1
|
Tsujioka K, Hirai Y, Shimomura M, Matsuo Y. Friction-reduction effect of the hierarchical surface microstructure of carrion beetle by controlling the real contact area. NANOSCALE 2024. [PMID: 39445743 DOI: 10.1039/d4nr02892a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The discovery and elucidation of the surface microstructure functions of living organisms are crucial to resolving issues, such as friction. We newly discovered that Necrophila japonica, a type of carrion beetle that lives on the ground surface, exhibited a hierarchical surface microstructure comprising a submicron-sized wrinkle structure on top of a micron-sized microstructure. The surface microstructure of this beetle improved wettability but did not exhibit superhydrophobicity, a well-known function of hierarchical structures, so it was expected to have a different function. By combining the insights in the field of structural mechanics that avoidance of stress concentration by the structural geometry affects deformation with the basic principles of friction, the frictional properties and mechanisms of the hierarchical surface microstructure of carrion beetle were investigated. The measurements of frictional force indicated that the mimicked structure exerted lower frictional forces than flat and single-layer microstructure surfaces. Analysis of finite element method simulations showed that even though the mimicked structure was prone to pressure concentration due to small contact points, the surface contact pressure was reduced more than that of the single-layer structure by hierarchical load dispersion like that of metamaterials. As a result, the suppression of the increase in the real contact area due to deformation suppression contributed to effective friction-reduction. The effective friction-reduction by the hierarchical structure provides not only new insight into the surface microstructure function of various organisms, but also new design for the lubricant-free friction reduction that has been the focus of attention in carbon neutrality and other fields.
Collapse
Affiliation(s)
- Kazuma Tsujioka
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628, Japan
| | - Yuji Hirai
- Department of Applied Chemistry and Bioscience, Chitose Institute of Science and Technology (CIST), Bibi758-65, Chitose, 066-8655, Japan
| | - Masatsugu Shimomura
- Department of Applied Chemistry and Bioscience, Chitose Institute of Science and Technology (CIST), Bibi758-65, Chitose, 066-8655, Japan
| | - Yasutaka Matsuo
- Green Nanotechnology Research Center, Research Institute for Electronic Science (RIES), Hokkaido University, N21W10, Kita-ku, Sapporo, 011-0021, Japan.
| |
Collapse
|
2
|
Wang XY, Huang HX. Water Impact Dynamics and Mechanism Analysis of Polypropylene and Polypropylene/poly(ethylene- co-octene) Replica Surfaces with Nanowires under Low Temperature Conditions. ACS OMEGA 2024; 9:33064-33071. [PMID: 39100337 PMCID: PMC11292825 DOI: 10.1021/acsomega.4c04128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
In this work, polypropylene (PP) and PP/poly(ethylene-co-octene) (PP/POE) blend replica surfaces with densely arranged nanowires are fabricated using a molding process. Morphology analysis shows that the nanowires on these replica surfaces have sharp tips and high aspect ratios. The droplet impact behaviors on the surfaces of the PP/POE blend replicas and PP replicas are investigated before and after freezing at -20 °C for 4 h. The height of the nanowires on the PP/POE blend replica surfaces is higher than that on the PP surface before and after freezing. The static wettability and droplet impact tests on the surfaces of PP/POE blend replicas and PP replica show that adding POE into the PP matrix can significantly increase the toughness of the nanowires on the PP/POE blend replica surfaces during the droplet impact at low temperatures. These investigations are favorable to broaden the practical applications of superhydrophobic surfaces in some severe environments.
Collapse
Affiliation(s)
- Xing-Yu Wang
- Lab for Micro Molding and Polymer Rheology,
Guangdong Provincial Key Laboratory of Technique and Equipment for
Macromolecular Advanced Manufacturing, South
China University of Technology, Guangzhou 510640, P. R. China
| | - Han-Xiong Huang
- Lab for Micro Molding and Polymer Rheology,
Guangdong Provincial Key Laboratory of Technique and Equipment for
Macromolecular Advanced Manufacturing, South
China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
3
|
Li Y, Zhang H, Du J, Min Q, Wu X, Sun L. Coalescence-Induced Self-Propelled Particle Transport with Asymmetry Arrangement. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18184-18193. [PMID: 38556720 DOI: 10.1021/acsami.4c01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
We experimentally investigated the coalescence-induced droplet-particle jumping phenomenon on a submillimeter scale in symmetric and asymmetric particle arrangements with poly(methyl methacrylate) (PMMA) particles and stainless steel (SS) particles. Coalescence-induced droplet-particle jumping exhibited excellent capability and interesting behavior for both droplet jumping enhancement and particle transport. The particle increased the normalized droplet jumping velocity from 0.250 for no particle case to 0.315 and 0.320 for symmetric and asymmetric particle cases. Compared with similar-sized macrostructures fixed between droplets, better jumping performance with particles may be attributed to avoiding the work of adhesion during droplet-macrostructure separation. Besides, all particles always sunk at the bottom in the symmetric cases, while the stick mode for PMMA particles and sink, wander, and jet modes for SS particles appeared in the asymmetry cases. We revealed that the asymmetric particle arrangement induces an unbalanced surface tension force, which may provide a driving force in the vertical direction. Additionally, a small enough resistive force caused by hydrophobic particles is another necessary condition for the wonder and jet mode. Finally, we realized a significantly superior particle transport in the asymmetric SS particle cases with maximum particle height reaching ∼2.1 mm, ∼12.4 times the particle radius, the most significant vertical self-propelled transport distance currently.
Collapse
Affiliation(s)
- Yanzhi Li
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Haixiang Zhang
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jiayu Du
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Qi Min
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xinxin Wu
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Libin Sun
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Rasitha TP, Krishna NG, Anandkumar B, Vanithakumari SC, Philip J. A comprehensive review on anticorrosive/antifouling superhydrophobic coatings: Fabrication, assessment, applications, challenges and future perspectives. Adv Colloid Interface Sci 2024; 324:103090. [PMID: 38290251 DOI: 10.1016/j.cis.2024.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Superhydrophobicity (SHP) is an incredible phenomenon of extreme water repellency of surfaces ubiquitous in nature (E.g. lotus leaves, butterfly wings, taro leaves, mosquito eyes, water-strider legs, etc). Historically, surface exhibiting water contact angle (WCA) > 150° and contact angle hysteresis <10° is considered as SHP. The SHP surfaces garnered considerable attention in recent years due to their applications in anti-corrosion, anti-fouling, self-cleaning, oil-water separation, viscous drag reduction, anti-icing, etc. As corrosion and marine biofouling are global problems, there has been focused efforts in combating these issues using innovative environmentally friendly coatings designs taking cues from natural SHP surfaces. Over the last two decades, though significant progress has been made on the fabrication of various SHP surfaces, the practical adaptation of these surfaces for various applications is hampered, mainly because of the high cost, non-scalability, lack of simplicity, non-adaptability for a wide range of substrates, poor mechanical robustness and chemical inertness. Despite the extensive research, the exact mechanism of corrosion/anti-fouling of such coatings also remains elusive. The current focus of research in recent years has been on the development of facile, eco-friendly, cost-effective, mechanically robust chemically inert, and scalable methods to prepare durable SHP coating on a variety of surfaces. Although there are some general reviews on SHP surfaces, there is no comprehensive review focusing on SHP on metallic and alloy surfaces with corrosion-resistant and antifouling properties. This review is aimed at filling this gap. This review provides a pedagogical description with the necessary background, key concepts, genesis, classical models of superhydrophobicity, rational design of SHP, coatings characterization, testing approaches, mechanisms, and novel fabrication approaches currently being explored for anticorrosion and antifouling, both from a fundamental and practical perspective. The review also provides a summary of important experimental studies with key findings, and detailed descriptions of the evaluation of surface morphologies, chemical properties, mechanical, chemical, corrosion, and antifouling properties. The recent developments in the fabrication of SHP -Cr-Mo steel, Ti, and Al are presented, along with the latest understanding of the mechanism of anticorrosion and antifouling properties of the coating also discussed. In addition, different promising applications of SHP surfaces in diverse disciplines are discussed. The last part of the review highlights the challenges and future directions. The review is an ideal material for researchers practicing in the field of coatings and also serves as an excellent reference for freshers who intend to begin research on this topic.
Collapse
Affiliation(s)
- T P Rasitha
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - Nanda Gopala Krishna
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - B Anandkumar
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India
| | - S C Vanithakumari
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India
| | - John Philip
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India.
| |
Collapse
|
5
|
Li P, Zhan F, Wang L. Velocity-Switched Droplet Rebound Direction on Anisotropic Superhydrophobic Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305568. [PMID: 37752749 DOI: 10.1002/smll.202305568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Indexed: 09/28/2023]
Abstract
Droplet well-controlled directional motion being an essential function has attracted much interest in academic and industrial applications, such as self-cleaning, micro-/nano-electro-mechanical systems, drug delivery, and heat-transferring. Conventional understanding has it that a droplet impacted on an anisotropic surface tends to bounce along the microstructural direction, which is mainly dictated by surface properties rather than initial conditions. In contrast to previous findings, it demonstrates that the direction of a droplet's rebound on an anisotropic surface can be switched by designing the initial impacting velocity. With an increase in impacting height from 2 to 10 cm, the droplet successively shows a backward, vertical, and forward motion on anisotropic surfaces. Theoretical demonstrations establish that the transition of droplet bouncing on the anisotropic surface is related to its dynamic wettability during impacting process. Characterized by the liquid-solid interaction, it is demonstrated that the contact state at small and large impacting heights induces an opposite resultant force in microstructures. Furthermore, energy balance analysis reveals that the energy conversion efficiency of backward motion is almost three times as that of traditional bouncing. This work, including experiments, theoretical models, and energy balance analysis provides insight view in droplet motions on the anisotropic surfaces and opens a new way for the droplet transport.
Collapse
Affiliation(s)
- Peiliu Li
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Biomechanics and Biomaterials Laboratory, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fei Zhan
- School of Electrical and Electronic Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China
| | - Lei Wang
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
6
|
Pan M, Shao H, Fan Y, Yang J, Liu J, Deng Z, Liu Z, Chen Z, Zhang J, Yi K, Su Y, Wang D, Deng X, Deng F. Superhydrophobic Surface-Assisted Preparation of Microspheres and Supraparticles and Their Applications. NANO-MICRO LETTERS 2024; 16:68. [PMID: 38175452 PMCID: PMC10766899 DOI: 10.1007/s40820-023-01284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
Superhydrophobic surface (SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhesion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics make SHS suitable for a wide range of applications. One particularly promising application is the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as a universal platform capable of providing customized services for a variety of microspheres and supraparticles. In this review, an overview of the strategies for fabricating microspheres and supraparticles with the aid of SHS, including cross-linking process, polymer melting, and droplet template evaporation methods, is first presented. Then, the applications of microspheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating photonic devices with controllable structures and tunable structural colors, acting as catalysts with emerging or synergetic properties, being integrated into the biomedical field to construct the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally, the perspective on future developments involved with this research field is given, along with some obstacles and opportunities.
Collapse
Affiliation(s)
- Mengyao Pan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China
| | - Huijuan Shao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yue Fan
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jinlong Yang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Jiaxin Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Zhongqian Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Zhenda Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Zhidi Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Jun Zhang
- Pharmaceutical Glass Co. Ltd, Zibo, 256100, People's Republic of China
| | - Kangfeng Yi
- Pharmaceutical Glass Co. Ltd, Zibo, 256100, People's Republic of China
| | - Yucai Su
- Pharmaceutical Glass Co. Ltd, Zibo, 256100, People's Republic of China
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| | - Xu Deng
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China.
| | - Fei Deng
- Department of Nephropathy, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu, People's Republic of China.
| |
Collapse
|
7
|
Stewart M, Cameron S, Thunert M, Zampiron A, Wainwright D, Nikora V. High-resolution measurements of swordfish skin surface roughness. BIOINSPIRATION & BIOMIMETICS 2023; 19:016007. [PMID: 37995345 DOI: 10.1088/1748-3190/ad0f32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
The three-dimensional morphology of swordfish skin roughness remains poorly understood. Subsequently, its importance to the overall physiology and hydrodynamic performance of the swordfish is yet to be determined. This is at least partly attributable to the inherent difficulty in making the required measurements of these complex biological surfaces. To address this, here two sets of novel high-resolution measurements of swordfish skin, obtained using a modular optical coherence tomography system and a gel-based stereo-profilometer, are reported and compared. Both techniques are shown to provide three-dimensional morphological data at micron-scale resolution. The results indicate that the skin surface is populated with spiny roughness elements, typically elongated in the streamwise direction, in groups of up to six, and in good agreement with previously reported information based on coarser measurements. In addition, our data also provide new information on the spatial distribution and variability of these roughness features. Two approaches, one continuous and another discrete, are used to derive various topographical metrics that characterize the surface texture of the skin. The information provided here can be used to develop statistically representative synthetic models of swordfish skin roughness.
Collapse
Affiliation(s)
- M Stewart
- School of Engineering, University of Aberdeen, Aberdeen, United Kingdom
| | - S Cameron
- School of Engineering, University of Aberdeen, Aberdeen, United Kingdom
| | | | - A Zampiron
- School of Engineering, University of Aberdeen, Aberdeen, United Kingdom
| | - D Wainwright
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - V Nikora
- School of Engineering, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
8
|
Hou Y, Zhan F, Fan W, Wang L. Dynamic Anti-Icing Performance of Flexible Hybrid Superhydropohobic Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41162-41169. [PMID: 37587085 DOI: 10.1021/acsami.3c09298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Normal superhydrophobic surfaces with a rough topography provide pocketed air at the solid-liquid interface, which guides the droplet to easily detach from the surface at room temperature. However, at low temperatures, this function attenuates obviously. In this research, a flexible hybrid topography with submillimeter (sub-mm) and microcone arrays is designed to adjust the impacting behavior of the droplet. The sub-mm cone could provide rigid support to limit deformation, leading to reduced energy consumption during impact processes. However, the microcone could maintain surface superhydrophobicity under different conditions, preventing droplet breakage and the change of the droplet contact state during impact processes by providing multiple contact points. Under the synergistic effect, such a hybrid structure could provide much more pocket air at the solid-liquid interface to limit the spreading of liquid droplets and reduce the energy loss during the impact process. At a low temperature (-5 °C), even if the impact height is reduced to 1 cm, the droplets still could be bound off, and the hybrid superhydrophobic surface presents excellent dynamic anti-icing ability. The special flexible hybrid superhydropohobic surface has potential application in fast self-cleaning and anti-icing fields.
Collapse
Affiliation(s)
- Yongping Hou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China
| | - Fei Zhan
- Beijing Key Laboratory of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Electrical and Electronic Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050000, China
| | - Wenqi Fan
- Power Transmission and Transformation Engineering Department, China Electric Power Research Institute, Beijing 100055, China
| | - Lei Wang
- Beijing Key Laboratory of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Hamilton BW, Tutunea-Fatan OR, Bordatchev EV. Drag Reduction by Fish-Scale Inspired Transverse Asymmetric Triangular Riblets: Modelling, Preliminary Experimental Analysis and Potential for Fouling Control. Biomimetics (Basel) 2023; 8:324. [PMID: 37504213 PMCID: PMC10807001 DOI: 10.3390/biomimetics8030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023] Open
Abstract
The natural surfaces of many plants and animals provide examples of textures and structures that remain clean despite the presence of environmental fouling contaminants. A biomimetic approach to deciphering the mechanisms used by nature will facilitate the development and application of fouling-resistant surfaces to a range of engineering challenges. This study investigated the mechanism underlying the drag reduction phenomenon that was shown to be responsible for fouling resistance for underwater surfaces. For this purpose, a novel fish-scale-inspired microstructure was shown to exhibit a drag reduction effect similar to that of its natural replica. The primary mechanism through which this occurs is a delayed transition to turbulence. To investigate this mechanism, a Large Eddy simulation was performed at several Reynolds numbers (Re). This analysis demonstrated a peak drag reduction performance of 6.7% at Re = 1750. The numerical data were then experimentally validated through pressure drop measurements performed by means of a custom-built micro-channel. In this case, a peak drag reduction of 4.8% was obtained at Re = 1000. These results suggest a relative agreement between the experimental and numerical data. Taken together, this study advocates that, for the analyzed conditions, drag reduction occurs at low Reynolds numbers. Nonetheless, once flow conditions become more turbulent, the decline in drag reduction performance becomes apparent.
Collapse
Affiliation(s)
- Benjamin W. Hamilton
- Department of Mechanical and Materials Engineering, Western University, London, ON N6A 6B9, Canada;
- Automotive and Surface Transportation, National Research Council of Canada, London, ON N6G 4X8, Canada
| | - O. Remus Tutunea-Fatan
- Department of Mechanical and Materials Engineering, Western University, London, ON N6A 6B9, Canada;
- Automotive and Surface Transportation, National Research Council of Canada, London, ON N6G 4X8, Canada
| | - Evgueni V. Bordatchev
- Department of Mechanical and Materials Engineering, Western University, London, ON N6A 6B9, Canada;
- Automotive and Surface Transportation, National Research Council of Canada, London, ON N6G 4X8, Canada
| |
Collapse
|
10
|
Basri EI, Basri AA, Ahmad KA. Computational Fluid Dynamics Analysis in Biomimetics Applications: A Review from Aerospace Engineering Perspective. Biomimetics (Basel) 2023; 8:319. [PMID: 37504207 PMCID: PMC10807370 DOI: 10.3390/biomimetics8030319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 07/29/2023] Open
Abstract
In many modern engineering fields, computational fluid dynamics (CFD) has been adopted as a methodology to solve complex problems. CFD is becoming a key component in developing updated designs and optimization through computational simulations, resulting in lower operating costs and enhanced efficiency. Even though the biomimetics application is complex in adapting nature to inspire new capabilities for exciting future technologies, the recent CFD in biomimetics is more accessible and practicable due to the availability of high-performance hardware and software with advances in computer sciences. Many simulations and experimental results have been used to study the analyses in biomimetics applications, particularly those related to aerospace engineering. There are numerous examples of biomimetic successes that involve making simple copies, such as the use of fins for swimming or the mastery of flying, which became possible only after the principles of aerodynamics were better understood. Therefore, this review discusses the essential methodology of CFD as a reliable tool for researchers in understanding the technology inspired by nature and an outlook for potential development through simulations. CFD plays a major role as decision support prior to undertaking a real commitment to execute any design inspired by nature and providing the direction to develop new capabilities of technologies.
Collapse
Affiliation(s)
- Ernnie Illyani Basri
- Department of Aerospace Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia;
| | | | - Kamarul Arifin Ahmad
- Department of Aerospace Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia;
| |
Collapse
|
11
|
Effect of V-Shaped Groove Microstructure on Blood Flow Resistance in Bionic Artificial Blood Vessels. Appl Bionics Biomech 2023. [DOI: 10.1155/2023/7861408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
This study aims to investigate the blood flow in bionic artificial blood vessels and to reduce the resistance to blood flow, the drag reduction characteristics of V-shaped groove drag reduction microstructures in artificial blood vessel structures were investigated in depth. By varying the parameters of incoming flow velocity, groove width, and groove depth, the effect of various variable conditions on the drag reduction effect of the grooves was investigated, and the flow field characteristics and drag reduction effect of the V-shaped groove microstructure in the artificial blood vessel were obtained. A detailed analysis of the effect of velocity and groove size on the drag reduction effect of the groove was also carried out to demonstrate the drag reduction mechanism of the V-shaped groove microstructure and to summarize the variation law of the drag reduction rate of the V-shaped groove. The results show that the resistance reduction rate of the V-shaped groove microstructure decreases with the increase of blood flow velocity, increases with the increase of groove width, and increases and then decreases with the increase of groove depth. The velocity range used in this paper is 0.3–0.6 m/s, the groove width varies from 0 to 0.3 mm, and the groove depth varies from 0 to 0.3 mm.
Collapse
|
12
|
Istanbullu OB, Akdogan G. Blood-repellent and anti-corrosive surface by spin-coated SWCNT layer on intravascular stent materials. Phys Eng Sci Med 2023; 46:227-243. [PMID: 36592282 DOI: 10.1007/s13246-022-01212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Despite intravascular bare metallic stents (BMS) being indispensable products in cardiovascular surgery, they face in-stent restenosis (ISR), resulting in stent failure or secondary surgical operation necessity. Accumulation or corrosion processes are key factors that promote ISR development in a vascular pathway, including an intravascular stent. The ISR can be inhibited by increasing the blood-repellency, and electrochemical corrosion resistance features using surface modification techniques on intravascular stent materials. In this study, Single-Walled Carbon Nanotube (SWCNT) structures were deposited using the spin-coating method on stent specimens made of 316L, 316LVM, CoCr-alloy, and Ti-alloy. Hydrophobicity and blood-repellency functions of coated and uncoated specimens were analysed by the Contact Angle (CA) values for distilled water (DIW), glycerol, blood plasma, and total-blood droplets using a computer-controlled goniometer system. Using a potentiostat, the electrochemical corrosion resistance features were analysed from obtained Electrochemical Impedance Spectroscopy (EIS) and Tafel curves in 37 °C Simulated Body Fluid (SBF) mimicking the human blood plasma. Due to the CA values below 90°, the repellency limit for hydrophobicity and blood-repellency, bare specimens performed hydrophilic and blood-philic features. However, SWCNT coating increased the repellency functions to 95° for DIW and 96° for total blood. The electrochemical corrosion resistance analysis showed that 1.433 kΩ cm2 polarization resistance and 1.07 kΩ cm2 electrochemical impedance of bare specimens increased to 142.8 kΩ cm2 and 141.3 kΩ cm2 by SWCNT coating. These corrosion resistance enhancements led to ratios of 78.13% inhibition in the corrosion rate and mass loss rate per year for SWCNT-coated 316LVM specimens. The maximum inhibition efficiency was observed for SWCNT-coated 316LVM specimens with a ratio of 87.92%. Obtained results indicate that SWCNT coating of the intravascular stents can inhibit the ISR risks of the BMS group.
Collapse
Affiliation(s)
- O Burak Istanbullu
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Gulsen Akdogan
- Department of Biomedical Engineering, Faculty of Engineering, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
13
|
Li Z, Liu P, Chen S, Liu X, Yu Y, Li T, Wan Y, Tang N, Liu Y, Gu Y. Bioinspired marine antifouling coatings: Antifouling mechanisms, design strategies and application feasibility studies. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
14
|
Prudnikov E, Polishchuk I, Sand A, Hamad HA, Massad-Ivanir N, Segal E, Pokroy B. Self-assembled fatty acid crystalline coatings display superhydrophobic antimicrobial properties. Mater Today Bio 2023; 18:100516. [PMID: 36569590 PMCID: PMC9771733 DOI: 10.1016/j.mtbio.2022.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Superhydrophobicity is a well-known wetting phenomenon found in numerous plants and insects. It is achieved by the combination of the surface's chemical properties and its surface roughness. Inspired by nature, numerous synthetic superhydrophobic surfaces have been developed for various applications. Designated surface coating is one of the fabrication routes to achieve the superhydrophobicity. Yet, many of these coatings, such as fluorine-based formulations, may pose severe health and environmental risks, limiting their applicability. Herein, we present a new family of superhydrophobic coatings comprised of natural saturated fatty acids, which are not only a part of our daily diet, but can be produced from renewable feedstock, providing a safe and sustainable alternative to the existing state-of-the-art. These crystalline coatings are readily fabricated via single-step deposition routes, namely thermal deposition or spray-coating. The fatty acids self-assemble into highly hierarchical crystalline structures exhibiting a water contact angle of ∼165° and contact angle hysteresis lower than 6°, while their properties and morphology depend on the specific fatty acid used as well as on the deposition technique. Moreover, the fatty acid coatings demonstrate excellent thermal stability. Importantly, this new family of coatings displays excellent anti-biofouling and antimicrobial properties against Escherichia coli and Listeria innocua, used as relevant model Gram-negative and Gram-positive bacteria, respectively. These multifunctional coatings hold immense potential for application in numerous fields, ranging from food safety to biomedicine, offering sustainable and safe solutions.
Collapse
Affiliation(s)
- Elena Prudnikov
- Department of Materials Science and Engineering, Technion − Israel Institute of Technology, 3200003 Haifa, Israel
| | - Iryna Polishchuk
- Department of Materials Science and Engineering, Technion − Israel Institute of Technology, 3200003 Haifa, Israel
| | - Andy Sand
- Faculty of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, 3200003 Haifa, Israel
| | - Hanan Abu Hamad
- Faculty of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, 3200003 Haifa, Israel
| | - Naama Massad-Ivanir
- Faculty of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, 3200003 Haifa, Israel
| | - Ester Segal
- Faculty of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, 3200003 Haifa, Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering, Technion − Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
15
|
Wang X, Bai H, Li Z, Cao M. Fluid manipulation via multifunctional lubricant infused slippery surfaces: principle, design and applications. SOFT MATTER 2023; 19:588-608. [PMID: 36633123 DOI: 10.1039/d2sm01547a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Water-repellent interfaces with high performance have emerged as an indispensable platform for developing advanced materials and devices. Inspired by the pitcher plant, slippery liquid-infused porous surfaces (SLIPSs) with reliable hydrophobicity have proven to possess great potential for various applications in droplet and bubble manipulation, droplet energy harvesting, condensation, fog collection, anti-icing, and anti-biofouling due to their excellent properties such as persistent surface hydrophobicity, molecular smoothness, and fluidity. This review aims to introduce the development history of interaction between SLIPSs and fluids as well as the design principles, preparation methods, and various applications of some of the more typical SLIPSs. The fluid manipulation strategies of the slippery surfaces have been proposed including the wettability pattern, oriented micro-structure, and geometric gradient. At last, the application prospects of SLIPSs in various fields and the challenges in the design and fabrication of slippery surfaces are analyzed. We envision that this review can provide an overview of the fluid manipulating processes on slippery surfaces for researchers in both academic and industrial fields.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
| | - Haoyu Bai
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhe Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, P. R. China.
| |
Collapse
|
16
|
Hamilton BW, Tutunea-Fatan RO, Bordatchev EV. Preliminary Assessment of Asymmetric Triangular Riblet Microstructures for Drag Deduction and Fouling Resistance: Numerical Modeling, Fabrication, and Performance Evaluation. MICROMACHINES 2022; 13:2208. [PMID: 36557508 PMCID: PMC9782629 DOI: 10.3390/mi13122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Several species of plants and animals demonstrate an ability to resist the accumulation of contaminants natural to their environments. To explain this phenomenon, mechanisms that facilitate fouling resistance have to be deciphered. Along these lines, this study is focused on the correlation between drag reduction and fouling resistance for underwater surfaces. This was accomplished by means of a novel microtopography inspired by fish-scales and conceived as a series of asymmetric triangular microgrooves oriented in the spanwise direction. A parametric study involving Large Eddy simulations was carried out to determine the most effective dimensions of the riblets and the results obtained have indicated a 9.1% drag reduction with respect to a flat reference surface. Following this, functional samples were fabricated in acrylic by means of a multi-axis micromachining center and diamond tooling. Surface quality and form accuracy of the fabricated samples were assessed with an optical microscope and optical profilometer. Finally, the fouling resistance of the samples was assessed by subjecting them to a flow of contaminated water. The results demonstrate that a relationship exists between the relative size of the particle and the fouling resistance of the microstructured surface.
Collapse
Affiliation(s)
- Benjamin W. Hamilton
- Department of Mechanical and Materials Engineering, Western University, London, ON N6A 6B9, Canada
- Automotive and Surface Transportation, National Research Council of Canada, London, ON N6G 4X8, Canada
| | - Remus O. Tutunea-Fatan
- Department of Mechanical and Materials Engineering, Western University, London, ON N6A 6B9, Canada
- Automotive and Surface Transportation, National Research Council of Canada, London, ON N6G 4X8, Canada
| | - Evgueni V. Bordatchev
- Department of Mechanical and Materials Engineering, Western University, London, ON N6A 6B9, Canada
- Automotive and Surface Transportation, National Research Council of Canada, London, ON N6G 4X8, Canada
| |
Collapse
|
17
|
Fan Q, Lu T, Deng Y, Zhang Y, Ma W, Xiong R, Huang C. Bio-based materials with special wettability for oil-water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
He Z, Yang X, Mu L, Wang N, Lan X. A versatile "3M" methodology to obtain superhydrophobic PDMS-based materials for antifouling applications. Front Bioeng Biotechnol 2022; 10:998852. [PMID: 36105602 PMCID: PMC9464926 DOI: 10.3389/fbioe.2022.998852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Fouling, including inorganic, organic, bio-, and composite fouling seriously affects our daily life. To reduce these effects, antifouling strategies including fouling resistance, release, and degrading, have been proposed. Superhydrophobicity, the most widely used characteristic for antifouling that relies on surface wettability, can provide surfaces with antifouling abilities owing to its fouling resistance and/or release effects. PDMS shows valuable and wide applications in many fields, and due to the inherent hydrophobicity, superhydrophobicity can be achieved simply by roughening the surface of pure PDMS or its composites. In this review, we propose a versatile "3M" methodology (materials, methods, and morphologies) to guide the fabrication of superhydrophobic PDMS-based materials for antifouling applications. Regarding materials, pure PDMS, PDMS with nanoparticles, and PDMS with other materials were introduced. The available methods are discussed based on the different materials. Materials based on PDMS with nanoparticles (zero-, one-, two-, and three-dimensional nanoparticles) are discussed systematically as typical examples with different morphologies. Carefully selected materials, methods, and morphologies were reviewed in this paper, which is expected to be a helpful reference for future research on superhydrophobic PDMS-based materials for antifouling applications.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Xiaochen Yang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
| |
Collapse
|
19
|
Liu M, Yang Z, Dong L, Wang Z, Wang S, Wang L, Xie Y, Zhang Q, Weng Z, Tian Y. Vacuum conditions for tunable wettability transition on laser ablated Ti-6Al-4V alloy surfaces. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Song S, Wang Y, Wang J, Mei S, Jiang Y, Li C, Pan M. Fabrication of All-Polymeric Hierarchical Colloidal Particles with Tunable Wettability by In Situ Capping Raspberry-Like Precursors. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shaofeng Song
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yajiao Wang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Juan Wang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Shuxing Mei
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yuan Jiang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Chao Li
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Mingwang Pan
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
21
|
Barraza B, Olate-Moya F, Montecinos G, Ortega JH, Rosenkranz A, Tamburrino A, Palza H. Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:300-321. [PMID: 35557509 PMCID: PMC9090350 DOI: 10.1080/14686996.2022.2063035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
The rice leaf, combining the surface properties of lotus leaves and shark skin, presents outstanding superhydrophobic properties motivating its biomimesis. We created a novel biomimetic rice-leaf superhydrophobic surface by a three-level hierarchical structure, using for a first time stereolithographic (SLA) 3D printed channels (100µm width) with an intrinsic roughness from the printing filaments (10µm), and coated with TiO2 nanoparticles (22 and 100nm). This structure presents a maximum advancing contact angle of 165° characterized by lower both anisotropy and hysteresis contact angles than other 3D printed surfaces, due to the presence of air pockets at the surface/water interface (Cassie-Baxter state). Dynamic water-drop tests show that the biomimetic surface presents self-cleaning, which is reduced under UV-A irradiation. The biomimetic surface further renders an increased floatability to 3D printed objects meaning a drag-reduction due to reduced water/solid contact area. Numerical simulations of a channel with a biomimetic wall confirm that the presence of air is essential to understand our results since it increases the average velocity and decreases the friction factor due to the presence of a wall-slip velocity. Our findings show that SLA 3D printing is an appropriate approach to develop biomimetic superhydrophobic surfaces for future applications in anti-fouling and drag-reduction devices.
Collapse
Affiliation(s)
- Belén Barraza
- Matemáticas, Universidad de ChileDepartamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y, Santiago, Chile
- Núcleo Milenio en Metamateriales Mecánicos Suaves e Inteligentes (Millennium Nucleus on Smart Soft Mechanical Metamaterials)
- Advanced Mining Technology Center, Universidad de Chile, Santiago, Chile
| | - Felipe Olate-Moya
- Matemáticas, Universidad de ChileDepartamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y, Santiago, Chile
- Núcleo Milenio en Metamateriales Mecánicos Suaves e Inteligentes (Millennium Nucleus on Smart Soft Mechanical Metamaterials)
| | - Gino Montecinos
- Departamento de Ingeniería Matemática, Universidad de la Frontera, Temuco, Chile
| | - Jaime H. Ortega
- Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático, IRL 2807 CNRS-UChile, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Andreas Rosenkranz
- Matemáticas, Universidad de ChileDepartamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y, Santiago, Chile
| | - Aldo Tamburrino
- Departamento de Ingeniería Civil, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Humberto Palza
- Matemáticas, Universidad de ChileDepartamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y, Santiago, Chile
- Núcleo Milenio en Metamateriales Mecánicos Suaves e Inteligentes (Millennium Nucleus on Smart Soft Mechanical Metamaterials)
- Advanced Mining Technology Center, Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
He Z, Yang X, Wang N, Mu L, Pan J, Lan X, Li H, Deng F. Anti-Biofouling Polymers with Special Surface Wettability for Biomedical Applications. Front Bioeng Biotechnol 2021; 9:807357. [PMID: 34950651 PMCID: PMC8688920 DOI: 10.3389/fbioe.2021.807357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
The use of anti-biofouling polymers has widespread potential for counteracting marine, medical, and industrial biofouling. The anti-biofouling action is usually related to the degree of surface wettability. This review is focusing on anti-biofouling polymers with special surface wettability, and it will provide a new perspective to promote the development of anti-biofouling polymers for biomedical applications. Firstly, current anti-biofouling strategies are discussed followed by a comprehensive review of anti-biofouling polymers with specific types of surface wettability, including superhydrophilicity, hydrophilicity, and hydrophobicity. We then summarize the applications of anti-biofouling polymers with specific surface wettability in typical biomedical fields both in vivo and in vitro, such as cardiology, ophthalmology, and nephrology. Finally, the challenges and directions of the development of anti-biofouling polymers with special surface wettability are discussed. It is helpful for future researchers to choose suitable anti-biofouling polymers with special surface wettability for specific biomedical applications.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Xiaochen Yang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Jinyuan Pan
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Xiaorong Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hongmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Fei Deng
- Department of Nephrology, Jinniu Hospital of Sichuan Provincial People’s Hospital and Chengdu Jinniu District People’s Hospital, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
23
|
Self-healing dual biomimetic liquid-infused slippery surface in a partition matrix: Fabrication and anti-corrosion capability for magnesium alloy. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Superhydrophobic behavior of cylinder dual-scale hierarchical nanostructured surfaces. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Influences of Stent Design on In-Stent Restenosis and Major Cardiac Outcomes: A Scoping Review and Meta-Analysis. Cardiovasc Eng Technol 2021; 13:147-169. [PMID: 34409580 DOI: 10.1007/s13239-021-00569-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Thanks to the developments in implantable biomaterial technologies, invasive operating procedures, and widespread applications especially in vascular disease treatment, a milestone for interventional surgery was achieved with the introduction of vascular stents. Despite vascular stents providing a solution for embolisms, this technology includes various challenges, such as mechanical, electro-chemical complications, or in-stent restenosis (ISR) risks with long-term usage. Therefore, further development of biomaterial technologies is vital to overcome such risks and problems. For this purpose, recent research has focused mainly on the applications of surface modification techniques on biomaterials and vascular stents to increase their hemocompatibility. ISR risk has been reduced with the development and prevalent usage of the art technology stent designs of drug-eluting and biodegradable stents. Nevertheless, their problems have not been overcome completely. Furthermore, patients using drug-eluting stents are faced with further clinical challenges. Therefore, the bare metal stent, which is the first form of the vascular stent technology and includes the highest ISR risk, is still in common usage for vascular treatment applications. For this reason, further research is necessary to solve the remaining vital problems. In this scoping review, stent-based major cardiac events including ISR are analyzed depending on different designs and material selection in stent manufacturing. Recent and novel approaches to overcome such challenges are stated in detail.
Collapse
|
26
|
Jo W, Kang HS, Choi J, Jung J, Hyun J, Kwon J, Kim I, Lee H, Kim HT. Light-Designed Shark Skin-Mimetic Surfaces. NANO LETTERS 2021; 21:5500-5507. [PMID: 33913722 DOI: 10.1021/acs.nanolett.1c00436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sharks, marine creatures that swim fast and have an antifouling ability, possess dermal denticle structures of micrometer-size. Because the riblet geometries on the denticles reduce the shear stress by inducing the slip of fluid parallel to the stream-wise direction, shark skin has the distinguished features of low drag and antifouling. Although much attention has been given to low-drag surfaces inspired from shark skin, it remains an important challenge to accurately mimic denticle structures in the micrometer scale and to finely control their structural features. This paper presents a novel method to create shark skin-mimetic denticle structures for low drag by exploiting a photoreconfigurable azopolymer. The light-designed denticle structure exhibits superior hydrophobicity and an antifouling effect as sharks do. This work suggests that our novel photoreconfiguration technology, mimicking shark skin and systematically manipulating various structural parameters, can be used in a reliable manner for diverse applications requiring low-drag surfaces.
Collapse
Affiliation(s)
- Wonhee Jo
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hong Suk Kang
- Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jaeho Choi
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jinkwan Jung
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jonghyun Hyun
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jaehyung Kwon
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Ilju Kim
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hongkyung Lee
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Republic of Korea
| | - Hee-Tak Kim
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
27
|
Park H, Hwang J, Lee TH, Lee J, Kang DJ. Fog Collection Based on Secondary Electrohydrodynamic-Induced Hybrid Structures with Anisotropic Hydrophilicity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27575-27585. [PMID: 34085809 DOI: 10.1021/acsami.1c04761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The outcomes of the study of plant surfaces, such as rice leaves or bamboo leaves, have led to extensive efforts being devoted to fabricating anisotropic arrays of micro/nanoscale features for exploring anisotropic droplet spreading. Nonetheless, precise engineering of the density and continuity of three-phase contact lines for anisotropic wetting remains a significant challenge without resorting to chemical modifications and costly procedures. In this work, we investigated secondary electrohydrodynamic instability in polymer films for producing secondary nanosized patterns between the micrometer-sized grooves by controlling the timescale parameter, 1/τm (>10-4 s-1). We experimentally demonstrated facile morphological control of anisotropic wettability without the use of any chemical modifications. Thus, anisotropic hydrophilic surfaces fabricated by the secondary phase instability of polymer films are advantageous for both droplet condensation and removal, thereby outperforming the water collection efficiency of conventional (isotropic) hydrophilic surfaces in water harvesting applications (∼200 mg·cm-2·h-1) with excellent durability.
Collapse
Affiliation(s)
- Hyunje Park
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jaeseok Hwang
- Department of Energy Science, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Tae Hyeong Lee
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jaejong Lee
- Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea
| | - Dae Joon Kang
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
28
|
Li S, Fan Y, Liu Y, Niu S, Han Z, Ren L. Smart Bionic Surfaces with Switchable Wettability and Applications. JOURNAL OF BIONIC ENGINEERING 2021; 18:473-500. [PMID: 34131422 PMCID: PMC8193597 DOI: 10.1007/s42235-021-0038-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to satisfy the needs of different applications and more complex intelligent devices, smart control of surface wettability will be necessary and desirable, which gradually become a hot spot and focus in the field of interface wetting. Herein, we review interfacial wetting states related to switchable wettability on superwettable materials, including several classical wetting models and liquid adhesive behaviors based on the surface of natural creatures with special wettability. This review mainly focuses on the recent developments of the smart surfaces with switchable wettability and the corresponding regulatory mechanisms under external stimuli, which is mainly governed by the transformation of surface chemical composition and geometrical structures. Among that, various external stimuli such as physical stimulation (temperature, light, electric, magnetic, mechanical stress), chemical stimulation (pH, ion, solvent) and dual or multi-triggered stimulation have been sought out to realize the regulation of surface wettability. Moreover, we also summarize the applications of smart surfaces in different fields, such as oil/water separation, programmable transportation, anti-biofouling, detection and delivery, smart soft robotic etc. Furthermore, current limitations and future perspective in the development of smart wetting surfaces are also given. This review aims to offer deep insights into the recent developments and responsive mechanisms in smart biomimetic surfaces with switchable wettability under external various stimuli, so as to provide a guidance for the design of smart surfaces and expand the scope of both fundamental research and practical applications.
Collapse
Affiliation(s)
- Shuyi Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Yuyan Fan
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| |
Collapse
|
29
|
Li C, Li M, Ni Z, Guan Q, Blackman BRK, Saiz E. Stimuli-responsive surfaces for switchable wettability and adhesion. J R Soc Interface 2021; 18:20210162. [PMID: 34129792 PMCID: PMC8205534 DOI: 10.1098/rsif.2021.0162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023] Open
Abstract
Diverse unique surfaces exist in nature, e.g. lotus leaf, rose petal and rice leaf. They show similar contact angles but different adhesion properties. According to the different wettability and adhesion characteristics, this review reclassifies different contact states of droplets on surfaces. Inspired by the biological surfaces, smart artificial surfaces have been developed which respond to external stimuli and consequently switch between different states. Responsive surfaces driven by various stimuli, e.g. stretching, magnetic, photo, electric, temperature, humidity and pH, are discussed. Studies reporting on either atmospheric or underwater environments are discussed. The application of tailoring surface wettability and adhesion includes microfluidics/droplet manipulation, liquid transport and harvesting, water energy harvesting and flexible smart devices. Particular attention is placed on the horizontal comparison of smart surfaces with the same stimuli. Finally, the current challenges and future prospects in this field are also identified.
Collapse
Affiliation(s)
- Chang Li
- Department of Mechanical Engineering, City and Guilds Building, Imperial College London, London SW7 2AZ, UK
| | - Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Zhongshi Ni
- Department of Electrical and Computer Engineering, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bamber R. K. Blackman
- Department of Mechanical Engineering, City and Guilds Building, Imperial College London, London SW7 2AZ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
30
|
Rapidfabrication of superhydrophobic cotton fabric based on metal-phenolic networksforoil-waterseparation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Chen L, Duan Y, Cui M, Huang R, Su R, Qi W, He Z. Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144469. [PMID: 33422842 DOI: 10.1016/j.scitotenv.2020.144469] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Marine biofouling is a ubiquitous problem that accompanies human marine activities and marine industries. It exerts detrimental impacts on the economy, environment, ecology, and safety. Traditionally, mainstream approaches utilize metal ions to prevent biological contamination, but this also leads to environmental pollution and damage to the ecosystem. Efficient and environmentally friendly coatings are urgently needed to prevent marine devices from biofouling. Since nature is always the best teacher for humans, it offers us delightful thoughts on the research and development of high-efficiency, broad-spectrum and eco-friendly antifouling coatings. In this work, we focus on the research frontier of marine antifouling coatings from a bionic perspective. Enlightened by three distinctive dimensions of bionics: chemical molecule bionic, physiological mechanism bionic, and physical structure bionic, the research status of three main bioinspired strategies, which are natural antifoulants, bioinspired polymeric antifouling coatings, and biomimetic surface microtopographies, respectively, are demonstrated. The antifouling mechanisms are further interpreted based on biomimetic comprehension. The main fabrication methods and antifouling performances of these coatings are presented along with their advantages and drawbacks. Finally, the challenges are summarized, and future research prospects are proposed. It is believed that biomimetic antifouling strategies will contribute to the development of nontoxic antifouling techniques with exceptional repellency and stability.
Collapse
Affiliation(s)
- Liren Chen
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yanyi Duan
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Rongxin Su
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China; State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China.
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
32
|
Abstract
Titanium dioxide (TiO2) is widely used in various fields both in daily life and industry owing to its excellent photoelectric properties and its induced superwettability. Over the past several decades, various methods have been reported to improve the wettability of TiO2 and plenty of practical applications have been developed. The TiO2-derived materials with different morphologies display a variety of functions including photocatalysis, self-cleaning, oil-water separation, etc. Herein, various functions and applications of TiO2 with superwettability are summarized and described in different sections. First, a brief introduction about the discovery of photoelectrodes made of TiO2 is revealed. The ultra-fast spreading behaviors on TiO2 are shown in the part of ultra-fast spreading with superwettability. The part of controllable wettability introduces the controllable wettability of TiO2-derived materials and their related applications. Recent developments of interfacial photocatalysis and photoelectrochemical reactions with TiO2 are presented in the part of interfacial photocatalysis and photoelectrochemical reactions. The part of nanochannels for ion rectification describes ion transportation in nanochannels based on TiO2-derived materials. In the final section, a brief conclusion and a future outlook based on the superwettability of TiO2 are shown.
Collapse
|
33
|
Mähringer A, Hennemann M, Clark T, Bein T, Medina DD. Energy Efficient Ultrahigh Flux Separation of Oily Pollutants from Water with Superhydrophilic Nanoscale Metal-Organic Framework Architectures. Angew Chem Int Ed Engl 2021; 60:5519-5526. [PMID: 33015946 PMCID: PMC7986099 DOI: 10.1002/anie.202012428] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Indexed: 11/28/2022]
Abstract
The rising demand for clean water for a growing and increasingly urban global population is one of the most urgent issues of our time. Here, we introduce the synthesis of a unique nanoscale architecture of pillar-like Co-CAT-1 metal-organic framework (MOF) crystallites on gold-coated woven stainless steel meshes with large, 50 μm apertures. These nanostructured mesh surfaces feature superhydrophilic and underwater superoleophobic wetting properties, allowing for gravity-driven, highly efficient oil-water separation featuring water fluxes of up to nearly one million L m-2 h-1 . Water physisorption experiments reveal the hydrophilic nature of Co-CAT-1 with a total water vapor uptake at room temperature of 470 cm3 g-1 . Semiempirical molecular orbital calculations shed light on water affinity of the inner and outer pore surfaces. The MOF-based membranes enable high separation efficiencies for a number of liquids tested, including the notorious water pollutant, crude oil, affording chemical oxygen demand (COD) concentrations below 25 mg L-1 of the effluent. Our results demonstrate the great impact of suitable nanoscale surface architectures as a means of encoding on-surface extreme wetting properties, yielding energy-efficient water-selective large-aperture membranes.
Collapse
Affiliation(s)
- Andre Mähringer
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität (LMU)Butenandtstr. 5–1381377MunichGermany
| | - Matthias Hennemann
- Computer-Chemistry-CenterDepartment of Chemistry and PharmacyFriedrich-Alexander-University Erlangen-NurembergNaegelsbachstr. 2591052ErlangenGermany
| | - Timothy Clark
- Computer-Chemistry-CenterDepartment of Chemistry and PharmacyFriedrich-Alexander-University Erlangen-NurembergNaegelsbachstr. 2591052ErlangenGermany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität (LMU)Butenandtstr. 5–1381377MunichGermany
| | - Dana D. Medina
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität (LMU)Butenandtstr. 5–1381377MunichGermany
| |
Collapse
|
34
|
Zhu Y, Yang F, Guo Z. Bioinspired surfaces with special micro-structures and wettability for drag reduction: which surface design will be a better choice? NANOSCALE 2021; 13:3463-3482. [PMID: 33566874 DOI: 10.1039/d0nr07664c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Human beings learn from creatures in nature and imitate them to solve challenges in daily life. Thus, the use of bioinspired surfaces for drag reduction has attracted extensive attention in recent years due to their important applications in many fields, such as pipeline systems, maritime transportation, and military weapons. Herein, we introduce some typical plants and animals with low drag surfaces that exist in nature, focusing on their drag reduction patterns. There are two main mechanisms to explain how surfaces reduce frictional drag, where one is to design a suitable surface geometry to change the flow distribution of surrounding fluid and the other is to introduce a low friction lubricating layer (usually air or non-toxic silicone oil) to partially or completely replace the solid-liquid interface. Hence, by mimicking these organisms, some surfaces have been fabricated to reduce frictional drag, including riblets, superhydrophobic surfaces, and slippery liquid-infused porous surfaces. With the increasing research on drag-reducing surfaces, the drag reduction rate of different types of surface designs has greatly improved in recent years. This review provides a holistic overview that facilitates direct comparisons between these surface types. To select an optimal surface for drag reduction in practical applications, the merits and deficiencies of different surface designs are analysed and compared. Finally, based on the current challenges, we present some future prospects for the application of bioinspired surfaces in drag reduction.
Collapse
Affiliation(s)
- Yi Zhu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| | - Fuchao Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
35
|
Heiman-Burstein D, Dotan A, Dodiuk H, Kenig S. Hybrid Sol-Gel Superhydrophobic Coatings Based on Alkyl Silane-Modified Nanosilica. Polymers (Basel) 2021; 13:polym13040539. [PMID: 33673101 PMCID: PMC7918660 DOI: 10.3390/polym13040539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/16/2022] Open
Abstract
Hybrid sol-gel superhydrophobic coatings based on alkyl silane-modified nanosilica were synthesized and studied. The hybrid coatings were synthesized using the classic Stöber process for producing hydrophilic silica nanoparticles (NPs) modified by the in-situ addition of long-chain alkyl silanes co-precursors in addition to the common tetraethyl orthosilicate (TEOS). It was demonstrated that the long-chain alkyl substituent silane induced a steric hindrance effect, slowing the alkylsilane self-condensation and allowing for the condensation of the TEOS to produce the silica NPs. Hence, following the formation of the silica NPs the alkylsilane reacted with the silica's hydroxyls to yield hybrid alkyl-modified silica NPs having superhydrophobic (SH) attributes. The resulting SH coatings were characterized by contact angle goniometry, demonstrating a more than 150° water contact angle, a water sliding angle of less than 5°, and a transmittance of more than 90%. Confocal microscopy was used to analyze the micro random surface morphology of the SH surface and to indicate the parameters related to superhydrophobicity. It was found that a SH coating could be obtained when the alkyl length exceeded ten carbons, exhibiting a raspberry-like hierarchical morphology.
Collapse
|
36
|
Densely packed open microspheres by soft template electropolymerization of benzotrithiophene-based monomers. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Mähringer A, Hennemann M, Clark T, Bein T, Medina DD. Energy Efficient Ultrahigh Flux Separation of Oily Pollutants from Water with Superhydrophilic Nanoscale Metal–Organic Framework Architectures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andre Mähringer
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität (LMU) Butenandtstr. 5–13 81377 Munich Germany
| | - Matthias Hennemann
- Computer-Chemistry-Center Department of Chemistry and Pharmacy Friedrich-Alexander-University Erlangen-Nuremberg Naegelsbachstr. 25 91052 Erlangen Germany
| | - Timothy Clark
- Computer-Chemistry-Center Department of Chemistry and Pharmacy Friedrich-Alexander-University Erlangen-Nuremberg Naegelsbachstr. 25 91052 Erlangen Germany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität (LMU) Butenandtstr. 5–13 81377 Munich Germany
| | - Dana D. Medina
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität (LMU) Butenandtstr. 5–13 81377 Munich Germany
| |
Collapse
|
38
|
Zhang B, Xu W. Superhydrophobic, superamphiphobic and SLIPS materials as anti-corrosion and anti-biofouling barriers. NEW J CHEM 2021. [DOI: 10.1039/d1nj03158a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multifunctional interfacial materials with special wettability including superhydrophobic, superamphiphobic, and SLIPS exhibited promising potentials for corrosion and biofouling resistance.
Collapse
Affiliation(s)
- Binbin Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weichen Xu
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
39
|
A. KS, P. D, G. D, J. N, G.S. H, S. AS, K. J, R. M. Super-hydrophobicity: Mechanism, fabrication and its application in medical implants to prevent biomaterial associated infections. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Yang F, Wang C, Guo Z. Integration of bubble phobicity, gas sensing and friction alleviation into a versatile MoS 2/SnO 2/CNF heterostructure by an impressive, simple and effective method. NANOSCALE 2020; 12:18629-18639. [PMID: 32909567 DOI: 10.1039/d0nr05378c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The engineering of composite surfaces and interfaces of materials at the micro/nano-hierarchical level with multiple functionalities is attracting increasing attention due to their biomimetic technological applications, especially the self-cleaning with gas bubbles, gas sensing and sustainable anti-friction performances. Herein, the ternary MoS2/SnO2/CNF (CNF: carbon nanofiber) was designed and assembled by an in situ facile method. Interestingly, its microstructure exhibits a necklace-like morphology. The MoS2/SnO2/CNF shows desirable bubble phobicity under water and in a PAO4 environment on various substrates, an acceptable gas-sensing ability to target gas with a detection limit of 5 ppm and fascinating tribological performances for additives in different kinds of base/lubricating oils. These results demonstrate that the necklace-like ternary MoS2/SnO2/CNF structure could have numerous applications in one system and may provide a new perspective in composite surface and interface materials engineering.
Collapse
Affiliation(s)
- Fuchao Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | | | | |
Collapse
|
41
|
Song Y, Jiang S, Li G, Zhang Y, Wu H, Xue C, You H, Zhang D, Cai Y, Zhu J, Zhu W, Li J, Hu Y, Wu D, Chu J. Cross-Species Bioinspired Anisotropic Surfaces for Active Droplet Transportation Driven by Unidirectional Microcolumn Waves. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42264-42273. [PMID: 32816455 DOI: 10.1021/acsami.0c10034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Natural evolution has endowed diverse species with distinct geometric micro/nanostructures exhibiting admirable functions. Examples include anisotropic microgrooves/microstripes on the rice leaf surface for passive liquid directional rolling, and motile microcilia widely existed in mammals' body for active matter transportation through in situ oscillation. Till now, bionic studies have been extensively performed by imitating a single specific biologic functional system. However, bionic fabrication of devices integrating multispecies architectures is rarely reported, which may sparkle more fascinating functionalities beyond natural findings. Here, a cross-species design strategy is adopted by combining the anisotropic wettability of the rice leaf surface and the directional transportation characteristics of motile cilia. High-aspect-ratio magnetically responsive microcolumn array (HAR-MRMA) is prepared for active droplet transportation. It is found that just like the motile microcilia, the unidirectional waves are formed by the real-time reconstruction of the microcolumn array under the moving magnetic field, enabling droplet (1-6 μL) to transport along the predetermined anisotropic orbit. Meanwhile, on-demand droplet horizontal transportation on the inclined plane can be realized by the rice leaf-like anisotropic surface, showcasing active nongravity-driven droplet transportation capability of the HAR-MRMA. The directional lossless transportation of droplet holds great potential in the fields of microfluidics, chemical microreaction, and intelligent droplet control system.
Collapse
Affiliation(s)
- Yuegan Song
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
- School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shaojun Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Guoqiang Li
- School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yachao Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Hao Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Cheng Xue
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Hongshu You
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dehu Zhang
- School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong Cai
- School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiangong Zhu
- School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wulin Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
42
|
Yan C, Jiang P, Jia X, Wang X. 3D printing of bioinspired textured surfaces with superamphiphobicity. NANOSCALE 2020; 12:2924-2938. [PMID: 31993618 DOI: 10.1039/c9nr09620e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Natural superwettable surfaces have received extensive attention due to their unique wetting performance and functionalities. Inspired by nature, artificial surfaces with superwettability, particularly superamphiphobicity, i.e., superhydrophobicity and superoleophobicity, have been widely developed using various methods and techniques, where 3D printing, which is also called additive manufacturing, is an emerging technique. 3D printing is efficient for rapid and precise prototyping with the advantage of fabricating various architectures and structures with extreme complexity. Therefore, it is promising for building bioinspired superamphiphobic surfaces with structural complexity in a facile manner. Herein, the state-of-the-art 3D printing techniques and methods for fabricating superwettable surfaces with micro/nanostructures are reviewed, followed by an overview of their extensive applications, which are believed to be promising in engineered wettability, bionic science, liquid transport, microfluidics, drag reduction, anti-fouling, oil/water separation, etc.
Collapse
Affiliation(s)
- Changyou Yan
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Pan Jiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Jia
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Xiaolong Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. and School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China and Yiwu R&D Centre for Functional Materials, LICP, CAS, Yiwu 322000, China
| |
Collapse
|
43
|
Li Z, Guo Z. Bioinspired surfaces with wettability for antifouling application. NANOSCALE 2019; 11:22636-22663. [PMID: 31755511 DOI: 10.1039/c9nr05870b] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wettability is a special character found in nature, including the superhydrophobicity of lotus leaves, the underwater superoleophobicity of fish scales and the slipperiness of pitcher plants. These surfaces exhibit unique properties such as resistance to icing, corrosion, and the like. The antifouling properties of the material surface have important applications in a variety of areas, such as in hulls, in medical equipment, in water pipes and underwater equipment. However, the traditional anti-fouling surface is usually combined with toxic substances or its manufacturing process is complicated and expensive, which cannot meet the current antifouling demand. These wettable surfaces have always exhibited good anti-biofouling and self-cleaning properties, and their use as antifouling surfaces can well solve the problems of the above-mentioned traditional antifouling surfaces. Here, we divided the wettable surfaces into superhydrophobic surfaces, underwater superoleophobic surfaces and slippery surfaces, respectively, summarizing their development in the field of antifouling. Their research progress in antibacterial, antibiotic flocculation and antiplatelet adhesion is highlighted. Furthermore, we provide our own insights into the shortcomings and development prospects of wettable surface applications in the field of antifouling.
Collapse
Affiliation(s)
- Zhihao Li
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
44
|
Tuo Y, Zhang H, Rong W, Jiang S, Chen W, Liu X. Drag Reduction of Anisotropic Superhydrophobic Surfaces Prepared by Laser Etching. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11016-11022. [PMID: 31364849 DOI: 10.1021/acs.langmuir.9b01040] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this research, the anisotropic superhydrophobic surface is prepared on a stainless steel surface by laser etching, and the drag reduction property of the anisotropic surface is studied by a self-designed solid-liquid interface friction test device. Periodic arrangement structures of quadrate scales with oblique grooves are obtained on a stainless steel surface by a laser. After modification by fluoride, the surface shows superhydrophobicity and anisotropic adhesive property. Here, the inclined direction of grooves and the inverse direction are defined as RO and OR, respectively. By changing the inclination of the grooves, a surface is obtained with a contact angle of 160° and a rolling angle difference of 6° along the RO and inverse RO direction. It is verified by numerical simulation and experiment that the subjected force of water droplets on the surface is different along the RO and inverse RO direction. Furthermore, the as-prepared surface has different drag reduction effects along the two directions. With the increase of velocity, the drag reduction effect of the superhydrophobic surface decreases against the RO direction, while the drag reduction effect along the RO direction is almost unchanged. We believe the anisotropic surface will be helpful in novel microfluid devices and shipping transportation.
Collapse
Affiliation(s)
| | - Haifeng Zhang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing , Ministry of Education , Harbin 150001 , China
| | | | | | - Weiping Chen
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing , Ministry of Education , Harbin 150001 , China
| | - Xiaowei Liu
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing , Ministry of Education , Harbin 150001 , China
| |
Collapse
|
45
|
Bhushan B. Bioinspired oil-water separation approaches for oil spill clean-up and water purification. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20190120. [PMID: 31177955 DOI: 10.1098/rsta.2019.0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Water contamination is one of the major environmental and natural resource concerns in the twenty-first century. Oil contamination can occur during operation of machinery, oil exploration and transportation, and due to operating environment. Oil spills occasionally occur during oil exploration and transportation. Water contamination with various chemicals is a major concern with growing population and unsafe industrial practices of waste disposal. Commonly used oil-water separation techniques are either time consuming, energy intensive and/or environmentally unfriendly. Bioinspired superhydrophobic/superoleophobic and superoleophobic/superhydrophilic surfaces have been developed which are sustainable and environmentally friendly. Bioinspired oil-water separation techniques can be used to remove oil contaminants from both immiscible oil-water mixtures and oil-water emulsions. Coated porous surfaces with an affinity to water and repellency to oil and vice versa are commonly used. The former combination of affinity to water and repellency to oil is preferred to avoid oil contamination of the porous substrate. Oil-water emulsions require porous materials with a fine pore size. Recommended porous materials include steel mesh and cotton fabric for immiscible oil-water mixtures and cotton for oil-water emulsions. A review of various approaches is presented in this paper. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 2)'.
Collapse
Affiliation(s)
- Bharat Bhushan
- Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics, The Ohio State University , 201 West 19th Ave., Columbus, OH 43210-1142 , USA
| |
Collapse
|
46
|
A Review on Surface Modifications and Coatings on Implants to Prevent Biofilm. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00116-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Yang Y, He H, Li Y, Qiu J. Using Nanoimprint Lithography to Create Robust, Buoyant, Superhydrophobic PVB/SiO 2 Coatings on wood Surfaces Inspired by Red roses petal. Sci Rep 2019; 9:9961. [PMID: 31292503 PMCID: PMC6620340 DOI: 10.1038/s41598-019-46337-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022] Open
Abstract
Robust, buoyant, superhydrophobic PVB/SiO2 coatings were successfully formed on wood surface through a one-step solvothermal method and a nanoimprint lithography method. The as-prepared PVB/SiO2/wood specimens were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric/differential thermogravimetric (TG-DTG) analyses. The superhydrophobic property and abrasion resistance of rose-petal-like wood were measured and assessed by water contact angle (WCA) and sand abrasion tests. The results show that PVB/SiO2/wood not only exhibited a robust superhydrophobic performance with a WCA of 160° but also had excellent durability and thermostability during the sand abrasion tests and against corrosive liquids. Additionally, the as-prepared PVB/SiO2/wood specimens show high buoyancy.
Collapse
Affiliation(s)
- Yushan Yang
- College of Materials Science and Engineering, Southwest Forestry University, Yunnan Kunming, 650224, People's Republic of China
| | - Haishan He
- College of Materials Science and Engineering, Southwest Forestry University, Yunnan Kunming, 650224, People's Republic of China
| | - Yougui Li
- College of Materials Science and Engineering, Southwest Forestry University, Yunnan Kunming, 650224, People's Republic of China
| | - Jian Qiu
- College of Materials Science and Engineering, Southwest Forestry University, Yunnan Kunming, 650224, People's Republic of China. .,Wood Collection, Southwest Forestry University, Yunnan Kunming, 650224, People's Republic of China.
| |
Collapse
|
48
|
Bhushan B. Lessons from nature for green science and technology: an overview and bioinspired superliquiphobic/philic surfaces. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180274. [PMID: 30967074 DOI: 10.1098/rsta.2018.0274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Nature has developed materials, objects and processes that function from the macroscale to the nanoscale. The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices and processes which provide desirable properties. The biologically inspired materials and structured surfaces are being explored for various commercial applications. These should have minimum human impact on the environment, leading to eco-friendly or green science and technology. There are a large number of flora and fauna including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. The paper presents an overview of the general field of biomimetics followed by a detailed overview of mechanisms, fabrication techniques and characterization of superliquiphobic/philic surfaces and their applications. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology'.
Collapse
Affiliation(s)
- Bharat Bhushan
- Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics, The Ohio State University , Columbus, OH 43210-1142 , USA
| |
Collapse
|
49
|
Perera AS, Coppens MO. Re-designing materials for biomedical applications: from biomimicry to nature-inspired chemical engineering. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180268. [PMID: 30967073 PMCID: PMC6335285 DOI: 10.1098/rsta.2018.0268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2018] [Indexed: 05/24/2023]
Abstract
Gathering inspiration from nature for the design of new materials, products and processes is a topic gaining rapid interest among scientists and engineers. In this review, we introduce the concept of nature-inspired chemical engineering (NICE). We critically examine how this approach offers advantages over straightforward biomimicry and distinguishes itself from bio-integrated design, as a systematic methodology to present innovative solutions to challenging problems. The scope of application of the nature-inspired approach is demonstrated via examples from the field of biomedicine, where much of the inspiration is still more narrowly focused on imitation or bio-integration. We conclude with an outlook on prospective future applications, offered by the more systematic and mechanistically based NICE approach, complemented by rapid progress in manufacturing, computation and robotics. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology'.
Collapse
Affiliation(s)
- Ayomi S. Perera
- Centre for Nature Inspired Engineering, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
- Department of Chemical and Pharmaceutical Sciences, Kingston University London, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Marc-Olivier Coppens
- Centre for Nature Inspired Engineering, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
50
|
Sun Y, Guo Z. Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. NANOSCALE HORIZONS 2019; 4:52-76. [PMID: 32254145 DOI: 10.1039/c8nh00223a] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Through 3.7 billion years of evolution and natural selection, plants and animals in nature have ingeniously fulfilled a broad range of fascinating functions to achieve optimized performance in responding and adapting to changes in the process of interacting with complex natural environments. It is clear that the hierarchically organized micro/nanostructures of the surfaces of living organisms decisively manage fascinating and amazing functions, regardless of the chemical components of their building blocks. This conclusion now allows us to elucidate the underlying mechanisms whereby these hierarchical structures have a great impact on the properties of the bulk material. In this review, we mainly focus on advances over the last three years in bioinspired multiscale functional materials with specific wettability. Starting from selected naturally occurring surfaces, manmade bioinspired surfaces with specific wettability are introduced, with an emphasis on the cooperation between structural characteristics and macroscopic properties, including lotus leaf-inspired superhydrophobic surfaces, fish scale-inspired superhydrophilic/underwater superoleophobic surfaces, springtail-inspired superoleophobic surfaces, and Nepenthes (pitcher plant)-inspired slippery liquid-infused porous surfaces (SLIPSs), as well as other multifunctional surfaces that combine specific wettability with mechanical properties, optical properties and the unidirectional transport of liquid droplets. Afterwards, various top-down and bottom-up fabrication techniques are presented, as well as emerging cutting-edge applications. Finally, our personal perspectives and conclusions with regard to the transfer of micro- and nanostructures to engineered materials are provided.
Collapse
Affiliation(s)
- Yihan Sun
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | | |
Collapse
|