1
|
Campbell JW, Cotnam MJ, Annan FR, Hilborn JW, Thompson A. Synthesis of chiral systems featuring the pyrrole unit: a review. Chem Commun (Camb) 2024; 60:11385-11414. [PMID: 39292192 DOI: 10.1039/d4cc03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Synthetic strategies towards pyrroles within chiral frameworks are summarised, focussing on reports published 2010-2023. The synthesis of pyrroles featuring substituents bearing chiral centres are summarised, as are those whereby pyrroles are located within axially chiral systems courtesy of restricted bond rotation.
Collapse
Affiliation(s)
- Jacob W Campbell
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Michael J Cotnam
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Francisca R Annan
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - James W Hilborn
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
2
|
Yokota T, Yu Y, Araseki K, Arai T. Bis(imidazolidine)-Derived NCN Nickel-Pincer-Catalyzed Asymmetric Reactions. Org Lett 2024; 26:7880-7884. [PMID: 39250615 DOI: 10.1021/acs.orglett.4c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A bis(imidazolidine)-derived NCN nickel-pincer complex (tBu-PhBidine-Ni-OTf: NCN-Ni-OTf) was synthesized by the oxidative addition of imidazolidine-containing aryl triflate to Ni(cod)2 in MeCN. NCN-Ni-OTf exhibited asymmetric induction in three reactions. In the Friedel-Crafts reaction of indoles with N-Boc imines, 3-indolylmethanamine products were obtained in 79% yield with 99% ee. In a conjugate addition reaction of malononitrile to nitroalkenes, products were obtained in 95% yield with 75% ee. In iodolactonization, the pincer-Ni complex showed catalytic activity superior to that of tBu-PhBidine-Pd-OTf.
Collapse
Affiliation(s)
- Tomoya Yokota
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Yan Yu
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Kensuke Araseki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
3
|
Cai Q, Yu T, Li J, Zhao Y, Hou J, Xue L, Yu S, Yao C, Li YM. Cu(II)-Catalyzed Enantioselective Aza-Friedel-Crafts Reaction of 1-Naphthols and Electron-Rich Phenols with Isatin-Derived Ketimines. Chemistry 2024; 30:e202304118. [PMID: 38433408 DOI: 10.1002/chem.202304118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/05/2024]
Abstract
New chiral ligands could be obtained by introducing proline moieties and imidazoline moieties to binaphthyl skeletons. The chiral ligands exhibited balanced rigidity and flexibility which could allow the change of the conformations during the reactions on one hand, and could provide sufficient asymmetric induction on the other. The proline moiety could act as a linker connecting the binaphthyl skeletons and the imidazoline moieties as well as a coordinating group for the central metal, and the electronic and steric properties of the imidazoline groups could be carefully fine-tuned by the use of different substituents. In the presence of Cu(II) catalyst bearing such chiral ligands, aza-Friedel-Crafts reaction of 1-naphthols and electron-rich phenols with isatin-derived ketimines provided the desired products with good to excellent yields and up to 99 % ee. The reactions showed good scalability, and excellent ee could still be obtained when the reaction was carried out in gram-scale.
Collapse
Affiliation(s)
- Qihang Cai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Tianxu Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Jiahui Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Yan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Jiaqi Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Leipeng Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Shibo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Chao Yao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Yue-Ming Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| |
Collapse
|
4
|
Laue M, Schneider M, Gebauer M, Böhlmann W, Gläser R, Schneider C. General, Modular Access toward Immobilized Chiral Phosphoric Acid Catalysts and Their Application in Flow Chemistry. ACS Catal 2024; 14:5550-5559. [PMID: 38660609 PMCID: PMC11036403 DOI: 10.1021/acscatal.4c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Chiral phosphoric acids (CPAs) are among the most frequently used organocatalysts, with an ever-increasing number of applications. However, these catalysts are only obtained in a multistep synthesis and are poorly recyclable, which significantly deteriorates their environmental and economic performance. We herein report a conceptually different, general strategy for the direct immobilization of CPAs on a broad scope of solid supports including silica, polystyrene, and aluminum oxide. Solid-state catalysts were obtained in high yields and thoroughly characterized with elemental analysis by inductively coupled plasma-optical emission spectrometry (ICP-OES), nitrogen sorption measurements, thermogravimetric analysis, scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDX) images, and solid-state NMR spectroscopy. Further, the immobilized catalysts were applied to a variety of synthetically valuable, highly stereoselective transformations under batch and flow conditions including transfer hydrogenations, a Friedländer condensation/transfer hydrogenation sequence, and Mannich reactions under cryogenic flow conditions. Generally, high yields and stereoselectivities were observed along with robust catalyst stability and reusability. After being used for 10 runs under batch conditions, no loss of selectivity or catalytic activity was observed. Under continuous-flow conditions, the heterogeneous system was in operation for 19 h and the high enantioselectivity remained unchanged throughout the entire process. We expect our approach to extend the applicability of CPAs to a higher level, with a focus on flow chemistry and a more environmentally friendly and resource-efficient use of these powerful catalysts.
Collapse
Affiliation(s)
- Michael Laue
- Institute
of Organic Chemistry, University of Leipzig, 04103 Leipzig, Germany
| | | | - Markus Gebauer
- Institute
of Chemical Technology, University of Leipzig, 04103 Leipzig, Germany
| | - Winfried Böhlmann
- Division
of Superconductivity and Magnetism, Felix-Bloch Institute for Solid-State
Physics, University of Leipzig, 04103 Leipzig, Germany
| | - Roger Gläser
- Institute
of Chemical Technology, University of Leipzig, 04103 Leipzig, Germany
| | - Christoph Schneider
- Institute
of Organic Chemistry, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Zhong J, Pan R, Lin X. Enantioselective synthesis of α-tetrasubstituted (1-indolizinyl) (diaryl)-methanamines via chiral phosphoric acid catalysis. RSC Adv 2024; 14:1106-1113. [PMID: 38174273 PMCID: PMC10759308 DOI: 10.1039/d3ra07636a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
An enantioselective Friedel-Crafts reaction of cyclic α-diaryl N-acyl imines with indolizines catalyzed by a chiral spirocyclic phosphoric acid has been developed. The asymmetric transformation proceeds smoothly to afford α-tetrasubstituted (1-indolizinyl) (diaryl)methanamines in good yields with up to 98% ee under mild conditions.
Collapse
Affiliation(s)
- Jialing Zhong
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Rihuang Pan
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
6
|
Wang Y, Huang X, Ji H, Zhou H, Gao H, Xu J. Bifunctional Thiourea-Catalyzed Enantioselective Aza-Friedel-Crafts Reaction of 3-Aminobenzofurans with Isatin-Derived Ketimines. J Org Chem 2023; 88:15486-15493. [PMID: 37867301 DOI: 10.1021/acs.joc.3c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
A quinine-derived thiourea-promoted enantioselective aza-Friedel-Crafts reaction of 3-aminobenzofurans with isatin-derived ketimines is developed, providing a variety of 3-benzofuran-3-amino-2-oxindoles bearing a quaternary stereocenter with good to excellent yields (72-95%) and moderate to excellent enantioselectivities (48-97%). The synthetic potential of this concise and efficient protocol is revealed by gram-scale preparation and further transformation of the adduct to an optically pure spirocyclic oxindole.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiaoming Huang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Haojie Ji
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Hongwei Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Hongjie Gao
- Pharmaron (Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Jianfeng Xu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
7
|
Xue L, Hou J, Li J, Yu T, Cai Q, Yu S, Yao C, Li YM. Copper(II)-Catalyzed Enantioselective Aza-Friedel-Crafts Reaction of Indoles with Isatin-Derived N-Boc-Ketimines. J Org Chem 2023; 88:14345-14350. [PMID: 37791977 DOI: 10.1021/acs.joc.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The copper(II)-catalyzed enantioselective aza-Friedel-Crafts reaction of indoles with isatin-derived N-Boc-ketimines was developed by using tunable chiral O-N-N tridentate ligands derived from BINOL and proline. In general, the reaction afforded chiral 3-indolyl-3-aminooxindoles under mild conditions in high yields (83-97%) with excellent ee (69-99%).
Collapse
Affiliation(s)
- Leipeng Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jiaqi Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jiahui Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Tianxu Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Qihang Cai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Shibo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Chao Yao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Yue-Ming Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Krishnan CG, Kondo M, Yasuda O, Fan D, Nakamura K, Wakabayashi Y, Sasai H, Takizawa S. Light-controlled p Ka value of chiral Brønsted acid catalysts in enantioselective aza-Friedel-Crafts reaction. Chem Commun (Camb) 2023; 59:9956-9959. [PMID: 37526022 DOI: 10.1039/d3cc02719h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Bis(dithienylethene)-based BINOL-derived phosphoric acid (DTE-BPA) has been developed as a light-controlled chiral organocatalyst for the first time. The photoinduced modulation of the reactivity and selectivity via the open/close isomerization of the DTE scaffold led to superior light-controlled ability in the enantioselective aza-Friedel-Crafts reaction of aldimines with indoles. DFT studies showed that photoisomerization is accompanied by a shift of 1.1 pKa units between the open and closed isomers.
Collapse
Affiliation(s)
- Chandu G Krishnan
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.
| | - Masaru Kondo
- Graduate School of Science and Engineering, Ibaraki University, Hitachi-shi, Ibaraki 316-8511, Japan.
| | - Osamu Yasuda
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.
| | - Duona Fan
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.
| | - Kento Nakamura
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.
| | | | - Hiroaki Sasai
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita-shi, Osaka, 565-0871, Japan
| | - Shinobu Takizawa
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.
| |
Collapse
|
9
|
Yokota T, Masu H, Arai T. Asymmetric Friedel-Crafts-Type Reaction of 2-Vinylindoles to N-Boc Imines Using a Chiral Imidazolidine-Containing NCN-Pincer Pd Catalyst. J Org Chem 2023. [PMID: 36802597 DOI: 10.1021/acs.joc.2c02911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
A chiral imidazolidine-containing NCN-pincer Pd-OTf complex (NCN-Pd cat) promoted the asymmetric nucleophilic addition of unprotected 2-vinylindoles to N-Boc imines in a Friedel-Crafts-type manner. The chiral (2-vinyl-1H-indol-3-yl)methanamine products become nice platforms for constructing multiple ring systems.
Collapse
Affiliation(s)
- Tomoya Yokota
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, Chiba 263-8522, Japan
| | - Hyuma Masu
- Center for Analytical Instrumentation, Chiba University, 1-33 Yayoi, Inage, Chiba, Chiba 263-8522, Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, Chiba 263-8522, Japan
| |
Collapse
|
10
|
Duan M, Chen J, Wang T, Luo S, Wang M, Fan B. Chiral Phosphoric Acid-Catalyzed Enantioselective Aza-Friedel-Crafts Addition of Naphthols with Isatin-Derived Ketimines. J Org Chem 2022; 87:15152-15158. [PMID: 36269152 DOI: 10.1021/acs.joc.2c01659] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The enantioselective Friedel-Crafts addition of naphthols with isatin-derived ketimines was developed with H8-BINOL-derived chiral biaryl phosphoric acid. A wide range of isatin-derived ketimines and naphthols were successfully applied and gave a series of chiral 3-amino-2-oxindoles in excellent yields with high optical purities.
Collapse
Affiliation(s)
- Mei Duan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming650504, Yunnan, China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming650504, Yunnan, China
| | - Ting Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming650504, Yunnan, China
| | - Shaojian Luo
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming650504, Yunnan, China
| | - Meifen Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming650504, Yunnan, China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming650504, Yunnan, China.,Department School of Chemistry and Environment, Yunnan Minzu University, Kunming650504, Yunnan, China
| |
Collapse
|
11
|
Zhong J, Pan R, Lin X. Enantioselective synthesis of α-tetrasubstituted (3-indolizinyl) (diaryl)methanamines via chiral phosphoric acid catalysis. RSC Adv 2022; 12:20499-20506. [PMID: 35919132 PMCID: PMC9284663 DOI: 10.1039/d2ra03750e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
An enantioselective Friedel-Crafts reaction of cyclic α-diaryl N-acyl imines with indolizines catalyzed by a chiral spirocyclic phosphoric acid has been developed. The asymmetric transformation proceeds smoothly to afford α-tetrasubstituted (3-indolizinyl) (diaryl)methanamines in good yields with up to 98% ee under mild conditions.
Collapse
Affiliation(s)
- Jialing Zhong
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Rihuang Pan
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
12
|
Wang L, Chen Z, Jiang H, Zhang J, Jin Y. Urea derivative organocatalyzed enantioselective Friedel-Crafts alkylation of α-naphthols with isatins. Chirality 2022; 34:977-988. [PMID: 35413136 DOI: 10.1002/chir.23447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/06/2022]
Abstract
An organocatalytic enantioselective Friedel-Crafts alkylation of α-naphthols with isatin derivatives was catalyzed by Takemoto-type urea catalyst to give optical active 3-(naphthalen-2-yl)-3-hydroxy-2-oxindoles in 75%-92% yields with up to 95% enantiomeric excess (ee) value. The catalyst type and the substrate scope were broadened in this methodology.
Collapse
Affiliation(s)
- Liming Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Shaanxi, China.,Department of Pharmacy, Jilin Medical University, Jilin, China
| | - Zhe Chen
- Department of Pharmacy, Jilin Medical University, Jilin, China
| | - Huiting Jiang
- Department of Pharmacy, Jilin Medical University, Jilin, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Shaanxi, China
| | - Ying Jin
- Department of Pharmacy, Jilin Medical University, Jilin, China
| |
Collapse
|
13
|
Muthusamy S, Kumarswamyreddy N, Kesavan V. Enantioselective Synthesis of 3‐Amino‐3’‐carbazole Oxindole Derivatives via Friedel‐Crafts Aminoalkylation Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Subramaniam Muthusamy
- Chemical Biology Laboratory Department of Biotechnology Bhupat and Jyothi Mehta School of Biosciences Building Indian Institute of Technology Madras Chennai 600036 India
| | - Nandarapu Kumarswamyreddy
- Department of Chemistry Indian Institute of Technology Tirupati Tirupati 517506 Andhra Pradesh India
| | - Venkitasamy Kesavan
- Chemical Biology Laboratory Department of Biotechnology Bhupat and Jyothi Mehta School of Biosciences Building Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
14
|
Li J, Wei Z, Cao J, Liang D, Lin Y, Duan H. Aymmetric Aza-Friedel-Crafts Reaction of Isatin-Derived Ketimines with Indoles Catalyzed by a Chiral Phase-Transfer Catalyst. J Org Chem 2022; 87:2532-2542. [PMID: 35084194 DOI: 10.1021/acs.joc.1c02477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A highly enantioselective aza-Friedel-Crafts reaction of 1H-indoles with isatin-derived N-Cbz-ketimines catalyzed by quinine-derived phase-transfer catalysts was developed. A series of chiral 3-aminobisindole compounds containing a tetrasubstituted stereocenter were constructed by this protocol in high yields (82-91%) and moderate to excellent enantioselectivities (46-94% ee).
Collapse
Affiliation(s)
- Jing Li
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhonglin Wei
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jungang Cao
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Dapeng Liang
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yingjie Lin
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Haifeng Duan
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
15
|
Li J, Lu W, Lu Y, Zha Z, Wang Z. Construction of Chiral
All‐Carbon
Quaternary Stereocenters by Asymmetric Friedel−Crafts Reaction of Isatin Derivatives. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jindong Li
- Hefei National Laboratory for Physical Sciences at Microscale, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, School of Chemistry and Materials Science in University of Science and Technology of China, Hefei Anhui 230026 China
| | - Wenjing Lu
- Hefei National Laboratory for Physical Sciences at Microscale, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, School of Chemistry and Materials Science in University of Science and Technology of China, Hefei Anhui 230026 China
| | - Yangmian Lu
- Hefei National Laboratory for Physical Sciences at Microscale, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, School of Chemistry and Materials Science in University of Science and Technology of China, Hefei Anhui 230026 China
| | - Zhenggen Zha
- Hefei National Laboratory for Physical Sciences at Microscale, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, School of Chemistry and Materials Science in University of Science and Technology of China, Hefei Anhui 230026 China
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, School of Chemistry and Materials Science in University of Science and Technology of China, Hefei Anhui 230026 China
| |
Collapse
|
16
|
del Corte X, Martínez de Marigorta E, Palacios F, Vicario J, Maestro A. An overview of the applications of chiral phosphoric acid organocatalysts in enantioselective additions to CO and CN bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo01209j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since 2004, chiral phosphoric acids (CPAs) have emerged as highyl efficient organocatalysts, providing excellent results in a wide reaction scope. In this review, the applications of CPA for enantioselective additions to CO and CN bonds are covered.
Collapse
Affiliation(s)
- Xabier del Corte
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Martínez de Marigorta
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Javier Vicario
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Aitor Maestro
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
17
|
Wang QY, Liu TF, Chu LF, Yao Y, Lu CD. Chiral spiro phosphoric acid-catalysed enantioselective reaction of ketenes with N-H pyrroles. Chem Commun (Camb) 2021; 57:11992-11995. [PMID: 34709250 DOI: 10.1039/d1cc05307h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the presence of a chiral spiro phosphoric acid catalyst, the asymmetric reaction of disubstituted ketenes with N-H pyrroles occurred to afford enantioenriched C-acylated pyrroles bearing α-stereogenic carbon centres. The described reaction constitutes a rare example of a catalytic asymmetric reaction of ketenes with carbon-based nucleophiles.
Collapse
Affiliation(s)
- Qian-Yi Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Teng-Fei Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Li-Feng Chu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Yun Yao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Chong-Dao Lu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
18
|
Borah B, Dwivedi KD, Chowhan LR. Recent Advances in Metal‐ and Organocatalyzed Asymmetric Functionalization of Pyrroles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100427] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| | - Kartikey Dhar Dwivedi
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| | - L. Raju Chowhan
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| |
Collapse
|
19
|
Gaviña D, Escolano M, Torres J, Alzuet‐Piña G, Sánchez‐Roselló M, Pozo C. Organocatalytic Enantioselective Friedel‐Crafts Alkylation Reactions of Pyrroles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daniel Gaviña
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| | - Marcos Escolano
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| | - Javier Torres
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| | - Gloria Alzuet‐Piña
- Department of Inorganic Chemistry University of Valencia E-46100 Burjassot Spain
| | | | - Carlos Pozo
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| |
Collapse
|
20
|
Chen Z, Zhang T, Sun Y, Wang L, Jin Y. Organocatalytic enantioselective aza-Friedel–Crafts alkylation of β-naphthols and isatin-derived ketimines via a Takemoto-type catalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj01421h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The catalyst type and the substrate scope were broadened using this methodology.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Pharmacy
- Jilin Medical University
- Jilin
- Jilin 132013
- China
| | - Tianyi Zhang
- Department of Pharmacy
- Jilin Medical University
- Jilin
- Jilin 132013
- China
| | - Yuhong Sun
- Department of Pharmacy
- Jilin Medical University
- Jilin
- Jilin 132013
- China
| | - Liming Wang
- Department of Pharmacy
- Jilin Medical University
- Jilin
- Jilin 132013
- China
| | - Ying Jin
- Department of Pharmacy
- Jilin Medical University
- Jilin
- Jilin 132013
- China
| |
Collapse
|
21
|
Hatano M, Toh K, Ishihara K. Enantioselective Aza-Friedel-Crafts Reaction of Indoles and Pyrroles Catalyzed by Chiral C1-Symmetric Bis(phosphoric Acid). Org Lett 2020; 22:9614-9620. [PMID: 33295179 DOI: 10.1021/acs.orglett.0c03662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A hydrogen bonding network in chiral Brønsted acid catalysts is important for the construction of a chiral cavity and the enhancement of catalytic activity. In this regard, we developed a highly enantioselective aza-Friedel-Crafts reaction of indoles and pyrroles with acyclic α-ketimino esters in the presence of a chiral C1-symmetric BINOL-derived bis(phosphoric acid) catalyst. The desired alkylation products with chiral quaternary carbon centers were obtained in high yields with high enantioselectivities on up to a 1.2-g scale with 0.2 mol % catalyst loading. Interestingly, the absolute configurations of the products from indoles and pyrroles were opposite even with the use of the same chiral catalyst. Moreover, preliminary mechanistic considerations disclosed that a unique hydrogen bonding network with or without π-π interactions among the catalyst and substrates might partially play a pivotal role.
Collapse
Affiliation(s)
- Manabu Hatano
- Graduate School of Pharmaceutical Sciences, Kobe Pharmaceutical University, 4-19-1, Motoyamakitamachi, Higashinada, Kobe 658-8558, Japan
| | - Kohei Toh
- Graduate School of Engineering, Nagoya University, Chikusa, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Chikusa, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
22
|
Controlled and diastereoselective synthesis of α-(3-hydroxy-2 oxoindolin-3-yl)-β-aminopropanoates. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Song XJ, Ren HX, Xiang M, Li CY, Zou Y, Li X, Huang ZC, Tian F, Wang LX. Organocatalytic Enantioselective Michael Addition between 3-(3-hydroxy-1 H-pyrazol-1-yl)Oxindole and β -Nitrostyrene for the Preparation of Chiral Disubstituted Oxindoles. J Org Chem 2020; 85:9290-9300. [PMID: 32583669 DOI: 10.1021/acs.joc.9b03337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new enantioselective Michael addition between 3-(3-hydroxy-1H-pyrazol-1-yl)oxindole, a new synthon generated from isatin N,N'-cyclic azomethine imine 1,3-dipole, and β-nitrostyrene has been disclosed. A series of chiral 3-(3-oxo-2,3-dihydro-1H-pyrazol-1-yl) disubstituted oxindoles were obtained in excellent results (up to 97% yield, up to 94% ee) with moderate to good diastereoselectivities (up to 4.3:1 dr).
Collapse
Affiliation(s)
- Xiang-Jia Song
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Hong-Xia Ren
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Min Xiang
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Chen-Yi Li
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Ying Zou
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Xia Li
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Zhi-Cheng Huang
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Fang Tian
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Li-Xin Wang
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| |
Collapse
|
24
|
Sun J, Gui Y, Huang Y, Li J, Zha Z, Yang Y, Wang Z. Lewis Acid-Catalyzed Enantioselective Friedel-Crafts Alkylation of Pyrrole in Water. ACS OMEGA 2020; 5:11962-11970. [PMID: 32548375 PMCID: PMC7271029 DOI: 10.1021/acsomega.9b04115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 05/08/2023]
Abstract
Highly enantioselective Friedel-Crafts alkylation of pyrroles with 2-enoyl-pyridine N-oxides in water/chloroform (10:1) was developed under catalysis of Lewis acid. The Friedel-Crafts alkylation products can be obtained in high yields and excellent enantioselectivities. Moreover, several control experiments were carried out to study the reaction mechanism.
Collapse
Affiliation(s)
- Jianan Sun
- Hefei
National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory
of Soft Matter Chemistry and Department of Chemistry & Collaborative
Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yang Gui
- Hefei
National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory
of Soft Matter Chemistry and Department of Chemistry & Collaborative
Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yekai Huang
- Hefei
National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory
of Soft Matter Chemistry and Department of Chemistry & Collaborative
Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jindong Li
- Hefei
National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory
of Soft Matter Chemistry and Department of Chemistry & Collaborative
Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenggen Zha
- Hefei
National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory
of Soft Matter Chemistry and Department of Chemistry & Collaborative
Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yu Yang
- School
of Chemistry and Chemical Engineering, Hefei
Normal University, Hefei, Anhui 230601, P. R. China
| | - Zhiyong Wang
- Hefei
National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory
of Soft Matter Chemistry and Department of Chemistry & Collaborative
Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- . Fax: 86-551-3631760
| |
Collapse
|
25
|
Rodríguez‐Rodríguez M, Maestro A, Andrés JM, Pedrosa R. Supported Bifunctional Chiral Thioureas as Catalysts in the Synthesis of 3‐Amino‐2‐Oxindoles through Enantioselective aza‐Friedel‐Crafts Reaction: Application in Continuous Flow Processes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000238] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marta Rodríguez‐Rodríguez
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de CienciasUniversidad de Valladolid Paseo Belén 7 47011- Valladolid Spain
| | - Alicia Maestro
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de CienciasUniversidad de Valladolid Paseo Belén 7 47011- Valladolid Spain
| | - José M. Andrés
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de CienciasUniversidad de Valladolid Paseo Belén 7 47011- Valladolid Spain
| | - Rafael Pedrosa
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de CienciasUniversidad de Valladolid Paseo Belén 7 47011- Valladolid Spain
| |
Collapse
|
26
|
Zhao Y, Cai L, Huang T, Meng S, Chan ASC, Zhao J. Solvent‐Mediated C3/C7 Regioselective Switch in Chiral Phosphoric Acid‐Catalyzed Enantioselective Friedel‐Crafts Alkylation of Indoles with α‐Ketiminoesters. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901380] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yunlong Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Lu Cai
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Tongkun Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Shanshui Meng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Junling Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| |
Collapse
|
27
|
Miyazaki Y, Zhou B, Tsuji H, Kawatsura M. Nickel-Catalyzed Asymmetric Friedel-Crafts Propargylation of 3-Substituted Indoles with Propargylic Carbonates Bearing an Internal Alkyne Group. Org Lett 2020; 22:2049-2053. [PMID: 32073861 DOI: 10.1021/acs.orglett.0c00465] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nickel-catalyzed highly enantioselective Friedel-Crafts propargylation of 3-substituted indoles with propargylic carbonates bearing an internal alkyne group was developed. A wide array of the propargylic carbonates as well as 3-substituted indoles can be applicable to the asymmetric nickel catalysis, providing the corresponding chiral C-3 propargylated indolenine derivatives bearing two vicinal chiral centers in up to 89% yield with up to >99% ee and 94:6 dr (24 examples).
Collapse
Affiliation(s)
- Yusuke Miyazaki
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Biao Zhou
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Hiroaki Tsuji
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Motoi Kawatsura
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| |
Collapse
|
28
|
Martín L, Maestro A, Andrés JM, Pedrosa R. Bifunctional thiourea-modified polymers of intrinsic microporosity for enantioselective α-amination of 3-aryl-2-oxindoles in batch and flow conditions. Org Biomol Chem 2020; 18:9275-9283. [DOI: 10.1039/d0ob01373k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A multigram scale preparation of enantioenriched 3-aryl-3-amino-2-oxindoles promoted by a novel chiral bifunctional thiourea, readily prepared from polymers of intrinsic microporosity.
Collapse
Affiliation(s)
- Laura Martín
- Instituto CINQUIMA and Departamento de Química Orgánica
- Facultad de Ciencias. Universidad de Valladolid. Paseo de Belén 7
- Valladolid
- Spain
| | - Alicia Maestro
- Instituto CINQUIMA and Departamento de Química Orgánica
- Facultad de Ciencias. Universidad de Valladolid. Paseo de Belén 7
- Valladolid
- Spain
| | - José M. Andrés
- Instituto CINQUIMA and Departamento de Química Orgánica
- Facultad de Ciencias. Universidad de Valladolid. Paseo de Belén 7
- Valladolid
- Spain
| | - Rafael Pedrosa
- Instituto CINQUIMA and Departamento de Química Orgánica
- Facultad de Ciencias. Universidad de Valladolid. Paseo de Belén 7
- Valladolid
- Spain
| |
Collapse
|
29
|
Wang P, Zhao Y, Chapagain B, Yang Y, Liu W, Wang Y. Mechanistic insights into Cu-catalyzed enantioselective Friedel–Crafts reaction between indoles and 2-aryl-N-sulfonylaziridines. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01967g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Computational studies were successfully carried out to provide mechanistic insights into LCu-catalyzed (L = (S)-Segphos ligand) Friedel–Crafts (F–C) reaction between indoles and 2-aryl-N-sulfonylaziridines.
Collapse
Affiliation(s)
- Ping Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Yang Zhao
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Biplav Chapagain
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Yonggang Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Wei Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Yong Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| |
Collapse
|
30
|
Hu WT, Li XY, Gui WT, Yu JY, Wen W, Guo QX. Chiral Bis(oxazoline)–Copper Complex Catalyzed Asymmetric Alkenylation of Isatin Imines and 3-Vinylindoles for Construction of Optically Active 3-Alkenyl-3-aminooxindoles. Org Lett 2019; 21:10090-10093. [DOI: 10.1021/acs.orglett.9b04063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wei-Ting Hu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiao-Yun Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wu-Tao Gui
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jia-Yu Yu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
31
|
Arai T, Araseki K, Kakino J. Catalytic Asymmetric Aza-Friedel–Crafts-Type Reaction of Indoles with Isatin-Derived N-Cbz-Ketimines Using a Chiral Bis(Imidazolidine)-Containing NCN-Pincer Palladium Catalyst. Org Lett 2019; 21:8572-8576. [DOI: 10.1021/acs.orglett.9b03148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Research Innovation Center (CIRIC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Kensuke Araseki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Research Innovation Center (CIRIC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Junki Kakino
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Research Innovation Center (CIRIC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
32
|
Yu YN, Qi WY, Wu CY, Xu MH. Rhodium-Catalyzed Enantioselective Addition of Arylboroxines to Isatin-Derived N-Boc Ketimines Using Chiral Phosphite–Olefin Ligands: Asymmetric Synthesis of 3-Aryl-3-amino-2-oxindoles. Org Lett 2019; 21:7493-7497. [DOI: 10.1021/acs.orglett.9b02787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yue-Na Yu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, China
| | - Wei-Yi Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Chun-Yan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ming-Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
33
|
Reddy KN, Rao MVK, Sridhar B, Subba Reddy BV. BINOL Phosphoric Acid‐Catalyzed Asymmetric Mannich Reaction of Cyclic
N
‐Acyl Ketimines with Cyclic Enones. Chem Asian J 2019; 14:2958-2965. [DOI: 10.1002/asia.201900556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/22/2019] [Indexed: 12/29/2022]
Affiliation(s)
- K. Nagarjuna Reddy
- Fluoro & AgrochemicalsCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi 110025 India
| | - M. V. Krishna Rao
- Fluoro & AgrochemicalsCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi 110025 India
| | - B. Sridhar
- Laboratory of X-ray CrystallographyCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - B. V. Subba Reddy
- Fluoro & AgrochemicalsCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| |
Collapse
|
34
|
Chen L, Xiao BX, Du W, Chen YC. Quaternary Phosphonium Salts as Active Brønsted Acid Catalysts for Friedel-Crafts Reactions. Org Lett 2019; 21:5733-5736. [PMID: 31264878 DOI: 10.1021/acs.orglett.9b02108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A readily available quaternary phosphonium salt containing a trifluoroacetonyl group and a tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BArF4-) counterion was demonstrated to be a highly active Brønsted acid catalyst for Friedel-Crafts-type reactions of an array of electron-rich heteroarenes and aniline derivatives with isatin-derived ketimines, even at 0.1 mol % catalyst loadings.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Ben-Xian Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China.,College of Pharmacy , Third Military Medical University , Shapingba , Chongqing 400038 , China
| |
Collapse
|
35
|
Rodríguez‐Ferrer P, Sanz‐Novo M, Maestro A, Andrés JM, Pedrosa R. Synthesis of Enantioenriched 3‐Amino‐3‐Substituted Oxindoles by Stereoselective Mannich Reaction Catalyzed by Supported Bifunctional Thioureas. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Patricia Rodríguez‐Ferrer
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de CienciasUniversidad de Valladolid Paseo de Belén 7 47011-Valladolid Spain
| | - Miguel Sanz‐Novo
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de CienciasUniversidad de Valladolid Paseo de Belén 7 47011-Valladolid Spain
| | - Alicia Maestro
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de CienciasUniversidad de Valladolid Paseo de Belén 7 47011-Valladolid Spain
| | - José M. Andrés
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de CienciasUniversidad de Valladolid Paseo de Belén 7 47011-Valladolid Spain
| | - Rafael Pedrosa
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de CienciasUniversidad de Valladolid Paseo de Belén 7 47011-Valladolid Spain
| |
Collapse
|
36
|
Tong P, Li Y, Zhang Y, Jiang X. Triphenylphosphine‐Catalyzed Diastereoselective Addition of Oxazolones to Isatin‐Derived Ketimines: Construction of Vicinal N‐Substituted Quaternary Stereocenters. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pei Tong
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 P. R. China
| | - Ying Li
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 P. R. China
| | - Xianxing Jiang
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
37
|
Miyagawa M, Yoshida M, Kiyota Y, Akiyama T. Enantioselective Friedel–Crafts Alkylation Reaction of Heteroarenes with N‐Unprotected Trifluoromethyl Ketimines by Means of Chiral Phosphoric Acid. Chemistry 2019; 25:5677-5681. [DOI: 10.1002/chem.201901020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Masamichi Miyagawa
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Masaru Yoshida
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Yuki Kiyota
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Takahiko Akiyama
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| |
Collapse
|
38
|
Rahman A, Xie E, Lin X. Organocatalytic asymmetric synthesis of benzazepinoindole derivatives with trifluoromethylated quaternary stereocenters by chiral phosphoric acid catalysts. Org Biomol Chem 2019; 16:1367-1374. [PMID: 29406543 DOI: 10.1039/c8ob00055g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An enantioselective aza-Friedel-Crafts reaction of trifluoromethyl dihydrobenzoazepinoindoles with pyrroles catalyzed by a chiral spirocyclic phosphoric acid was developed. This methodology provides a facile route to CF3- and pyrrole-containing benzazepinoindoles bearing quaternary stereocenters in good yields and with moderate to excellent enantioselectivities (up to 93% ee). Indoles were also investigated as electron-rich aromatic substrates to afford the corresponding chiral heterocycles with good yields and considerable enantioselectivities. The introduction of CF3 shows a remarkable fluorine effect and increases the activation and stereoinduction.
Collapse
Affiliation(s)
- Abdul Rahman
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | | | | |
Collapse
|
39
|
Zhang L, Xiang SH, Wang JJ, Xiao J, Wang JQ, Tan B. Phosphoric acid-catalyzed atroposelective construction of axially chiral arylpyrroles. Nat Commun 2019; 10:566. [PMID: 30718716 PMCID: PMC6361918 DOI: 10.1038/s41467-019-08447-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/07/2019] [Indexed: 01/04/2023] Open
Abstract
Axially chiral arylpyrroles are key components of pharmaceuticals and natural products as well as chiral catalysts and ligands for asymmetric transformations. However, the catalytic enantioselective construction of optically active arylpyrroles remains a formidable challenge. Here we disclose a highly efficient strategy to access enantioenriched axially chiral arylpyrroles by means of organocatalytic atroposelective desymmetrization and kinetic resolution. Depending on the remote control of chiral catalyst, the arylpyrroles were obtained in high yields and excellent enantioselectivities under mild reaction conditions. This strategy tolerates a wide range of functional groups, providing a facile avenue to approach axially chiral arylpyrroles from simple and readily available starting materials. Selected arylpyrrole products proved to be efficient chiral ligands in asymmetric catalysis and also important precursors for further synthetic transformations into highly functionalized pyrroles with potential bioactivity, especially the axially chiral fully substituted arylpyrroles. Axially chiral arylpyrroles are structural motifs often found in natural and medicinal products. Here, the authors report the atroposelective synthesis of axially chiral arylpyrrole derivatives, which proved to be efficient chiral ligands for asymmetric catalysis, through desymmetrization and kinetic resolution.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Hua Xiang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Joelle Wang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun-Qi Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
40
|
Vila C, Tortosa A, Blay G, Muñoz MC, Pedro JR. Organocatalytic enantioselective functionalization of indoles in the carbocyclic ring with cyclic imines. NEW J CHEM 2019. [DOI: 10.1039/c8nj05577g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An organocatalytic enantioselective functionalization in the carbocyclic ring of indoles with benzoxathiazine 2,2-dioxides is described using a quinine-derived bifunctional organocatalyst.
Collapse
Affiliation(s)
- Carlos Vila
- Departament de Química Orgànica
- Facultat de Química
- Universitat de València
- València
- Spain
| | - Arturo Tortosa
- Departament de Química Orgànica
- Facultat de Química
- Universitat de València
- València
- Spain
| | - Gonzalo Blay
- Departament de Química Orgànica
- Facultat de Química
- Universitat de València
- València
- Spain
| | - M. Carmen Muñoz
- Departament de Física Aplicada
- Universitat Politècnica de València
- Camino de Vera s/n
- 46022 València
- Spain
| | - José R. Pedro
- Departament de Química Orgànica
- Facultat de Química
- Universitat de València
- València
- Spain
| |
Collapse
|
41
|
You Y, Lu WY, Xie KX, Zhao JQ, Wang ZH, Yuan WC. Enantioselective synthesis of isoquinoline-1,3(2H,4H)-dione derivatives via a chiral phosphoric acid catalyzed aza-Friedel-Crafts reaction. Chem Commun (Camb) 2019; 55:8478-8481. [PMID: 31268101 DOI: 10.1039/c9cc04057a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A highly enantioselective aza-Friedel-Crafts reaction of structurally new ketimines with indoles and pyrrole is developed by using a chiral phosphoric acid as the catalyst. This protocol enables the first enantioselective synthesis of isoquinoline-1,3(2H,4H)-dione derivatives in good to excellent yields (up to 99% yield) and excellent enantioselectivities (up to >99% ee).
Collapse
Affiliation(s)
- Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Wen-Ya Lu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Ke-Xin Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China. and National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
42
|
Franc M, Urban M, Císařová I, Veselý J. Highly enantioselective addition of sulfur-containing heterocycles to isatin-derived ketimines. Org Biomol Chem 2019; 17:7309-7314. [DOI: 10.1039/c9ob01338e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, we report a highly stereoselective addition of sulfur-containing heterocyclic compounds to isatin-derived ketimines efficiently catalyzed by cinchonidine-derived bifunctional tertiary aminothiourea (1 mol%).
Collapse
Affiliation(s)
- Michael Franc
- Department of Organic Chemistry
- Charles University
- 12843 Prague
- Czech Republic
| | - Michal Urban
- Department of Organic Chemistry
- Charles University
- 12843 Prague
- Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry
- Charles University
- 12843 Prague
- Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry
- Charles University
- 12843 Prague
- Czech Republic
| |
Collapse
|
43
|
Yonesaki R, Kondo Y, Akkad W, Sawa M, Morisaki K, Morimoto H, Ohshima T. 3-Mono-Substituted BINOL Phosphoric Acids as Effective Organocatalysts in Direct Enantioselective Friedel-Crafts-Type Alkylation of N-Unprotected α-Ketiminoester. Chemistry 2018; 24:15211-15214. [PMID: 30098059 DOI: 10.1002/chem.201804078] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 11/08/2022]
Abstract
Although BINOL-derived phosphoric acids are among the most widely used chiral Brønsted acid organocatalysts, their structures are mostly limited to 3,3'-disubstituted ones and simple 3-mono-substituted ones without any polar functionalities on the 3-substituent have not been used in highly enantioselective reactions. This work reports such 3-mono-substituted analogues as effective organocatalysts in direct highly enantioselective Friedel-Crafts-type alkylation of N-unprotected α-ketiminoester. The origin of the observed high enantioselectivity with the 3-mono-substituted catalyst is also discussed.
Collapse
Affiliation(s)
- Ryohei Yonesaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuta Kondo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Walaa Akkad
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masanao Sawa
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuhiro Morisaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroyuki Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
44
|
Schlegel M, Coburger P, Schneider C. A Novel Sc(OTf) 3 -Catalyzed (2+2+1)-Cycloannulation/Aza-Friedel-Crafts Alkylation Sequence toward Multicyclic 2-Pyrrolines. Chemistry 2018; 24:14207-14212. [PMID: 29939442 DOI: 10.1002/chem.201802478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 12/13/2022]
Abstract
The rapid assembly of molecular complexity continues to be at the forefront of novel reaction development. In the pursuit of that goal, we herein report a novel Sc(OTf)3 -catalyzed, one-pot multicomponent reaction that furnishes complex multicyclic 2-pyrrolines with excellent overall yields and perfect diastereocontrol. This process is based on our previously established (2+2+1)-cycloannulation of in situ generated 1-azaallyl cations, 1,3-dicarbonyls and primary amines. The newly formed and highly reactive aminal moiety is readily substituted with indoles and pyrroles both as external and internal π-nucleophiles to provide densely functionalized N-heterocycles with four new σ-bonds and two vicinal quaternary stereogenic centers. In addition, DFT calculations have been conducted to further characterize the intermediate 1-azaallyl cations.
Collapse
Affiliation(s)
- Marcel Schlegel
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Peter Coburger
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Christoph Schneider
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
45
|
Huang Q, Zhang L, Cheng Y, Li P, Li W. Enantioselective Construction of Vicinal Sulfur-containing Tetrasubstituted Stereocenters via Organocatalyzed Mannich-Type Addition of Rhodanines to Isatin Imines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800642] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qiuhong Huang
- Department of Medicinal Chemistry, School of Pharmacy; Qingdao University, Qingdao; Shandong People's Republic of China 266021
| | - Lili Zhang
- Department of Medicinal Chemistry, School of Pharmacy; Qingdao University, Qingdao; Shandong People's Republic of China 266021
| | - Yuyu Cheng
- Department of Chemistry, Southern; University of Science and Technology, Shenzhen; Guangdong People's Republic of China 518055
| | - Pengfei Li
- Department of Chemistry, Southern; University of Science and Technology, Shenzhen; Guangdong People's Republic of China 518055
| | - Wenjun Li
- Department of Medicinal Chemistry, School of Pharmacy; Qingdao University, Qingdao; Shandong People's Republic of China 266021
| |
Collapse
|
46
|
Zheng X, Yang WL, Liu YZ, Wu SX, Deng WP. Enantioselective Synthesis of Tropanes via [3+3] Annulation of Cyclic Azomethine Ylides with Substituted 2-Vinylindoles and 2-Vinylpyrroles. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800553] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xing Zheng
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 Peoples Republic of China
| | - Wu-Lin Yang
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 Peoples Republic of China
| | - Yang-Zi Liu
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 Peoples Republic of China
| | - Shu-Xiao Wu
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 Peoples Republic of China
| | - Wei-Ping Deng
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 Peoples Republic of China
| |
Collapse
|
47
|
Yarlagadda S, Sridhar B, Subba Reddy BV. Oxidative Asymmetric Aza-Friedel-Crafts Alkylation of Indoles with 3-Indolinone-2-carboxylates Catalyzed by a BINOL Phosphoric Acid and Promoted by DDQ. Chem Asian J 2018; 13:1327-1334. [PMID: 29575703 DOI: 10.1002/asia.201800300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Indexed: 12/11/2022]
Abstract
An asymmetric aza-Friedel-Crafts alkylation reaction between indoles and indolenines that were derived in situ from 3-indolinone-2-carboxylates has been developed by using 3,3'-bis(triphenylsilyl)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate as a catalyst. The reaction proceeded under mild conditions and provided chiral indol-3-yl-3-indolinone-2-carboxylate derivatives in good yields with excellent ee values (up to 98.6 %). Similarly, the Mannich-type addition of indoline-3-ones to indolenines provided heterodimers with vicinal chiral quaternary centers. This method was successfully applied to the construction of the core structure of trigonoliimine C.
Collapse
Affiliation(s)
- Suresh Yarlagadda
- Centre for Semiochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - B Sridhar
- Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | | |
Collapse
|
48
|
İşibol D, Karahan S, Tanyeli C. Asymmetric organocatalytic direct Mannich reaction of acetylacetone and isatin derived ketimines: Low catalyst loading in chiral cinchona-squaramides. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Zhu JY, Yang WL, Liu YZ, Shang SJ, Deng WP. A copper(i)-catalyzed asymmetric Mannich reaction of glycine Schiff bases with isatin-derived ketimines: enantioselective synthesis of 3-substituted 3-aminooxindoles. Org Chem Front 2018. [DOI: 10.1039/c7qo00691h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed a copper/Ph-Phosferrox-catalyzed asymmetric Mannich reaction of Schiff bases with isatin-derived ketimines to prepare 3-substituted 3-aminooxindoles with excellent results.
Collapse
Affiliation(s)
- Jing-Yan Zhu
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Wu-Lin Yang
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yang-Zi Liu
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Shao-Jing Shang
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
50
|
Arai T. Chiral Bis(imidazolidine)-containing NCN Pincer Metal Complexes for Cooperative Asymmetric Catalysis. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takayoshi Arai
- Department of Chemistry, Graduate School of Science, Chiba University
| |
Collapse
|