1
|
Kovela S, Karad S, Tatipudi VVG, Arumugam K, Somwanshi AV, Muthukumar M, Mathur A, Tester R. Synthesis of diversely substituted quinazoline-2,4(1 H,3 H)-diones by cyclization of tert-butyl (2-cyanoaryl)carbamates. Org Biomol Chem 2024; 22:6495-6499. [PMID: 39082801 DOI: 10.1039/d4ob00885e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The synthesis of diversely substituted quinazoline-2,4(1H,3H)-diones by cyclization of tert-butyl (2-cyanoaryl)carbamates using readily accessible Boc protected o-amino nitriles is reported. The reaction proceeds smoothly at room temperature using 1 equiv. of H2O2 under basic conditions. This reaction is compatible with a variety of aromatic/heteroaromatic substrates with different functional groups. This strategy can be utilized for the simplified synthesis of goshuyuamide II and an alkaloid isolated from Zanthoxylum arborescens in good yields. This method was also applied to the synthesis of quinazoline-2,4(1H,3H)-diones that are precursors of medicinally important compounds: alfuzosin, terazosin, prazosin, IAAP, doxazosin, FK 366 (zenarestat) and KF31327.
Collapse
Affiliation(s)
- Satish Kovela
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Bengaluru, Karnataka, 560099, India.
| | - Somnath Karad
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Bengaluru, Karnataka, 560099, India.
| | - V V Ganesh Tatipudi
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Bengaluru, Karnataka, 560099, India.
| | - Karthikeyan Arumugam
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Bengaluru, Karnataka, 560099, India.
| | - Atul Vijay Somwanshi
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Bengaluru, Karnataka, 560099, India.
| | - M Muthukumar
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Bengaluru, Karnataka, 560099, India.
| | - Arvind Mathur
- Department of Discovery Synthesis, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey, 08540, USA
| | - Richland Tester
- Department of Discovery Synthesis, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey, 08540, USA
| |
Collapse
|
2
|
Díaz-Salazar H, Osorio-Ocampo G, Porcel S. Straightforward Access to Isoindoles and 1,2-Dihydrophthalazines Enabled by a Gold-Catalyzed Three-Component Reaction. J Org Chem 2024; 89:10163-10174. [PMID: 38989839 DOI: 10.1021/acs.joc.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We describe herein a gold-catalyzed three-component reaction of o-alkynylbenzaldehydes, aryldiazonium salts, and trimethoxybenzene. This process enables the one-pot formation of valuable isoindoles and 1,2-dihydrophathalazines. The regioselectivity of the reaction is dictated by the nature of the aryldiazonium salt. Noticeably, the reaction is performed at room temperature under mild conditions and tolerates a variety of functional groups on both the o-alkynylbenzaldehyde and the aryldiazonium salt. Experimental mechanistic studies suggest that it is catalyzed by arylAu(III) species.
Collapse
Affiliation(s)
- Howard Díaz-Salazar
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Gabriel Osorio-Ocampo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Susana Porcel
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
3
|
Zhang Y, Zhu L, Lu Y, Lei X, Li Y. "One pot" synthesis of quinazolinone-[2,3]-fused polycyclic scaffolds in a three-step reaction sequence. Org Biomol Chem 2024; 22:4720-4726. [PMID: 38775781 DOI: 10.1039/d4ob00529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Diverse quinazolinone-[2,3]-fused polycyclic skeletons occupy a prominent position in drug discovery. Even with currently available methods there still remain unmet needs for flexible access to such structures. Herein, we have explored a mild "one pot" procedure for the construction of various quinazolinone-[2,3]-fused polycycles. The procedure involves Pd-catalyzed carbonylation of N-(2-iodophenyl)acetamides, release of the masked terminal amine, and two sequential and spontaneous cyclizations. This generally applicable approach features easy assembly of precursors from readily available starting materials, mild reaction conditions, non-cumbersome operation, and polycyclic diversity.
Collapse
Affiliation(s)
- Yuanmu Zhang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Lingxuan Zhu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Yi Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Xinsheng Lei
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Yingxia Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| |
Collapse
|
4
|
Velázquez M, Fernández R, Lassaletta JM, Monge D. Asymmetric Dearomatization of Phthalazines by Anion-Binding Catalysis. Org Lett 2023; 25:8797-8802. [PMID: 38039188 PMCID: PMC10729020 DOI: 10.1021/acs.orglett.3c03325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/12/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023]
Abstract
A straightforward methodology for the enantioselective synthesis of 1,2-dihydrophthalazines via dearomatization of phthalazines by anion-binding catalysis has been developed. The process involves the Mannich-type addition of silyl ketene acetals to in situ generated N-acylphthalazinium chlorides using a tert-leucine derived thiourea as a H-bond donor catalyst. Ensuing selective and high-yielding transformations provide appealing dihydro- and tetrahydro-phthalazines, phthalazones, and piperazic acid homologues, en route to biologically relevant molecules.
Collapse
Affiliation(s)
- Marta Velázquez
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Rosario Fernández
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José M. Lassaletta
- Instituto
de Investigaciones Químicas (CSIC-US) and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - David Monge
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
5
|
Raza AR, Rubab SL, Ashfaq M, Altaf Y, Tahir MN, Rehman MFU, Aziz T, Alharbi M, Alasmari AF. Evaluation of Antimicrobial, Anticholinesterase Potential of Indole Derivatives and Unexpectedly Synthesized Novel Benzodiazine: Characterization, DFT and Hirshfeld Charge Analysis. Molecules 2023; 28:5024. [PMID: 37446687 DOI: 10.3390/molecules28135024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
The pharmacological effectiveness of indoles, benzoxazepines and benzodiazepines initiated our synthesis of indole fused benoxazepine/benzodiazepine heterocycles, along with enhanced biological usefulness of the fused rings. Activated indoles 5, 6 and 7 were synthesized using modified Bischler indole synthesis rearrangement. Indole 5 was substituted with the trichloroacetyl group at the C7 position, yielding 8, exclusively due to the increased nucleophilic character of C7. When trichloroacylated indole 8 was treated with basified ethanol or excess amminia, indole acid 9 and amide 10 were yielded, respectively. Indole amide 10 was expected to give indole fused benoxazepine/benzodiazepine 11a/11b on treatment with alpha halo ester followed by a coupling agent, but when the reaction was tried, an unexpectedly rearranged novel product, 1,3-bezodiazine 12, was obtained. The synthetic compounds were screened for anticholinesterase and antibacterial potential; results showed all products to be very important candidates for both activities, and their potential can be explored further. In addition, 1,3-bezodiazine 12 was explored by DFT studies, Hirshfeld surface charge analysis and structural insight to obrain a good picture of the structure and reactivity of the products for the design of derivatised drugs from the novel compound.
Collapse
Affiliation(s)
- Abdul Rauf Raza
- Institute of Chemistry, Ibn e Sina Block, University of Sargodha, Sargodha 40100, Pakistan
| | - Syeda Laila Rubab
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Yasir Altaf
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | | | | | - Tariq Aziz
- Department of Agriculture, University of Ioannina, 471 32 Arta, Greece
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Korbekandi M, Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Omidvar A, Notash B. Diphenhydramine Hydrochloride-CuCl as a New Catalyst for the Synthesis of Tetrahydrocinnolin-5(1 H)-ones. ACS OMEGA 2023; 8:15883-15895. [PMID: 37179652 PMCID: PMC10173344 DOI: 10.1021/acsomega.2c06765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
The current study deals with the synthesis and characterization of a novel catalyst made from diphenhydramine hydrochloride and CuCl ([HDPH]Cl-CuCl). The prepared catalyst was thoroughly characterized using various techniques, such as 1H NMR, Fourier transform-infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis and derivative thermogravimetry. More importantly, the observed hydrogen bond between the components was proven experimentally. The activity of this catalyst was checked in the preparation of some new derivatives of tetrahydrocinnolin-5(1H)-ones via a multicomponent reaction between dimedone, aromatic aldehydes, and aryl/alkyl hydrazines in ethanol as a green solvent. Also, for the first time, this new homogeneous catalytic system was effectively used for the preparation of unsymmetric tetrahydrocinnolin-5(1H)-one derivatives as well as mono- and bis-tetrahydrocinnolin-5(1H)-ones from two different aryl aldehydes and dialdehydes, respectively. The effectiveness of this catalyst was further confirmed by the preparation of compounds containing both tetrahydrocinnolin-5(1H)-one and benzimidazole moieties from dialdehydes. The one-pot operation, mild conditions, rapid reaction, and high atom economy, along with the recyclability and reusability of the catalyst, are other notable features of this approach.
Collapse
Affiliation(s)
- Mehri
Moeini Korbekandi
- Department
of Chemistry, Catalysis Division, University
of Isfahan, Isfahan 81746-73441, Iran
| | | | - Majid Moghadam
- Department
of Chemistry, Catalysis Division, University
of Isfahan, Isfahan 81746-73441, Iran
| | - Shahram Tangestaninejad
- Department
of Chemistry, Catalysis Division, University
of Isfahan, Isfahan 81746-73441, Iran
| | - Valiollah Mirkhani
- Department
of Chemistry, Catalysis Division, University
of Isfahan, Isfahan 81746-73441, Iran
| | - Akbar Omidvar
- Department
of Physical Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Behrouz Notash
- Department
of Inorganic Chemistry, Shahid Beheshti
University, Tehran 1983963113 Iran
| |
Collapse
|
7
|
Li T, Xiao H, Tian R, Wang J, Luo Y, Wang Q, Wu S, Zheng P. Carbene-Catalyzed Activation of 2-Aminobenzaldehyde for Access to Chiral Fluorescent Quinazolinone. Org Lett 2023; 25:688-693. [PMID: 36662026 DOI: 10.1021/acs.orglett.2c04340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A carbene-catalyzed reaction to synthesize a chiral quinazolinone with a new activation mode of an "aniline-like" N-H moiety is disclosed. Addition of the nitrogen atom of diphenyl o-aminobenzaldehydes via NHC activation to imines leads to chiral quinazolinones with high yields and optical purities. The acidity of the N-H moiety was extremely increased through the formation of an acyl azolium intermediate, which was investigated by DFT calculations. Moreover, the chiral quinazolinones were found to have high fluorescence quantum efficiency.
Collapse
Affiliation(s)
- Tiantian Li
- Center for Industrial Catalysis & Cleaning Process Development, School of Chemical Engineering, Guizhou Minzu University, Huaxi District, Guiyang 550025, China
| | - Han Xiao
- Center for Industrial Catalysis & Cleaning Process Development, School of Chemical Engineering, Guizhou Minzu University, Huaxi District, Guiyang 550025, China
| | - Renjun Tian
- Center for Industrial Catalysis & Cleaning Process Development, School of Chemical Engineering, Guizhou Minzu University, Huaxi District, Guiyang 550025, China
| | - Jilan Wang
- Center for Industrial Catalysis & Cleaning Process Development, School of Chemical Engineering, Guizhou Minzu University, Huaxi District, Guiyang 550025, China
| | - Yingchun Luo
- Center for Industrial Catalysis & Cleaning Process Development, School of Chemical Engineering, Guizhou Minzu University, Huaxi District, Guiyang 550025, China
| | - Qingyun Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shuquan Wu
- Center for Industrial Catalysis & Cleaning Process Development, School of Chemical Engineering, Guizhou Minzu University, Huaxi District, Guiyang 550025, China
| | - Pengcheng Zheng
- Center for Industrial Catalysis & Cleaning Process Development, School of Chemical Engineering, Guizhou Minzu University, Huaxi District, Guiyang 550025, China.,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
8
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
9
|
Chen XW, Rao L, Chen JL, Zou Y. Unexpected assembly machinery for 4(3H)-quinazolinone scaffold synthesis. Nat Commun 2022; 13:6522. [PMID: 36316336 PMCID: PMC9622831 DOI: 10.1038/s41467-022-34340-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
4(3H)-quinazolinone is the core scaffold in more than 200 natural alkaloids and numerous drugs. Many chemosynthetic methodologies have been developed to generate it; however, investigation of its native enzymatic formation mechanism in fungi has been largely limited to fumiquinazolines, where the two nitrogen atoms come from anthranilate (N-1) and the α-NH2 of amino acids (N-3). Here, via biochemical investigation of the chrysogine pathway, unexpected assembly machinery for 4(3H)-quinazolinone is unveiled, which involves a fungal two-module nonribosomal peptide synthase ftChyA with an unusual terminal condensation domain catalysing tripeptide formation; reveals that N-3 originates from the inorganic ammonium ions or the amide of L-Gln; demonstrates an unusual α-ketoglutarate-dependent dioxygenase ftChyM catalysis of the C-N bond oxidative cleavage of a tripeptide to form a dipeptide. Our study uncovers a unique release and tailoring mechanism for nonribosomal peptides and an alternative route for the synthesis of 4(3H)-quinazolinone scaffolds.
Collapse
Affiliation(s)
- Xi-Wei Chen
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| | - Li Rao
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| | - Jia-Li Chen
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| | - Yi Zou
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| |
Collapse
|
10
|
Liu S, Wang AJ, Li M, Zhang J, Yin GD, Shu WM, Yu WC. Rh(III)-Catalyzed Tandem Reaction Access to (Quinazolin-2-yl)methanone Derivatives from 2,1-Benzisoxazoles and α-Azido Ketones. J Org Chem 2022; 87:11253-11260. [PMID: 35938613 DOI: 10.1021/acs.joc.2c01214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Rh(III)-catalyzed tandem reaction for the synthesis of (quinazolin-2-yl)methanone derivatives has been explored from 2,1-benzisoxazoles and α-azido ketones. The transformation involves Rh(III)-catalyzed denitrogenation of α-azido ketones, aza-[4 + 2] cycloaddition, ring opening, and dehydration aromatization processes. Notably, the aza-[4 + 2] cycloaddition of an imine rhodium complex intermediate with 2,1-benzisoxazoles is the key to this reaction.
Collapse
Affiliation(s)
- Shan Liu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - An-Jing Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Min Li
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Jing Zhang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Guo-Dong Yin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi 435002, PR China
| | - Wen-Ming Shu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.,Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi 435002, PR China
| | - Wei-Chu Yu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| |
Collapse
|
11
|
Cai X, Song X, Zhu Q, Zhang X, Fan X. Concise Synthesis of Spirocyclic Dihydrophthalazines through Spiroannulation Reactions of Aryl Azomethine Imines with Cyclic Diazo Compounds. J Org Chem 2022; 87:11048-11062. [PMID: 35921479 DOI: 10.1021/acs.joc.2c01312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spiroannulation reactions are fundamental and invaluable for the synthesis of spirocyclic compounds. Presented herein are novel cascade reactions of aryl azomethine imines with cyclic diazo compounds leading to the formation of spirocyclic dihydrophthalazine derivatives. Based on experimental mechanistic studies, the formation of the title products is believed to go through azomethine imine-assisted cylcometalation, Rh-carbene formation through dediazonization, and migratory insertion followed by reductive elimination and azomethine imine ring opening. Control experiments revealed that air acts as an effective and sustainable co-oxidant to facilitate the cascade reaction. In general, this concise synthesis of the unprecedented spirocyclic dihydrophthalazine derivatives has advantages such as easily accessible substrates, good functional group compatibility, mild reaction conditions, high efficiency and selectivity, and excellent atom-economy. In addition, the value of this protocol is underlined by its ready scalability and divergent derivation of products.
Collapse
Affiliation(s)
- Xinyuan Cai
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xia Song
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qiuhui Zhu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
12
|
Pan C, Yuan C, Yu JT. Ruthenium‐Catalyzed C–H Functionalization/Annulation of N‐Aryl Indazoles/Phthalazines with Sulfoxonium Ylides to access Tetracyclic Fused Cinnolines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Changduo Pan
- Jiangsu University of Technology School of Petrochemical Engineering Changzhou 213164 Changzhou CHINA
| | - Cheng Yuan
- Jiangsu University of Technology School of Chemical and Environmental Engineering CHINA
| | - Jin-Tao Yu
- Changzhou University School of Petrochemical Engineering CHINA
| |
Collapse
|
13
|
Li N, Zhang X, Fan X. Synthesis of pyrazolidinone fused cinnolines via the cascade reactions of 1-phenylpyrazolidinones with vinylene carbonate. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Chen J, Wang Y, Luo X, Chen Y. Recent research progress and outlook in agricultural chemical discovery based on quinazoline scaffold. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105122. [PMID: 35715060 DOI: 10.1016/j.pestbp.2022.105122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 05/27/2023]
Abstract
The discovery of new scaffolds and targets for pesticides is still a huge challenge facing the sustainable development of modern agriculture. In recent years, quinazoline derivatives have achieved great progress in drug discovery and have attracted great attention. Quinazoline is a unique bicyclic scaffold with a variety of biological activities, which increases the possibilities and flexibility of structural modification, showing enormous appeal in the discovery of new pesticides. Therefore, the agricultural biological activities, structure-activity relationships (SAR), and mechanism of action of quinazoline derivatives in the past decade were reviewed systematically, with emphasis on SAR and mechanism. Then, we prospected the application of the quinazoline scaffold as a special structure in agricultural chemical discovery, hoping to provide new ideas for the rational design and mechanism of novel quinazoline agricultural chemicals in the future.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
15
|
Huang G, Yu JT, Pan C. Rhodium‐Catalyzed C–H Activation/Annulation of N‐Aryl‐Pyrazolidinones with Vinylene Carbonate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gao Huang
- Changzhou University School of Petrochemical Engineering CHINA
| | - Jin-Tao Yu
- Changzhou University School of Petrochemical Engineering Changzhou 213000 Changzhou CHINA
| | - Changduo Pan
- Jiangsu University of Technology School of chemical and environmental engineering CHINA
| |
Collapse
|
16
|
Hassan Nazmy M, Ahmed Mekheimer R, Shoman ME, Abo-Elsebaa M, Abd-Elmonem M, Usef Sadek K. Controlled microwave-assisted reactions: A facile synthesis of polyfunctionally substituted phthalazines as dual EGFR and PI3K inhibitors in CNS SNB-75 cell line. Bioorg Chem 2022; 122:105740. [PMID: 35298961 DOI: 10.1016/j.bioorg.2022.105740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
Abstract
Brain tumors are stubborn cancers with poor prognosis and disappointing survival rates. Targeted cancer therapeutics with higher efficacy and lower resistance are highly demanded. An efficient one-pot synthesis of polyfunctionalized phthalazines derivatives was developed by reacting ethyl 1-aryl-5-cyano-1,6-dihydro-4-methyl-6-oxo-3-pyridazine-carboxylates with cinnamonitrile derivatives and the cycloaddition reaction of thieno[3,4-d]pyridazines with activated double or triple bond systems under controlled microwave heating with high yields. The resultant synthesized phthalazines (5a-e, 9 and 13) were tested for their in vitro anti-cancer activities by using in vitro one dose assay at National Cancer institute, USA. Only phthalazine (5b) showed broad spectrum anti-tumor activity against most tested cancer cell lines from all subpanels with mean % GI = 22.61. Interestingly, all tested compounds showed varying growth inhibitory activity against a particular cell line, CNS SNB-75 cell line, but (5b) exhibited the highest growth inhibitory activity against CNS-SNB-75 cell line with (GI% = 108.81) and (IC50 = 3.703 ± 0.2) compared to erlotinib; (IC50 = 12.5 ± 0.68). It caused Pre-G1 apoptosis and growth arrest at S phase. It also increased percentage of the total apoptotic cells in CNS-SNB-75 cell line (39.26%) compared to control cells (2.17%) in the annexin V-FITC experiment. It revealed pronounced EGFR inhibitory activity (IC50 = 47.27 ± 2.41 ng/mL) compared to erlotinib (IC50 = 30.7 ± 1.56 ng/mL). It also inhibited the different PI3K isoforms α, β, γ and δ (with IC50 of 4.39, 13.6, 12.5 and 3.11 μg/mL, respectively compared to LY294002 (with IC50 of 12.7, 8.57, 6.89 and 5.7 μg/mL, respectively). It also caused significant lower protein expression levels of pPI3K, AKT, pAKT and Bcl2 and higher protein expression levels of BAX, Casp3 and Casp9 when compared to untreated cells. Conclusion: Phthalazine (5b) may be an effective, convenient and safe anti-cancer agent acting via proapoptotic and dual EGFR and PI3K kinase inhibitory actions in CNS SNB-75 cell line.
Collapse
Affiliation(s)
- Maiiada Hassan Nazmy
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | | | - Mai E Shoman
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Mohamed Abo-Elsebaa
- Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mohamed Abd-Elmonem
- Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Kamal Usef Sadek
- Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
17
|
Pan C, Yuan C, Chen D, Chen Y, Yu JT. Rh(III)‐Catalyzed C–H Activation/Annulation of N‐methyl Arylhydrazines with Iodonium Ylides toward Ring‐fused Cinnolines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changduo Pan
- Jiangsu University of Technology SChoo of chemical and environmental engineering CHINA
| | - Cheng Yuan
- Jiangsu University of Technology School of chemical and environmetal engineering CHINA
| | - Dongdong Chen
- Jiangsu University of Technology School of chemical and envirionmetal enhineering CHINA
| | - Yuecheng Chen
- Jiangsu University of Technology School of chemcial and envionmental engineering CHINA
| | - Jin-Tao Yu
- Changzhou University School of Petrochemical Engineering Changzhou 213000 Changzhou CHINA
| |
Collapse
|
18
|
Satyanarayana N, Boddu R, Sathish K, Nagaraju S, K D, Pawar R, Shirisha T, Kashinath D. Synthesis of 2-styryl-quinazoline and 3-styryl-quinoxaline based sulfonate esters via sp3 C-H activation and their evaluation for α-glucosidase inhibition. NEW J CHEM 2022. [DOI: 10.1039/d1nj05644a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of 2-styryl-quinazolines and 3-styryl-quinoxaline based sulfonates is reported via sp3 C-H functionalization in the presence of triethylamine (10 mol%). The resulting compounds were tested for the α-glucosidase enzyme inhibition...
Collapse
|
19
|
Wdowiak P, Matysiak J, Kuszta P, Czarnek K, Niezabitowska E, Baj T. Quinazoline Derivatives as Potential Therapeutic Agents in Urinary Bladder Cancer Therapy. Front Chem 2021; 9:765552. [PMID: 34805097 PMCID: PMC8595829 DOI: 10.3389/fchem.2021.765552] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer diseases remain major health problems in the world despite significant developments in diagnostic methods and medications. Many of the conventional therapies, however, have limitations due to multidrug resistance or severe side effects. Bladder cancer is a complex disorder, and can be classified according to its diverse genetic backgrounds and clinical features. A very promising direction in bladder cancer treatment is targeted therapy directed at specific molecular pathways. Derivatives of quinazolines constitute a large group of chemicals with a wide range of biological properties, and many quinazoline derivatives are approved for antitumor clinical use, e.g.,: erlotinib, gefitinib, afatinib, lapatinib, and vandetanib. The character of these depends mostly on the properties of the substituents and their presence and position on one of the cyclic compounds. Today, new quinazoline-based compounds are being designed and synthesized as potential drugs of anticancer potency against bladder cancers.
Collapse
Affiliation(s)
- Paulina Wdowiak
- Department of Human Anatomy, Medical University of Lublin, Lublin, Poland
| | - Joanna Matysiak
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
| | - Piotr Kuszta
- Student Research Group at the Department of Human Anatomy, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Czarnek
- Institute of Health Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ewa Niezabitowska
- Department of Urology and Urological Oncology, Multidisciplinary Hospital in Lublin, Lublin, Poland
| | - Tomasz Baj
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
20
|
Chellapandi T, Madhumitha G. Montmorillonite clay-based heterogenous catalyst for the synthesis of nitrogen heterocycle organic moieties: a review. Mol Divers 2021; 26:2311-2339. [PMID: 34705155 DOI: 10.1007/s11030-021-10322-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/18/2021] [Indexed: 11/26/2022]
Abstract
The use of montmorillonite clay as solid catalyst has grabbed much attention in the liquid phase reactions for organic synthesis. In recent years, there has been a lot of interest in organic synthesis using montmorillonite-based composites, especially in the synthesis of heterogeneous nanoparticles. Due to the robust and green nature of montmorillonite-based nanocatalysts, it has been widely used in N-heterocyclic reactions. In this review, we have concentrated on the reports pertaining the use of montmorillonite-based nanocatalyst in the synthesis of N-heterocycles, a category of organic compounds with excellent biological properties. This manuscript is arranged by the types of N-containing heterocycles synthesized using montmorillonite-based composite as catalysts including polycyclic spirooxindoles, heterocyclic propargylamine, indole-based heterocycles, quinoline and its derivatives, six-membered N-heterocyclic-based compounds and five-membered N-heterocyclic-based compounds. Special attention was given to the structural stability under experimental parameters of the montmorillonite-based composite with the incidence of metal leaching and reusability. Finally, along with recent developments, new findings in heterogeneous montmorillonite (Mt)-based catalysis have also been addressed.
Collapse
Affiliation(s)
- Thangapandi Chellapandi
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India
| | - Gunabalan Madhumitha
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
21
|
Kim S, Choi SB, Kang JY, An W, Lee SH, Oh H, Ghosh P, Mishra NK, Kim IS. Synthesis of Cinnolines via Rh(III)‐Catalyzed Annulation of
N
‐Aryl Heterocycles with Vinylene Carbonate. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Suho Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | - Su Bin Choi
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | - Ju Young Kang
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | - Won An
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | - Harin Oh
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | | | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| |
Collapse
|
22
|
Simonetti SO, Kaufman TS, Rasia RM, Sarotti AM, Grimblat N. Thermal decomposition of hexamethylenetetramine: mechanistic study and identification of reaction intermediates via a computational and NMR approach. Org Biomol Chem 2021; 19:7374-7378. [PMID: 34612361 DOI: 10.1039/d1ob01522b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a joint DFT and chemometrics study applied to NMR spectra, we disclose the structure of the main decomposition products of hexamethylenetetramine. The combination of these techniques enabled us to propose the structures of near-identical intermediates of the process and to unveil the structure of the main decomposition product of this priviliged structure.
Collapse
Affiliation(s)
- Sebastián O Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, (2000) Rosario, Argentina.
| | | | | | | | | |
Collapse
|
23
|
Ruthenium−p-cymene complexes with acylthiourea, and its heterogenized form on graphene oxide act as catalysts for the synthesis of quinoxaline derivatives. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Catalyst-free hierarchical reduction of CO2 with BH3N(C2H5)3 for selective N-methylation and N-formylation of amines. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Yuan F, Xie S, Zhuo L, Wang L, Zhu H. Metal‐Free Synthesis of 2‐Aryl Quinazolines via Tandem C−H/N−H Bond Functionalization. ChemistrySelect 2021. [DOI: 10.1002/slct.202100990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Feixiang Yuan
- College of Chemistry and Molecular Engineering Nanjing Tech University No. 30 North Puzhu Road Nanjing 211816 P. R. China
| | - Shihua Xie
- College of Chemistry and Molecular Engineering Nanjing Tech University No. 30 North Puzhu Road Nanjing 211816 P. R. China
| | - Liang Zhuo
- College of Chemistry and Molecular Engineering Nanjing Tech University No. 30 North Puzhu Road Nanjing 211816 P. R. China
| | - Lei Wang
- College of Chemistry and Molecular Engineering Nanjing Tech University No. 30 North Puzhu Road Nanjing 211816 P. R. China
| | - Hongjun Zhu
- College of Chemistry and Molecular Engineering Nanjing Tech University No. 30 North Puzhu Road Nanjing 211816 P. R. China
| |
Collapse
|
26
|
Li H, Zhao J, Yi S, Hu K, Feng P. Consequent Construction of C–C and C–N Bonds via Palladium-Catalyzed Dual C–H Activation: Synthesis of Benzo[ c]cinnoline Derivatives. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongsheng Li
- PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Junhao Zhao
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Songjian Yi
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Kongzhen Hu
- PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
27
|
Laha JK, Panday S, Tomar M, Patel KV. Possible competitive modes of decarboxylation in the annulation reactions of ortho-substituted anilines and arylglyoxylates. Org Biomol Chem 2021; 19:845-853. [DOI: 10.1039/d0ob00360c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Annulation reactions of ortho-substituted anilines and arylglyoxylates to the tandem synthesis of nitrogen heterocycles in the presence of K2S2O8 have been investigated, which occur via decarboxylation before or after the reaction with anilines.
Collapse
Affiliation(s)
- Joydev K. Laha
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- S. A. S. Nagar
- India
| | - Surabhi Panday
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- S. A. S. Nagar
- India
| | - Monika Tomar
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- S. A. S. Nagar
- India
| | - Ketul V. Patel
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- S. A. S. Nagar
- India
| |
Collapse
|
28
|
Wang YB, Shi L, Zhang X, Fu LR, Hu W, Zhang W, Zhu X, Hao XQ, Song MP. NaOH-Mediated Direct Synthesis of Quinoxalines from o-Nitroanilines and Alcohols via a Hydrogen-Transfer Strategy. J Org Chem 2021; 86:947-958. [PMID: 33351617 DOI: 10.1021/acs.joc.0c02453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A NaOH-mediated sustainable synthesis of functionalized quinoxalines is disclosed via redox condensation of o-nitroamines with diols and α-hydroxy ketones. Under optimized conditions, various o-nitroamines and alcohols are well tolerated to generate the desired products in 44-99% yields without transition metals and external redox additives.
Collapse
Affiliation(s)
- Yan-Bing Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xiaojie Zhang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Lian-Rong Fu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Weinan Hu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Wenjing Zhang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
29
|
Wu J, Darcel C. Iron-Catalyzed Hydrogen Transfer Reduction of Nitroarenes with Alcohols: Synthesis of Imines and Aza Heterocycles. J Org Chem 2020; 86:1023-1036. [DOI: 10.1021/acs.joc.0c02505] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiajun Wu
- UnivRennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Christophe Darcel
- UnivRennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| |
Collapse
|
30
|
Zaib S, Khan I. Synthetic and medicinal chemistry of phthalazines: Recent developments, opportunities and challenges. Bioorg Chem 2020; 105:104425. [PMID: 33157344 DOI: 10.1016/j.bioorg.2020.104425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Fused diaza-heterocycles constitute the core structure of numerous bioactive natural products and effective therapeutic drugs. Among them, phthalazines have been recognized as remarkable structural leads in medicinal chemistry due to their wide application in pharmaceutical and agrochemical industries. Accessing such challenging pharmaceutical agents/drug candidates with high chemical complexity through synthetically efficient approaches remains an attractive goal in the contemporary medicinal chemistry and drug discovery arena. In this review, we focus on the recent developments in the synthetic routes towards the generation of phthalazine-based active pharmaceutical ingredients and their biological potential against various targets. The general reaction scope of these innovative and easily accessible strategies was emphasized focusing on the functional group tolerance, substrate and coupling partner compatibility/limitation, the choice of catalyst, and product diversification. These processes were also accompanied by the mechanistic insights where deemed appropriate to demonstrate meaningful information. Moreover, the rapid examination of the structure-activity relationship analyses around the phthalazine core enabled by the pharmacophore replacement/integration revealed the generation of robust, efficient, and more selective compounds with pronounced biological effects. A large variety of in silico methods and ADME profiling tools were also employed to provide a global appraisal of the pharmacokinetics profile of diaza-heterocycles. Thus, the discovery of new structural leads offers the promise of improving treatments for various tropical diseases such as tuberculosis, leishmaniasis, malaria, Chagas disease, among many others including various cancers, atherosclerosis, HIV, inflammatory, and cardiovascular diseases. We hope this review would serve as an informative collection of structurally diverse molecules enabling the generation of mature, high-quality, and innovative routes to support the drug discovery endeavors.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
31
|
Nishimura RHV, Murie VE, Vessecchi R, Clososki GC. Selective Functionalization of Benzo‐Fused
N
‐Heterocycles by Using In Situ Trapping Metalations. ChemistrySelect 2020. [DOI: 10.1002/slct.202002589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rodolfo H. V. Nishimura
- Núcleo Pesquisas em Produtos Naturais e Sintéticos Departamento de Ciências BioMoleculares Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo 14040-903 Ribeirão Preto-SP Brazil
- Departamento de Química Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo 14090-901 Ribeirão Preto- SP Brazil
| | - Valter E. Murie
- Núcleo Pesquisas em Produtos Naturais e Sintéticos Departamento de Ciências BioMoleculares Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo 14040-903 Ribeirão Preto-SP Brazil
| | - Ricardo Vessecchi
- Departamento de Química Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo 14090-901 Ribeirão Preto- SP Brazil
| | - Giuliano C. Clososki
- Núcleo Pesquisas em Produtos Naturais e Sintéticos Departamento de Ciências BioMoleculares Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo 14040-903 Ribeirão Preto-SP Brazil
- Departamento de Química Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo 14090-901 Ribeirão Preto- SP Brazil
| |
Collapse
|
32
|
Liu J, Jiang J, Zheng L, Liu Z. Recent Advances in the Synthesis of Nitrogen Heterocycles Using Arenediazonium Salts as Nitrogen Sources. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000700] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| | - Jinyuan Jiang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| |
Collapse
|
33
|
Chen H, Li P, Qin R, Yan H, Li G, Huang H. DMAP-Catalyzed One-Pot Synthesis of Quinazoline-2,4-diones from 2-Aminobenzamides and Di- tert-butyl Dicarbonate. ACS OMEGA 2020; 5:9614-9623. [PMID: 32363314 PMCID: PMC7191844 DOI: 10.1021/acsomega.0c01104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/09/2020] [Indexed: 05/08/2023]
Abstract
The one-pot synthesis of quinazoline-2,4-diones was developed in the presence of 4-dimethylaminopyridine (DMAP) by metal-free catalysis. The commercially available (Boc)2O acted as a key precursor in the construction of the 2-position carbonyl of quinazolinediones. The p-methoxybenzyl (PMB)-activated heterocyclization could smoothly proceed at room temperature instead of the microwave condition. This strategy is compatible with a variety of substrates with different functional groups. Furthermore, this protocol was utilized to smoothly prepare Zenarestat with a total yield of 70%.
Collapse
Affiliation(s)
- Hui Chen
- Beijing
Key Laboratory of Environmental and Viral Oncology, College of Life
Science and Bio-engineering, Beijing University
of Technology, Beijing 100124, P. R. China
| | - Peng Li
- Beijing
Key Laboratory of Active Substance Discovery and Druggability Evaluation
& Chinese Academy of Medical Sciences Key Laboratory of Anti-DR
TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of
Medical Sciences, Beijing 100050, P. R. China
| | - Rongfei Qin
- Beijing
Key Laboratory of Active Substance Discovery and Druggability Evaluation
& Chinese Academy of Medical Sciences Key Laboratory of Anti-DR
TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of
Medical Sciences, Beijing 100050, P. R. China
| | - Hong Yan
- Beijing
Key Laboratory of Environmental and Viral Oncology, College of Life
Science and Bio-engineering, Beijing University
of Technology, Beijing 100124, P. R. China
| | - Gang Li
- Beijing
Key Laboratory of Active Substance Discovery and Druggability Evaluation
& Chinese Academy of Medical Sciences Key Laboratory of Anti-DR
TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of
Medical Sciences, Beijing 100050, P. R. China
| | - Haihong Huang
- Beijing
Key Laboratory of Active Substance Discovery and Druggability Evaluation
& Chinese Academy of Medical Sciences Key Laboratory of Anti-DR
TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of
Medical Sciences, Beijing 100050, P. R. China
| |
Collapse
|
34
|
Ten years of progress in the synthesis of six-membered N-heterocycles from alkynes and nitrogen sources. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130876] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Copper-catalyzed aryldifluoromethylenation of N-arylacrylamides to synthesis of the diheterocyclic compounds linked by gem-difluoromethylene moiety. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Synthesis and biological activity of structurally diverse phthalazine derivatives: A systematic review. Bioorg Med Chem 2019; 27:3979-3997. [DOI: 10.1016/j.bmc.2019.07.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022]
|
37
|
Chen Z, Bert M, Pascal S, Canard G, Siri O. Versatile transamination in quinonediimine chemistry: Towards a novel class of water soluble UV/violet chromophores. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Sindhuja D, Vasanthakumar P, Bhuvanesh N, Karvembu R. Catalytic Assessment of Copper(I) Complexes and a Polymer Analog towards the One‐Pot Synthesis of Imines and Quinoxalines. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Dharmalingam Sindhuja
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | | | | | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| |
Collapse
|
39
|
Synthesis and Properties of 6-Aryl-4-azidocinnolines and 6-Aryl-4-(1,2,3-1 H-triazol-1-yl)cinnolines. Molecules 2019; 24:molecules24132386. [PMID: 31252657 PMCID: PMC6651781 DOI: 10.3390/molecules24132386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/23/2023] Open
Abstract
An efficient approach towards the synthesis of 6-aryl-4-azidocinnolines was developed with the aim of exploring the photophysical properties of 6-aryl-4-azidocinnolines and their click reaction products with alkynes, 6-aryl-4-(1,2,3-1H-triazol-1-yl)cinnolines. The synthetic route is based on the Richter-type cyclization of 2-ethynyl-4-aryltriazenes with the formation of 4-bromo-6-arylcinnolines and nucleophilic substitution of a bromine atom with an azide functional group. The developed synthetic approach is tolerant to variations of functional groups on the aryl moiety. The resulting azidocinnolines were found to be reactive in both CuAAC with terminal alkynes and SPAAC with diazacyclononyne, yielding 4-triazolylcinnolines. It was found that 4-azido-6-arylcinnolines possess weak fluorescent properties, while conversion of the azido function into a triazole ring led to complete fluorescence quenching. The lack of fluorescence in triazoles could be explained by the non-planar structure of triazolylcinnolines and a possible photoinduced electron transfer (PET) mechanism. Among the series of 4-triazolylcinnoline derivatives a compound bearing hydroxyalkyl substituent at triazole ring was found to be cytotoxic to HeLa cells.
Collapse
|
40
|
Szumilak M, Stanczak A. Cinnoline Scaffold-A Molecular Heart of Medicinal Chemistry? Molecules 2019; 24:molecules24122271. [PMID: 31216762 PMCID: PMC6631947 DOI: 10.3390/molecules24122271] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 12/18/2022] Open
Abstract
The cinnoline nucleus is a very important bicyclic heterocycle that is used as the structural subunit of many compounds with interesting pharmaceutical properties. Cinnoline derivatives exhibit broad spectrum of pharmacological activities such as antibacterial, antifungal, antimalarial, anti-inflammatory, analgesic, anxiolytic and antitumor activities. Some of them are under evaluation in clinical trials. In the present review, we have compiled studies focused on the biological properties of cinnoline derivatives conducted by many research groups worldwide between 2005 and 2019. Comprehensive and target oriented information clearly indicate that the development of cinnoline based molecules constitute a significant contribution to the identification of lead compounds with optimized pharmacodynamic and pharmacokinetic properties.
Collapse
Affiliation(s)
- Marta Szumilak
- Department of Hospital Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland.
| | - Andrzej Stanczak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland.
| |
Collapse
|
41
|
Iqbal M, Lu L, Mehmood H, Khan DM, Hua R. Quinazolinone Synthesis through Base-Promoted S NAr Reaction of ortho-Fluorobenzamides with Amides Followed by Cyclization. ACS OMEGA 2019; 4:8207-8213. [PMID: 31459909 PMCID: PMC6647956 DOI: 10.1021/acsomega.9b00699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/25/2019] [Indexed: 05/24/2023]
Abstract
A transition-metal-free synthesis of quinazolin-4-ones by Cs2CO3-promoted SNAr reaction of ortho-fluorobenzamides with amides followed by cyclization in dimethyl sulfoxide has been developed. The present procedure can provide efficient synthetic methods for the formation of both 2-substituted and 2,3-disubstituted quinazolin-4-one rings depending on the use of easily available starting materials and an efficient, one-pot protocol for the synthesis of the marketed drug product of methaqualone.
Collapse
Affiliation(s)
- Muhammad
Asif Iqbal
- Department of Chemistry, Key Laboratory
of Organic Optoelectronics & Molecular Engineering of Ministry
of Education, Tsinghua University, Beijing 100084, China
| | - Le Lu
- Department of Chemistry, Key Laboratory
of Organic Optoelectronics & Molecular Engineering of Ministry
of Education, Tsinghua University, Beijing 100084, China
| | - Hina Mehmood
- Department of Chemistry, Key Laboratory
of Organic Optoelectronics & Molecular Engineering of Ministry
of Education, Tsinghua University, Beijing 100084, China
| | - Dost Muhammad Khan
- Department of Chemistry, Key Laboratory
of Organic Optoelectronics & Molecular Engineering of Ministry
of Education, Tsinghua University, Beijing 100084, China
| | - Ruimao Hua
- Department of Chemistry, Key Laboratory
of Organic Optoelectronics & Molecular Engineering of Ministry
of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Zhang H, Shen J, Yang Z, Cui X. PIDA-mediated intramolecular oxidative C-N bond formation for the direct synthesis of quinoxalines from enaminones. RSC Adv 2019; 9:7718-7722. [PMID: 35521175 PMCID: PMC9061175 DOI: 10.1039/c9ra01200a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 11/30/2022] Open
Abstract
A intramolecular oxidative C(sp2)-N bond formation mediated by hypervalent iodine(iii) to obtain quinoxalines from readily available N-(2-acetaminophenyl)enaminones was developed. A tandem process involving PIDA-mediated intramolecular condensation cyclization and a subsequent elimination was postulated, which was highly efficient and metal-free under mild conditions. Moreover, flexible structural modifications of quinoxalines bearing carbonyl groups are of interest for further transformations as building blocks in organic synthesis.
Collapse
Affiliation(s)
- Hong Zhang
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University Xiamen 361021 P. R. China
| | - Jinhai Shen
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University Xiamen 361021 P. R. China
| | - Zhenhui Yang
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University Xiamen 361021 P. R. China
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University Xiamen 361021 P. R. China
| |
Collapse
|
43
|
Mondal S, Bera S, Ghosh P. Redox Cascades and Making of a C-C Bond: 1,2-Benzodiazinyl Radicals and a Copper Complex of a Benzodiazine. J Org Chem 2019; 84:1871-1881. [PMID: 30663879 DOI: 10.1021/acs.joc.8b02858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two 1,2-benzodiazinyl radicals, cinnolinyl radicals by name, were successfully isolated by cascade routes using 1,4-naphthoquinone as a precursor. Reaction of 1,4-naphthoquinone with hydrazine hydrate promotes a (5e + 5H+) redox cascade affording benzo[ g]naphtho[1,2- c]cinnolinyl-7,12,14-trione (Cn•) in 69% yields, while the similar reaction with 2-hydrazinopyridine is a (7e + 7H+) oxidative cascade and furnishes N-pyridinecinnolinyl radical (PyCn•). The cascades are composed of C-N and C-C bond making reactions. The neutral even alternate arenes are always diamagnetic; thus, the isolation of Cn• and PyCn• is a breakthrough. The Cn•/Cn- and PyCn•/PyCn- redox couples are reversible, and the reaction of Cn• with [CuI(PPh3)3Cl] in the presence of hydrazine hydrate and Et3N affords a Cn- complex of copper(I), [(Cn-)CuI(PPh3)2] (1). Similar to phenalenyl radical, PyCn• exists in three redox states, PyCn+, PyCn•, and PyCn-, in a smaller potential range (-0.30 V to -0.60 V vs Fc+/Fc couple) and can be used as an oxidant as well as a reductant. PyCn• acts as a catalyst for the oxidative cleavages of benzil to benzoic and 2,2'-pyridil to picolinic acids in methanol in the presence of air. The molecular and electronic structures of Cn•, PyCn•, and 1·1/2MeOH were confirmed by single crystal X-ray crystallography, EPR spectroscopy, and DFT calculations.
Collapse
Affiliation(s)
- Sandip Mondal
- Department of Chemistry , R. K. Mission Residential College , Narendrapur, Kolkata 103 , West Bengal , India
| | - Sachinath Bera
- Department of Chemistry , R. K. Mission Residential College , Narendrapur, Kolkata 103 , West Bengal , India
| | - Prasanta Ghosh
- Department of Chemistry , R. K. Mission Residential College , Narendrapur, Kolkata 103 , West Bengal , India
| |
Collapse
|
44
|
Peshkov RY, Wang C, Panteleeva EV, Rybalova TV, Tretyakov EV. Radical Anions of Aromatic Carbonitriles as Reagents for Arylation of Fluorinated Benzonitriles. J Org Chem 2019; 84:963-972. [PMID: 30583695 DOI: 10.1021/acs.joc.8b02904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first example of phenylation of fluorobenzonitriles with the sodium salt of a benzonitrile radical anion in liquid ammonia is presented. The reaction regioselectivity corresponds to the ortho- and para-fluorine atom substitution in fluorobenzonitrile with the phenyl moiety of the benzonitrile radical anion and affords 2- and 4-cyanobiphenyls in 40-90% yields. 3-Methoxybenzonitrile as well as 1-cyanonaphthalene radical anions were also successfully subjected to this interaction forming 3'-methoxycyanobiphenyls and (1-naphthyl)benzonitriles, respectively. The radical anion acts as an ipso-C-nucleophile with consequent loss of the cyano group. The revealed new type of radical anion reactivity opens up the prospect of developing a general approach to fluorinated cyanobisarenes on the basis of an interaction of the cyanoarene radical anion with fluorinated substrates activated to aromatic nucleophilic substitution.
Collapse
Affiliation(s)
- Roman Yu Peshkov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of Russian Academy of Sciences , 9 Ac. Lavrentiev Avenue , Novosibirsk 630090 , Russia.,Novosibirsk State University , 2 Pirogova Str. , Novosibirsk 630090 , Russia
| | - Chunyan Wang
- Novosibirsk State University , 2 Pirogova Str. , Novosibirsk 630090 , Russia.,Heilongjang University , Xuefu Road, 74 , Harbin 150080 , China
| | - Elena V Panteleeva
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of Russian Academy of Sciences , 9 Ac. Lavrentiev Avenue , Novosibirsk 630090 , Russia.,Novosibirsk State University , 2 Pirogova Str. , Novosibirsk 630090 , Russia
| | - Tatyana V Rybalova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of Russian Academy of Sciences , 9 Ac. Lavrentiev Avenue , Novosibirsk 630090 , Russia.,Novosibirsk State University , 2 Pirogova Str. , Novosibirsk 630090 , Russia
| | - Evgeny V Tretyakov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of Russian Academy of Sciences , 9 Ac. Lavrentiev Avenue , Novosibirsk 630090 , Russia.,Novosibirsk State University , 2 Pirogova Str. , Novosibirsk 630090 , Russia
| |
Collapse
|
45
|
Frost GB, Mittelstaedt MN, Douglas CJ. Chemoselectivity for Alkene Cleavage by Palladium-Catalyzed Intramolecular Diazo Group Transfer from Azide to Alkene. Chemistry 2019; 25:1727-1732. [DOI: 10.1002/chem.201805904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Grant B. Frost
- Department of Chemistry; University of Minnesota Twin Cities, Smith Hall; 207 Pleasant St SE Minneapolis MN 55455 USA
| | - Michaela N. Mittelstaedt
- Department of Chemistry; University of Minnesota Twin Cities, Smith Hall; 207 Pleasant St SE Minneapolis MN 55455 USA
| | - Christopher J. Douglas
- Department of Chemistry; University of Minnesota Twin Cities, Smith Hall; 207 Pleasant St SE Minneapolis MN 55455 USA
| |
Collapse
|
46
|
Recent advances in the synthesis of phthalazin-1(2H)-one core as a relevant pharmacophore in medicinal chemistry. Eur J Med Chem 2019; 161:468-478. [DOI: 10.1016/j.ejmech.2018.10.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 01/31/2023]
|
47
|
Liu CF, Liu M, Dong L. Iridium(III)-Catalyzed Tandem Annulation Synthesis of Pyrazolo[1,2-α]cinnolines from Pyrazolones and Sulfoxonium Ylides. J Org Chem 2018; 84:409-416. [PMID: 30521336 DOI: 10.1021/acs.joc.8b02582] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chen-Fei Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Man Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Wang X, He D, Huang Y, Fan Q, Wu W, Jiang H. Copper-Catalyzed Synthesis of Substituted Quinazolines from Benzonitriles and 2-Ethynylanilines via Carbon-Carbon Bond Cleavage Using Molecular Oxygen. J Org Chem 2018; 83:5458-5466. [PMID: 29687708 DOI: 10.1021/acs.joc.8b00378] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A copper-catalyzed process for the synthesis of substituted quinazolines from benzonitriles and 2-ethynylanilines using molecular oxygen (O2) as sole oxidant is described. The mild catalytic system enabled the effective cleavage of the C-C triple bond and construction of new C-N and C-C bonds in one operation. Furthermore, the compound N, N-dimethyl-4-(2-(4-(trifluoromethyl)phenyl)quinazolin-4-yl)aniline (3dj) exhibited obvious aggregation-induced emission phenomenon, and the fluorescence quantum yield (ΦF,film) and lifetime (τfilm) were measured to be 45.5% and 5.8 ns in thin films state, respectively.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Dandan He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Yubing Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Qihang Fan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China.,Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
49
|
Munoz SB, Krishnamurti V, Barrio P, Mathew T, Prakash GKS. Direct Difluorination–Hydroxylation, Trifluorination, and C(sp2)–H Fluorination of Enamides. Org Lett 2018; 20:1042-1045. [DOI: 10.1021/acs.orglett.7b03994] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Socrates B. Munoz
- Loker
Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Vinayak Krishnamurti
- Loker
Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Pablo Barrio
- Departamento
de Quimica Organica, Universidad de Valencia, E-46100 Burjassot, Spain
| | - Thomas Mathew
- Loker
Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - G. K. Surya Prakash
- Loker
Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
50
|
Li M, Yuan Y, Chen Y. Acid-Induced Multicolor Fluorescence of Pyridazine Derivative. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1237-1243. [PMID: 29231714 DOI: 10.1021/acsami.7b16050] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Smart luminescent materials that are responsive to external stimuli have received considerable attention. Here, we report a new D-A type 1,2-pyridiazine derivative (3,4,5,6-tetrakis(4-methoxyphenyl)pyridazine (TPP)) exhibiting turn-on fluorescence upon acid exposure both in solution and in the solid state. The protonation of the 1,2-pyridiazine ring caused a variation in the emission colors of the acidification species from blue (406 nm) to orange-red (630 nm) with a huge Δλem (224 nm). As a result, a synthetic rainbow of emission in solution could be achieved from one single molecule, and white photoluminescence was readily tuned by controlled protonation. A trifluoroacetic acid (TFA)-sensor film made from TPP was demonstrated as a TFA-sensitive surface with high sensitivity and reversibility. On the basis of these findings, we constructed a solid-state TPP film with a photoacid generator and demonstrated data encryption and decryption via a cascade protonation reaction that was well controlled by UV light.
Collapse
Affiliation(s)
- Mengwei Li
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, P. R. China
| | - Yuan Yuan
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, P. R. China
| | | |
Collapse
|