomes11010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Proteomics continues to forge significant strides in the discovery of essential biological processes, uncovering valuable information on the identity, global protein abundance, protein modifications, proteoform levels, and signal transduction pathways. Cancer is a complicated and heterogeneous disease, and the onset and progression involve multiple dysregulated proteoforms and their downstream signaling pathways. These are modulated by various factors such as molecular, genetic, tissue, cellular, ethnic/racial, socioeconomic status, environmental, and demographic differences that vary with time. The knowledge of cancer has improved the treatment and clinical management; however, the survival rates have not increased significantly, and cancer remains a major cause of mortality. Oncoproteomics studies help to develop and validate proteomics technologies for routine application in clinical laboratories for (1) diagnostic and prognostic categorization of cancer, (2) real-time monitoring of treatment, (3) assessing drug efficacy and toxicity, (4) therapeutic modulations based on the changes with prognosis and drug resistance, and (5) personalized medication. Investigation of tumor-specific proteomic profiles in conjunction with healthy controls provides crucial information in mechanistic studies on tumorigenesis, metastasis, and drug resistance. This review provides an overview of proteomics technologies that assist the discovery of novel drug targets, biomarkers for early detection, surveillance, prognosis, drug monitoring, and tailoring therapy to the cancer patient. The information gained from such technologies has drastically improved cancer research. We further provide exemplars from recent oncoproteomics applications in the discovery of biomarkers in various cancers, drug discovery, and clinical treatment. Overall, the future of oncoproteomics holds enormous potential for translating technologies from the bench to the bedside.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers University, 225 Warren St., Newark, NJ 07103, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 South Limestone St., Lexington, KY 40536, USA
| |
Collapse
|
4
|
Obi EN, Tellock DA, Thomas GJ, Veenstra TD. Biomarker Analysis of Formalin-Fixed Paraffin-Embedded Clinical Tissues Using Proteomics. Biomolecules 2023; 13:biom13010096. [PMID: 36671481 PMCID: PMC9855471 DOI: 10.3390/biom13010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The relatively recent developments in mass spectrometry (MS) have provided novel opportunities for this technology to impact modern medicine. One of those opportunities is in biomarker discovery and diagnostics. Key developments in sample preparation have enabled a greater range of clinical samples to be characterized at a deeper level using MS. While most of these developments have focused on blood, tissues have also been an important resource. Fresh tissues, however, are difficult to obtain for research purposes and require significant resources for long-term storage. There are millions of archived formalin-fixed paraffin-embedded (FFPE) tissues within pathology departments worldwide representing every possible tissue type including tumors that are rare or very small. Owing to the chemical technique used to preserve FFPE tissues, they were considered intractable to many newer proteomics techniques and primarily only useful for immunohistochemistry. In the past couple of decades, however, researchers have been able to develop methods to extract proteins from FFPE tissues in a form making them analyzable using state-of-the-art technologies such as MS and protein arrays. This review will discuss the history of these developments and provide examples of how they are currently being used to identify biomarkers and diagnose diseases such as cancer.
Collapse
|
5
|
High-throughput proteomic sample preparation using pressure cycling technology. Nat Protoc 2022; 17:2307-2325. [PMID: 35931778 PMCID: PMC9362583 DOI: 10.1038/s41596-022-00727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
High-throughput lysis and proteolytic digestion of biopsy-level tissue specimens is a major bottleneck for clinical proteomics. Here we describe a detailed protocol of pressure cycling technology (PCT)-assisted sample preparation for proteomic analysis of biopsy tissues. A piece of fresh frozen or formalin-fixed paraffin-embedded tissue weighing ~0.1–2 mg is placed in a 150 μL pressure-resistant tube called a PCT-MicroTube with proper lysis buffer. After closing with a PCT-MicroPestle, a batch of 16 PCT-MicroTubes are placed in a Barocycler, which imposes oscillating pressure to the samples from one atmosphere to up to ~3,000 times atmospheric pressure. The pressure cycling schemes are optimized for tissue lysis and protein digestion, and can be programmed in the Barocycler to allow reproducible, robust and efficient protein extraction and proteolysis digestion for mass spectrometry-based proteomics. This method allows effective preparation of not only fresh frozen and formalin-fixed paraffin-embedded tissue, but also cells, feces and tear strips. It takes ~3 h to process 16 samples in one batch. The resulting peptides can be analyzed by various mass spectrometry-based proteomics methods. We demonstrate the applications of this protocol with mouse kidney tissue and eight types of human tumors. High-throughput lysis and proteolytic digestion of biopsy-level tissue specimens is a major bottleneck for clinical proteomics. This protocol describes pressure cycling technology (PCT)-assisted sample preparation of biopsy tissues.
Collapse
|
6
|
Mohanty V, Subbannayya Y, Patil S, Puttamallesh VN, Najar MA, Datta KK, Pinto SM, Begum S, Mohanty N, Routray S, Abdulla R, Ray JG, Sidransky D, Gowda H, Prasad TSK, Chatterjee A. Molecular alterations in oral cancer using high-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue. J Cell Commun Signal 2021; 15:447-459. [PMID: 33683571 DOI: 10.1007/s12079-021-00609-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
Loss of cell differentiation is a hallmark for the progression of oral squamous cell carcinoma (OSCC). Archival Formalin-Fixed Paraffin-Embedded (FFPE) tissues constitute a valuable resource for studying the differentiation of OSCC and can offer valuable insights into the process of tumor progression. In the current study, we performed LC-MS/MS-based quantitative proteomics of FFPE specimens from pathologically-confirmed well-differentiated, moderately-differentiated, and poorly-differentiated OSCC cases. The data were analyzed in four technical replicates, resulting in the identification of 2376 proteins. Of these, 141 and 109 were differentially expressed in moderately-differentiated and poorly differentiated OSCC cases, respectively, compared to well-differentiated OSCC. The data revealed significant metabolic reprogramming with respect to lipid metabolism and glycolysis with proteins belonging to both these processes downregulated in moderately-differentiated OSCC when compared to well-differentiated OSCC. Signaling pathway analysis indicated the alteration of extracellular matrix organization, muscle contraction, and glucose metabolism pathways across tumor grades. The extracellular matrix organization pathway was upregulated in moderately-differentiated OSCC and downregulated in poorly differentiated OSCC, compared to well-differentiated OSCC. PADI4, an epigenetic enzyme transcriptional regulator, and its transcriptional target HIST1H1B were both found to be upregulated in moderately differentiated and poorly differentiated OSCC, indicating epigenetic events underlying tumor differentiation. In conclusion, the findings support the advantage of using high-resolution mass spectrometry-based FFPE archival blocks for clinical and translational research. The candidate signaling pathways identified in the study could be used to develop potential therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Varshasnata Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.,Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Shankargouda Patil
- Division of Oral Pathology, College of Dentistry, Department of Maxillofacial Surgery and Diagnostic Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Keshava K Datta
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.,Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Sameera Begum
- Department of Oral Pathology, Yenepoya Dental College, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Neeta Mohanty
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha'O'Anusandhan University, Bhubaneswar, Odisha, 751003, India
| | - Samapika Routray
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha'O'Anusandhan University, Bhubaneswar, Odisha, 751003, India.,Department of Dental Surgery, All India Institute of Medical Sciences, Bhubaneswar, Odisha, 751019, India
| | - Riaz Abdulla
- Department of Oral Pathology, Yenepoya Dental College, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Jay Gopal Ray
- Department of Oral Pathology, Dr. R. Ahmed Dental College & Hospital, Kolkata, West Bengal, 700 014, India.,Department of Pathology, Burdwan Dental College and Hospital, Burdwan, West Bengal, 713101, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India.,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India. .,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India. .,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Davalieva K, Kiprijanovska S, Dimovski A, Rosoklija G, Dwork AJ. Comparative evaluation of two methods for LC-MS/MS proteomic analysis of formalin fixed and paraffin embedded tissues. J Proteomics 2021; 235:104117. [PMID: 33453434 DOI: 10.1016/j.jprot.2021.104117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The proteomics of formalin-fixed, paraffin-embedded (FFPE) samples has advanced significantly during the last two decades, but there are many protocols and few studies comparing them directly. There is no consensus on the most effective protocol for shotgun proteomic analysis. We compared the in-solution digestion with RapiGest and Filter Aided Sample Preparation (FASP) of FFPE prostate tissues stored 7 years and mirroring fresh frozen samples, using two label-free data-independent LC-MS/MS acquisitions. RapiGest identified more proteins than FASP, with almost identical numbers of proteins from fresh and FFPE tissues and 69% overlap, good preservation of high-MW proteins, no bias regarding isoelectric point, and greater technical reproducibility. On the other hand, FASP yielded 20% fewer protein identifications in FFPE than in fresh tissue, with 64-69% overlap, depletion of proteins >70 kDa, lower efficiency in acidic and neutral range, and lower technical reproducibility. Both protocols showed highly similar subcellular compartments distribution, highly similar percentages of extracted unique peptides from FFPE and fresh tissues and high positive correlation between the absolute quantitation values of fresh and FFPE proteins. In conclusion, RapiGest extraction of FFPE tissues delivers a proteome that closely resembles the fresh frozen proteome and should be preferred over FASP in biomarker and quantification studies. SIGNIFICANCE: Here we analyzed the performance of two sample preparation methods for shotgun proteomic analysis of FFPE tissues to give a comprehensive overview of the obtained proteomes and the resemblance to its matching fresh frozen counterparts. These findings give us better understanding towards competent proteomics analysis of FFPE tissues. It is hoped that it will encourage further assessments of available protocols before establishing the most effective protocol for shotgun proteomic FFPE tissue analysis.
Collapse
Affiliation(s)
- Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia.
| | - Sanja Kiprijanovska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| | - Aleksandar Dimovski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia; Faculty of Pharmacy, University "St. Cyril and Methodius", 50ta Divizija 6, 1000 Skopje, North Macedonia
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, USA
| |
Collapse
|
8
|
Mantsiou A, Makridakis M, Fasoulakis K, Katafigiotis I, Constantinides CA, Zoidakis J, Roubelakis MG, Vlahou A, Lygirou V. Proteomics Analysis of Formalin Fixed Paraffin Embedded Tissues in the Investigation of Prostate Cancer. J Proteome Res 2019; 19:2631-2642. [PMID: 31682457 DOI: 10.1021/acs.jproteome.9b00587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of death in men worldwide. The molecular features, associated with the onset and progression of the disease, are under vigorous investigation. Formalin-fixed paraffin-embedded (FFPE) tissues are valuable resources for large-scale studies; however, their application in proteomics is limited due to protein cross-linking. In this study, the adjustment of a protocol for the proteomic analysis of FFPE tissues was performed which was followed by a pilot application on FFPE PCa clinical samples to investigate whether the optimized protocol can provide biologically relevant data for the investigation of PCa. For the optimization, FFPE mouse tissues were processed using seven protein extraction protocols including combinations of homogenization methods (beads, sonication, boiling) and buffers (SDS based and urea-thiourea based). The proteome extraction efficacy was then evaluated based on protein identifications and reproducibility using SDS electrophoresis and high resolution LC-MS/MS analysis. Comparison between the FFPE and matched fresh frozen (FF) tissues, using an optimized protocol involving protein extraction with an SDS-based buffer following beads homogenization and boiling, showed a substantial overlap in protein identifications with a strong correlation in relative abundances (rs = 0.819, p < 0.001). Next, FFPE tissues (3 sections, 15 μm each per sample) from 10 patients with PCa corresponding to tumor (GS = 6 or GS ≥ 8) and adjacent benign regions were processed with the optimized protocol. Extracted proteins were analyzed by GeLC-MS/MS followed by statistical and bioinformatics analysis. Proteins significantly deregulated between PCa GS ≥ 8 and PCa GS = 6 represented extracellular matrix organization, gluconeogenesis, and phosphorylation pathways. Proteins deregulated between cancerous and adjacent benign tissues, reflected increased translation, peptide synthesis, and protein metabolism in the former, which is consistent with the literature. In conclusion, the results support the relevance of the proteomic findings in the context of PCa and the reliability of the optimized protocol for proteomics analysis of FFPE material.
Collapse
Affiliation(s)
- Anna Mantsiou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Manousos Makridakis
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Konstantinos Fasoulakis
- Ippokrateio General Hospital of Athens, Department of Urology, 114 Vasilissis Sofias Avenue, Athens 11527, Greece
| | - Ioannis Katafigiotis
- National and Kapodistrian University of Athens, Medical School, 1st Urology Department, Laikon Hospital, 17 Agiou Thoma Street, Athens 11527, Greece
| | - Constantinos A Constantinides
- National and Kapodistrian University of Athens, Medical School, 1st Urology Department, Laikon Hospital, 17 Agiou Thoma Street, Athens 11527, Greece
| | - Jerome Zoidakis
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Maria G Roubelakis
- National and Kapodistrian University of Athens, Medical School, Laboratory of Biology, 75 Mikras Assias Street, Athens 11527, Greece
| | - Antonia Vlahou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Vasiliki Lygirou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| |
Collapse
|
9
|
Suhail Y, Cain MP, Vanaja K, Kurywchak PA, Levchenko A, Kalluri R, Kshitiz. Systems Biology of Cancer Metastasis. Cell Syst 2019; 9:109-127. [PMID: 31465728 PMCID: PMC6716621 DOI: 10.1016/j.cels.2019.07.003] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/29/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is no longer viewed as a linear cascade of events but rather as a series of concurrent, partially overlapping processes, as successfully metastasizing cells assume new phenotypes while jettisoning older behaviors. The lack of a systemic understanding of this complex phenomenon has limited progress in developing treatments for metastatic disease. Because metastasis has traditionally been investigated in distinct physiological compartments, the integration of these complex and interlinked aspects remains a challenge for both systems-level experimental and computational modeling of metastasis. Here, we present some of the current perspectives on the complexity of cancer metastasis, the multiscale nature of its progression, and a systems-level view of the processes underlying the invasive spread of cancer cells. We also highlight the gaps in our current understanding of cancer metastasis as well as insights emerging from interdisciplinary systems biology approaches to understand this complex phenomenon.
Collapse
Affiliation(s)
- Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA; Cancer Systems Biology @ Yale (CaSB@Yale), Yale University, West Haven, CT, USA
| | - Margo P Cain
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Vanaja
- Cancer Systems Biology @ Yale (CaSB@Yale), Yale University, West Haven, CT, USA
| | - Paul A Kurywchak
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Andre Levchenko
- Cancer Systems Biology @ Yale (CaSB@Yale), Yale University, West Haven, CT, USA
| | - Raghu Kalluri
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA; Cancer Systems Biology @ Yale (CaSB@Yale), Yale University, West Haven, CT, USA.
| |
Collapse
|
10
|
Biomedical analysis of formalin-fixed, paraffin-embedded tissue samples: The Holy Grail for molecular diagnostics. J Pharm Biomed Anal 2018; 155:125-134. [PMID: 29627729 DOI: 10.1016/j.jpba.2018.03.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
More than a century ago in 1893, a revolutionary idea about fixing biological tissue specimens was introduced by Ferdinand Blum, a German physician. Since then, a plethora of fixation methods have been investigated and used. Formalin fixation with paraffin embedment became the most widely used types of fixation and preservation method, due to its proper architectural conservation of tissue structures and cellular shape. The huge collection of formalin-fixed, paraffin-embedded (FFPE) sample archives worldwide holds a large amount of unearthed information about diseases that could be the Holy Grail in contemporary biomarker research utilizing analytical omics based molecular diagnostics. The aim of this review is to critically evaluate the omics options for FFPE tissue sample analysis in the molecular diagnostics field.
Collapse
|
11
|
Grey J, Jones D, Wilson L, Nakjang S, Clayton J, Temperley R, Clark E, Gaughan L, Robson C. Differential regulation of the androgen receptor by protein phosphatase regulatory subunits. Oncotarget 2018; 9:3922-3935. [PMID: 29423094 PMCID: PMC5790511 DOI: 10.18632/oncotarget.22883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 11/25/2022] Open
Abstract
The Androgen Receptor (AR) is a key molecule in the development, maintenance and progression of prostate cancer (PC). However, the relationship between the AR and co-regulatory proteins that facilitate AR activity in castrate resistant settings remain understudied. Here we show that protein phosphatase 1 regulatory subunits, identified from a phosphatase RNAi screen, direct PP1 catalytic subunits to a varied yet significant response in AR function. As such, we have characterised the PP1β holoenzyme, myosin phosphatase (MLCP), as a novel ligand independent regulator of the AR. Sustained MLCP activity through down-regulation of the MLCP inhibitory subunit, PPP1R14C, results in impaired AR nuclear translocation, protein stability and transcriptional activity in distinct models of PC progression, culminating in restoration of a non-malignant prostate genotype. Phenotypically, a marked reduction in cell proliferation and migration, characterised by G1 cell cycle arrest is observed, confirming PP1 holoenzyme disruption as a novel treatment approach in PC.
Collapse
Affiliation(s)
- James Grey
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Dominic Jones
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura Wilson
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Sirintra Nakjang
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jake Clayton
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Richard Temperley
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma Clark
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Luke Gaughan
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig Robson
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
12
|
Broeckx V, Boonen K, Pringels L, Sagaert X, Prenen H, Landuyt B, Schoofs L, Maes E. Comparison of multiple protein extraction buffers for GeLC-MS/MS proteomic analysis of liver and colon formalin-fixed, paraffin-embedded tissues. MOLECULAR BIOSYSTEMS 2016; 12:553-65. [PMID: 26676081 DOI: 10.1039/c5mb00670h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue specimens represent a potential valuable source of samples for clinical research. Since these specimens are banked in hospital archives, large cohorts of samples can be collected in short periods of time which can all be linked with a patients' clinical history. Therefore, the use of FFPE tissue in protein biomarker discovery studies gains interest. However, despite the growing number of FFPE proteome studies in the literature, there is a lack of a FFPE proteomics standard operating procedure (SOP). One of the challenging steps in the development of such a SOP is the ability to obtain an efficient and repeatable extraction of full length FFPE proteins. In this study, the protein extraction efficiency of eight protein extraction buffers is critically compared with GeLC-MS/MS (1D gel electrophoresis followed by in-gel digestion and LC-MS/MS). The data variation caused by using these extraction buffers was investigated since the variation is a very important aspect when using FFPE tissue as a source for biomarker detection. In addition, a qualitative comparison was made between the protein extraction efficiency and repeatability for FFPE tissue and fresh frozen tissue.
Collapse
Affiliation(s)
- Valérie Broeckx
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Kurt Boonen
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Lentel Pringels
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Xavier Sagaert
- Centre for Translational Cell and Tissue Research, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hans Prenen
- Department of Gastro-Enterology, Digestive Oncology Unit, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Bart Landuyt
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Liliane Schoofs
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Evelyne Maes
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium and Centre for Proteomics, University of Antwerp/Flemish Institute for Technological Research (VITO), Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
13
|
Magangane P, Sookhayi R, Govender D, Naidoo R. Determining protein biomarkers for DLBCL using FFPE tissues from HIV negative and HIV positive patients. J Mol Histol 2016; 47:565-577. [PMID: 27696080 DOI: 10.1007/s10735-016-9695-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/08/2016] [Indexed: 01/27/2023]
Abstract
DLBCL is the most common lymphoma subtype occurring in older populations as well as in younger HIV infected patients. The current treatment options for DLBCL are effective for most patients yet the relapse rate is high. While many biomarkers for DLBCL exist, they are not in clinical use due to low sensitivity and specificity. In addition, these biomarkers have not been studied in the HIV context. Therefore, the identification of new biomarkers for HIV negative and HIV positive DLBCL, may lead to a better understanding of the disease pathology and better therapeutic design. Protein biomarkers for DLBCL were determined using MALDI imaging mass spectrometry (IMS) and characterised using LC-MS. The expression of one of the biomarkers, heat shock protein (Hsp) 70, was confirmed on a separate cohort of samples using immunohistochemistry. The biomarkers identified in the study consisted of four protein clusters including glycolytic enzymes, ribosomal proteins, histones and collagen. These proteins could differentiate between control and tumour tissue, and the DLBCL immunohistochemical subtypes in both cohorts. The majority (41/52) of samples in the confirmation cohort were negative for Hsp70 expression. The HIV positive DLBCL cases had a higher percentage of cases expressing Hsp70 than their HIV negative counterparts. The non-GC subtype also frequently overexpressed Hsp70, confirming MALDI IMS data. The expression of Hsp70 did not correlate with survival in both the HIV negative and HIV positive cohort. This study identified potential biomarkers for HIV negative and HIV positive DLBCL from FFPE tissue sections. These may be used as diagnostic and prognostic markers complementary to current clinical management programmes for DLBCL.
Collapse
Affiliation(s)
- Pumza Magangane
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Raveendra Sookhayi
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Dhirendra Govender
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Richard Naidoo
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town/National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
14
|
Kennedy JJ, Whiteaker JR, Schoenherr RM, Yan P, Allison K, Shipley M, Lerch M, Hoofnagle AN, Baird GS, Paulovich AG. Optimized Protocol for Quantitative Multiple Reaction Monitoring-Based Proteomic Analysis of Formalin-Fixed, Paraffin-Embedded Tissues. J Proteome Res 2016; 15:2717-28. [PMID: 27462933 DOI: 10.1021/acs.jproteome.6b00245] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite a clinical, economic, and regulatory imperative to develop companion diagnostics, precious few new biomarkers have been successfully translated into clinical use, due in part to inadequate protein assay technologies to support large-scale testing of hundreds of candidate biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues. Although the feasibility of using targeted, multiple reaction monitoring mass spectrometry (MRM-MS) for quantitative analyses of FFPE tissues has been demonstrated, protocols have not been systematically optimized for robust quantification across a large number of analytes, nor has the performance of peptide immuno-MRM been evaluated. To address this gap, we used a test battery approach coupled to MRM-MS with the addition of stable isotope-labeled standard peptides (targeting 512 analytes) to quantitatively evaluate the performance of three extraction protocols in combination with three trypsin digestion protocols (i.e., nine processes). A process based on RapiGest buffer extraction and urea-based digestion was identified to enable similar quantitation results from FFPE and frozen tissues. Using the optimized protocols for MRM-based analysis of FFPE tissues, median precision was 11.4% (across 249 analytes). There was excellent correlation between measurements made on matched FFPE and frozen tissues, both for direct MRM analysis (R(2) = 0.94) and immuno-MRM (R(2) = 0.89). The optimized process enables highly reproducible, multiplex, standardizable, quantitative MRM in archival tissue specimens.
Collapse
Affiliation(s)
- Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, Washington 98109, United States
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, Washington 98109, United States
| | - Regine M Schoenherr
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, Washington 98109, United States
| | - Ping Yan
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, Washington 98109, United States
| | - Kimberly Allison
- Department of Pathology, Stanford University , Stanford, California 94305 United States
| | - Melissa Shipley
- Department of Laboratory Medicine, University of Washington , Seattle, Washington 98195 United States
| | - Melissa Lerch
- Department of Laboratory Medicine, University of Washington , Seattle, Washington 98195 United States
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington , Seattle, Washington 98195 United States
| | - Geoffrey Stuart Baird
- Department of Laboratory Medicine, University of Washington , Seattle, Washington 98195 United States
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, Washington 98109, United States
| |
Collapse
|
15
|
Analysis of formalin-fixed, paraffin-embedded (FFPE) tissue via proteomic techniques and misconceptions of antigen retrieval. Biotechniques 2016; 60:229-38. [DOI: 10.2144/000114414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/20/2016] [Indexed: 11/23/2022] Open
Abstract
Since emerging in the late 19th century, formaldehyde fixation has become a standard method for preservation of tissues from clinical samples. The advantage of formaldehyde fixation is that fixed tissues can be stored at room temperature for decades without concern for degradation. This has led to the generation of huge tissue banks containing thousands of clinically significant samples. Here we review techniques for proteomic analysis of formalin-fixed, paraffin-embedded (FFPE) tissue samples with a specific focus on the methods used to extract and break formaldehyde crosslinks. We also discuss an error-of-interpretation associated with the technique known as “antigen retrieval.” We have discovered that this term has been mistakenly applied to two disparate molecular techniques; therefore, we argue that a terminology change is needed to ensure accurate reporting of experimental results. Finally, we suggest that more investigation is required to fully understand the process of formaldehyde fixation and its subsequent reversal.
Collapse
|
16
|
Vehmas AP, Muth-Pawlak D, Huhtinen K, Saloniemi-Heinonen T, Jaakkola K, Laajala TD, Kaprio H, Suvitie PA, Aittokallio T, Siitari H, Perheentupa A, Poutanen M, Corthals GL. Ovarian endometriosis signatures established through discovery and directed mass spectrometry analysis. J Proteome Res 2014; 13:4983-94. [PMID: 25099244 DOI: 10.1021/pr500384n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New molecular information on potential therapeutic targets or tools for noninvasive diagnosis for endometriosis are important for patient care and treatment. However, surprisingly few efforts have described endometriosis at the protein level. In this work we enumerate the proteins in patient endometrium and ovarian endometrioma by extensive and comprehensive analysis of minute amounts of cryosectioned tissues in a three-tiered mass spectrometric approach. Quantitative comparison of the tissues revealed 214 differentially expressed proteins in ovarian endometrioma and endometrium. These proteins are reported here as a resource of SRM (selected reaction monitoring) assays that are unique, standardized, and openly available. Pathway analysis of the proteome measurements revealed a potential role for Transforming growth factor β-1 in ovarian endometriosis development. Subsequent mRNA microarray analysis further revealed clear ovarian endometrioma specificity for a subset of these proteins, which was also supported by further in silico studies. In this process two important proteins emerged, Calponin-1 and EMILIN-1, that were additionally confirmed in ovarian endometrioma tissues by immunohistochemistry and Western blotting. This study provides the most comprehensive molecular description of ovarian endometriosis to date and researchers with new molecular methods and tools for high throughput patient screening using the SRM assays.
Collapse
Affiliation(s)
- Anni P Vehmas
- Turku Centre for Biotechnology, ‡Department of Physiology, Institute of Biomedicine, ⊥Department of Mathematics and Statistics, and ¶Turku Center for Disease Modeling, University of Turku , Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Assessment of the 2-d gel-based proteomics application of clinically archived formalin-fixed paraffin embedded tissues. Protein J 2014; 33:135-42. [PMID: 24500075 DOI: 10.1007/s10930-014-9545-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hospital tissue repositories possess a vast and valuable supply of disease samples with matched retrospective clinical information. Detection and characterization of disease biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues will greatly aid the understanding of the diseases mechanisms and help in the development of diagnostic and prognostic markers. In this study, the possibility of using full-length proteins extracted from clinically archived FFPE tissues in two-dimensional (2-D) gel-based proteomics was evaluated. The evaluation was done based on two types of tumor tissues (breast and prostate) and two extraction protocols. The comparison of the 2-D patterns of FFPE extracts obtained by two extraction protocols with the matching frozen tissue extracts showed that only 7-10% of proteins from frozen tissues can be matched to proteins from FFPE tissues. Most of the spots in the 2-D FFPE's maps had pl 4-6, while the percentages of proteins with pl above 6 were 3-5 times lower in comparison to the fresh/frozen tissue. Despite the three-fold lower number of the detected spots in FFPE maps compared to matched fresh/frozen maps, 67-78% of protein spots in FFPE could not be matched to the corresponding spots in the fresh/frozen tissue maps indicating irreversible protein modifications. In conclusion, the inability to completely reverse the cross-linked complexes and overcome protein fragmentation with the present day FFPE extraction methods stands in the way of effective use of these samples in 2-D gel based proteomics studies.
Collapse
|
18
|
Steiner C, Ducret A, Tille JC, Thomas M, McKee TA, Rubbia-Brandt L, Scherl A, Lescuyer P, Cutler P. Applications of mass spectrometry for quantitative protein analysis in formalin-fixed paraffin-embedded tissues. Proteomics 2014; 14:441-51. [PMID: 24339433 PMCID: PMC4265304 DOI: 10.1002/pmic.201300311] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/04/2013] [Accepted: 11/11/2013] [Indexed: 12/12/2022]
Abstract
Proteomic analysis of tissues has advanced in recent years as instruments and methodologies have evolved. The ability to retrieve peptides from formalin-fixed paraffin-embedded tissues followed by shotgun or targeted proteomic analysis is offering new opportunities in biomedical research. In particular, access to large collections of clinically annotated samples should enable the detailed analysis of pathologically relevant tissues in a manner previously considered unfeasible. In this paper, we review the current status of proteomic analysis of formalin-fixed paraffin-embedded tissues with a particular focus on targeted approaches and the potential for this technique to be used in clinical research and clinical diagnosis. We also discuss the limitations and perspectives of the technique, particularly with regard to application in clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Carine Steiner
- Division of Laboratory Medicine, Geneva University Hospital, Geneva, Switzerland; Human Protein Sciences Department, University of Geneva, Geneva, Switzerland; Translational Technologies and Bioinformatics, Pharma Research and Early Development, F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Qendro V, Lundgren DH, Rezaul K, Mahony F, Ferrell N, Bi A, Latifi A, Chowdhury D, Gygi S, Haas W, Wilson L, Murphy M, Han DK. Large-scale proteomic characterization of melanoma expressed proteins reveals nestin and vimentin as biomarkers that can potentially distinguish melanoma subtypes. J Proteome Res 2014; 13:5031-40. [PMID: 25322343 DOI: 10.1021/pr5006789] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Melanoma is an aggressive type of skin cancer, which accounts for only 4% of skin cancer cases but causes around 75% of skin cancer deaths. Currently, there is a limited set of protein biomarkers that can distinguish melanoma subtypes and provide an accurate prognosis of melanoma. Thus, we have selected and profiled the proteomes of five different melanoma cell lines from different stages of progression in comparison with a normal melanocytes using tandem mass spectrometry. We also profiled the proteome of a solid metastatic melanoma tumor. This resulted in the identification of 4758 unique proteins, among which ∼200-300 differentially expressed proteins from each set were found by quantitative proteomics. Correlating protein expression with aggressiveness of each melanoma cell line and literature mining resulted in the final selection of six proteins: vimentin, nestin, fibronectin, annexin A1, dipeptidyl peptidase IV, and histone H2A1B. Validation of nestin and vimentin using 40 melanoma samples revealed pattern of protein expression can help predict melanoma aggressiveness in different subgroups of melanoma. These results, together with the combined list of 4758 expressed proteins, provide a valuable resource for selecting melanoma biomarkers in the future for the clinical and research community.
Collapse
Affiliation(s)
- Veneta Qendro
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut Health Center , 263 Farmington Avenue, Farmington, Connecticut 06030, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Terp MG, Ditzel HJ. Application of proteomics in the study of rodent models of cancer. Proteomics Clin Appl 2014; 8:640-52. [DOI: 10.1002/prca.201300084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/25/2013] [Accepted: 11/27/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Mikkel G. Terp
- Department of Cancer and Inflammation Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
| | - Henrik J. Ditzel
- Department of Cancer and Inflammation Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
- Department of Oncology; Odense University Hospital; Odense Denmark
| |
Collapse
|
21
|
Longuespée R, Fléron M, Pottier C, Quesada-Calvo F, Meuwis MA, Baiwir D, Smargiasso N, Mazzucchelli G, De Pauw-Gillet MC, Delvenne P, De Pauw E. Tissue Proteomics for the Next Decade? Towards a Molecular Dimension in Histology. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:539-52. [DOI: 10.1089/omi.2014.0033] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rémi Longuespée
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | - Maximilien Fléron
- Mammalian Cell Culture Laboratory, GIGA-Research, Department of Biomedical and Preclinical Sciences, University of Liège, Liège, Belgium
| | - Charles Pottier
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Florence Quesada-Calvo
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, University of Liège, Liège, Belgium
| | - Marie-Alice Meuwis
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, University of Liège, Liège, Belgium
| | - Dominique Baiwir
- GIGA-R, GIGA Proteomic Facilities, University of Liège, Liège, Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | - Marie-Claire De Pauw-Gillet
- Mammalian Cell Culture Laboratory, GIGA-Research, Department of Biomedical and Preclinical Sciences, University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| |
Collapse
|
22
|
Weston LA, Hummon AB. Comparative LC-MS/MS analysis of optimal cutting temperature (OCT) compound removal for the study of mammalian proteomes. Analyst 2014; 138:6380-4. [PMID: 24051509 DOI: 10.1039/c3an01121f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Primary tissue samples are valuable resources for investigators interested in understanding disease. In order to maximize the information content that can be gained from these precious samples, proper storage, handling, and preparation are essential. Some tissue preservation techniques utilize the cryopreservation medium, optimal cutting temperature (OCT) compound. While this medium provides benefits for traditional molecular studies, certain components can interfere with mass spectrometric analyses. Mass spectrometry based proteomics is a growing field with many applications for disease research. Our goal is to determine a reliable method for separating the proteins from the contaminating species in OCT embedded samples, thus making these samples compatible with mass spectrometric analyses. The novel applications of ether-methanol precipitation, filter-aided sample preparation (FASP), and SDS-PAGE provide researchers with protocols for removing OCT contaminating species from valuable samples. The results presented in this study show that all three methods reproducibly remove OCT; however, precipitation and FASP outperform SDS-PAGE by common proteomic metrics.
Collapse
Affiliation(s)
- Leigh A Weston
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
23
|
Chung L, Moore K, Phillips L, Boyle FM, Marsh DJ, Baxter RC. Novel serum protein biomarker panel revealed by mass spectrometry and its prognostic value in breast cancer. Breast Cancer Res 2014; 16:R63. [PMID: 24935269 PMCID: PMC4095593 DOI: 10.1186/bcr3676] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/02/2014] [Indexed: 12/15/2022] Open
Abstract
Introduction Serum profiling using proteomic techniques has great potential to detect biomarkers that might improve diagnosis and predict outcome for breast cancer patients (BC). This study used surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry (MS) to identify differentially expressed proteins in sera from BC and healthy volunteers (HV), with the goal of developing a new prognostic biomarker panel. Methods Training set serum samples from 99 BC and 51 HV subjects were applied to four adsorptive chip surfaces (anion-exchange, cation-exchange, hydrophobic, and metal affinity) and analyzed by time-of-flight MS. For validation, 100 independent BC serum samples and 70 HV samples were analyzed similarly. Cluster analysis of protein spectra was performed to identify protein patterns related to BC and HV groups. Univariate and multivariate statistical analyses were used to develop a protein panel to distinguish breast cancer sera from healthy sera, and its prognostic potential was evaluated. Results From 51 protein peaks that were significantly up- or downregulated in BC patients by univariate analysis, binary logistic regression yielded five protein peaks that together classified BC and HV with a receiver operating characteristic (ROC) area-under-the-curve value of 0.961. Validation on an independent patient cohort confirmed the five-protein parameter (ROC value 0.939). The five-protein parameter showed positive association with large tumor size (P = 0.018) and lymph node involvement (P = 0.016). By matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS, immunoprecipitation and western blotting the proteins were identified as a fragment of apolipoprotein H (ApoH), ApoCI, complement C3a, transthyretin, and ApoAI. Kaplan-Meier analysis on 181 subjects after median follow-up of >5 years demonstrated that the panel significantly predicted disease-free survival (P = 0.005), its efficacy apparently greater in women with estrogen receptor (ER)-negative tumors (n = 50, P = 0.003) compared to ER-positive (n = 131, P = 0.161), although the influence of ER status needs to be confirmed after longer follow-up. Conclusions Protein mass profiling by MS has revealed five serum proteins which, in combination, can distinguish between serum from women with breast cancer and healthy control subjects with high sensitivity and specificity. The five-protein panel significantly predicts recurrence-free survival in women with ER-negative tumors and may have value in the management of these patients.
Collapse
|
24
|
Rezaul K, Wilson LL, Han DK. Direct tissue proteomics in human diseases: potential applications to melanoma research. Expert Rev Proteomics 2014; 5:405-12. [DOI: 10.1586/14789450.5.3.405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Prieto DA, Johann DJ, Wei BR, Ye X, Chan KC, Nissley DV, Simpson RM, Citrin DE, Mackall CL, Linehan WM, Blonder J. Mass spectrometry in cancer biomarker research: a case for immunodepletion of abundant blood-derived proteins from clinical tissue specimens. Biomark Med 2014; 8:269-86. [PMID: 24521024 PMCID: PMC4201940 DOI: 10.2217/bmm.13.101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The discovery of clinically relevant cancer biomarkers using mass spectrometry (MS)-based proteomics has proven difficult, primarily because of the enormous dynamic range of blood-derived protein concentrations and the fact that the 22 most abundant blood-derived proteins constitute approximately 99% of the total plasma protein mass. Immunodepletion of clinical body fluid specimens (e.g., serum/plasma) for the removal of highly abundant proteins is a reasonable and reproducible solution. Often overlooked, clinical tissue specimens also contain a formidable amount of highly abundant blood-derived proteins present in tissue-embedded networks of blood/lymph capillaries and interstitial fluid. Hence, the dynamic range impediment to biomarker discovery remains a formidable obstacle, regardless of clinical sample type (solid tissue and/or body fluid). Thus, we optimized and applied simultaneous immunodepletion of blood-derived proteins from solid tissue and peripheral blood, using clear cell renal cell carcinoma as a model disease. Integrative analysis of data from this approach and genomic data obtained from the same type of tumor revealed concordant key pathways and protein targets germane to clear cell renal cell carcinoma. This includes the activation of the lipogenic pathway characterized by increased expression of adipophilin (PLIN2) along with 'cadherin switching', a phenomenon indicative of transcriptional reprogramming linked to renal epithelial dedifferentiation. We also applied immunodepletion of abundant blood-derived proteins to various tissue types (e.g., adipose tissue and breast tissue) showing unambiguously that the removal of abundant blood-derived proteins represents a powerful tool for the reproducible profiling of tissue proteomes. Herein, we show that the removal of abundant blood-derived proteins from solid tissue specimens is of equal importance to depletion of body fluids and recommend its routine use in the context of biological discovery and/or cancer biomarker research. Finally, this perspective presents the background, rationale and strategy for using tissue-directed high-resolution/accuracy MS-based shotgun proteomics to detect genuine tumor proteins in the peripheral blood of a patient diagnosed with nonmetastatic cancer, employing concurrent liquid chromatography-MS analysis of immunodepleted clinical tissue and blood specimens.
Collapse
Affiliation(s)
- DaRue A Prieto
- Laboratory of Proteomics & Analytical Technologies, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| | - Donald J Johann
- University of Arkansas for Medical Sciences, 4301 West Markham, Slot 816 Little Rock, AR, USA
| | - Bih-Rong Wei
- Laboratory of Cancer Biology & Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xiaoying Ye
- Laboratory of Proteomics & Analytical Technologies, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| | - King C Chan
- Laboratory of Proteomics & Analytical Technologies, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| | - Dwight V Nissley
- Laboratory of Proteomics & Analytical Technologies, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| | - R Mark Simpson
- Laboratory of Cancer Biology & Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Deborah E Citrin
- Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Crystal L Mackall
- Section of Translational Radiation Oncology Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - W Marston Linehan
- Urologic Surgery & the Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Josip Blonder
- Laboratory of Proteomics & Analytical Technologies, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA
| |
Collapse
|
26
|
Araújo JE, Oliveira E, Otero-Glez A, Santos Nores J, Igrejas G, Lodeiro C, Capelo JL, Santos HM. A comprehensive factorial design study of variables affecting protein extraction from formalin-fixed kidney tissue samples. Talanta 2013; 119:90-7. [PMID: 24401389 DOI: 10.1016/j.talanta.2013.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/03/2013] [Accepted: 10/15/2013] [Indexed: 12/25/2022]
Abstract
Formalin-fixed tissues are an important source of biological samples for biomedical research. However, proteomics analysis of formalin-fixed tissues has been set aside by formalin-induced protein modifications, which reduce protein extraction efficiency. In this study, a two level full factorial experimental design (2(4)) was used to determine the effects of the extracting conditions in the efficiency of protein recovery from formalin-fixed kidney samples. The following variables were assessed: temperature of extraction, pH of extraction, composition of the extracting buffer and the use ultrasonic energy applied with probe. It is clearly demonstrated that when hating and ultrasonic energy are used in conjunction, a 7-fold increase (p < 0.05) in protein extraction is obtained if compared to extracting conditions for which neither heating nor ultrasonic energy are used. The optimization study was done following the amount of protein extracted by UV (Nanodrop(®) technology, protein ABS at 280 nm) and by 1D SDS-PAGE. Extracts obtained with the optimized conditions were subjected to LC-MALDI MS/MS. A total of 112 proteins were identified.
Collapse
Affiliation(s)
- J E Araújo
- BIOSCOPE group, REQUIMTE, Department of Chemistry, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal; Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - E Oliveira
- BIOSCOPE group, REQUIMTE, Department of Chemistry, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal
| | - A Otero-Glez
- Servicio de Nefrología, Complejo Hospitalario Universitario de Ourense, Ourense, España
| | - J Santos Nores
- Servicio de Nefrología, Complejo Hospitalario Universitario de Ourense, Ourense, España
| | - G Igrejas
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - C Lodeiro
- BIOSCOPE group, REQUIMTE, Department of Chemistry, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal
| | - J L Capelo
- BIOSCOPE group, REQUIMTE, Department of Chemistry, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal
| | - H M Santos
- BIOSCOPE group, REQUIMTE, Department of Chemistry, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal; Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
27
|
Guo S, Zou J, Wang G. Advances in the proteomic discovery of novel therapeutic targets in cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1259-71. [PMID: 24187485 PMCID: PMC3810204 DOI: 10.2147/dddt.s52216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed.
Collapse
Affiliation(s)
- Shanchun Guo
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Clark Atlanta University, Atlanta, GA, USA
| | | | | |
Collapse
|
28
|
Theis JD, Dasari S, Vrana JA, Kurtin PJ, Dogan A. Shotgun-proteomics-based clinical testing for diagnosis and classification of amyloidosis. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1067-1077. [PMID: 24130009 DOI: 10.1002/jms.3264] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/01/2013] [Accepted: 08/16/2013] [Indexed: 06/02/2023]
Abstract
Shotgun proteomics technology has matured in the research laboratories and is poised to enter clinical laboratories. However, the road to this transition is sprinkled with major technical unknowns such as long-term stability of the platform, reproducibility of the technology and clinical utility over traditional antibody-based platforms. Further, regulatory bodies that oversee the clinical laboratory operations are unfamiliar with this new technology. As a result, diagnostic laboratories have avoided using shotgun proteomics for routine diagnostics. In this perspectives article, we describe the clinical implementation of a shotgun proteomics assay for amyloid subtyping, with a special emphasis on standardizing the platform for better quality control and earning clinical acceptance. This assay is the first shotgun proteomics assay to receive regulatory approval for patient diagnosis. The blueprint of this assay can be utilized to develop novel proteomics assays for detecting numerous other disease pathologies.
Collapse
Affiliation(s)
- Jason D Theis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
29
|
Giusti L, Lucacchini A. Proteomic studies of formalin-fixed paraffin-embedded tissues. Expert Rev Proteomics 2013; 10:165-77. [PMID: 23573783 DOI: 10.1586/epr.13.3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue specimens represent a valuable informational resource of histologically characterized specimens for proteomic studies. In this article, the authors review the advancement performed in the field of FFPE proteomics focusing on formaldehyde treatment and on strategies addressed to obtain the best recovery in the protein/peptide extraction. A variety of approaches have been used to characterize protein tissue extracts, and many efforts have been performed demonstrating the comparability between fresh/frozen and FFPE proteomes. Finally, the authors report and discuss the large numbers of works aimed at developing new strategies and sophisticated platforms in the analysis of FFPE samples to validate known potential biomarkers and to discover new ones.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | |
Collapse
|
30
|
Chung L, Baxter RC. Breast cancer biomarkers: proteomic discovery and translation to clinically relevant assays. Expert Rev Proteomics 2013; 9:599-614. [PMID: 23256671 DOI: 10.1586/epr.12.62] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the molecular classification and prognostic assessment of breast tumors based on gene expression profiling is well established, a number of proteomic studies that propose potential breast cancer biomarkers has not yet led to any new diagnostic, prognostic or predictive test in wide clinical use. This review examines the current status of breast cancer biomarkers, discusses sample types (including plasma, tumor tissue, nipple aspirate and ductal lavage, as well as cell culture models) and different electrophoretic and mass spectrometry methods that have been widely used for the discovery of proteomic biomarkers in breast cancer, and also considers several approaches to biomarker validation. The pathway leading from the initial proteomic discovery and validation process to translation into a clinically useful test is also discussed.
Collapse
Affiliation(s)
- Liping Chung
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | | |
Collapse
|
31
|
Analysis of the formalin-fixed paraffin-embedded tissue proteome: pitfalls, challenges, and future prospectives. Amino Acids 2013; 45:205-18. [PMID: 23592010 DOI: 10.1007/s00726-013-1494-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are a real treasure for retrospective analysis considering the amount of samples present in hospital archives, combined with pathological, clinical, and outcome information available for every sample. Although unlocking the proteome of these tissues is still a challenge, new approaches are being developed. In this review, we summarize the different mass spectrometry platforms that are used in human clinical studies to unravel the FFPE proteome. The different ways of extracting crosslinked proteins and the analytical strategies are pointed out. Also, the pitfalls and challenges concerning the quality of FFPE proteomic approaches are depicted. We also evaluated the potential of these analytical methods for future clinical FFPE proteomics applications.
Collapse
|
32
|
Vincenti DC, Murray GI. The proteomics of formalin-fixed wax-embedded tissue. Clin Biochem 2013; 46:546-51. [DOI: 10.1016/j.clinbiochem.2012.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/06/2012] [Accepted: 10/01/2012] [Indexed: 01/16/2023]
|
33
|
Pan S, Brentnall TA, Kelly K, Chen R. Tissue proteomics in pancreatic cancer study: discovery, emerging technologies, and challenges. Proteomics 2013; 13:710-21. [PMID: 23125171 DOI: 10.1002/pmic.201200319] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer is a highly lethal disease that is difficult to diagnose and treat. The advances in proteomics technology, especially quantitative proteomics, have stimulated a great interest in applying this technology for pancreatic cancer study. A variety of tissue proteomics approaches have been applied to investigate pancreatic cancer and the associated diseases. These studies were carried out with various goals, aiming to better understand the molecular mechanisms underlying pancreatic tumorigenesis, to improve therapeutic treatment and to identify cancer associated protein signatures, signaling events as well as interactions between cancer cells and tumor microenvironment. Here, we provide an overview on the tissue proteomics studies of pancreatic cancer reported in the past few years in light of discovery and technology development.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
34
|
Ye X, Prieto DA, Chan KC, Wei BR, Blonder J. Tissue Sample Preparation for Proteomic Analysis. PROTEOMIC AND METABOLOMIC APPROACHES TO BIOMARKER DISCOVERY 2013:39-50. [DOI: 10.1016/b978-0-12-394446-7.00003-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Mukherjee S, Rodriguez-Canales J, Hanson J, Emmert-Buck MR, Tangrea MA, Prieto DA, Blonder J, Johann DJ. Proteomic analysis of frozen tissue samples using laser capture microdissection. Methods Mol Biol 2013; 1002:71-83. [PMID: 23625395 DOI: 10.1007/978-1-62703-360-2_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The discovery of effective cancer biomarkers is essential for the development of both advanced molecular diagnostics and new therapies/medications. Finding and exploiting useful clinical biomarkers for cancer patients is fundamentally linked to improving outcomes. Towards these aims, the heterogeneous nature of tumors represents a significant problem. Thus, methods establishing an effective functional linkage between laser capture microdissection (LCM) and mass spectrometry (MS) provides for an enhanced molecular profiling of homogenous, specifically targeted cell populations from solid tumors. Utilizing frozen tissue avoids molecular degradation and bias that can be induced by other preservation techniques. Since clinical samples are often of a small quantity, tissue losses must be minimized. Therefore, all steps are carried out in the same single tube. Proteins are identified through peptide sequencing and subsequent matching against a specific proteomic database. Using such an approach enhances clinical biomarker discovery in the following ways. First, LCM allows for the complexity of a solid tumor to be reduced. Second, MS provides for the profiling of proteins, which are the ultimate bio-effectors. Third, by selecting for tumor proper or microenvironment-specific cells from clinical samples, the heterogeneity of individual solid tumors is directly addressed. Finally, since proteins are the targets of most pharmaceuticals, the enriched protein data streams can then be further analyzed for potential biomarkers, drug targets, pathway elucidation, as well as an enhanced understanding of the various pathologic processes under study. Within this context, the following method illustrates in detail a synergy between LCM and MS for an enhanced molecular profiling of solid tumors and clinical biomarker discovery.
Collapse
|
36
|
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the most effective tumor immunotherapy available. Although allo-HSCT provides beneficial graft-versus-tumor effects, acute GVHD (aGVHD) is the primary source of morbidity and mortality after HSCT. Diagnosis of aGVHD is typically based on clinical symptoms in one or more of the main target organs (skin, liver, gastrointestinal tract) and confirmed by biopsy. However, currently available diagnostic and staging tools often fail to identify patients at higher risk of GVHD progression, unresponsiveness to therapy, or death. In addition, there are shortcomings in the prediction of GVHD before clinical signs develop, indicating the urgent need for noninvasive and reliable laboratory tests. Through the continuing evolution of proteomics technologies seen in recent years, plasma biomarkers have been identified and validated as promising diagnostic tools for GVHD and prognostic tools for nonrelapse mortality. These biomarkers may facilitate timely and selective therapeutic intervention but should be more widely validated and incorporated into a new grading system for risk stratification of patients and better-customized treatment. This review identifies biomarkers for detecting GVHD, summarizes current information on aGVHD biomarkers, proposes future prospects for the blinded evaluation of these biomarkers, and discusses the need for biomarkers of chronic GVHD.
Collapse
|
37
|
Magdeldin S, Yamamoto T. Toward deciphering proteomes of formalin-fixed paraffin-embedded (FFPE) tissues. Proteomics 2012; 12:1045-58. [PMID: 22318899 PMCID: PMC3561704 DOI: 10.1002/pmic.201100550] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue specimens comprise a potentially valuable resource for both prospective and retrospective biomarker discovery. Unlocking the proteomic profile of clinicopathological FFPE tissues is a critically essential step for annotating clinical findings and predicting biomarkers for ultimate disease prognosis and therapeutic follow-up.
Collapse
Affiliation(s)
- Sameh Magdeldin
- Department of Structural Pathology Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | | |
Collapse
|
38
|
Guo H, Liu W, Ju Z, Tamboli P, Jonasch E, Mills GB, Lu Y, Hennessy BT, Tsavachidou D. An efficient procedure for protein extraction from formalin-fixed, paraffin-embedded tissues for reverse phase protein arrays. Proteome Sci 2012; 10:56. [PMID: 23006314 PMCID: PMC3561137 DOI: 10.1186/1477-5956-10-56] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 09/10/2012] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED INTRODUCTION Protein extraction from formalin-fixed paraffin-embedded (FFPE) tissues is challenging due to extensive molecular crosslinking that occurs upon formalin fixation. Reverse-phase protein array (RPPA) is a high-throughput technology, which can detect changes in protein levels and protein functionality in numerous tissue and cell sources. It has been used to evaluate protein expression mainly in frozen preparations or FFPE-based studies of limited scope. Reproducibility and reliability of the technique in FFPE samples has not yet been demonstrated extensively. We developed and optimized an efficient and reproducible procedure for extraction of proteins from FFPE cells and xenografts, and then applied the method to FFPE patient tissues and evaluated its performance on RPPA. RESULTS Fresh frozen and FFPE preparations from cell lines, xenografts and breast cancer and renal tissues were included in the study. Serial FFPE cell or xenograft sections were deparaffinized and extracted by six different protein extraction protocols. The yield and level of protein degradation were evaluated by SDS-PAGE and Western Blots. The most efficient protocol was used to prepare protein lysates from breast cancer and renal tissues, which were subsequently subjected to RPPA. Reproducibility was evaluated and Spearman correlation was calculated between matching fresh frozen and FFPE samples.The most effective approach from six protein extraction protocols tested enabled efficient extraction of immunoreactive protein from cell line, breast cancer and renal tissue sample sets. 85% of the total of 169 markers tested on RPPA demonstrated significant correlation between FFPE and frozen preparations (p < 0.05) in at least one cell or tissue type, with only 23 markers common in all three sample sets. In addition, FFPE preparations yielded biologically meaningful observations related to pathway signaling status in cell lines, and classification of renal tissues. CONCLUSIONS With optimized protein extraction methods, FFPE tissues can be a valuable source in generating reproducible and biologically relevant proteomic profiles using RPPA, with specific marker performance varying according to tissue type.
Collapse
Affiliation(s)
- Huifang Guo
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenbin Liu
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pheroze Tamboli
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiling Lu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan T Hennessy
- Department of Medical Oncology, Beaumont Hospital, Royal College of Surgeons of Ireland, Dublin, Ireland
| | - Dimitra Tsavachidou
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
39
|
Cunningham R, Ma D, Li L. Mass Spectrometry-based Proteomics and Peptidomics for Systems Biology and Biomarker Discovery. FRONTIERS IN BIOLOGY 2012; 7:313-335. [PMID: 24504115 PMCID: PMC3913178 DOI: 10.1007/s11515-012-1218-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The scientific community has shown great interest in the field of mass spectrometry-based proteomics and peptidomics for its applications in biology. Proteomics technologies have evolved to produce large datasets of proteins or peptides involved in various biological and disease progression processes producing testable hypothesis for complex biological questions. This review provides an introduction and insight to relevant topics in proteomics and peptidomics including biological material selection, sample preparation, separation techniques, peptide fragmentation, post-translation modifications, quantification, bioinformatics, and biomarker discovery and validation. In addition, current literature and remaining challenges and emerging technologies for proteomics and peptidomics are presented.
Collapse
Affiliation(s)
- Robert Cunningham
- Department of Chemistry, University of Wisconsin-Madison, 777, Highland Avenue, Madison, WI 53705-2222, USA
| | - Di Ma
- School of Pharmacy, University of Wisconsin-Madison, 777, Highland Avenue, Madison, WI 53705-2222, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 777, Highland Avenue, Madison, WI 53705-2222, USA
- School of Pharmacy, University of Wisconsin-Madison, 777, Highland Avenue, Madison, WI 53705-2222, USA
| |
Collapse
|
40
|
Gámez‐Pozo A, Sánchez‐Navarro I, Ibarz Ferrer N, García Martínez F, Ashman K, Fresno Vara JÁ. High‐Throughput Phosphoproteomics from Formalin‐Fixed, Paraffin‐Embedded Tissues. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/9780470559277.ch110242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Angelo Gámez‐Pozo
- Laboratorio de Oncología y Patología Molecular, Instituto de Genética Médica y Molecular‐INGEMM, Instituto de Investigación Hospital Universitario La Paz‐IdiPAZ Madrid Spain
| | - Iker Sánchez‐Navarro
- Laboratorio de Oncología y Patología Molecular, Instituto de Genética Médica y Molecular‐INGEMM, Instituto de Investigación Hospital Universitario La Paz‐IdiPAZ Madrid Spain
| | - Nuria Ibarz Ferrer
- Unidad de Proteómica, Centro Nacional de Investigaciones Oncológicas (CNIO) Madrid Spain
| | | | - Keith Ashman
- Unidad de Proteómica, Centro Nacional de Investigaciones Oncológicas (CNIO) Madrid Spain
- Clinical Applications Development, UQCCR University of Queensland Australia
| | - Juan Ángel Fresno Vara
- Laboratorio de Oncología y Patología Molecular, Instituto de Genética Médica y Molecular‐INGEMM, Instituto de Investigación Hospital Universitario La Paz‐IdiPAZ Madrid Spain
| |
Collapse
|
41
|
Murphy MJ, Rezaul K, Phelps A, Han DK. Proteomic analysis of formalin-fixed, paraffin-embedded melanoma. J Cutan Pathol 2012; 39:464-6. [DOI: 10.1111/j.1600-0560.2011.01835.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Tanca A, Pagnozzi D, Addis MF. Setting proteins free: Progresses and achievements in proteomics of formalin-fixed, paraffin-embedded tissues. Proteomics Clin Appl 2011; 6:7-21. [DOI: 10.1002/prca.201100044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/01/2011] [Accepted: 09/13/2011] [Indexed: 12/25/2022]
|
43
|
Pan S, Chen R, Stevens T, Bronner MP, May D, Tamura Y, McIntosh MW, Brentnall TA. Proteomics portrait of archival lesions of chronic pancreatitis. PLoS One 2011; 6:e27574. [PMID: 22132114 PMCID: PMC3223181 DOI: 10.1371/journal.pone.0027574] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/19/2011] [Indexed: 12/11/2022] Open
Abstract
Chronic pancreatitis is a chronic inflammatory disorder of the pancreas. The etiology is multi-fold, but all lead to progressive scarring and loss of pancreatic function. Early diagnosis is difficult; and the understanding of the molecular events that underlie this progressive disease is limited. In this study, we investigated differential proteins associated with mild and severe chronic pancreatitis in comparison with normal pancreas and pancreatic cancer. Paraffin-embedded formalin-fixed tissues from five well-characterized specimens each of normal pancreas (NL), mild chronic pancreatitis (MCP), severe chronic pancreatitis (SCP) and pancreatic ductal adenocarcinoma (PDAC) were subjected to proteomic analysis using a “label-free” comparative approach. Our results show that the numbers of differential proteins increase substantially with the disease severity, from mild to severe chronic pancreatitis, while the number of dysregulated proteins is highest in pancreatic adenocarcinoma. Important functional groups and biological processes associated with chronic pancreatitis and cancer include acinar cell secretory proteins, pancreatic fibrosis/stellate cell activation, glycoproteins, and inflammatory proteins. Three differential proteins were selected for verification by immunohistochemistry, including collagen 14A1, lumican and versican. Further canonical pathway analysis revealed that acute phase response signal, prothrombin activation pathway, and pancreatic fibrosis/pancreatic stellate cell activation pathway were the most significant pathways involved in chronic pancreatitis, while pathways relating to metabolism were the most significant pathways in pancreatic adenocarcinoma. Our study reveals a group of differentially expressed proteins and the related pathways that may shed light on the pathogenesis of chronic pancreatitis and the common molecular events associated with chronic pancreatitis and pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail: (SP); (TB)
| | - Ru Chen
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Tyler Stevens
- Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Mary P. Bronner
- Department of Anatomic Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Damon May
- Fred Hutchinson Cancer Research Center, Molecular Diagnostics Program, Seattle, Washington, United States of America
| | - Yasuko Tamura
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Martin W. McIntosh
- Fred Hutchinson Cancer Research Center, Molecular Diagnostics Program, Seattle, Washington, United States of America
| | - Teresa A. Brentnall
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail: (SP); (TB)
| |
Collapse
|
44
|
Heaton KJ, Master SR. Peptide extraction from formalin-fixed paraffin-embedded tissue. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2011; Chapter 23:Unit23.5. [PMID: 21842470 DOI: 10.1002/0471140864.ps2305s65] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This unit describes how to extract tryptic peptides from formalin-fixed, paraffin-embedded (FFPE) tissues for analysis using nano-reverse-phase liquid chromatography/tandem mass spectrometry (nRPLC-MS/MS). The tissues are deparaffinized in the first protocol. Following deparaffinization, the cells are harvested via one of two methods: needle dissection or laser capture microdissection (LCM). Needle dissection is performed using hydrated, unstained tissue, whereas LCM is performed with dehydrated, hematoxylin-stained tissue. Heat is applied to the collected cells to reverse the cross-links that have formed during the formalin fixation process. Finally, the cells are digested using filter-aided sample preparation, in which buffers are exchanged throughout the process. An alternate protocol using commercially available Liquid Tissue is also described. These samples are then ready for mass spectrometric analysis.
Collapse
|
45
|
Rezaul K, Thumar JK, Lundgren DH, Eng JK, Claffey KP, Wilson L, Han DK. Differential protein expression profiles in estrogen receptor-positive and -negative breast cancer tissues using label-free quantitative proteomics. Genes Cancer 2011; 1:251-71. [PMID: 21779449 DOI: 10.1177/1947601910365896] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Identification of the proteins that are associated with estrogen receptor (ER) status is a first step towards better understanding of the hormone-dependent nature of breast carcinogenesis. Although a number of gene expression analyses have been conducted, protein complement has not been systematically investigated to date. Because proteins are primary targets of therapeutic drugs, in this study, we have attempted to identify proteomic signatures that demarcate ER-positive and -negative breast cancers. Using highly enriched breast tumor cells, replicate analyses from 3 ERα+ and 3 ERα- human breast tumors resulted in the identification of 2,995 unique proteins with ≥2 peptides. Among these, a number of receptor tyrosine kinases and intracellular kinases that are abundantly expressed in ERα+ and ERα- breast cancer tissues were identified. Further, label-free quantitative proteome analysis revealed that 236 proteins were differentially expressed in ERα+ and ERα- breast tumors. Among these, 141 proteins were selectively up-regulated in ERα+, and 95 proteins were selectively up-regulated in ERα- breast tumors. Comparison of differentially expressed proteins with a breast cancer database revealed 98 among these have been previously reported to be involved in breast cancer. By Gene Ontology molecular function, dehydrogenase, reductase, cytoskeletal proteins, extracellular matrix, hydrolase, and lyase categories were significantly enriched in ERα+, whereas selected calcium-binding protein, membrane traffic protein, and cytoskeletal protein were enriched in ERα- breast tumors. Biological process and pathway analysis revealed that up-regulated proteins of ERα+ were overrepresented by proteins involved in amino acid metabolism, proteasome, and fatty acid metabolism, while up-regulated proteins of ERα- were overrepresented by proteins involved in glycolysis pathway. The presence and relative abundance of 4 selected differentially abundant proteins (liprin-α1, fascin, DAP5, and β-arrestin-1) were quantified and validated by immunohistochemistry. In conclusion, unlike in vitro cell culture models, the in vivo signaling proteins and pathways that we have identified directly from human breast cancer tissues may serve as relevant therapeutic targets for the pharmacological intervention of breast cancer.
Collapse
Affiliation(s)
- Karim Rezaul
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Proteomics in melanoma biomarker discovery: great potential, many obstacles. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2011:181890. [PMID: 22084682 PMCID: PMC3195774 DOI: 10.1155/2011/181890] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/02/2011] [Indexed: 01/22/2023]
Abstract
The present clinical staging of melanoma stratifies patients into heterogeneous groups, resulting in the application of aggressive therapies to large populations, diluting impact and increasing toxicity. To move to a new era of therapeutic decisions based on highly specific tumor profiling, the discovery and validation of new prognostic and predictive biomarkers in melanoma is critical. Genomic profiling, which is showing promise in other solid tumors, requires fresh tissue from a large number of primary tumors, and thus faces a unique challenge in melanoma. For this and other reasons, proteomics appears to be an ideal choice for the discovery of new melanoma biomarkers. Several approaches to proteomics have been utilized in the search for clinically relevant biomarkers, but to date the results have been relatively limited. This article will review the present work using both tissue and serum proteomics in the search for melanoma biomarkers, highlighting both the relative advantages and disadvantages of each approach. In addition, we review several of the major obstacles that need to be overcome in order to advance the field.
Collapse
|
47
|
Alkhas A, Hood BL, Oliver K, Teng PN, Oliver J, Mitchell D, Hamilton CA, Maxwell GL, Conrads TP. Standardization of a Sample Preparation and Analytical Workflow for Proteomics of Archival Endometrial Cancer Tissue. J Proteome Res 2011; 10:5264-71. [DOI: 10.1021/pr2007736] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Addie Alkhas
- Gynecologic Oncology Service, Department of Obstetrics and Gynecology, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
- Women’s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Defense, Annandale, Virgina, United States
| | - Brian L. Hood
- Women’s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Defense, Annandale, Virgina, United States
| | - Kate Oliver
- Gynecologic Oncology Service, Department of Obstetrics and Gynecology, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
- Women’s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Defense, Annandale, Virgina, United States
| | - Pang-ning Teng
- Women’s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Defense, Annandale, Virgina, United States
| | - Julie Oliver
- Women’s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Defense, Annandale, Virgina, United States
| | - David Mitchell
- Women’s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Defense, Annandale, Virgina, United States
| | - Chad A. Hamilton
- Gynecologic Oncology Service, Department of Obstetrics and Gynecology, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
- Women’s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Defense, Annandale, Virgina, United States
| | - G. Larry Maxwell
- Women’s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Defense, Annandale, Virgina, United States
- Department of Obstetrics and Gynecology, Inova Fairfax Hospital, Fairfax, Virgina, United States
| | - Thomas P. Conrads
- Women’s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Defense, Annandale, Virgina, United States
| |
Collapse
|
48
|
|
49
|
Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc 2011; 6:1578-611. [PMID: 21959240 DOI: 10.1038/nprot.2011.382] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and non-cleaved proteins by peptide isotope quantification and bioinformatics search criteria.
Collapse
|
50
|
Liu H, Zhao X, Cheng K, Zhao Z, Ye M. Sequential extraction leading to improved proteomic analysis of the oleaginous yeast Lipomyces starkeyi. Se Pu 2011; 29:382-8. [PMID: 21847969 DOI: 10.3724/sp.j.1123.2011.00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The oleaginous yeast Lipomyces starkeyi (L. starkeyi) is an excellent intracellular lipid producer. Thus, extraction of protein from lipid-rich L. starkeyi samples following conventional methods can be difficult, leading to poor data in terms of proteomic analysis. The presence of lipophilic components in those samples may also interfere with the extraction process and the downstream analysis. In this work, we developed a sequential extraction method for preparation and analysis of L. starkeyi proteome combining to an online multidimensional nano reversed-phase liquid chromatography-tandem mass spectrometry (microRPLC-MS/MS) strategy. Protein hits of high confidence reached 227 with false positive rate less than 0.1, twice of those identified from the one-buffer extraction preparation. Moreover, the protein hits related to primary metabolism was increased, which may be important to establish the molecular mechanism of lipid accumulation. The method should be valuable for protein extraction from oleaginous species.
Collapse
Affiliation(s)
- Hongwei Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | | | |
Collapse
|