1
|
Hwang IY, Kalyuzhnaya MG, Lee EY. Quantitative assessment of methane bioconversion based on kinetics and bioenergetics. BIORESOURCE TECHNOLOGY 2024; 410:131269. [PMID: 39163949 DOI: 10.1016/j.biortech.2024.131269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024]
Abstract
The biological conversion of methane under ambient conditions can be performed by methanotrophs that utilize methane as both a sole source of energy and a carbon source. However, compared to the established microbial chassis used for general fermentation with sugar as a feedstock, the productivity of methanotrophs is low. The fundamental knowledge of their metabolic or cellular bottlenecks is limited. In this review, the industrial-scale potential of methane bioconversion was evaluated. In particular, the enzyme kinetics associated with the oxidation and assimilation of methane were investigated to evaluate the potential of methane fermentation. The kinetics of enzymes involved in methane metabolism were compared with those used in the metabolic processes of traditional fermentation (glycolysis). Through this analysis, the current limitations of methane metabolism were identified. Methods for increasing the efficiency of methane bioconversion and directions for the industrial application of methane-based fermentation were discussed.
Collapse
Affiliation(s)
- In Yeub Hwang
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - M G Kalyuzhnaya
- Department of Biology, San Diego State University, San Diego CA92182, USA.
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
2
|
Lee SA, Henard JM, Alba RAC, Benedict CA, Mayes TA, Henard CA. Overexpression of native carbonic anhydrases increases carbon conversion efficiency in the methanotrophic biocatalyst Methylococcus capsulatus Bath. mSphere 2024; 9:e0049624. [PMID: 39191392 PMCID: PMC11423575 DOI: 10.1128/msphere.00496-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Methanotrophic bacteria play a vital role in the biogeochemical carbon cycle due to their unique ability to use CH4 as a carbon and energy source. Evidence suggests that some methanotrophs, including Methylococcus capsulatus, can also use CO2 as a carbon source, making these bacteria promising candidates for developing biotechnologies targeting greenhouse gas capture and mitigation. However, a deeper understanding of the dual CH4 and CO2 metabolism is needed to guide methanotroph strain improvements and realize their industrial utility. In this study, we show that M. capsulatus expresses five carbonic anhydrase (CA) isoforms, one α-CA, one γ-CA, and three β-CAs, that play a role in its inorganic carbon metabolism and CO2-dependent growth. The CA isoforms are differentially expressed, and transcription of all isoform genes is induced in response to CO2 limitation. CA null mutant strains exhibited markedly impaired growth compared to an isogenic wild-type control, suggesting that the CA isoforms have independent, non-redundant roles in M. capsulatus metabolism and physiology. Overexpression of some, but not all, CA isoforms improved bacterial growth kinetics and decreased CO2 evolution from CH4-consuming cultures. Notably, we developed an engineered methanotrophic biocatalyst overexpressing the native α-CA and β-CA with a 2.5-fold improvement in the conversion of CH4 to biomass. Given that product yield is a significant cost driver of methanotroph-based bioprocesses, the engineered strain developed here could improve the economics of CH4 biocatalysis, including the production of single-cell protein from natural gas or anaerobic digestion-derived biogas.IMPORTANCEMethanotrophs transform CH4 into CO2 and multi-carbon compounds, so they play a critical role in the global carbon cycle and are of interest for biotechnology applications. Some methanotrophs, including Methylococcus capsulatus, can also use CO2 as a carbon source, but this dual one-carbon metabolism is incompletely understood. In this study, we show that M. capsulatus carbonic anhydrases are critical for this bacterium to optimally utilize CO2. We developed an engineered strain with improved CO2 utilization capacity that increased the overall carbon conversion to cell biomass. The improvements to methanotroph-based product yields observed here are expected to reduce costs associated with CH4 conversion bioprocesses.
Collapse
Affiliation(s)
- Spencer A Lee
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Jessica M Henard
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Robyn A C Alba
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Chance A Benedict
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Tyler A Mayes
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Calvin A Henard
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| |
Collapse
|
3
|
Zhang W, Shi J, Li Y, Ma Y, Khanzada AK, Al-Hazmi HE, Xu X, Li X, Hassan GK, Xue G, Makinia J. A novel approach to enhance high optically active L-lactate production from food waste by landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122497. [PMID: 39278020 DOI: 10.1016/j.jenvman.2024.122497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The recycling of food waste (FW) through anaerobic fermentation into lactic acid (LA), with two isomers L-LA and D-LA, aligns with the principles of a bio-based circular economy. However, FW fermentation is often limited by competing pathways, acidification inhibition, and trace metals deficiency. This study investigates the introduction of landfill leachate, containing buffering agents (ammonia) and trace metals, into FW fermentation. Various dosages of landfill leachate, ranging from 90 (LN-90) to 450 mg/L (LN-450) based on inclusive ammonia calculation, were employed. Results showed that LA production peaked at 43.65 ± 0.57 g COD/L in LN-180 on day 6, with a high optical activity of L-LA at 92.40 ± 1.15 %. Fermentation pathway analysis revealed that landfill leachate amendment enhances hydrolysis (as evidenced by increased activity of amylase, α-glucosidase, and protease) and glycolysis (resulting in enhanced utilization of carbohydrates and glucose). The inclusive ammonia in leachate plays a crucial role as a buffer, maintaining optimal pH conditions (5-7), thereby reducing volatile fatty acid production and thus intensifying LA orientations. The increased activity of L-lactate dehydrogenase (L-LA generation) and decreased NAD-independent lactate dehydrogenase (LA consumption) in properly dosed leachate further explained the high accumulation of L-LA. Dominance of lactic acid bacteria, including Streptococcus, Enterococcus, Klebsiella, Bifidobacterium, Bavariicoccus, and Lacticaseibacillus, accounted for 91.08% (LN-90), while inhibitory effects were observed in LN-450 (4.45%). Functional gene analysis further supported the enhanced glycolysis, L-lactate dehydrogenase, and nitrogen assimilation. Finally, a network analysis indicates a beneficial effect on the genus Enterococcus and Klebsiella by landfill leachate addition. This study demonstrates the efficiency of utilizing landfill leachate to enhance LA recycling from FW fermentation, aligning with the concept of circular economy by transforming waste into valuable resources.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, Shanghai, 201620, China
| | - Jiaxin Shi
- Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, Shanghai, 201620, China
| | - Yue Li
- Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, Shanghai, 201620, China
| | - Yonghong Ma
- State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Aisha Khan Khanzada
- Eko-Tech Center, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Hussein E Al-Hazmi
- Eko-Tech Center, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland; BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Xianbao Xu
- Eko-Tech Center, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland.
| | - Xiang Li
- State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| | - Gamal Kamel Hassan
- Water Pollution Research Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Gang Xue
- State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Jacek Makinia
- Eko-Tech Center, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| |
Collapse
|
4
|
Kang CK, Yang JE, Jo JH, Kim MS, Kim MS, Choi YJ. Microbial upcycling of methane to phytoene using metabolically engineered Methylocystis sp. MJC1 strain. BIORESOURCE TECHNOLOGY 2024; 407:131116. [PMID: 39019197 DOI: 10.1016/j.biortech.2024.131116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Methane, a potent greenhouse gas, requires sustainable mitigation strategies. Here, the microbial upcycling of methane to phytoene, a valuable colorless carotenoid with applications in the cosmeceutical industry was demonstrated. To achieve this goal, a stepwise metabolic engineering approach was employed in Methylocystis sp. MJC1, a methane-oxidizing bacterium. The incorporation of crtE and crtB genes from Deinococcus radiodurans R1 established the phytoene biosynthetic pathway. This pathway was fine-tuned through promoter optimization, resulting in a phytoene production of 450 μg/L from 37 mmol/L methane. Disrupting the ackA gene reduced a by-product, acetate, by 50 % and increased phytoene production by 56 %. Furthermore, overexpressing the dxs gene boosted phytoene titer 3-fold. The optimized strain produced 15 mg/L phytoene from 2 mol/L methane in fed-batch fermentation, a 4-fold increase in phytoene titer and 4-fold in yield. This demonstrates Methylocystis sp. MJC1's potential for efficient phytoene production and presents a novel approach for greenhouse gas reduction.
Collapse
Affiliation(s)
- Chang Keun Kang
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jung Eun Yang
- Department of Advanced Process Technology and Fermentation, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jae-Hwan Jo
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, 25 Samso-ro 270beon-gil, Buk-gu, Gwangju 61003, Republic of Korea; Interdisciplinary Program of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Min Sun Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Min-Sik Kim
- Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
5
|
Bhat EH, Henard JM, Lee SA, McHalffey D, Ravulapati MS, Rogers EV, Yu L, Skiles D, Henard CA. Construction of a broad-host-range Anderson promoter series and particulate methane monooxygenase promoter variants expand the methanotroph genetic toolbox. Synth Syst Biotechnol 2024; 9:250-258. [PMID: 38435708 PMCID: PMC10909576 DOI: 10.1016/j.synbio.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Methanotrophic bacteria are currently used industrially for the bioconversion of methane-rich natural gas and anaerobic digestion-derived biogas to valuable products. These bacteria may also serve to mitigate the negative effects of climate change by capturing atmospheric greenhouse gases. Several genetic tools have previously been developed for genetic and metabolic engineering of methanotrophs. However, the available tools for use in methanotrophs are significantly underdeveloped compared to many other industrially relevant bacteria, which hinders genetic and metabolic engineering of these biocatalysts. As such, expansion of the methanotroph genetic toolbox is needed to further our understanding of methanotrophy and develop biotechnologies that leverage these unique microbes for mitigation and conversion of methane to valuable products. Here, we determined the copy number of three broad-host-range plasmids in Methylococcus capsulatus Bath and Methylosinus trichosporium OB3b, representing phylogenetically diverse Gammaproteobacterial and Alphaproteobacterial methanotrophs, respectively. Further, we show that the commonly used synthetic Anderson series promoters are functional and exhibit similar relative activity in M. capsulatus and M. trichosporium OB3b, but the synthetic series had limited range. Thus, we mutagenized the native M. capsulatus particulate methane monooxygenase promoter and identified variants with activity that expand the activity range of synthetic, constitutive promoters functional not only in M. capsulatus, but also in Escherichia coli. Collectively, the tools developed here advance the methanotroph genetic engineering toolbox and represent additional synthetic genetic parts that may have broad applicability in Pseudomonadota bacteria.
Collapse
Affiliation(s)
| | | | | | - Dustin McHalffey
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Mahith S. Ravulapati
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Elle V. Rogers
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Logan Yu
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - David Skiles
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Calvin A. Henard
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| |
Collapse
|
6
|
Liang L, Zhao Z, Zhou H, Zhang Y. Insights into feasibility and microbial characterizations on simultaneous elimination of dissolved methane from anaerobic effluents and nitrate/nitrite reduction in a conventional anoxic reactor with magnetite. WATER RESEARCH 2024; 256:121567. [PMID: 38581983 DOI: 10.1016/j.watres.2024.121567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Discovery of nitrate/nitrite-dependent anaerobic methane oxidation (DAMO) challenges the conventional biological treatment processes, since it provides a possibility of simultaneously mitigating dissolved methane emissions from anaerobic effluents and reducing additional carbon sources for denitrification. Due to the slow growth of specialized DAMO microbes, this possibility has been just practiced with biofilms in membrane biofilm reactors or granular sludge in membrane bioreactors. In this study, simultaneous elimination of dissolved methane from anaerobic effluents and nitrate/nitrite reduction was achieved in a conventional anoxic reactor with magnetite. Calculations of electron flow balance showed that, with magnetite the eliminated dissolved methane was almost entirely used for nitrate/nitrite reduction, while without magnetite approximately 52 % of eliminated dissolved methane was converted to unknown organics. Metagenomic sequencing showed that, when dissolved methane served as an electron donor, the abundance of genes for reverse methanogenesis and denitrification dramatically increased, indicating that anaerobic oxidation of methane (AOM) coupled to nitrate/nitrite reduction occurred. Magnetite increased the abundance of genes encoding the key enzymes involved in whole reverse methanogenesis and Nir and Nor involved in denitrification, compared to that without magnetite. Analysis of microbial communities showed that, AOM coupled to nitrate/nitrite reduction was proceeded by syntrophic consortia comprised of methane oxidizers, Methanolinea and Methanobacterium, and nitrate/nitrite reducers, Armatimonadetes_gp5 and Thauera. With magnetite syntrophic consortia exchanged electrons more effectively than that without magnetite, further supporting the microbial growth.
Collapse
Affiliation(s)
- Lianfu Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Hao Zhou
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Goswami S, Singer SW, Simmons BA, Awasthi D. Optimization of electroporation method and promoter evaluation for type-1 methanotroph, Methylotuvimicrobium alcaliphilum. Front Bioeng Biotechnol 2024; 12:1412410. [PMID: 38812915 PMCID: PMC11133525 DOI: 10.3389/fbioe.2024.1412410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Methanotrophic bacteria are promising hosts for methane bioconversion to biochemicals or bioproducts. However, due to limitations associated with long genetic manipulation timelines and, lack of choice in genetic tools required for strain engineering, methanotrophs are currently not employed for bioconversion technologies. In this study, a rapid and reproducible electroporation protocol is developed for type 1 methanotroph, Methylotuvimicrobium alcaliphilum using common laboratory solutions, analyzing optimal electroshock voltages and post-shock cell recovery time. Successful reproducibility of the developed method was achieved when different replicative plasmids were assessed on lab adapted vs. wild-type M. alcaliphilum strains (DASS vs. DSM19304). Overall, a ∼ 3-fold decrease in time is reported with use of electroporation protocol developed here, compared to conjugation, which is the traditionally employed approach. Additionally, an inducible (3-methyl benzoate) and a constitutive (sucrose phosphate synthase) promoter is characterized for their strength in driving gene expression.
Collapse
Affiliation(s)
- Shubhasish Goswami
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Steven W. Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
| | - Blake A. Simmons
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
| | - Deepika Awasthi
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
| |
Collapse
|
8
|
Guo W, He R, Zhao Y, Li D. Imbalanced metabolism induced NH 4+ accumulation and its effect on the central metabolism of Methylomonas sp. ZR1. Int Microbiol 2024; 27:49-66. [PMID: 38038804 DOI: 10.1007/s10123-023-00457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 07/23/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
Nitrogen and carbon are the two most essential nutrient elements, and their metabolism is tightly coupled in single carbon metabolic microorganisms. However, the nitrogen metabolism and the nitrogen/carbon (N/C) metabolic balance in single-carbon metabolism is poorly studied. In this study, the nitrogen metabolism pattern of the fast growing methanotrophs Methylomonas sp. ZR1 grown in methane and methanol was studied. Effect study of different nitrogen sources on the cell growth of ZR1 indicates that nitrate salts are the best nitrogen source supporting the growth of ZR1 using methane and methanol as carbon source. However, its metabolic intermediate ammonium was found to accumulate with high N/C ratio in the medium and consequently inhibit the growth of ZR1. Studies of carbon and nitrogen metabolic kinetic under different N/C ratio conditions indicate that the accumulation of NH4+ is caused by the imbalanced nitrogen and carbon metabolism in ZR1. Feeding carbon skeleton α-ketoglutaric acid could effectively relieve the inhibition effect of NH4+ on the growth of ZR1, which further confirms this assumption. qPCR analysis of the expression level of the central metabolic key enzyme gene indicates that the nitrogen metabolic intermediate ammonium has strong regulation effect on the central nitrogen and carbon metabolism in ZR1. qPCR-combined genomic analysis confirms that a third ammonium assimilation pathway glycine synthesis system is operated in ZR1 to balance the nitrogen and carbon metabolism. Based on the qPCR result, it was also found that ZR1 employs two strategies to relieve ammonium stress in the presence of ammonium: assimilating excess ammonium or cutting off the nitrogen reduction reactions according to the available C1 substrate. Validating the connections between single-carbon and nitrogen metabolism and studying the accumulation and assimilation mechanism of ammonium will contribute to understand how nitrogen regulates cellular growth in single-carbon metabolic microorganisms.
Collapse
Affiliation(s)
- Wei Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7Th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Ronglin He
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7Th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yujie Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7Th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Demao Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7Th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| |
Collapse
|
9
|
Oshkin IY, Tikhonova EN, Suleimanov RZ, Ashikhmin AA, Ivanova AA, Pimenov NV, Dedysh SN. All Kinds of Sunny Colors Synthesized from Methane: Genome-Encoded Carotenoid Production by Methylomonas Species. Microorganisms 2023; 11:2865. [PMID: 38138009 PMCID: PMC10745290 DOI: 10.3390/microorganisms11122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Carotenoids are secondary metabolites that exhibit antioxidant properties and are characterized by a striking range of colorations from red to yellow. These natural pigments are synthesized by a wide range of eukaryotic and prokaryotic organisms. Among the latter, carotenoid-producing methanotrophic bacteria, which display fast growth on methane or natural gas, are of particular interest as potential producers of a feed protein enriched with carotenoids. Until recently, Methylomonas strain 16a and Methylomonas sp. ZR1 remained the only representatives of the genus for which detailed carotenoid profile was determined. In this study, we analyzed the genome sequences of five strains of Methylomonas species whose pigmentation varied from white and yellow to orange and red, and identified carotenoids produced by these bacteria. Carotenoids synthesized using four pigmented strains included C30 fraction, primarily composed of 4,4'-diaplycopene-4,4'-dioic acid and 4,4'-diaplycopenoic acid, as well as C40 fraction with the major compound represented by 1,1'-dihydroxy-3,4-didehydrolycopene. The genomes of studied Methylomonas strains varied in size between 4.59 and 5.45 Mb and contained 4201-4735 protein-coding genes. These genomes and 35 reference Methylomonas genomes available in the GenBank were examined for the presence of genes encoding carotenoid biosynthesis. Genomes of all pigmented Methylomonas strains harbored genes necessary for the synthesis of 4,4'-diaplycopene-4,4'-dioic acid. Non-pigmented "Methylomonas montana" MW1T lacked the crtN gene required for carotenoid production. Nearly all strains possessed phytoene desaturases, which explained their ability to naturally synthesize lycopene. Thus, members of the genus Methylomonas can potentially be considered as producers of C30 and C40 carotenoids from methane.
Collapse
Affiliation(s)
- Igor Y. Oshkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Ekaterina N. Tikhonova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Ruslan Z. Suleimanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Aleksandr A. Ashikhmin
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Anastasia A. Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Nikolai V. Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| |
Collapse
|
10
|
Cha S, Cho YJ, Lee JK, Hahn JS. Regulation of acetate tolerance by small ORF-encoded polypeptides modulating efflux pump specificity in Methylomonas sp. DH-1. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:114. [PMID: 37464261 DOI: 10.1186/s13068-023-02364-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Methanotrophs have emerged as promising hosts for the biological conversion of methane into value-added chemicals, including various organic acids. Understanding the mechanisms of acid tolerance is essential for improving organic acid production. WatR, a LysR-type transcriptional regulator, was initially identified as involved in lactate tolerance in a methanotrophic bacterium Methylomonas sp. DH-1. In this study, we investigated the role of WatR as a regulator of cellular defense against weak organic acids and identified novel target genes of WatR. RESULTS By conducting an investigation into the genome-wide binding targets of WatR and its role in transcriptional regulation, we identified genes encoding an RND-type efflux pump (WatABO pump) and previously unannotated small open reading frames (smORFs), watS1 to watS5, as WatR target genes activated in response to acetate. The watS1 to watS5 genes encode polypeptides of approximately 50 amino acids, and WatS1 to WatS4 are highly homologous with one predicted transmembrane domain. Deletion of the WatABO pump genes resulted in decreased tolerance against formate, acetate, lactate, and propionate, suggesting its role as an efflux pump for a wide range of weak organic acids. WatR repressed the basal expression of watS genes but activated watS and WatABO pump genes in response to acetate stress. Overexpression of watS1 increased tolerance to acetate but not to other acids, only in the presence of the WatABO pump. Therefore, WatS1 may increase WatABO pump specificity toward acetate, switching the general weak acid efflux pump to an acetate-specific efflux pump for efficient cellular defense against acetate stress. CONCLUSIONS Our study has elucidated the role of WatR as a key transcription factor in the cellular defense against weak organic acids, particularly acetate, in Methylomonas sp. DH-1. We identified the genes encoding WatABO efflux pump and small polypeptides (WatS1 to WatS5), as the target genes regulated by WatR for this specific function. These findings offer valuable insights into the mechanisms underlying weak acid tolerance in methanotrophic bacteria, thereby contributing to the development of bioprocesses aimed at converting methane into value-added chemicals.
Collapse
Affiliation(s)
- Seungwoo Cha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Gangwondaehakgil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jong Kwan Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Thi Quynh Le H, Yeol Lee E. Methanotrophs: Metabolic versatility from utilization of methane to multi-carbon sources and perspectives on current and future applications. BIORESOURCE TECHNOLOGY 2023:129296. [PMID: 37302766 DOI: 10.1016/j.biortech.2023.129296] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
The development of biorefineries for a sustainable bioeconomy has been driven by the concept of utilizing environmentally friendly and cost-effective renewable energy sources. Methanotrophic bacteria with a unique capacity to utilize methane as a carbon and energy source can serve as outstanding biocatalysts to develop C1 bioconversion technology. By establishing the utilization of diverse multi-carbon sources, integrated biorefinery platforms can be created for the concept of the circular bioeconomy. An understanding of physiology and metabolism could help to overcome challenges for biomanufacturing. This review summaries fundamental gaps for methane oxidation and the capability to utilize multi-carbon sources in methanotrophic bacteria. Subsequently, breakthroughs and challenges in harnessing methanotrophs as robust microbial chassis for industrial biotechnology were compiled and overviewed. Finally, capabilities to exploit the inherent advantages of methanotrophs to synthesize various target products in higher titers are proposed.
Collapse
Affiliation(s)
- Hoa Thi Quynh Le
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
12
|
Tan Y, Stein LY, Sauvageau D. Methanol bioconversion in Methylotuvimicrobium buryatense 5GB1C through self-cycling fermentation. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02876-3. [PMID: 37160768 DOI: 10.1007/s00449-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
Methanol is an abundant and low-cost next-generation carbon source. While many species of methanotrophic bacteria can convert methanol into valuable bioproducts in bioreactors, Methylotuvimicrobium buryatense 5GB1C stands out as one of the most promising strains for industrialization. It has a short doubling time compared to most methanotrophs, remarkable resilience against contamination, and a suite of tools enabling genetic engineering. When approaching industrial applications, growing M. buryatense 5GB1C on methanol using common batch reactor operation has important limitations; for example methanol toxicity leads to mediocre biomass productivity. Advanced bioreactor operation strategies, such as fed-batch and self-cycling fermentation, have the potential to greatly improve the industrial prospects of methanotrophs growing on methanol. Herein, implementation of fed-batch operation led to a 26-fold increase in biomass density, while two different self-cycling fermentation (SCF) strategies led to 3-fold and 10-fold increases in volumetric biomass productivity. Interestingly, while synchronization is a typical trait of microbial populations undergoing SCF, M. buryatense 5GB1C cultures growing under this mode of operation led to stable, reproducible cycles but no significant synchronization.
Collapse
Affiliation(s)
- Yusheng Tan
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 St. NW, Edmonton, AB, T6G 1H9, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 St. NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
13
|
Li J, Liu T, McIlroy SJ, Tyson GW, Guo J. Phylogenetic and metabolic diversity of microbial communities performing anaerobic ammonium and methane oxidations under different nitrogen loadings. ISME COMMUNICATIONS 2023; 3:39. [PMID: 37185621 PMCID: PMC10130057 DOI: 10.1038/s43705-023-00246-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
The microbial guild coupling anammox and nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) is an innovative process to achieve energy-efficient nitrogen removal with the beneficial use of methane in biogas or in anaerobically treated wastewater. Here, metagenomics and metatranscriptomics were used to reveal the microbial ecology of two biofilm systems, which incorporate anammox and n-DAMO for high-level nitrogen removal in low-strength domestic sewage and high-strength sidestream wastewater, respectively. We find that different nitrogen loadings (i.e., 0.1 vs. 1.0 kg N/m3/d) lead to different combinations of anammox bacteria and anaerobic methanotrophs ("Candidatus Methanoperedens" and "Candidatus Methylomirabilis"), which play primary roles for carbon and nitrogen transformations therein. Despite methane being the only exogenous organic carbon supplied, heterotrophic populations (e.g., Verrucomicrobiota and Bacteroidota) co-exist and actively perform partial denitrification or dissimilatory nitrate reduction to ammonium (DNRA), likely using organic intermediates from the breakdown of methane and biomass as carbon sources. More importantly, two novel genomes belonging to "Ca. Methylomirabilis" are recovered, while one surprisingly expresses nitrate reductases, which we designate as "Ca. Methylomirabilis nitratireducens" representing its inferred capability in performing nitrate-dependent anaerobic methane oxidation. This finding not only suggests a previously neglected possibility of "Ca. Methylomirabilis" bacteria in performing methane-dependent nitrate reduction, and also challenges the previous understanding that the methane-dependent complete denitrification from nitrate to dinitrogen gas is carried out by the consortium of bacteria and archaea.
Collapse
Affiliation(s)
- Jie Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia.
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
14
|
Insights into methanotroph carbon flux pave the way for methane biocatalysis. Trends Biotechnol 2023; 41:298-300. [PMID: 36710132 DOI: 10.1016/j.tibtech.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/29/2023]
Abstract
Methanotrophic bacteria are used industrially as catalysts for the bioconversion of methane (CH4) to valuable products. A landmark study by Kalyuzhnaya et al. identified the primary metabolic route for CH4 flux to central metabolic intermediates and alternative fermentative products in an industrially promising methanotroph, leading to a systems-level understanding of methanotrophy.
Collapse
|
15
|
Cre/ lox-Mediated CRISPRi Library Reveals Core Genome of a Type I Methanotroph Methylotuvimicrobium buryatense 5GB1C. Appl Environ Microbiol 2023; 89:e0188322. [PMID: 36622175 PMCID: PMC9888281 DOI: 10.1128/aem.01883-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Methanotrophs play key roles in global methane cycling and are promising platforms for methane bioconversion. However, major gaps existing in fundamental knowledge undermines understanding of these methane-consuming microorganisms. To associate genes with a phenotype at the genome-wide level, we developed a Cre/lox-mediated method for constructing a large-scale CRISPRi library in a model methanotroph Methylotuvimicrobium buryatense 5GB1C. The efficiency of this Cre mediated integration method was up to a level of 105 CFU/μg DNA. Targeting 4,100 predicted protein-coding genes, our CRISPRi pooled screening uncovered 788 core genes for the growth of strain 5GB1C using methane. The core genes are highly consistent with the gene knockout results, indicating the reliability of the CRISPRi screen. Insights from the core genes include that annotated isozymes generally exist in metabolic pathways and many core genes are hypothetical genes. This work not only provides functional genomic data for both fundamental research and metabolic engineering of methanotrophs, but also offers a method for CRISPRi library construction. IMPORTANCE Due to their key role in methane cycling and their industrial potential, methanotrophs have drawn increasing attention. Genome-wide experimental approaches for gene-phenotype mapping accelerate our understanding and engineering of a bacterium. However, these approaches are still unavailable in methanotrophs. This work has two significant implications. First, the core genes identified here provide functional genetic basics for complete reconstruction of the metabolic network and afford more clues for knowledge gaps. Second, the Cre-mediated knock-in method developed in this work enables large-scale DNA library construction in methanotrophs; the CRISPRi library can be used to screen the genes associated with special culture conditions.
Collapse
|
16
|
Huang X, Song Q, Guo S, Fei Q. Transcription regulation strategies in methylotrophs: progress and challenges. BIORESOUR BIOPROCESS 2022; 9:126. [PMID: 38647763 PMCID: PMC10992012 DOI: 10.1186/s40643-022-00614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
As a promising industrial microorganism, methylotroph is capable of using methane or methanol as the sole carbon source natively, which has been utilized in the biosynthesis of various bioproducts. However, the relatively low efficiency of carbon conversion has become a limiting factor throughout the development of methanotrophic cell factories due to the unclear genetic background. To better highlight their advantages in methane or methanol-based biomanufacturing, some metabolic engineering strategies, including upstream transcription regulation projects, are being popularized in methylotrophs. In this review, several strategies of transcription regulations applied in methylotrophs are summarized and their applications are discussed and prospected.
Collapse
Affiliation(s)
- Xiaohan Huang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiaoqiao Song
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
17
|
Le HTQ, Lee EY. Insights into C1 and C3 assimilation pathways in type I methanotrophic bacterium from co-production of 1,2-propanediol and lactate. BIORESOURCE TECHNOLOGY 2022; 365:128172. [PMID: 36279980 DOI: 10.1016/j.biortech.2022.128172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Methanotrophic bacteria are attractive hosts for mining metabolic pathways of C1 assimilation to produce value-added products. Herein, the type I methanotroph Methylotuvimicrobium alcaliphilum 20Z was employed to explore the carbon flux from methane and methanol via the EMP pathway to produce 1,2-propanediol (1,2-PDO). The production of 1,2-PDO on methane was found to be mainly restricted by the lower carbon flux toward the EMP pathway. The co-utilization of C1 substrates and glycerol (C3) could contribute to enhance 1,2-PDO. Lactate was co-produced in much higher amounts than 1,2-PDO. This unexpected product was probably derived from lactaldehyde by inherent aldehyde dehydrogenases. The 1,2-PDO production without increased accumulation of lactate was observed via establishing the acetol-based pathway by propane utilization with the overexpression of pmoD. This is the first study to provide experimental insights into the operation of metabolic routes for 1,2-PDO and lactate co-production from C1 and C3 compounds in methanotrophs.
Collapse
Affiliation(s)
- Hoa Thi Quynh Le
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
18
|
Khmelenina VN, But SY, Rozova ON, Oshkin IY, Pimenov NV, Dedysh SN. Genome Editing in Methanotrophic Bacteria: Potential Targets and Available Tools. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
19
|
Comesaña-Gándara B, García-Depraect O, Santos-Beneit F, Bordel S, Lebrero R, Muñoz R. Recent trends and advances in biogas upgrading and methanotrophs-based valorization. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Zhang C, Ottenheim C, Weingarten M, Ji L. Microbial Utilization of Next-Generation Feedstocks for the Biomanufacturing of Value-Added Chemicals and Food Ingredients. Front Bioeng Biotechnol 2022; 10:874612. [PMID: 35480982 PMCID: PMC9035589 DOI: 10.3389/fbioe.2022.874612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Global shift to sustainability has driven the exploration of alternative feedstocks beyond sugars for biomanufacturing. Recently, C1 (CO2, CO, methane, formate and methanol) and C2 (acetate and ethanol) substrates are drawing great attention due to their natural abundance and low production cost. The advances in metabolic engineering, synthetic biology and industrial process design have greatly enhanced the efficiency that microbes use these next-generation feedstocks. The metabolic pathways to use C1 and C2 feedstocks have been introduced or enhanced into industrial workhorses, such as Escherichia coli and yeasts, by genetic rewiring and laboratory evolution strategies. Furthermore, microbes are engineered to convert these low-cost feedstocks to various high-value products, ranging from food ingredients to chemicals. This review highlights the recent development in metabolic engineering, the challenges in strain engineering and bioprocess design, and the perspectives of microbial utilization of C1 and C2 feedstocks for the biomanufacturing of value-added products.
Collapse
Affiliation(s)
- Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- *Correspondence: Congqiang Zhang, ,
| | - Christoph Ottenheim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Melanie Weingarten
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - LiangHui Ji
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Sharma K, Park YK, Nadda AK, Banerjee P, Singh P, Raizada P, Banat F, Bharath G, Jeong SM, Lam SS. Emerging chemo-biocatalytic routes for valorization of major greenhouse gases (GHG) into industrial products: A comprehensive review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Awasthi D, Tang YH, Amer B, Baidoo EEK, Gin J, Chen Y, Petzold CJ, Kalyuzhnaya M, Singer SW. OUP accepted manuscript. J Ind Microbiol Biotechnol 2022; 49:6521446. [PMID: 35134957 PMCID: PMC9118986 DOI: 10.1093/jimb/kuac002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/19/2022] [Indexed: 11/15/2022]
Abstract
Rhamnolipids (RLs) are well-studied biosurfactants naturally produced by pathogenic strains of Pseudomonas aeruginosa. Current methods to produce RLs in native and heterologous hosts have focused on carbohydrates as production substrate; however, methane (CH4) provides an intriguing alternative as a substrate for RL production because it is low cost and may mitigate greenhouse gas emissions. Here, we demonstrate RL production from CH4 by Methylotuvimicrobium alcaliphilum DSM19304. RLs are inhibitory to M. alcaliphilum growth (<0.05 g/l). Adaptive laboratory evolution was performed by growing M. alcaliphilum in increasing concentrations of RLs, producing a strain that grew in the presence of 5 g/l of RLs. Metabolomics and proteomics of the adapted strain grown on CH4 in the absence of RLs revealed metabolic changes, increase in fatty acid production and secretion, alterations in gluconeogenesis, and increased secretion of lactate and osmolyte products compared with the parent strain. Expression of plasmid-borne RL production genes in the parent M. alcaliphilum strain resulted in cessation of growth and cell death. In contrast, the adapted strain transformed with the RL production genes showed no growth inhibition and produced up to 1 μM of RLs, a 600-fold increase compared with the parent strain, solely from CH4. This work has promise for developing technologies to produce fatty acid-derived bioproducts, including biosurfactants, from CH4.
Collapse
Affiliation(s)
- Deepika Awasthi
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yung-Hsu Tang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bashar Amer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Edward E K Baidoo
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer Gin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marina Kalyuzhnaya
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Steven W Singer
- Correspondence should be addressed to: Steven W. Singer. Tel: 510-486-5556; Fax: 510-486-4252; E-mail:
| |
Collapse
|
23
|
Abstract
Microbes with the capacity to use methane (CH4) as a carbon source (methanotrophs) have significant potential for the bioconversion of CH4-containing natural gas and anaerobic digestion-derived biogas to high value products. These organisms also play a vital role in the biogeochemical cycling of atmospheric CH4 by serving as the only known biological sink of this gas in terrestrial and aquatic ecosystems. Much is known regarding the enzymes and central metabolic pathways mediating CH4 utilization in these bacteria. However, large fundamental knowledge gaps exist regarding methanotroph physiology and responses to environmental stimuli, primarily due to a lack of efficient molecular tools to probe gene-function relationships. In this chapter, we describe several recently developed genetic tools and optimized genome editing methods that can be used for methanotroph metabolic engineering and to probe metabolic and physiological governing mechanisms in these unique bacteria.
Collapse
Affiliation(s)
- Sreemoye Nath
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Jessica M Henard
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Calvin A Henard
- Department of Biological Sciences, University of North Texas, Denton, TX, USA.
- BioDiscovery Institute, University of North Texas, Denton, TX, USA.
| |
Collapse
|
24
|
Systems Metabolic Engineering of Methanotrophic Bacteria for Biological Conversion of Methane to Value-Added Compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:91-126. [DOI: 10.1007/10_2021_184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Jo SY, Son J, Sohn YJ, Lim SH, Lee JY, Yoo JI, Park SY, Na JG, Park SJ. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources. Int J Biol Macromol 2021; 192:978-998. [PMID: 34656544 DOI: 10.1016/j.ijbiomac.2021.10.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022]
Abstract
Since the 20th century, plastics that are widely being used in general life and industries are causing enormous plastic waste problems since improperly discarded plastics barely degrade and decompose. Thus, the demand for polyhydroxyalkanoates (PHAs), biodegradable polymers with material properties similar to conventional petroleum-based plastics, has been increased so far. The microbial production of PHAs is an environment-friendly solution for the current plastic crisis, however, the carbon sources for the microbial PHA production is a crucial factor to be considered in terms of carbon-neutrality. One‑carbon (C1) resources, such as methane, carbon monoxide, and carbon dioxide, are greenhouse gases and are abundantly found in nature and industry. C1 resources as the carbon sources for PHA production have a completely closed carbon loop with much advances; i) fast carbon circulation with direct bioconversion process and ii) simple fermentation procedure without sterilization as non-preferable nutrients. This review discusses the biosynthesis of PHAs based on C1 resource utilization by wild-type and metabolically engineered microbial host strains via biorefinery processes.
Collapse
Affiliation(s)
- Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Se Young Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
26
|
Gęsicka A, Oleskowicz-Popiel P, Łężyk M. Recent trends in methane to bioproduct conversion by methanotrophs. Biotechnol Adv 2021; 53:107861. [PMID: 34710553 DOI: 10.1016/j.biotechadv.2021.107861] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
Methane is an abundant and low-cost gas with high global warming potential and its use as a feedstock can help mitigate climate change. Variety of valuable products can be produced from methane by methanotrophs in gas fermentation processes. By using methane as a sole carbon source, methanotrophic bacteria can produce bioplastics, biofuels, feed additives, ectoine and variety of other high-value chemical compounds. A lot of studies have been conducted through the years for natural methanotrophs and engineered strains as well as methanotrophic consortia. These have focused on increasing yields of native products as well as proof of concept for the synthesis of new range of chemicals by metabolic engineering. This review shows trends in the research on key methanotrophic bioproducts since 2015. Despite certain limitations of the known production strategies that makes commercialization of methane-based products challenging, there is currently much attention placed on the promising further development.
Collapse
Affiliation(s)
- Aleksandra Gęsicka
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
27
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
28
|
Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RubisCO) Is Essential for Growth of the Methanotroph Methylococcus capsulatus Strain Bath. Appl Environ Microbiol 2021; 87:e0088121. [PMID: 34288705 PMCID: PMC8388818 DOI: 10.1128/aem.00881-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) enzyme found in plants, algae, and an array of autotrophic bacteria is also encoded by a subset of methanotrophs, but its role in these microbes has largely remained elusive. In this study, we showed that CO2 was requisite for RubisCO-encoding Methylococcus capsulatus strain Bath growth in a bioreactor with continuous influent and effluent gas flow. RNA sequencing identified active transcription of several carboxylating enzymes, including key enzymes of the Calvin and serine cycles, that could mediate CO2 assimilation during cultivation with both CH4 and CO2 as carbon sources. Marker exchange mutagenesis of M. capsulatus Bath genes encoding key enzymes of potential CO2-assimilating metabolic pathways indicated that a complete serine cycle is not required, whereas RubisCO is essential for growth of this bacterium. 13CO2 tracer analysis showed that CH4 and CO2 enter overlapping anaplerotic pathways and implicated RubisCO as the primary enzyme mediating CO2 assimilation in M. capsulatus Bath. Notably, we quantified the relative abundance of 3-phosphoglycerate and ribulose-1,5-bisphosphate 13C isotopes, which supported that RubisCO-produced 3-phosphoglycerate is primarily converted to ribulose-1-5-bisphosphate via the oxidative pentose phosphate pathway in M. capsulatus Bath. Collectively, our data establish that RubisCO and CO2 play essential roles in M. capsulatus Bath metabolism. This study expands the known capacity of methanotrophs to fix CO2 via RubisCO, which may play a more pivotal role in the Earth's biogeochemical carbon cycling and greenhouse gas regulation than previously recognized. Further, M. capsulatus Bath and other CO2-assimilating methanotrophs represent excellent candidates for use in the bioconversion of biogas waste streams that consist of both CH4 and CO2. IMPORTANCE The importance of RubisCO and CO2 in M. capsulatus Bath metabolism is unclear. In this study, we demonstrated that both CO2 and RubisCO are essential for M. capsulatus Bath growth. 13CO2 tracing experiments supported that RubisCO mediates CO2 fixation and that a noncanonical Calvin cycle is active in this organism. Our study provides insights into the expanding knowledge of methanotroph metabolism and implicates dually CH4/CO2-utilizing bacteria as more important players in the biogeochemical carbon cycle than previously appreciated. In addition, M. capsulatus and other methanotrophs with CO2 assimilation capacity represent candidate organisms for the development of biotechnologies to mitigate the two most abundant greenhouse gases, CH4 and CO2.
Collapse
|
29
|
Augustiniene E, Valanciene E, Matulis P, Syrpas M, Jonuskiene I, Malys N. Bioproduction of l- and d-lactic acids: advances and trends in microbial strain application and engineering. Crit Rev Biotechnol 2021; 42:342-360. [PMID: 34412525 DOI: 10.1080/07388551.2021.1940088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactic acid is an important platform chemical used in the food, agriculture, cosmetic, pharmaceutical, and chemical industries. It serves as a building block for the production of polylactic acid (PLA), a biodegradable polymer, which can replace traditional petroleum-based plastics and help to reduce environmental pollution. Cost-effective production of optically pure l- and d-lactic acids is necessary to achieve a quality and thermostable PLA product. This paper evaluates research advances in the bioproduction of l- and d-lactic acids using microbial fermentation. Special emphasis is given to the development of metabolically engineered microbial strains and processes tailored to alternative and flexible feedstock concepts such as: lignocellulose, glycerol, C1-gases, and agricultural-food industry byproducts. Alternative fermentation concepts that can improve lactic acid production are discussed. The potential use of inducible gene expression systems for the development of biosensors to facilitate the screening and engineering of lactic acid-producing microorganisms is discussed.
Collapse
Affiliation(s)
- Ernesta Augustiniene
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Egle Valanciene
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Paulius Matulis
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Michail Syrpas
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Ilona Jonuskiene
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Naglis Malys
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
30
|
Zhao L, Chen H, Yuan Z, Guo J. Interactions of functional microorganisms and their contributions to methane bioconversion to short-chain fatty acids. WATER RESEARCH 2021; 199:117184. [PMID: 33984586 DOI: 10.1016/j.watres.2021.117184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Methane bioconversion to value-added liquid chemicals has been proposed as a promising solution to augment the petroleum-dominated chemical market. Recent investigations have reported that various electron acceptors (e.g., nitrite and nitrate) are available to drive methane bioconversion to short-chain fatty acids (SCFAs). However, little is known about effects of the rate electron acceptor supplied on liquid chemical production from methane. Herein, three independent membrane biofilm reactors (MBfRs) feeding with respective nitrate, nitrite, combined nitrate and nitrite were operated under high and low rate condition in succession, to study whether feeding rate of electron acceptors could impact the methane bioconversion to SCFAs and the associated microbiological features. Long-term operation showed that all tested electron acceptors with a high supply rate were favorable for methane bioconversion to SCFAs (990.9 mg L-1d-1, 1695.7 mg L-1d-1, and 2425.7 mg L-1d-1), while under a low electron acceptor feeding rate, the SCFA production rate decreased to 8.9 mg L-1d-1, 16.8 mg L-1d-1, and 260.1 mg L-1d-1, respectively. Microbial community characterization showed that the biofilm was predominated by Methanosarcina, Methanobacterium, Propionispora and Clostridium. On the basis of the known metabolism characteristics of these microorganisms, it was assumed that these methanogens and fermenters contributed jointly to methane bioconversion to SCFAs. The findings could be helpful to understand the role of electron acceptor rate in methane bioconversion to liquid chemicals.
Collapse
Affiliation(s)
- Lei Zhao
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hui Chen
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
31
|
Costa RB, Lens PNL, Foresti E. Methanotrophic denitrification in wastewater treatment: microbial aspects and engineering strategies. Crit Rev Biotechnol 2021; 42:145-161. [PMID: 34157918 DOI: 10.1080/07388551.2021.1931014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Anaerobic technologies are consolidated for sewage treatment and are the core processes for mining marketable products from waste streams. However, anaerobic effluents are supersaturated with methane, which represents a liability regarding greenhouse gas emissions. Meanwhile, anaerobic technologies are not capable of nitrogen removal, which is required to ensure environmental protection. Methane oxidation and denitrification processes can be combined to address both issues concurrently. Aerobic methane oxidizers can release intermediate organic compounds that can be used by conventional denitrifiers as electron donors. Alternatively, anoxic methanotrophic species combine methane oxidation with either nitrate or nitrite reduction in the same metabolism. Engineered systems need to overcome the long doubling times and low NOx consumption rates of anoxic methanotrophic microorganisms. Another commonly reported bottleneck of methanotrophic denitrification relates to gas-liquid mass transfer limitations. Although anaerobic effluents are supersaturated with methane, experimental setups usually rely on methane supply in a gaseous mode. Hence, possibilities for the application of methane-oxidation coupled to denitrification in full scale might be overlooked. Moreover, syntrophic relationships among methane oxidizers, denitrifiers, nitrifiers, and other microorganisms (such as anammox) are not well understood. Integrating mixed populations with various metabolic abilities could allow for more robust methane-driven wastewater denitrification systems. This review presents an overview of the metabolic capabilities of methane oxidation and denitrification and discusses technological aspects that allow for the application of methanotrophic denitrification at larger scales.
Collapse
Affiliation(s)
- R B Costa
- Department of Hydraulics and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos, Brazil.,National University of Ireland, Galway, Ireland
| | - P N L Lens
- National University of Ireland, Galway, Ireland
| | - E Foresti
- Department of Hydraulics and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos, Brazil
| |
Collapse
|
32
|
Kumar M, Yadav AN, Saxena R, Rai PK, Paul D, Tomar RS. Novel methanotrophic and methanogenic bacterial communities from diverse ecosystems and their impact on environment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Khider MLK, Brautaset T, Irla M. Methane monooxygenases: central enzymes in methanotrophy with promising biotechnological applications. World J Microbiol Biotechnol 2021; 37:72. [PMID: 33765207 PMCID: PMC7994243 DOI: 10.1007/s11274-021-03038-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/09/2021] [Indexed: 12/02/2022]
Abstract
Worldwide, the use of methane is limited to generating power, electricity, heating, and for production of chemicals. We believe this valuable gas can be employed more widely. Here we review the possibility of using methane as a feedstock for biotechnological processes based on the application of synthetic methanotrophs. Methane monooxygenase (MMO) enables aerobic methanotrophs to utilize methane as a sole carbon and energy source, in contrast to industrial microorganisms that grow on carbon sources, such as sugar cane, which directly compete with the food market. However, naturally occurring methanotrophs have proven to be difficult to manipulate genetically and their current industrial use is limited to generating animal feed biomass. Shifting the focus from genetic engineering of methanotrophs, towards introducing metabolic pathways for methane utilization in familiar industrial microorganisms, may lead to construction of efficient and economically feasible microbial cell factories. The applications of a technology for MMO production are not limited to methane-based industrial synthesis of fuels and value-added products, but are also of interest in bioremediation where mitigating anthropogenic pollution is an increasingly relevant issue. Published research on successful functional expression of MMO does not exist, but several attempts provide promising future perspectives and a few recent patents indicate that there is an ongoing research in this field. Combining the knowledge on genetics and metabolism of methanotrophy with tools for functional heterologous expression of MMO-encoding genes in non-methanotrophic bacterial species, is a key step for construction of synthetic methanotrophs that holds a great biotechnological potential.
Collapse
Affiliation(s)
- May L K Khider
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marta Irla
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
34
|
Sahoo KK, Goswami G, Das D. Biotransformation of Methane and Carbon Dioxide Into High-Value Products by Methanotrophs: Current State of Art and Future Prospects. Front Microbiol 2021; 12:636486. [PMID: 33776968 PMCID: PMC7987672 DOI: 10.3389/fmicb.2021.636486] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023] Open
Abstract
Conventional chemical methods to transform methane and carbon dioxide into useful chemicals are plagued by the requirement for extreme operating conditions and expensive catalysts. Exploitation of microorganisms as biocatalysts is an attractive alternative to sequester these C1 compounds and convert them into value-added chemicals through their inherent metabolic pathways. Microbial biocatalysts are advantageous over chemical processes as they require mild-operating conditions and do not release any toxic by-products. Methanotrophs are potential cell-factories for synthesizing a wide range of high-value products via utilizing methane as the sole source of carbon and energy, and hence, serve as excellent candidate for methane sequestration. Besides, methanotrophs are capable of capturing carbon dioxide and enzymatically hydrogenating it into methanol, and hence qualify to be suitable candidates for carbon dioxide sequestration. However, large-scale production of value-added products from methanotrophs still presents an overwhelming challenge, due to gas-liquid mass transfer limitations, low solubility of gases in liquid medium and low titer of products. This requires design and engineering of efficient reactors for scale-up of the process. The present review offers an overview of the metabolic architecture of methanotrophs and the range of product portfolio they can offer. Special emphasis is given on methanol biosynthesis as a potential biofuel molecule, through utilization of methane and alternate pathway of carbon dioxide sequestration. In view of the gas-liquid mass transfer and low solubility of gases, the key rate-limiting step in gas fermentation, emphasis is given toward reactor design consideration essential to achieve better process performance.
Collapse
Affiliation(s)
- Krishna Kalyani Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Gargi Goswami
- Department of Biotechnology, Gandhi Institute of Technology and Management (GITAM) University, Visakhapatnam, India
| | - Debasish Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
35
|
Park YR, Kim DH, Choi KH, Kim YW, Lee EY, Park BJ. Biofuel upgrade reactions via phase-transfer catalysis of methanotrophs. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Nguyen DTN, Lee OK, Nguyen TT, Lee EY. Type II methanotrophs: A promising microbial cell-factory platform for bioconversion of methane to chemicals. Biotechnol Adv 2021; 47:107700. [PMID: 33548453 DOI: 10.1016/j.biotechadv.2021.107700] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Methane, the predominant element in natural gas and biogas, represents a promising alternative to carbon feedstocks in the biotechnological industry due to its low cost and high abundance. The bioconversion of methane to value-added products can enhance the value of gas and mitigate greenhouse gas emissions. Methanotrophs, methane-utilizing bacteria, can make a significant contribution to the production of various valuable biofuels and chemicals from methane. Type II methanotrophs in comparison with Type I methanotrophs have distinct advantages, including high acetyl-CoA flux and the co-incorporation of two important greenhouse gases (methane and CO2), making it a potential microbial cell-factory platform for methane-derived biomanufacturing. Herein, we review the most recent advances in Type II methanotrophs related to multi-omics studies and metabolic engineering. Representative examples and prospects of metabolic engineering strategies for the production of suitable products are also discussed.
Collapse
Affiliation(s)
- Diep Thi Ngoc Nguyen
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Thu Thi Nguyen
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
37
|
Tikhomirova TS, But SY. Laboratory scale bioreactor designs in the processes of methane bioconversion: Mini-review. Biotechnol Adv 2021; 47:107709. [PMID: 33548452 DOI: 10.1016/j.biotechadv.2021.107709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023]
Abstract
Global methane emissions have been steadily increasing over the past few decades, exerting a negative effect on the environment. Biogas from landfills and sewage treatment plants is the main anthropogenic source of methane. This makes methane bioconversion one of the priority areas of biotechnology. This process involves the production of biochemical compounds from non-food sources through microbiological synthesis. Methanotrophic bacteria are a promising tool for methane bioconversion due to their ability to use this greenhouse gas and to produce protein-rich biomass, as well as a broad range of useful organic compounds. Currently, methane is used not only to produce biomass and chemical compounds, but also to increase the efficiency of water and solid waste treatment. However, the use of gaseous substrates in biotechnological processes is associated with some difficulties. The low solubility of methane in water is one of the major problems. Different approaches have been involved to encounter these challenges, including different bioreactor and gas distribution designs, solid carriers and bulk sorbents, as well as varying air/oxygen supply, the ratio of volumetric flow rate of gas mixture to its consumption rate, etc. The aim of this review was to summarize the current data on different bioreactor designs and the aspects of their applications for methane bioconversion and wastewater treatment. The bioreactors used in these processes must meet a number of requirements such as low methane emission, improved gas exchange surface, and controlled substrate supply to the reaction zone.
Collapse
Affiliation(s)
- Tatyana S Tikhomirova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», Institutskaya 7, Pushchino, Moscow Region 142290, Russia.
| | - Sergey Y But
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», Prospect Nauki 5, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
38
|
Genome-scale revealing the central metabolic network of the fast growing methanotroph Methylomonas sp. ZR1. World J Microbiol Biotechnol 2021; 37:29. [PMID: 33452942 DOI: 10.1007/s11274-021-02995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Methylomonas sp. ZR1 was an isolated new methanotrophs that could utilize methane and methanol growing fast and synthesizing value added compounds such as lycopene. In this study, the genomic study integrated with the comparative transcriptome analysis were taken to understanding the metabolic characteristic of ZR1 grown on methane and methanol at normal and high temperature regime. Complete Embden-Meyerhof-Parnas pathway (EMP), Entner-Doudoroff pathway (ED), Pentose Phosphate Pathway (PP) and Tricarboxy Acid Cycle (TCA) were found to be operated in ZR1. In addition, the energy saving ppi-dependent EMP enzyme, coupled with the complete and efficient central carbon metabolic network might be responsible for its fast growing nature. Transcript level analysis of the central carbon metabolism indicated that formaldehyde metabolism was a key nod that may be in charge of the carbon conversion efficiency (CCE) divergent of ZR1 grown on methanol and methane. Flexible nitrogen and carotene metabolism pattern were also investigated in ZR1. Nitrogenase genes in ZR1 were found to be highly expressed with methane even in the presence of sufficient nitrate. It appears that, higher lycopene production in ZR1 grown on methane might be attributed to the higher proportion of transcript level of C40 to C30 metabolic gene. Higher transcript level of exopolysaccharides metabolic gene and stress responding proteins indicated that ZR1 was confronted with severer growth stress with methanol than with methane. Additionally, lower transcript level of the TCA cycle, the dramatic high expression level of the nitric oxide reductase and stress responding protein, revealed the imbalance of the central carbon and nitrogen metabolic status, which would result in the worse growth of ZR1 with methanol at 30 °C.
Collapse
|
39
|
Jawaharraj K, Shrestha N, Chilkoor G, Dhiman SS, Islam J, Gadhamshetty V. Valorization of methane from environmental engineering applications: A critical review. WATER RESEARCH 2020; 187:116400. [PMID: 32979578 DOI: 10.1016/j.watres.2020.116400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/29/2020] [Accepted: 09/05/2020] [Indexed: 05/09/2023]
Abstract
Wastewater and waste management sectors alone account for 18% of the anthropogenic methane (CH4) emissions. This study presents a critical overview of methanotrophs ("methane oxidizing microorganisms") for valorizing typically discarded CH4 from environmental engineering applications, focusing on wastewater treatment plants. Methanotrophs can convert CH4 into valuable bioproducts including chemicals, biodiesel, DC electricity, polymers, and S-layers, all under ambient conditions. As discarded CH4 and its oxidation products can also be used as a carbon source in nitrification and annamox processes. Here we discuss modes of CH4 assimilation by methanotrophs in both natural and engineered systems. We also highlight the technical challenges and technological breakthroughs needed to enable targeted CH4 oxidation in wastewater treatment plants.
Collapse
Affiliation(s)
- Kalimuthu Jawaharraj
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States
| | - Namita Shrestha
- Civil and Environmental Engineering, Rose-Hulman Institute of Technology, Terre Haute 47803, IN, United States
| | - Govinda Chilkoor
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, Rapid City 57701, SD, United States
| | - Saurabh Sudha Dhiman
- BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States; Biological and Chemical Engineering, South Dakota School of Mines & Technology, Rapid City 57701, SD, United States
| | - Jamil Islam
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, Rapid City 57701, SD, United States.
| |
Collapse
|
40
|
An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies. SUSTAINABILITY 2020. [DOI: 10.3390/su122310148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study presents an overview of the economic analysis and environmental impact of natural gas conversion technologies. Published articles related to economic analysis and environmental impact of natural gas conversion technologies were reviewed and discussed. The economic analysis revealed that the capital and the operating expenditure of each of the conversion process is strongly dependent on the sophistication of the technical designs. The emerging technologies are yet to be economically viable compared to the well-established steam reforming process. However, appropriate design modifications could significantly reduce the operating expenditure and enhance the economic feasibility of the process. The environmental analysis revealed that emerging technologies such as carbon dioxide (CO2) reforming and the thermal decomposition of natural gas offer advantages of lower CO2 emissions and total environmental impact compared to the well-established steam reforming process. Appropriate design modifications such as steam reforming with carbon capture, storage and utilization, the use of an optimized catalyst in thermal decomposition, and the use of solar concentrators for heating instead of fossil fuel were found to significantly reduced the CO2 emissions of the processes. There was a dearth of literature on the economic analysis and environmental impact of photocatalytic and biochemical conversion processes, which calls for increased research attention that could facilitate a comparative analysis with the thermochemical processes.
Collapse
|
41
|
But SY, Dedysh SN, Popov VO, Pimenov NV, Khmelenina VN. Construction of a Type-I Metanotroph with Reduced Capacity for Glycogen and Sucrose Accumulation. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820050063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Stone K, Hilliard M, Badr K, Bradford A, He QP, Wang J. Comparative study of oxygen-limited and methane-limited growth phenotypes of Methylomicrobium buryatense 5GB1. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Nguyen AD, Lee EY. Engineered Methanotrophy: A Sustainable Solution for Methane-Based Industrial Biomanufacturing. Trends Biotechnol 2020; 39:381-396. [PMID: 32828555 DOI: 10.1016/j.tibtech.2020.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022]
Abstract
Methane is a promising feedstock with high abundance and low cost for the sustainable production of biochemicals and biofuels. Methanotrophic bacteria are particularly interesting platforms for methane bioconversion as they can utilize methane as a carbon substrate. Recently, breakthroughs in the understanding of methane metabolism in methanotrophs as well as critical advances in systems metabolic engineering of methanotrophic bacteria have been reported. Here, we discuss the important gaps in the understanding of methanotrophic metabolism that have been uncovered recently and the current trends in systems metabolic engineering in both methanotrophic bacteria and non-native hosts to advance the potential of methane-based biomanufacturing.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea.
| |
Collapse
|
44
|
Economic Perspectives of Biogas Production via Anaerobic Digestion. Bioengineering (Basel) 2020; 7:bioengineering7030074. [PMID: 32674480 PMCID: PMC7552621 DOI: 10.3390/bioengineering7030074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 11/18/2022] Open
Abstract
As the demand for utilizing environment-friendly and sustainable energy sources is increasing, the adoption of waste-to-energy technologies has started gaining attention. Producing biogas via anaerobic digestion (AD) is promising and well-established; however, this process in many circumstances is unable to be cost competitive with natural gas. In this research, we provide a technical assessment of current process challenges and compare the cost of biogas production via the AD process from the literature, Aspen Plus process modeling, and CapdetWorks software. We also provide insights on critical factors affecting the AD process and recommendations on optimizing the process. We utilize four types of wet wastes, including wastewater sludge, food waste, swine manure, and fat, oil, and grease, to provide a quantitative assessment of theoretical energy yields of biogas production and its economic potential at different plant scales. Our results show that the cost of biogas production from process and economic models are in line with the literature with a potential to go even lower for small-scale plants with technological advancements. This research illuminates potential cost savings for biogas production using different wastes and guide investors to make informed decisions, while achieving waste management goals.
Collapse
|
45
|
Fei Q, Liang B, Tao L, Tan EC, Gonzalez R, Henard CA, Guarnieri MT. Biological valorization of natural gas for the production of lactic acid: Techno-economic analysis and life cycle assessment. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Liu Y, He X, Zhu P, Cheng M, Hong Q, Yan X. pheS AG Based Rapid and Efficient Markerless Mutagenesis in Methylotuvimicrobium. Front Microbiol 2020; 11:441. [PMID: 32296398 PMCID: PMC7136838 DOI: 10.3389/fmicb.2020.00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/02/2020] [Indexed: 01/05/2023] Open
Abstract
Due to their fast growth rate and robustness, some haloalkalitolerant methanotrophs from the genus Methylotuvimicrobium have recently become not only promising biocatalysts for methane conversion but also favorable materials for obtaining fundamental knowledge on methanotrophs. Here, to realize unmarked genome modification in Methylotuvimicrobium bacteria, a counterselectable marker (CSM) was developed based on pheS, which encodes the α-subunit of phenylalanyl-tRNA synthetase. Two-point mutations (T252A and A306G) were introduced into PheS in Methylotuvimicrobium buryatense 5GB1C, generating PheS AG , which can recognize p-chloro-phenylalanine (p-Cl-Phe) as a substrate. Theoretically, the expression of PheS AG in a cell will result in the incorporation of p-Cl-Phe into proteins, leading to cell death. The P tac promoter and the ribosome-binding site region of mmoX were employed to control pheS AG , producing the pheS AG -3 CSM. M. buryatense 5GB1C harboring pheS AG -3 was extremely sensitive to 0.5 mM p-Cl-Phe. Then, a positive and counterselection cassette, PZ (only 1.5 kb in length), was constructed by combining pheS AG -3 and the zeocin resistance gene. A PZ- and PCR-based strategy was used to create the unmarked deletion of glgA1 or the whole smmo operon in M. buryatense 5GB1C and Methylotuvimicrobium alcaliphilum 20Z. The positive rates were over 92%, and the process could be accomplished in as few as eight days.
Collapse
Affiliation(s)
- Yongchuang Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiangrong He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Pingping Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Minggen Cheng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
47
|
Metabolic engineering of type II methanotroph, Methylosinus trichosporium OB3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway. Metab Eng 2020; 59:142-150. [PMID: 32061966 DOI: 10.1016/j.ymben.2020.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/07/2020] [Accepted: 02/09/2020] [Indexed: 12/21/2022]
Abstract
We engineered a type II methanotroph, Methylosinus trichosporium OB3b, for 3-hydroxypropionic acid (3HP) production by reconstructing malonyl-CoA pathway through heterologous expression of Chloroflexus aurantiacus malonyl-CoA reductase (MCR), a bifunctional enzyme. Two strategies were designed and implemented to increase the malonyl-CoA pool and thus, increase in 3HP production. First, we engineered the supply of malonyl-CoA precursors by overexpressing endogenous acetyl-CoA carboxylase (ACC), substantially enhancing the production of 3HP. Overexpression of biotin protein ligase (BPL) and malic enzyme (NADP+-ME) led to a ∼22.7% and ∼34.5% increase, respectively, in 3HP titer in ACC-overexpressing cells. Also, the acetyl-CoA carboxylation bypass route was reconstructed to improve 3HP productivity. Co-expression of methylmalonyl-CoA carboxyltransferase (MMC) of Propionibacterium freudenreichii and phosphoenolpyruvate carboxylase (PEPC), which provides the MMC precursor, further improved the 3HP titer. The highest 3HP production of 49 mg/L in the OB3b-MCRMP strain overexpressing MCR, MMC and PEPC resulted in a 2.4-fold improvement of titer compared with that in the only MCR-overexpressing strain. Finally, we could obtain 60.59 mg/L of 3HP in 42 h using the OB3b-MCRMP strain through bioreactor operation, with a 6.36-fold increase of volumetric productivity compared than that in the flask cultures. This work demonstrates metabolic engineering of type II methanotrophs, opening the door for using type II methanotrophs as cell factories for biochemical production along with mitigation of greenhouse gases.
Collapse
|
48
|
Kasprzycka A, Lalak-Kańczugowska J, Walkiewicz A, Bulak P, Proc K, Stępień Ł. Biocatalytic conversion of methane – selected aspects. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Rozova ON, Mustakhimov II, But SY, Reshetnikov AS, Khmelenina VN. Role of the malic enzyme in metabolism of the halotolerant methanotroph Methylotuvimicrobium alcaliphilum 20Z. PLoS One 2019; 14:e0225054. [PMID: 31738793 PMCID: PMC6860931 DOI: 10.1371/journal.pone.0225054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023] Open
Abstract
The bacteria utilizing methane as a growth substrate (methanotrophs) are important constituents of the biosphere. Methanotrophs mitigate the emission of anthropogenic and natural greenhouse gas methane to the environment and are the promising agents for future biotechnologies. Many aspects of CH4 bioconversion by methanotrophs require further clarification. This study was aimed at characterizing the biochemical properties of the malic enzyme (Mae) from the halotolerant obligate methanotroph Methylotuvimicrobium alcaliphilum 20Z. The His6-tagged Mae was obtained by heterologous expression in Escherichia coli BL21 (DE3) and purified by affinity metal chelating chromatography. As determined by gel filtration and non-denaturating gradient gel electrophoresis, the molecular mass of the native enzyme is 260 kDa. The homotetrameric Mae (65x4 kDa) catalyzed an irreversible NAD+-dependent reaction of L-malate decarboxylation into pyruvate with a specific activity of 32 ± 2 units mg-1 and Km value of 5.5 ± 0.8 mM for malate and 57 ± 5 μM for NAD+. The disruption of the mae gene by insertion mutagenesis resulted in a 20-fold increase in intracellular malate level in the mutant compared to the wild type strain. Based on both enzyme and mutant properties, we conclude that the malic enzyme is involved in the control of intracellular L-malate level in Mtm. alcaliphilum 20Z. Genomic analysis has revealed that Maes present in methanotrophs fall into two different clades in the amino acid-based phylogenetic tree, but no correlation of the division with taxonomic affiliations of the host bacteria was observed.
Collapse
Affiliation(s)
- Olga N. Rozova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Ildar I. Mustakhimov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Sergei Y. But
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Aleksandr S. Reshetnikov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Valentina N. Khmelenina
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
50
|
Chen H, Luo J, Liu S, Yuan Z, Guo J. Microbial Methane Conversion to Short-Chain Fatty Acids Using Various Electron Acceptors in Membrane Biofilm Reactors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12846-12855. [PMID: 31593452 DOI: 10.1021/acs.est.8b06767] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Given our vast methane reserves and the forecasted shortage of crude oil in the not too distant future, the conversion of methane into value-added liquid chemicals or fuels would be beneficial. The generated chemicals or fuels could augment the petroleum-dominated chemical market, and also satisfy the increasing demand for transportation fuels. While methane bioconversion to liquid chemicals has just been reported recently, there is limited understanding of the process. This study aims to clarify the potential electron acceptors that could support the process. Here we operated four membrane biofilm reactors (MBfRs) fed with nitrate, nitrite, oxygen at a relatively low rate, and oxygen at a relatively high rate, respectively, to study if they can support methane bioconversion to short-chain fatty acids (SCFAs) and the associated microbiological features. All tested electron acceptors facilitated methane bioconversion to SCFAs (ranging from 1.1 to 36.7 mg acetate L-1 d-1, or 3.4 to 114.6 mg acetate d-1 m-2 of biofilm). The carbon efficiency was estimated to be 7.9 ± 1.4% to 148.5 ± 1.3%, with an efficiency higher than 100%, suggesting the assimilation of other carbon, very likely CO2, into the products. A low oxygen supply rate of 46.4 ± 2.3 mg O2 d-1 m-2 was found to be the most favorable among all the electron conditions provided according to the SCFAs production rate and also the carbon utilization efficiency. Microbial characterization revealed that completely different communities evolved in the respective reactors, suggesting diverse microbial pathways exist for methane bioconversion into value-added chemicals.
Collapse
Affiliation(s)
- Hui Chen
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Jinghuan Luo
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Shuai Liu
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Jianhua Guo
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| |
Collapse
|