1
|
Shi JJ, Chen RY, Liu YJ, Li CY, Yu J, Tu FY, Sheng JX, Lu JF, Zhang LL, Yang GJ, Chen J. Unraveling the role of ubiquitin-conjugating enzyme 5 (UBC5) in disease pathogenesis: A comprehensive review. Cell Signal 2024; 124:111376. [PMID: 39236836 DOI: 10.1016/j.cellsig.2024.111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
While certain members of ubiquitin-coupled enzymes (E2s) have garnered attention as potential therapeutic targets across diverse diseases, research progress on Ubiquitin-Conjugating Enzyme 5 (UBC5)-a pivotal member of the E2s family involved in crucial cellular processes such as apoptosis, DNA repair, and signal transduction-has been relatively sluggish. Previous findings suggest that UBC5 plays a vital role in the ubiquitination of various target proteins implicated in diseases and homeostasis, particularly in various cancer types. This review comprehensively introduces the structure and biological functions of UBC5, with a specific focus on its contributions to the onset and advancement of diverse diseases. It suggests that targeting UBC5 holds promise as a therapeutic approach for disease therapy. Recent discoveries highlighting the high homology between UBC5, UBC1, and UBC4 have provided insight into the mechanism of UBC5 in protein degradation and the regulation of cellular functions. As our comprehension of the structural distinctions among UBC5 and its homologues, namely UBC1 and UBC4, advances, our understanding of UBC5's functional significance also expands.
Collapse
Affiliation(s)
- Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fei-Yang Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Xiang Sheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Wang R, Song Y, Liu X, Wang Q, Wang Y, Li L, Kang C, Zhang Q. UBE2C induces EMT through Wnt/β‑catenin and PI3K/Akt signaling pathways by regulating phosphorylation levels of Aurora-A. Int J Oncol 2017; 50:1116-1126. [PMID: 28260026 PMCID: PMC5363887 DOI: 10.3892/ijo.2017.3880] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/11/2017] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin-conjugating enzyme 2C (UBE2C) is the key component in the ubiquitin proteasome system (UPS) by partnering with the anaphase‑promoting complex (APC/C). A high UBE2C protein expression level has been reported in various types of human tumors. However, little is known about the precise mechanism by which UBE2C expression is downregulated in gastric cancer. We found in MGC‑803 and SGC‑7901 gastric cancer cells UBE2C‑deficient G2/M phase arrest in the cell cycle and subsequently decreased gastric adenocarcinoma tumorigenesis. In the previous study, we identified Aurora-A (AURKA) as the hub gene of the gastric cancer linkage network based genome‑wide association study (eGWAS). Furthermore, knockdown of UBE2C using siRNA markedly reduced the level of phosphorylation AURKA (p‑AURKA) via Wnt/β‑catenin and PI3K/Akt signaling pathways suppressed the occurrence and development of gastric cancer. Additionally, the expression of E‑cadherin was up‑regulated and N-cadherin was downregulated in response to UBE2C knockdown and inhibits epithelial-mesenchymal transition (EMT). Collectively, our data suggest that the activity of AURKA might be regulated by UBE2C through regulating the activity of APC/C. UBE2C may be a new marker in the diagnosis of gastric cancer and may be a potential therapeutic target for the treatment of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Rui Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yue Song
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xi Liu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yunfei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Liwei Li
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qingyu Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
3
|
Ubiquitin-proteasome system in spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:181-213. [PMID: 25030765 DOI: 10.1007/978-1-4939-0817-2_9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Spermatogenesis represents a complex succession of cell division and differentiation events resulting in the continuous formation of spermatozoa. Such a complex program requires precise expression of enzymes and structural proteins which is effected not only by regulation of gene transcription and translation, but also by targeted protein degradation. In this chapter, we review current knowledge about the role of the ubiquitin-proteasome system in spermatogenesis, describing both proteolytic and non-proteolytic functions of ubiquitination. Ubiquitination plays essential roles in the establishment of both spermatogonial stem cells and differentiating spermatogonia from gonocytes. It also plays critical roles in several key processes during meiosis such as genetic recombination and sex chromosome silencing. Finally, in spermiogenesis, we summarize current knowledge of the role of the ubiquitin-proteasome system in nucleosome removal and establishment of key structures in the mature spermatid. Many mechanisms remain to be precisely defined, but present knowledge indicates that research in this area has significant potential to translate into benefits that will address problems in both human and animal reproduction.
Collapse
|
4
|
Xie C, Powell C, Yao M, Wu J, Dong Q. Ubiquitin-conjugating enzyme E2C: a potential cancer biomarker. Int J Biochem Cell Biol 2013; 47:113-7. [PMID: 24361302 DOI: 10.1016/j.biocel.2013.11.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022]
Abstract
The ubiquitin-conjugating enzymes 2C (UBE2C) is an integral component of the ubiquitin proteasome system. UBE2C consists of a conserved core domain containing the catalytic Cys residue and an N-terminal extension. The core domain is required for ubiquitin adduct formation by interacting with the ubiquitin-fold domain in the E1 enzyme, and contributes to the E3 enzyme binding. UBE2C N-terminal extension regulates E3 enzyme activity as a part of an intrinsic inhibitory mechanism. UBE2C is required for the destruction of mitotic cyclins and securin, which are essential for spindle assembly checkpoint and mitotic exit. The UBE2C mRNA and/or protein levels are aberrantly increased in many cancer types with poor clinical outcomes. Accumulation of UBE2C stimulates cell proliferation and anchorage-independent growth. UBE2C transgenic mice are prone to develop spontaneous tumors and carcinogen-induced tumor with evidence of chromosome aneuploidy.
Collapse
Affiliation(s)
- Chanlu Xie
- School of Science and Health, The University of Western Sydney, Australia
| | - Chris Powell
- School of Science and Health, The University of Western Sydney, Australia
| | - Mu Yao
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Jianmin Wu
- The Kinghorn Cancer Centre & Cancer Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Qihan Dong
- School of Science and Health, The University of Western Sydney, Australia; Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
5
|
Hou CC, Yang WX. New insights to the ubiquitin–proteasome pathway (UPP) mechanism during spermatogenesis. Mol Biol Rep 2012; 40:3213-30. [DOI: 10.1007/s11033-012-2397-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/17/2012] [Indexed: 12/12/2022]
|
6
|
Putative molecular mechanism underlying sperm chromatin remodelling is regulated by reproductive hormones. Clin Epigenetics 2012; 4:23. [PMID: 23241214 PMCID: PMC3549752 DOI: 10.1186/1868-7083-4-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/22/2012] [Indexed: 11/25/2022] Open
Abstract
Background The putative regulatory role of the male reproductive hormones in the molecular mechanism underlying chromatin condensation remains poorly understood. In the past decade, we developed two adult male rat models wherein functional deficits of testosterone or FSH, produced after treatments with 20 mg/Kg/d of cyproterone acetate (CPA) per os, for a period of 15 days or 3 mg/Kg/d of fluphenazine decanoate (FD) subcutaneously, for a period of 60 days, respectively, affected the rate of sperm chromatin decondensation in vitro. These rat models have been used in the current study in order to delineate the putative roles of testosterone and FSH in the molecular mechanism underlying remodelling of sperm chromatin. Results We report that deficits of both testosterone and FSH affected the turnover of polyubiquitylated histones and led to their accumulation in the testis. Functional deficits of testosterone reduced expression of MIWI, the 5-methyl cap binding RNA-binding protein (PIWIlike murine homologue of the Drosophila protein PIWI/P-element induced wimpy testis) containing a PAZ/Piwi-Argonaut-Zwille domain and levels of histone deacetylase1 (HDAC1), ubiquitin ligating enzyme (URE-B1/E3), 20S proteasome α1 concomitant with reduced expression of ubiquitin activating enzyme (ube1), conjugating enzyme (ube2d2), chromodomain Y like protein (cdyl), bromodomain testis specific protein (brdt), hdac6 (histone deacetylase6), androgen-dependent homeobox placentae embryonic protein (pem/RhoX5), histones h2b and th3 (testis-specific h3). Functional deficits of FSH reduced the expression of cdyl and brdt genes in the testis, affected turnover of ubiquitylated histones, stalled the physiological DNA repair mechanism and culminated in spermiation of DNA damaged sperm. Conclusions We aver that deficits of both testosterone and FSH differentially affected the process of sperm chromatin remodelling through subtle changes in the ‘chromatin condensation transcriptome and proteome’, thereby stalling the replacement of ‘dynamic’ histones with ‘inert’ protamines, and altering the epigenetic state of condensed sperm chromatin. The inappropriately condensed chromatin affected the sperm chromatin cytoarchitecture, evident from subtle ultrastructural changes in the nuclei of immature caput epididymal sperm of CPA- or FD-treated rats, incubated in vitro with dithiothreitol.
Collapse
|
7
|
Manku G, Wing SS, Culty M. Expression of the Ubiquitin Proteasome System in Neonatal Rat Gonocytes and Spermatogonia: Role in Gonocyte Differentiation1. Biol Reprod 2012; 87:44. [DOI: 10.1095/biolreprod.112.099143] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
8
|
Wu M, Zhang X, Bian Q, Taylor A, Liang JJ, Ding L, Horwitz J, Shang F. Oligomerization with wt αA- and αB-crystallins reduces proteasome-mediated degradation of C-terminally truncated αA-crystallin. Invest Ophthalmol Vis Sci 2012; 53:2541-50. [PMID: 22427585 DOI: 10.1167/iovs.11-9147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We previously demonstrated that the ubiquitin-proteasome pathway (UPP) is a general protein quality control system that selectively degrades damaged or abnormal lens proteins, including C-terminally truncated αA-crystallin. The objective of this work was to determine the effects of wt αA- and αB-crystallins on the degradation of C-terminally truncated αA-crystallin (αA(1-162)) and vice versa. METHODS Recombinant wt αA, αB, and αA(1-162) were expressed in Escherichia coli and purified to homogeneity by chromatography. Subunit exchange and oligomerization were detected by fluorescence resonance energy transfer (FRET), multiangle-light scattering and coprecipitation assays. Protein substrates were labeled with (125)I and lens epithelial cell lysates were used as the source of the UPP for degradation assays. RESULTS FRET, multiangle light scattering, and coprecipitation assays showed that αA(1-162) exchanged subunits with wt αA- or wt αB- crystallin to form hetero-oligomers. αA(1-162) was more susceptible than wt αA-crystallin to degradation by the UPP. When mixed with wt αA-crystallin at 1:1 or 1:4 (αA(1-162) : wt) ratios to form hetero-oligomers, the degradation of αA(1-162) was significantly decreased. Conversely, formation of hetero-oligomers with αA(1-162) enhanced the degradation of wt αA-crystallin. The presence of αA(1-162), but not wt αA-crystallin, decreased the degradation of wt αB-crystallin. CONCLUSIONS αA(1-162) forms hetero-oligomers with wt αA- and αB-crystallins. Oligomerization with wt αA- or αB-crystallins reduces the susceptibility of αA(1-162) to degradation by the UPP. In addition, the presence of αA(1-162) in the hetero-oligomers also affects the degradation of wt αA- and αB-crystallins.
Collapse
Affiliation(s)
- Mingxing Wu
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Shin SW, Tokoro M, Nishikawa S, Lee HH, Hatanaka Y, Nishihara T, Amano T, Anzai M, Kato H, Mitani T, Kishigami S, Saeki K, Hosoi Y, Iritani A, Matsumoto K. Inhibition of the ubiquitin-proteasome system leads to delay of the onset of ZGA gene expression. J Reprod Dev 2010; 56:655-63. [PMID: 20814167 DOI: 10.1262/jrd.10-104m] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammalian oocytes, the ubiquitin-proteasome system (UPS) is suggested to play important roles in oocyte meiosis resumption, spindle assembly, polar body emission and pronuclear formation by regulating cyclin B1 degradation. However, little is known about the direct relationship between zygotic gene activation (ZGA) and degradation of maternal proteins. Here, we investigated the role of the UPS in the onset of ZGA in early mouse embryos. First, we found degradation of cyclin B1 protein in fertilized oocytes at 1 hpi by western blot analysis and used these oocytes throughout this study. Subsequently, we determined optimal experimental conditions for transient inhibition of proteasomal activity by specific and reversible proteasomal inhibitor MG132 in the G1 phase of the first cell cycle. Under the selected optimal conditions, we subjected transient MG132-treated embryos to reverse transcription (RT)-PCR analysis of expression of four ZGA genes, i.e., the hsp70.1, MuERV-L, eif-1a and zscan4d genes. As a result, we found that onset of expression of the four examined ZGA genes was delayed in both normally developed 2-cell embryos and arrested 1-cell embryos. Our results indicate that proteasomal degradation of proteins by the UPS plays a pivotal role in the molecular mechanisms of ZGA in early mouse embryos.
Collapse
Affiliation(s)
- Seung-Wook Shin
- Division of Biological Science, Graduate School of Biology-Oriented Science and Technology, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors. Microsc Res Tech 2010; 73:364-408. [PMID: 19941288 DOI: 10.1002/jemt.20785] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As germ cells divide and differentiate from spermatogonia to spermatozoa, they share a number of structural and functional features that are common to all generations of germ cells and these features are discussed herein. Germ cells are linked to one another by large intercellular bridges which serve to move molecules and even large organelles from the cytoplasm of one cell to another. Mitochondria take on different shapes and features and topographical arrangements to accommodate their specific needs during spermatogenesis. The nuclear envelope and pore complex also undergo extensive modifications concomitant with the development of germ cell generations. Apoptosis is an event that is normally triggered by germ cells and involves many proteins. It occurs to limit the germ cell pool and acts as a quality control mechanism. The ubiquitin pathway comprises enzymes that ubiquitinate as well as deubiquitinate target proteins and this pathway is present and functional in germ cells. Germ cells express many proteins involved in water balance and pH control as well as voltage-gated ion channel movement. In the nucleus, proteins undergo epigenetic modifications which include methylation, acetylation, and phosphorylation, with each of these modifications signaling changes in chromatin structure. Germ cells contain specialized transcription complexes that coordinate the differentiation program of spermatogenesis, and there are many male germ cell-specific differences in the components of this machinery. All of the above features of germ cells will be discussed along with the specific proteins/genes and abnormalities to fertility related to each topic.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, 3640 University Street, Montreal, QC Canada H3A 2B2.
| | | | | | | |
Collapse
|
11
|
Wojtczak A, Kwiatkowska M. Immunocytochemical and Ultrastructural Analyses of the Function of the Ubiquitin-Proteasome System During Spermiogenesis with the Use of the Inhibitors of Proteasome Proteolytic Activity in the Alga, Chara vulgaris1. Biol Reprod 2008; 78:577-85. [DOI: 10.1095/biolreprod.107.062901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
12
|
Zhang X, Dudek EJ, Liu B, Ding L, Fernandes AF, Liang JJ, Horwitz J, Taylor A, Shang F. Degradation of C-terminal truncated alpha A-crystallins by the ubiquitin-proteasome pathway. Invest Ophthalmol Vis Sci 2007; 48:4200-8. [PMID: 17724207 PMCID: PMC2098745 DOI: 10.1167/iovs.07-0196] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Calpain-mediated C-terminal cleavage of alpha A-crystallins occurs during aging and cataractogenesis. The objective of the present study was to explore the role of the ubiquitin-proteasome pathway (UPP) in degrading C-terminal truncated alpha A-crystallins. METHODS Recombinant wild-type (wt) alpha A-crystallin and C-terminal truncated alpha A(1-168)-, alpha A(1-163)-, and alpha A(1-162)-crystallins were expressed in Escherichia coli and purified to homogeneity. The wt and truncated alpha A-crystallins were labeled with (125)I, and proteolytic degradation was determined using both lens fiber lysate and reticulocyte lysate as sources of ubiquitinating and proteolytic enzymes. Far UV circular dichroism, tryptophan fluorescence intensity, and binding to the hydrophobic fluorescence probe Bis-ANS were used to characterize the wt and truncated alpha A-crystallins. Oligomer sizes of these crystallins were determined by multiangle light-scattering. RESULTS Whereas wt alpha A-crystallin was degraded moderately in both lens fiber and reticulocyte lysates, alpha A(1-168)-crystallin was resistant to degradation. The susceptibility of alpha A(1-163)-crystallin to degradation was comparable to that of wt alpha A-crystallin. However, alpha A(1-162)-crystallin was much more susceptible than wt alpha A-crystallin to degradation in both lens fiber and reticulocyte lysates. The degradation of both wt and C-terminal truncated alpha A(1-162)-crystallins requires adenosine triphosphate (ATP) and was stimulated by addition of a ubiquitin-conjugating enzyme, Ubc4. The degradation was substantially inhibited by the proteasome inhibitor MG132 and a dominant negative mutant of ubiquitin, K6W-Ub, indicating that at least part of the proteolysis was mediated by the UPP. Spectroscopic analyses of wt and C-terminal truncated alpha A-crystallins revealed that C-terminal truncation of alpha A-crystallin resulted in only subtle changes in secondary structures. However, C-terminal truncations resulted in significant changes in surface hydrophobicity and thermal stability. Thus, these conformational changes may reveal or mask the signals for the ubiquitin-dependent degradation. CONCLUSIONS The present data demonstrate that C-terminal cleavage of alpha A-crystallin not only alters its conformation and thermal stability, but also its susceptibility to degradation by the UPP. The rapid degradation of alpha A(1-162) by the UPP may prevent its accumulation in the lens.
Collapse
Affiliation(s)
- Xinyu Zhang
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Edward J. Dudek
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Bingfen Liu
- Center for Ophthalmic Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Linlin Ding
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California
| | - Alexandre F. Fernandes
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Jack J. Liang
- Center for Ophthalmic Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joseph Horwitz
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Fu Shang
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| |
Collapse
|
13
|
Zetterberg M, Zhang X, Taylor A, Liu B, Liang JJ, Shang F. Glutathiolation enhances the degradation of gammaC-crystallin in lens and reticulocyte lysates, partially via the ubiquitin-proteasome pathway. Invest Ophthalmol Vis Sci 2006; 47:3467-73. [PMID: 16877417 PMCID: PMC2117893 DOI: 10.1167/iovs.05-1664] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE S-glutathiolated proteins are formed in the lens during aging and cataractogenesis. The objective of this work was to explore the role of the ubiquitin-proteasome pathway in eliminating S-glutathiolated gammaC-crystallin. METHODS Recombinant human gammaC-crystallin was mixed with various concentrations of glutathione (GSH) and diamide at 25 degrees C for 1 hour. The extent of glutathiolation of the gammaC-crystallin was determined by mass spectrometry. Native and S-glutathiolated gammaC-crystallins were labeled with (125)I, and proteolytic degradation was determined using both lens fiber lysate and reticulocyte lysate as sources of ubiquitinating and proteolytic enzymes. Far UV circular dichroism, tryptophan fluorescence intensity, and binding to the hydrophobic fluorescence probe 4,4'-dianilino-1,1'-binaphthalene-5,5'-disulfonic acid (Bis-ANS), were used to characterize the native and glutathiolated gammaC-crystallins. RESULTS On average, two and five of the eight cysteines in gammaC-crystallin were glutathiolated when molar ratios of gammaC-crystallin-GSH-diamide were 1:2:5 and 1:10:25, respectively. Native gammaC-crystallin was resistant to degradation in both lens fiber lysate and reticulocyte lysate. However, glutathiolated gammaC-crystallin showed a significant increase in proteolytic degradation in both lens fiber and reticulocyte lysates. Proteolysis was stimulated by addition of adenosine triphosphate (ATP) and Ubc4 and was substantially inhibited by the proteasome inhibitor MG132 and a dominant negative form of ubiquitin, indicating that at least part of the proteolysis was mediated by the ubiquitin-proteasome pathway. Spectroscopic analyses of glutathiolated gammaC-crystallin revealed conformational changes and partial unfolding, which may provide a signal for the ubiquitin-dependent degradation. CONCLUSIONS The present data demonstrate that oxidative modification by glutathiolation can render lens proteins more susceptible to degradation by the ubiquitin-proteasome pathway. Together with previous results, these data support the concept that the ubiquitin-proteasome pathway serves as a general protein quality-control mechanism.
Collapse
Affiliation(s)
- Madeleine Zetterberg
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
- Department of Ophthalmology, Institute of Clinical Neuroscience, University of Göteborg, Sweden
- Institute of Anatomy and Cell Biology, University of Göteborg, Sweden
| | - Xinyu Zhang
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Bingfen Liu
- Ophthalmic Research Center, Brigham and Womens’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jack J. Liang
- Ophthalmic Research Center, Brigham and Womens’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fu Shang
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| |
Collapse
|
14
|
Osley MA, Fleming AB, Kao CF. Histone Ubiquitylation and the Regulation of Transcription. Results Probl Cell Differ 2006; 41:47-75. [PMID: 16909890 DOI: 10.1007/400_006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The small (76 amino acids) and highly conserved ubiquitin protein plays key roles in the physiology of eukaryotic cells. Protein ubiquitylation has emerged as one of the most important intracellular signaling mechanisms, and in 2004 the Nobel Prize was awarded to Aaron Ciechanower, Avram Hersko, and Irwin Rose for their pioneering studies of the enzymology of ubiquitin attachment. One of the most common features of protein ubiquitylation is the attachment of polyubiquitin chains (four or more ubiquitin moieties attached to each other), which is a widely used mechanism to target proteins for degradation via the 26S proteosome. However, it is noteworthy that the first ubiquitylated protein to be identified was histone H2A, to which a single ubiquitin moiety is most commonly attached. Following this discovery, other histones (H2B, H3, H1, H2A.Z, macroH2A), as well as many nonhistone proteins, have been found to be monoubiquitylated. The role of monoubiquitylation is still elusive because a single ubiquitin moiety is not sufficient to target proteins for turnover, and has been hypothesized to control the assembly or disassembly of multiprotein complexes by providing a protein-binding site. Indeed, a number of ubiquitin-binding domains have now been identified in both polyubiquitylated and monoubiquitylated proteins. Despite the early discovery of ubiquitylated histones, it has only been in the last five or so years that we have begun to understand how histone ubiquitylation is regulated and what roles it plays in the cell. This review will discuss current research on the factors that regulate the attachment and removal of ubiquitin from histones, describe the relationship of histone ubiquitylation to histone methylation, and focus on the roles of ubiquitylated histones in gene expression.
Collapse
Affiliation(s)
- Mary Ann Osley
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | | | | |
Collapse
|
15
|
Marques C, Guo W, Pereira P, Taylor A, Patterson C, Evans PC, Shang F. The triage of damaged proteins: degradation by the ubiquitin-proteasome pathway or repair by molecular chaperones. FASEB J 2006; 20:741-3. [PMID: 16469848 PMCID: PMC2100384 DOI: 10.1096/fj.05-5080fje] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Accumulation of damaged proteins is causally related to many age-related diseases. The ubiquitin-proteasome pathway (UPP) plays a role in selective degradation of damaged proteins, whereas molecular chaperones, such as heat shock proteins, are involved in refolding denatured proteins. This work demonstrates for the first time that the UPP and molecular chaperones work in a competitive manner and that the fates of denatured proteins are determined by the relative activities of the UPP and molecular chaperones. Enhanced UPP activity suppresses the refolding of denatured proteins whereas elevated chaperone activity inhibits the degradation of denatured proteins. CHIP, a co-chaperone with E3 activity, plays a pivotal role in determining the fates of the damaged proteins. The delicate balance between UPP-mediated degradation and refolding of denatured proteins is governed by relative levels of CHIP and other molecular chaperones. Isopeptidases, the enzymes that reverse the actions of CHIP, also play an important role in determining the fate of denatured proteins.
Collapse
Affiliation(s)
- Carla Marques
- Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
- Center of Ophthalmology, IBILI, Faculty of Medicine, University of Coimbra, Portugal
| | - Weimin Guo
- Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Paulo Pereira
- Center of Ophthalmology, IBILI, Faculty of Medicine, University of Coimbra, Portugal
| | - Allen Taylor
- Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Cam Patterson
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, North Carolina
| | - Paul C. Evans
- BHF Cardiovascular Medicine, Imperial College, London, United Kingdom
| | - Fu Shang
- Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| |
Collapse
|
16
|
Bedard N, Hingamp P, Pang Z, Karaplis A, Morales C, Trasler J, Cyr D, Gagnon C, Wing SS. Mice lacking the UBC4-testis gene have a delay in postnatal testis development but normal spermatogenesis and fertility. Mol Cell Biol 2005; 25:6346-54. [PMID: 16024774 PMCID: PMC1190331 DOI: 10.1128/mcb.25.15.6346-6354.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of ubiquitination occurs during spermatogenesis and is dependent on the induction of isoforms of the UBC4 family of ubiquitin-conjugating enzymes. The UBC4-testis isoform is testis specific, is induced in round spermatids, and demonstrates biochemical functions distinct from a ubiquitously expressed isoform UBC4-1. To explore further the function of UBC4-testis, mice bearing inactivation of this gene were produced. Homozygous (-/-) mice showed normal body growth and fertility. Although testis weight and morphology were normal in testes from adult mice, examination of young mice during the first wave of spermatogenesis revealed that testes were approximately 10% smaller in weight at 40 and 45 days of age but had become normal at 65 days of age. Overall protein content, levels of ubiquitinated proteins, and ubiquitin-conjugating activity did not differ between wild-type and homozygous (-/-) mice. Spermatid number, as well as the motility of spermatozoa isolated from the epididymis, was also normal in homozygous (-/-) mice. To determine whether the germ cells lacking UBC4-testis might be more sensitive to stress, testes from wild-type and knockout mice were exposed to heat stress by implantation in the abdominal cavity. Testes from both strains of mice showed similar rates of degeneration in response to heat. The lack of an obvious phenotype did not appear to be due to induction of other UBC4 isoforms, as shown by two-dimensional gel immunoblotting. Our data indicate that UBC4-testis plays a role in early maturation of the testis and suggest that the many UBC4 isoforms have mixed redundant and specific functions.
Collapse
Affiliation(s)
- Nathalie Bedard
- Polypeptide Laboratory, Department of Medicine, McGill University, Strathcona Anatomy and Dentistry Bldg., Rm. W315, 3640 University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Laan R, Baarends WM, Wassenaar E, Roest HP, Hoeijmakers JHJ, Grootegoed JA. Expression and possible functions of DNA lesion bypass proteins in spermatogenesis. ACTA ACUST UNITED AC 2005; 28:1-15. [PMID: 15679615 DOI: 10.1111/j.1365-2605.2004.00505.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In mammalian cells, there is a complex interplay of different DNA damage response and repair mechanisms. Several observations suggest that, in particular in gametogenesis, proteins involved in DNA repair play an intricate role in and outside the context of DNA repair. Here, we discuss the possible roles of proteins that take part in replicative damage bypass (RDB) mechanisms, also known as post-replication DNA repair (PRR), in germ line development. In yeast, and probably also in mammalian somatic cells, RDB [two subpathways: damage avoidance and translesion synthesis (TLS)] prevents cessation of replication forks during the S phase of the cell cycle, in situations when the replication machinery encounters a lesion present in the template DNA. Many genes encoding proteins involved in RDB show an increased expression in testis, in particular in meiotic and post-meiotic spermatogenic cells. Several RDB proteins take part in protein ubiquitination, and we address relevant aspects of the ubiquitin system in spermatogenesis. RDB proteins might be required for damage avoidance and TLS of spontaneous DNA damage during gametogenesis. In addition, we consider the possible functional relation between TLS and the induction of mutations in spermatogenesis. TLS requires the activity of highly specialized polymerases, and is an error-prone process that may induce mutations. In evolutionary terms, controlled generation of a limited number of mutations in gametogenesis might provide a mechanism for evolvability.
Collapse
Affiliation(s)
- Roald Laan
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Fan Y, Liu J, Wang S, Wang H, Shi F, Xiong L, He W, Peng X. Functional proteome of bones in rats with osteoporosis following ovariectomy. Life Sci 2005; 76:2893-901. [PMID: 15820501 DOI: 10.1016/j.lfs.2004.10.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2004] [Accepted: 10/14/2004] [Indexed: 11/29/2022]
Abstract
Osteoporosis is a chronic condition chiefly affecting postmenopausal women, in whom the skeleton loses a significant percentage of its mineralized mass and mechanical resiliency, thereby becoming prone to fracture. Although the effect of the loss of estrogen on bone metabolism has been documented, its mechanism is still poorly understood. In the present proteomic study, we characterized the effect of estrogen deficiency on protein expression in rat bones. Using two-dimensional gel electrophoresis, mass spectrometry and rat protein database, we successfully identified three distinctly changed proteins named thioredoxin peroxidase 1, myosin light polypeptide 2 and ubiquitin-conjugating enzyme E2-17 kD, among which ubiquitin-conjugating enzyme E2-17 kD has been documented to be an estrogen-related protein, but the other two are first reported to be osteoporosis-related proteins in the current study. These results provide valuable experimental evidences for the elucidation of the molecular mechanism of osteoporosis related to the loss of estrogen.
Collapse
Affiliation(s)
- Yueguang Fan
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu Z, Oughtred R, Wing SS. Characterization of E3Histone, a novel testis ubiquitin protein ligase which ubiquitinates histones. Mol Cell Biol 2005; 25:2819-31. [PMID: 15767685 PMCID: PMC1061639 DOI: 10.1128/mcb.25.7.2819-2831.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During spermatogenesis, a large fraction of cellular proteins is degraded as the spermatids evolve to their elongated mature forms. In particular, histones must be degraded in early elongating spermatids to permit chromatin condensation. Our laboratory previously demonstrated the activation of ubiquitin conjugation during spermatogenesis. This activation is dependent on the ubiquitin-conjugating enzyme (E2) UBC4, and a testis-particular isoform, UBC4-testis, is induced when histones are degraded. Therefore, we tested whether there are UBC4-dependent ubiquitin protein ligases (E3s) that can ubiquitinate histones. Indeed, a novel enzyme, E3Histone, which could conjugate ubiquitin to histones H1, H2A, H2B, H3, and H4 in vitro, was found. Only the UBC4/UBC5 family of E2s supported E3Histone-dependent ubiquitination of histone H2A, and of this family, UBC4-1 and UBC4-testis are the preferred E2s. We purified this ligase activity 3,600-fold to near homogeneity. Mass spectrometry of the final material revealed the presence of a 482-kDa HECT domain-containing protein, which was previously named LASU1. Anti-LASU1 antibodies immunodepleted E3Histone activity. Mass spectrometry and size analysis by gel filtration and glycerol gradient centrifugation suggested that E3Histone is a monomer of LASU1. Our assays also show that this enzyme is the major UBC4-1-dependent histone-ubiquitinating E3. E3Histone is therefore a HECT domain E3 that likely plays an important role in the chromatin condensation that occurs during spermatid maturation.
Collapse
Affiliation(s)
- Zhiqian Liu
- Polypeptide Hormone Laboratory, McGill University, Strathcona Anatomy and Dentistry Building, 3640 University St., Room W315, Montreal, Quebec, Canada, H3A 2B2
| | | | | |
Collapse
|
20
|
Wing SS. Control of ubiquitination in skeletal muscle wasting. Int J Biochem Cell Biol 2004; 37:2075-87. [PMID: 16125111 DOI: 10.1016/j.biocel.2004.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 11/15/2004] [Accepted: 11/18/2004] [Indexed: 11/23/2022]
Abstract
The ubiquitin proteasome system is now well recognized to play a role in mediating skeletal muscle protein wasting. Ubiquitin exerts its effects by covalent attachment to other proteins. Increased ubiquitination of muscle proteins has been observed in a number of conditions of atrophy suggesting that flux through the pathway may be regulated by controlling availability of ubiquitinated substrates for the proteasome. Therefore the enzymes that control ubiquitination of proteins likely play critical roles in regulating flux through the pathway, are sites of activation by catabolic stimuli and potentially good drug targets in the search for therapies for wasting disorders. In this article, the enzymes that can modulate ubiquitination are briefly reviewed and the current data regarding regulation of these enzymes in skeletal muscle are described. Physiological regulators of muscle size appear to modulate many of these enzymes and several of these regulators appear to do so via signaling pathways that involve Akt or NFkappaB. Further work needs to be done to identify all the enzymes that are involved in controlling ubiquitination in muscle, to characterize their regulation by non-transcriptional mechanisms also, and most importantly to identify their target substrates and to determine how these various pathways of ubiquitination work together to mediate the catabolic stimulus.
Collapse
Affiliation(s)
- Simon S Wing
- Polypeptide Laboratory, Department of Medicine, McGill University, Strathcona Anatomy and Dentistry Bldg, Room W315, 3640 University St., Montreal, Que., Canada H3A 2B2.
| |
Collapse
|
21
|
Marques C, Pereira P, Taylor A, Liang JN, Reddy VN, Szweda LI, Shang F. Ubiquitin-dependent lysosomal degradation of the HNE-modified proteins in lens epithelial cells. FASEB J 2004; 18:1424-6. [PMID: 15247152 PMCID: PMC1382276 DOI: 10.1096/fj.04-1743fje] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
4-hydroxynonenal (HNE), a highly reactive lipid peroxidation product, may adversely modify proteins. Accumulation of HNE-modified proteins may be responsible for pathological lesions associated with oxidative stress. The objective of this work was to determine how HNE-modified proteins are removed from cells. The data showed that alphaB-crystallin modified by HNE was ubiquitinated at a faster rate than that of native alphaB-crystallin in a cell-free system. However, its susceptibility to proteasome-dependent degradation in the cell-free system did not increase. When delivered into cultured lens epithelial cells, HNE-modified alphaB-crystallin was degraded at a faster rate than that of unmodified alphaB-crystallin. Inhibition of the lysosomal activity stabilized HNE-modified alphaB-crystallin, but inhibition of the proteasome activity alone had little effect. To determine if other HNE-modified proteins are also degraded in a ubiquitin-dependent lysosomal pathway, lens epithelial cells were treated with HNE and the removal of HNE-modified proteins in the cells was monitored. The levels of HNE-modified proteins in the cell decreased rapidly upon removal of HNE from the medium. Depletion of ATP or the presence of MG132, a proteasome/lysosome inhibitor, resulted in stabilization of HNE-modified proteins. However, proteasome-specific inhibitors, lactacystin-beta-lactone and epoxomicin, could not stabilize HNE-modified proteins in the cells. In contrast, chloroquine, a lysosome inhibitor, stabilized HNE-modified proteins. The enrichment of HNE-modified proteins in the fraction of ubiquitin conjugates suggests that HNE-modified proteins are preferentially ubiquitinated. Taken together, these findings show that HNE-modified proteins are degraded via a novel ubiquitin and lysosomal-dependent but proteasome-independent pathway.
Collapse
Affiliation(s)
- Carla Marques
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
- Center of Ophatmology, IBILI, University of Coimbra, Coimbra, Portugal
| | - Paulo Pereira
- Center of Ophatmology, IBILI, University of Coimbra, Coimbra, Portugal
| | - Allen Taylor
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Jack N. Liang
- Ophthalmic Research Center, Brigham & Womens Hospital, Harvard University, Boston, Massachusetts
| | - Venkat N. Reddy
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Luke I. Szweda
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Fu Shang
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| |
Collapse
|
22
|
Harvey CB, Stevens DA, Williams AJ, Jackson DJ, O'Shea P, Williams GR. Analysis of thyroid hormone responsive gene expression in osteoblastic cells. Mol Cell Endocrinol 2003; 213:87-97. [PMID: 15062577 DOI: 10.1016/j.mce.2003.10.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thyroid hormones regulate gene expression to influence the development and metabolism of many tissues including bone. The identification of genes that are regulated by thyroid hormones during skeletal development requires sensitive and quantitative techniques that are not limited by small amounts of available tissue and RNA. We have compared the efficiencies of differential display and poly A PCR subtraction hybridisation methods for the detection of thyroid hormone responsive genes expressed in osteoblastic cells. The utility of each technique was evaluated with respect to its sensitivity, specificity, cost and ability to identify novel genes. Subtraction hybridisation was rapid and more efficient in all categories. Poly A PCR facilitates quantitative and representative global amplification of cDNAs from low concentrations of RNA extracted from small tissue samples. The method, in combination with microarray analyses, may prove useful as an additional, complementary strategy to subtraction hybridisation for the analysis of differential gene expression in tissues where sample size is limiting.
Collapse
Affiliation(s)
- C B Harvey
- Division of Medicine and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | |
Collapse
|
23
|
Escalier D, Bai XY, Silvius D, Xu PX, Xu X. Spermatid nuclear and sperm periaxonemal anomalies in the mouse Ube2b null mutant. Mol Reprod Dev 2003; 65:298-308. [PMID: 12784252 DOI: 10.1002/mrd.10290] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ube2b (yeast Ubc2b/Rad6 homolog) null mice were described previously. Ube2b encodes the murine ubiquitin conjugating enzyme mHR6B. Ube2b(-/-) mice were shown to present male infertility and their sperm head shape anomalies suggested that Ube2b may be involved in the replacement of nuclear proteins during spermatid chromatin condensation. Apoptosis of spermatocytes suggested additional targets of Ube2b during spermatogenesis. Consistently, we found Ube2b transcription in both meiotic and postmeiotic stages by in situ hybridization. Immuno-electron microscopy revealed that transition proteins 1 and 2, protamines 1 and 2, and actin appear normally distributed during morphogenesis of Ube2b(-/-) spermatid heads. Surprisingly, electron microscopy revealed a particular sperm flagellum phenotype characterized by an abnormal distribution of periaxonemal structures. Flagellar anomalies of Ube2b null mice were previously described in infertile men indicating a possible genetic pathway for flagellar periaxonemal assembly in human.
Collapse
Affiliation(s)
- Denise Escalier
- Histologie Fonctionnelle et Moléculaire, Université Paris 5 and INSERM U.407, France.
| | | | | | | | | |
Collapse
|
24
|
Pereira P, Shang F, Hobbs M, Girão H, Taylor A. Lens fibers have a fully functional ubiquitin-proteasome pathway. Exp Eye Res 2003; 76:623-31. [PMID: 12697426 DOI: 10.1016/s0014-4835(03)00020-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously showed that lens epithelial cells have a fully functional ubiquitin-proteasome pathway (UPP) and that ubiquitin-conjugating activity is up-regulated in response to oxidative stress. In this study we assessed the protein levels and activities of different components of the UPP in lens fibers. Calf lenses were dissected into four different regions: epithelial layer, outer cortex, inner cortex and nucleus. Relative levels of ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzymes (E2s), endogenous ubiquitin conjugates, 19S and 20S proteasome subunits were determined by Western blotting. The activities of E1 and E2 were determined by thiol ester assays and the activities of the proteasome and isopeptidases were determined using ubiquitinated alpha-lactalbumin as a substrate. This work demonstrates that lens fibers, including those in the nuclear region, contain most, if not all, of the components for the UPP. Ubiquitin conjugation activity, proteasome activity and isopeptidase activity were also detected in all layers of the lens. The reduced ubiquitin conjugation activity in the inner regions of the lens appeared to be due to a decline in levels of a specific family of E2s, Ubc4 or Ubc5, which were shown to be the rate-limiting enzymes for the formation of high mass conjugates in the lens. Supplementation of Ubc4 or Ubc5 can partially restore the ubiquitin conjugation activity in the inner regions of the lens. Since Ubc4 and Ubc5 are involved in selectively ubiquitinating damaged or abnormal proteins, the decline in levels and activities of these E2s may be responsible for the accumulation of abnormal proteins in inner regions of the lens.
Collapse
Affiliation(s)
- Paulo Pereira
- Laboratory for Nutrition and Vision Research, USDA HNRC at Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
25
|
Zhang XD, Jenkins JN, Callahan FE, Creech RG, Si Y, McCarty JC, Saha S, Ma DP. Molecular cloning, differential expression, and functional characterization of a family of class I ubiquitin-conjugating enzyme (E2) genes in cotton (Gossypium). BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1625:269-79. [PMID: 12591614 DOI: 10.1016/s0167-4781(02)00623-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two cDNAs and their corresponding genes (GhUBC1 and GhUBC2) encoding ubiquitin-conjugating enzymes (E2s) have been cloned and characterized from allotetraploid cotton Gossypium hirsutum ((AD)(1) genome). Three additional E2 genes (GaUBC1, GtUBC2, and GrUBC2) have also been identified from diploid cottons Gossypium arboreum (A(2) genome), Gossypium thurberi (D(1) genome), and Gossypium raimondii (D(5) genome), respectively. The derived amino acid sequences of the five closely related cotton E2s are 77-79% identical to yeast ScUBC4 and ScUBC5. The GhUBC1/2 gene family is composed of two members, and genomic origin analysis indicates that GhUBC1 and 2 are individually present in the A and D subgenomes of G. hirsutum. The transcript levels of GhUBC1/2 increased significantly in leaves and flowers at senescence, suggesting that GhUBC1/2 may play a role in the degradation of target proteins that function in the delay of the senescence program. Correlated with high auxin content and auxin-associated effects, GhUBC1/2 are also highly expressed in the youngest leaves, the apical part of lateral roots, and elongating fibers. Genetic complementation experiments revealed that GhUBC1 and 2 can substitute for the function of ScUBC4 and 5 required for the selective degradation of abnormal and short-lived proteins in a yeast ubc4ubc5 double mutant.
Collapse
Affiliation(s)
- Xiang-Dong Zhang
- Department of Biochemistry and Molecular Biology, Box 9650, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Obin M, Lee BY, Meinke G, Bohm A, Lee RH, Gaudet R, Hopp JA, Arshavsky VY, Willardson BM, Taylor A. Ubiquitylation of the transducin betagamma subunit complex. Regulation by phosducin. J Biol Chem 2002; 277:44566-75. [PMID: 12215439 DOI: 10.1074/jbc.m205308200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G proteins (Galphabetagamma) are essential signaling molecules, which dissociate into Galpha and Gbetagamma upon activation by heptahelical membrane receptors. We have identified the betagamma subunit complex of the photoreceptor-specific G protein, transducin (T), as a target of the ubiquitin-proteasome pathway. Ubiquitylated species of the transducin gamma-subunit (Tgamma) but not the alpha- or beta-subunits were assembled de novo in bovine photoreceptor preparations. In addition, Tgamma was exclusively ubiquitylated when Tbetagamma was dissociated from Talpha. Ubiquitylation of Tbetagamma on Tgamma was selectively catalyzed by human ubiquitin-conjugating enzymes UbcH5 and UbcH7 and was coincident with degradation of the entire Tbetagamma subunit complex in vitro by a mechanism requiring ATP and the proteasome. We also show that Tbetagamma association with phosducin, a photoreceptor-specific protein of unknown physiological function, blocks Tbetagamma ubiquitylation and subsequent degradation. Phosphorylation of phosducin by Ca(2+)/calmodulin-dependent protein kinase II, which inhibits phosducin-Tbetagamma complex formation, completely restored Tbetagamma ubiquitylation and degradation. We conclude that Tbetagamma is a substrate of the ubiquitin-proteasome pathway and suggest that phosducin serves to protect Tbetagamma following the light-dependent dissociation of Talphabetagamma.
Collapse
Affiliation(s)
- Martin Obin
- Laboratory for Nutrition & Vision Research, JMUSDA-HNRCA at Tufts University and Tufts Center for Vision Research, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Oughtred R, Bedard N, Adegoke OAJ, Morales CR, Trasler J, Rajapurohitam V, Wing SS. Characterization of rat100, a 300-kilodalton ubiquitin-protein ligase induced in germ cells of the rat testis and similar to the Drosophila hyperplastic discs gene. Endocrinology 2002; 143:3740-7. [PMID: 12239083 DOI: 10.1210/en.2002-220262] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Conjugation of ubiquitin to proteins is activated during spermatogenesis. Ubiquitination is mediated by ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzymes (UBCs or E2s), and ubiquitin protein ligases (E3s). Since we previously showed that the activated ubiquitination is UBC4 dependent, we characterized Rat100, a UBC4-dependent E3 expressed in the testis. Analysis of expressed sequence tag sequences and immunoblotting showed that Rat100 is actually a 300-kDa protein expressed mainly in the brain and testis and is similar to the human E3 identified by differential display (EDD) protein and the Drosophila hyperplastic discs gene, mutants of which cause a defect in spermatogenesis. Rat100 is induced during postnatal development of the rat testis, peaking at d 25. It is localized only in germ cells and is highly expressed in spermatocytes, moderately in round and slightly in elongating spermatids. In contrast to UBC4 whose removal from a testis extract abrogates much of the conjugation activity, immmunodepletion of Rat100 from the extracts had little effect. Rat100 therefore has a limited subset of substrates, some of which appear associated with the E3 as the immunoprecipitate containing Rat100 supported incorporation of (125)I-ubiquitin into high molecular weight proteins. Thus, Rat100 is the homolog of human EDD and likely of Drosophila hyperplastic discs. This homology, together with our results, suggests that induction of this E3 results in ubiquitination of specific substrates, some of which are important in male germ cell development.
Collapse
Affiliation(s)
- Rose Oughtred
- Department of Medicine, McGill University, Montréal, Québec, Canada H3A 2B2
| | | | | | | | | | | | | |
Collapse
|
28
|
Rajapurohitam V, Bedard N, Wing SS. Control of ubiquitination of proteins in rat tissues by ubiquitin conjugating enzymes and isopeptidases. Am J Physiol Endocrinol Metab 2002; 282:E739-45. [PMID: 11882492 DOI: 10.1152/ajpendo.00511.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activity of the ubiquitin-dependent proteolytic system in differentiated tissues under basal conditions remains poorly explored. We measured rates of ubiquitination in rat tissue extracts. Accumulation of ubiquitinated proteins increased in the presence of ubiquitin aldehyde, indicating that deubiquitinating enzymes can regulate ubiquitination. Rates of ubiquitination varied fourfold, with the highest rate in the testis. We tested whether ubiquitin-activating enzyme (E1) or ubiquitin-conjugating enzymes (E2s) could be limiting for conjugation. Immunodepletion of the E2s UBC2 or UBC4 lowered rates of conjugation similarly. Supplementation of extracts with excess UBC2 or UBC4, but not E1, stimulated conjugation. However, UBC2-stimulated rates of ubiquitination still differed among tissues, indicating that tissue differences in E3s or substrate availability may also be rate controlling. UBC2 and UBC4 stimulated conjugation half-maximally at concentrations of 10-50 and 28-44 nM, respectively. Endogenous tissue levels of UBC2, but not UBC4, appeared saturating for conjugation, suggesting that in vivo modulation of UBC4 levels can likely control ubiquitin conjugation. Thus the pool of ubiquitin conjugates and therefore the rate of degradation of proteins by this system may be controlled by E2s, E3s, and isopeptidases. The regulation of the ubiquitin pathway appears complex, but precise.
Collapse
|
29
|
|
30
|
Coleman CS, Pegg AE. Polyamine analogues inhibit the ubiquitination of spermidine/spermine N1-acetyltransferase and prevent its targeting to the proteasome for degradation. Biochem J 2001; 358:137-45. [PMID: 11485561 PMCID: PMC1222041 DOI: 10.1042/0264-6021:3580137] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spermidine/spermine N(1)-acetyltransferase (SSAT), a key enzyme in mammalian polyamine catabolism, undergoes rapid turnover (half-life approx. 30 min) and is highly inducible in response to polyamine analogues such as bis(ethyl)spermine (BE-3-4-3), which greatly stabilize the enzyme. Rapid degradation of SSAT in reticulocyte lysates was preceded by formation of a ladder of ubiquitinated forms, and required the production of high-molecular-mass complexes with ubiquitin (HMM-SSAT-Ubs). Mutation of all 11 lysines in SSAT separately to arginine demonstrated that no single lysine residue is critical for its degradation in vitro, but mutant K87R had a significantly longer half-life, suggesting that lysine-87 may be the preferred site for ubiquitination. Mutations at the C-terminus of SSAT, such as E171Q, resulted in marked stabilization of the protein, due to the lack of formation of the HMM-SSAT-Ubs. Addition of BE-3-4-3 prevented the accumulation of ubiquitin conjugates and the proteasomal degradation of wild-type SSAT. These results indicate that conformational changes brought about by the binding of polyamine analogues prevent the efficient polyubiquitination of SSAT, leading to a major increase in the amount of SSAT protein, and that alteration of the C-terminal end of the protein has a similar effect in preventing the productive interaction with an E2 or E3 component of the ubiquitin pathway.
Collapse
Affiliation(s)
- C S Coleman
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033, USA.
| | | |
Collapse
|
31
|
Abstract
We have previously cloned a cDNA encoding TBP-1, a protein present in the rat spermatid manchette and outer dense fibers of the developing sperm. TBP-1 contains a heptad repeat of six-leucine zipper fingers at the amino terminus and highly conserved ATPase and DNA/RNA helicase motifs toward the carboxyl terminus. TBP-1 is one of the 20 subunits forming the 19S regulatory complex of the 26S proteasome, an ATP-dependent multisubunit protease found in most eukaryotic cells. We now report the isolation of the 26S proteasome from rat testis and sperm tail and its visualization by whole-mount electron microscopy using negative staining. The 26S proteasome from rat testis was fractionated by Sephacryl S-400/Mono-Q chromatography using homogenates suspended in a 10% glycerol-supplemented buffer. Chromatographic fractions were analyzed by immunoblotting using a specific anti-TBP-1 serum. During the purification of Sak57, a keratin filament present in outer dense fibers from epididymal sperm, we detected a substantial amount of 26S proteasomes. Intact 26S proteasomes from rat testis display a rod-shaped particles about 45 nm in length and 11-17 nm in diameter. Each particle consists of a 20S barrel-shaped component formed by four rings (alphabetabetaalpha), capped by two polar 19S regulatory complexes, each identified by an element known as the "Chinese dragon head motif". TBP-1 is an ATPase-containing subunit of the 19S regulatory cap. Rat sperm preparations displayed both dissociated 26S proteasomes and Sak57 filaments. We hypothesize that 26S proteasomes in the perinuclear-arranged manchette are in a suitable location for recognition, sequestration, and degradation of accumulating ubiquitin-conjugated somatic and transient testis-specific histones during spermiogenesis. In the sperm tail, the 26S proteasome may have a role in the remodeling of the outer dense fibers and other tail components during epididymal transit.
Collapse
Affiliation(s)
- K Mochida
- Department of Cell Biology and Anatomical Sciences, The City University of New York Medical School, New York, NY 10031, USA
| | | | | |
Collapse
|
32
|
Baarends WM, van der Laan R, Grootegoed JA. Specific aspects of the ubiquitin system in spermatogenesis. J Endocrinol Invest 2000; 23:597-604. [PMID: 11079455 DOI: 10.1007/bf03343782] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The ubiquitin system is involved in numerous cellular processes, regulating the amounts and/or activities of specific proteins through posttranslational coupling with ubiquitin or ubiquitin-like proteins. In spermatogenesis, there appears to be a special requirement for certain components of the ubiquitin system, as exemplified in human and mouse by mutation of USP9Y and HR6B, respectively. Both genes encode proteins which take part in the ubiquitin system and are ubiquitously expressed, but their mutation generates no apparent phenotype other than male infertility. Different phases of mammalian spermatogenesis probably require different specialized activities of the ubiquitin system. It is anticipated that ubiquitination activities similar to those required during mitotic cell cycle regulation will play some role in control of the meiotic divisions. In spermatocytes, there is an intricate link among DNA repair, the ubiquitin system, and regulation of meiotic chromatin structure, as indicated by the co-localization of proteins involved in these processes on meiotic recombination complexes. HR6B and its nearly identical homolog HR6A are multiple function proteins, with ubiquitin-conjugating activity and essential roles in post-replication DNA repair. HR6B, possibly together with the ubiquitin-ligating enzyme mRAD1 8Sc, is most likely involved in chromatin re-organization during the meiotic and post-meiotic phases of spermatogenesis. Biochemical data indicate that, in particular during spermiogenesis, the general activity of the ubiquitin system is high, which most likely is related to the high requirement for massive breakdown of cytoplasmatic and nuclear proteins during this last phase of spermatogenesis.
Collapse
Affiliation(s)
- W M Baarends
- Department of Endocrinology and Reproduction, Erasmus University, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
33
|
Lin H, Keriel A, Morales CR, Bedard N, Zhao Q, Hingamp P, Lefrançois S, Combaret L, Wing SS. Divergent N-terminal sequences target an inducible testis deubiquitinating enzyme to distinct subcellular structures. Mol Cell Biol 2000; 20:6568-78. [PMID: 10938131 PMCID: PMC86134 DOI: 10.1128/mcb.20.17.6568-6578.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin-specific processing proteases (UBPs) presently form the largest enzyme family in the ubiquitin system, characterized by a core region containing conserved motifs surrounded by divergent sequences, most commonly at the N-terminal end. The functions of these divergent sequences remain unclear. We identified two isoforms of a novel testis-specific UBP, UBP-t1 and UBP-t2, which contain identical core regions but distinct N termini, thereby permitting dissection of the functions of these two regions. Both isoforms were germ cell specific and developmentally regulated. Immunocytochemistry revealed that UBP-t1 was induced in step 16 to 19 spermatids while UBP-t2 was expressed in step 18 to 19 spermatids. Immunoelectron microscopy showed that UBP-t1 was found in the nucleus while UBP-t2 was extranuclear and was found in residual bodies. For the first time, we show that the differential subcellular localization was due to the distinct N-terminal sequences. When transfected into COS-7 cells, the core region was expressed throughout the cell but the UBP-t1 and UBP-t2 isoforms were concentrated in the nucleus and the perinuclear region, respectively. Fusions of each N-terminal end with green fluorescent protein yielded the same subcellular localization as the native proteins, indicating that the N-terminal ends were sufficient for determining differential localization. Interestingly, UBP-t2 colocalized with anti-gamma-tubulin immunoreactivity, indicating that like several other components of the ubiquitin system, a deubiquitinating enzyme is associated with the centrosome. Regulated expression and alternative N termini can confer specificity of UBP function by restricting its temporal and spatial loci of action.
Collapse
Affiliation(s)
- H Lin
- Department of Medicine, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod 2000; 63:582-90. [PMID: 10906068 DOI: 10.1095/biolreprod63.2.582] [Citation(s) in RCA: 270] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The strictly maternal inheritance of mitochondria and mitochondrial DNA (mtDNA) in mammals is a developmental paradox promoted by an unknown mechanism responsible for the destruction of the sperm mitochondria shortly after fertilization. We have recently reported that the sperm mitochondria are ubiquitinated inside the oocyte cytoplasm and later subjected to proteolysis during preimplantation development (P. Sutovsky et al., Nature 1999; 402:371-372). Here, we provide further evidence for this process by showing that the proteolytic destruction of bull sperm mitochondria inside cow egg cytoplasm depends upon the activity of the universal proteolytic marker, ubiquitin, and the lysosomal apparatus of the egg. Binding of ubiquitin to sperm mitochondria was visualized by monospecific antibodies throughout pronuclear development and during the first embryonic divisions. The recognition and disposal of the ubiquitinated sperm mitochondria was prevented by the microinjection of anti-ubiquitin antibodies and by the treatment of the fertilized zygotes with lysosomotropic agent ammonium chloride. The postfecundal ubiquitination of sperm mitochondria and their destruction was not seen in the hybrid embryos created using cow eggs and sperm of wild cattle, gaur, thus supporting the hypothesis that sperm mitochondrion destruction is species specific. The initial ligation of ubiquitin molecules to sperm mitochondrial membrane proteins, one of which could be prohibitin, occurs during spermatogenesis. Even though the ubiquitin cross-reactivity was transiently lost from the sperm mitochondria during epididymal passage, likely as a result of disulfide bond cross-linking, it was restored and amplified after fertilization. Ubiquitination therefore may represent a mechanism for the elimination of paternal mitochondria during fertilization. Our data have important implications for anthropology, treatment of mitochondrial disorders, and for the new methods of assisted procreation, such as cloning, oocyte cytoplasm donation, and intracytoplasmic sperm injection.
Collapse
Affiliation(s)
- P Sutovsky
- Oregon Regional Primate Research Center, Departments of Cell-Developmental Biology and Obstetrics-Gynecology, Oregon Health Sciences University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | |
Collapse
|
35
|
Golan R, Vigodner M, Oschry Y, Shochat L, Lewin LM. Chromatin condensation during spermiogenesis in the golden hamster (Mesocricetus aureus): a flow cytometric study. Mol Reprod Dev 2000; 56:105-12. [PMID: 10737973 DOI: 10.1002/(sici)1098-2795(200005)56:1<105::aid-mrd13>3.0.co;2-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA-staining of hamster testis cell suspensions followed by flow cytometry demonstrated appearance of the first haploid cells at 23 days post partum (dpp) and of condensed chromatin (in elongated spermatids and spermatozoa) at 33-34 dpp. Mature spermatozoa were first observed in the caput epididymis at 36-37 dpp, thus completing the first spermatogenic wave. Testicular cell suspensions from animals from 23 to 38 dpp were stained with acridine orange, and flow cytometer gating was adjusted to include only the haploid cells. Acridine orange intercalated into double-stranded DNA to produce green fluorescence. The decrease in green fluorescence intensity from 23 until 37 dpp was caused by changes in the binding of DNA to basic proteins in such a fashion as to impede the access of the dye to the DNA double helix. When the green fluorescence values (of the most advanced spermatids) were plotted against the age of the hamsters (in dpp) or the corresponding steps of spermiogenesis, the decrease in fluorescence could be seen to occur in three phases. The inflection point between the first and second phases was observed at about spermiogenesis step 7, consistent with the hypothesis that this represents removal of histone from the chromatin. The second phase presumably represents the period in which transition proteins are bound to the DNA. At approximately steps 15 or 16 a further inflection point was seen where protamines replaced the transition proteins. The red fluorescence produced when acridine orange bound to RNA in spermatids, increased early in spermiogenesis and decreased dramatically at 34 dpp, consistent with the fact that elongating spermatids discard the bulk of their cytoplasm during the maturation process.
Collapse
Affiliation(s)
- R Golan
- Department of Clinical Biochemistry, Sackler Medical School, Tel Aviv University, Ramat Aviv, Israel.
| | | | | | | | | |
Collapse
|
36
|
Sutovsky P, Schatten G. Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 195:1-65. [PMID: 10603574 DOI: 10.1016/s0074-7696(08)62703-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian fertilization has traditionally been regarded as a simple blending of two gametes, during which the haploid genome of the fertilizing spermatozoon constitutes the primary paternal contribution to the resulting embryo. In contrast to this view, new research provides evidence of important cytoplasmic contributions made by the fertilizing spermatozoon to the zygotic makeup, to the organization of preimplantation development, and even reproductive success of new forms of assisted fertilization. The central role of the sperm-contributed centriole in the reconstitution of zygotic centrosome has been established in most mammalian species and is put in contrast with strictly maternal centrosomal inheritance in rodents. The complementary reduction or multiplication of sperm and oocyte organelles during gametogenesis, exemplified by the differences in the biogenesis of centrosome in sperm and oocytes, represents an intriguing mechanism for avoiding their redundancy during early embryogenesis. New studies on perinuclear theca of sperm revealed its importance for both spermatogenesis and fertilization. Remodeling of the sperm chromatin into a male pronucleus is guided by oocyte-produced, reducing peptide glutathione and a number of molecules required for the reconstitution of the functional nuclear envelope and nuclear skeleton. Although some of the sperm structures are transformed into zygotic components, the elimination of others is vital to early stages of embryonic development. Sperm mitochondria, carrying potentially harmful paternal mtDNA, appear to be eliminated by a ubiquitin-dependent mechanism. Other accessory structures of the sperm axoneme, including fibrous sheath, microtubule doublets, outer dense fibers, and the striated columns of connecting piece, are discarded in an orderly fashion. The new methods of assisted fertilization, represented by intracytoplasmic sperm injection and round spermatid injection, bypass multiple steps of natural fertilization by introducing an intact spermatozoon or spermatogenic cell into oocyte cytoplasm. Consequently, the carryover of sperm accessory structures that would normally be eliminated before or during the entry of sperm into oocyte cytoplasm persist therein and may interfere with early embryonic development, thus decreasing the success rate of assisted fertilization and possibly causing severe embryonic anomalies. Similarly, foreign organelles, proteins, messenger RNAs, and mitochondrial DNAs, which may have a profound impact on the embryonic development, are propagated by the nuclear transfer of embryonic blastomeres and somatic cell nuclei. This aspect of assisted fertilization is yet to be explored by a focused effort.
Collapse
Affiliation(s)
- P Sutovsky
- Department of Obstetrics and Gynecology, Oregon Health Science University, USA
| | | |
Collapse
|
37
|
Chrysis D, Underwood LE. Regulation of components of the ubiquitin system by insulin-like growth factor I and growth hormone in skeletal muscle of rats made catabolic with dexamethasone. Endocrinology 1999; 140:5635-41. [PMID: 10579327 DOI: 10.1210/endo.140.12.7217] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate whether the anabolic effects of insulin-like growth factor I (IGF-I) and GH are mediated through regulation of the ubiquitin (Ub) pathway, we examined the effect of IGF-I (0.35 microg/100 g) and/or GH (0.3 mg/100 g BW) on the expression of Ub and Ub-conjugating (E2) enzyme messenger RNAs (mRNAs) in skeletal muscle of rats made catabolic by treatment with dexamethasone (Dex; 0.5 mg/100 g BW) for 3 days. Dex caused a significant loss of body and gastrocnemius weight (14% and 25%, respectively) concurrent with an increase in the 2.8- and 1.2-kb transcripts of Ub (14.3- and 12-fold increases, respectively), the 1.8- and 1.2-kb transcripts of 14-kDa Ub-conjugating enzyme (E2-14 kDa; 5.6- and 7.7-fold increases, respectively), the 4.4- and 2.4-kb transcripts of Ub-E2G (6.5- and 8.2-fold increases, respectively), and the 2E isoform of the 17-kDa E2 mRNA (3.5-fold increase). Injections of IGF-I in Dex-treated animals ameliorated the body weight loss, and the gastrocnemius tended to be heavier. This improvement was also accompanied by a significant suppression of transcripts for Ub (58% and 66% decreases), E2-14 kDa (58% and 68% decreases), and Ub-E2G (78% decrease), whereas the 2E isoform of the 17-kDa E2 was only modestly affected (20% decrease). GH restored serum IGF-I levels to normal in Dex-treated rats, but had no effect on the body weight loss or on any of the studied components of the Ub pathway. Administration of IGF-I to the Dex/GH-treated animals decreased the activated mRNAs of the Ub pathway in a manner and degree similar to those observed in the Dex/ IGF-I group. In summary, these results provide evidence that IGF-I regulates the expression of mRNAs encoding components of the Ub pathway during catabolism and suggest a possible mechanism for the antiproteolytic actions of IGF-I. On the other hand, GH, which is believed not to affect proteolysis but only protein synthesis, had no effect on any of the mRNAs studied.
Collapse
Affiliation(s)
- D Chrysis
- Department of Pediatrics, University of North Carolina, Chapel Hill 27599-7220, USA
| | | |
Collapse
|
38
|
Rajapurohitam V, Morales CR, El-Alfy M, Lefrançois S, Bedard N, Wing SS. Activation of a UBC4-dependent pathway of ubiquitin conjugation during postnatal development of the rat testis. Dev Biol 1999; 212:217-28. [PMID: 10419697 DOI: 10.1006/dbio.1999.9342] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During spermatogenesis, germ cells undergo mitotic and meiotic divisions to form haploid round spermatids which mature to functional elongated spermatozoa. During this process there occurs remodeling of cell structure and loss of most of the cytoplasm and a large fraction of cellular proteins. To evaluate the role of the ubiquitin proteolytic system in this protein loss, we measured levels of ubiquitinated proteins and rates of ubiquitin conjugation in extracts of testes from rats of different ages. Endogenous ubiquitin-protein conjugates increased till day 30 and then reached a plateau. In parallel, there was a progressive increase in the rate of conjugation of ubiquitin to proteins in testis extracts from these animals. To test the importance of two major ubiquitin conjugating enzyme families in the conjugation, immunoprecipitation of UBC2 or UBC4 from 10- and 30-day-old testis extracts was carried out and the remaining conjugation activity in supernatants was assayed. Depletion of either enzyme family resulted in decreased conjugation. However, most of the conjugation activity and, more importantly, the increased conjugation during development were UBC4-dependent. Immunocytochemistry demonstrated a marked increase in expression of UBC4 in spermatids, consistent with the UBC4-dependent activation of conjugation seen in vitro. In situ hybridization studies evaluated the contribution of various UBC4 isoforms to this induction. UBC4-1 mRNA was expressed in most cells. UBC4-2 mRNA was restricted to germ cells with high levels of expression in round and elongated spermatids. UBC4-testis had previously been shown to be expressed only in spermatids. Our data suggest that induction of various UBC4 isoforms activates overall conjugation and plays an important role in the cellular remodeling and protein loss occurring during spermatogenesis.
Collapse
Affiliation(s)
- V Rajapurohitam
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Ubiquitin is a ubiquitous and highly conserved protein of 76 amino acid residues, that can be covalently attached to cellular acceptor proteins. The attachment of ubiquitin to target proteins is achieved through a multi-step enzymatic pathway, which involves activities of ubiquitin-activating E1 enzymes, ubiquitin-conjugating E2 enzymes, and ligating E3 enzymes. Mono- or poly-ubiquitination of proteins can lead to protein degradation or modification of protein activity. Many components of the complex ubiquitin system show remarkable evolutionary conservation, from yeast to mammalian species. The ubiquitin system is essential to all eukaryotic cells. Among others, several signal transduction cascades show involvement of the ubiquitin system, but there are currently little data supporting a specific role of the ubiquitin system in hormonal control of reproduction. Interestingly, during gametogenesis, many specialized and important aspects of the ubiquitin system become apparent. Components of the ubiquitin system appear to be involved in different steps and processes during gametogenesis, including control of meiosis, and reorganization of chromatin structure.
Collapse
Affiliation(s)
- W M Baarends
- Department of Endocrinology and Reproduction, Faculty of Medicine and Health Sciences, Erasmus University Rotterdam, The Netherlands.
| | | | | |
Collapse
|
40
|
Lin H, Wing SS. Identification of rabbit reticulocyte E217K as a UBC7 homologue and functional characterization of its core domain loop. J Biol Chem 1999; 274:14685-91. [PMID: 10329663 DOI: 10.1074/jbc.274.21.14685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural basis by which ubiquitin (Ub)-conjugating enzymes (E2s) determine substrate specificity remains unclear. We cloned rabbit reticulocyte E217K because unlike the similarly sized class I E2s, E214K and UBC4, it is unable to support ubiquitin-protein ligase (E3)-dependent conjugation to endogenous proteins. RNA analysis revealed that this E2 was expressed in all tissues tested, with higher levels in the testis. Analysis of testis RNA from rats of different ages showed that E217K mRNA was induced from days 15 to 30. The predicted amino acid sequence indicates that E217K is a 19. 5-kDa class I E2 but differs from other class I enzymes in possessing an insertion of 13 amino acids distal to the active site cysteine. E217K shows 74% amino acid identity with Saccharomyces cerevisiae UBC7, and therefore, we rename it mammalian UBC7. Yeast UBC7 crystal structure indicates that this insertion forms a loop out of the otherwise conserved folding structure. Sequence analysis of E2s had previously suggested that this loop is a hypervariable region and may play a role in substrate specificity. We created mutant UBC7 lacking the loop (ubc7Deltaloop) and a mutant E214k with an inserted loop (E214k+loop) and characterized their biochemical functions. Ubc7Deltaloop had higher affinity for the E1-Ub thiol ester than native UBC7 and permitted conjugation of Ub to selected proteins in the testis but did not permit the broad spectrum E3-dependent conjugation to endogenous reticulocyte proteins. Surprisingly, E214k+loop was unable to accept Ub from ubiquitin-activating enzyme (E1) but was able to accept NEDD8 from E1. E214k+loop was able to support conjugation of NEDD8 to endogenous reticulocyte proteins but with much lower efficiency than E214k. Thus, the loop can influence interactions of the E2 with charged E1 as well as with E3s or substrates, but the exact nature of these interactions depends on divergent sequences in the remaining conserved core domain.
Collapse
Affiliation(s)
- H Lin
- Department of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | |
Collapse
|
41
|
Baarends WM, Hoogerbrugge JW, Roest HP, Ooms M, Vreeburg J, Hoeijmakers JH, Grootegoed JA. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev Biol 1999; 207:322-33. [PMID: 10068466 DOI: 10.1006/dbio.1998.9155] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Male infertility in HR6B knockout mice is associated with impairment of spermatogenesis. The HR6B gene is a mammalian, autosomal homolog of the Saccharomyces cerevisiae gene Rad6 encoding a ubiquitin-conjugating enzyme. In addition, X-chromosomal HR6A has been identified, in human and mouse. RAD6 in yeast is required for a variety of cellular functions, including sporulation, DNA repair, and mutagenesis. Since RAD6 and its mammalian homologs can ubiquitinate histones in vitro, we have investigated the pattern of histone ubiquitination in mouse testis. By immunoblot and immunohistochemical analysis of wild-type mouse testis, a high amount of ubiquitinated H2A (uH2A) was detected in pachytene spermatocytes. This signal became undetectable in round spermatids, but then increased again during a relatively short developmental period, in elongating spermatids. No other ubiquitinated histones were observed. In the HR6B knockout mice, we failed to detect an overt defect in the overall pattern of histone ubiquitination. For somatic cell types, it has been shown that histone ubiquitination is associated with destabilization of nucleosomes, in relation to active gene transcription. Unexpectedly, the most intense uH2A signal in pachytene spermatocytes was detected in the sex body, an inactive nuclear structure that contains the heterochromatic X and Y chromosomes. The postmeiotic uH2A immunoexpression in elongating spermatids indicates that nucleosome destabilization induced by histone ubiquitination may play a facilitating role during histone-to-protamine replacement.
Collapse
Affiliation(s)
- W M Baarends
- Department of Endocrinology and Reproduction, Erasmus University, Rotterdam, Rotterdam, 3000 DR, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
42
|
Mykles DL. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 184:157-289. [PMID: 9697313 DOI: 10.1016/s0074-7696(08)62181-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytosolic proteinases carry out a variety of regulatory functions by controlling protein levels and/or activities within cells. Calcium-dependent and ubiquitin/proteasome-dependent pathways are common to all eukaryotes. The former pathway consists of a diverse group of Ca(2+)-dependent cysteine proteinases (CDPs; calpains in vertebrate tissues). The latter pathway is highly conserved and consists of ubiquitin, ubiquitin-conjugating enzymes, deubiquitinases, and the proteasome. This review summarizes the biochemical properties and genetics of invertebrate CDPs and proteasomes and their roles in programmed cell death, stress responses (heat shock and anoxia), skeletal muscle atrophy, gametogenesis and fertilization, development and pattern formation, cell-cell recognition, signal transduction and learning, and photoreceptor light adaptation. These pathways carry out bulk protein degradation in the programmed death of the intersegmental and flight muscles of insects and of individuals in a colonial ascidian; molt-induced atrophy of crustacean claw muscle; and responses of brine shrimp, mussels, and insects to environmental stress. Selective proteolysis occurs in response to specific signals, such as in modulating protein kinase A activity in sea hare and fruit fly associated with learning; gametogenesis, differentiation, and development in sponge, echinoderms, nematode, ascidian, and insects; and in light adaptation of photoreceptors in the eyes of squid, insects, and crustaceans. Proteolytic activities and specificities are regulated through proteinase gene expression (CDP isozymes and proteasomal subunits), allosteric regulators, and posttranslational modifications, as well as through specific targeting of protein substrates by a diverse assemblage of ubiquitin-conjugases and deubiquitinases. Thus, the regulation of intracellular proteolysis approaches the complexity and versatility of transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
43
|
Oughtred R, Bédard N, Vrielink A, Wing SS. Identification of amino acid residues in a class I ubiquitin-conjugating enzyme involved in determining specificity of conjugation of ubiquitin to proteins. J Biol Chem 1998; 273:18435-42. [PMID: 9660812 DOI: 10.1074/jbc.273.29.18435] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin pathway is a major system for selective proteolysis in eukaryotes. However, the mechanisms underlying substrate selectivity by the ubiquitin system remain unclear. We previously identified isoforms of a rat ubiquitin-conjugating enzyme (E2) homologous to the Saccharomyces cerevisiae class I E2 genes, UBC4/UBC5. Two isoforms, although 93% identical, show distinct features. UBC4-1 is expressed ubiquitously, whereas UBC4-testis is expressed in spermatids. Interestingly, although these isoforms interacted similarly with some ubiquitin-protein ligases (E3s) such as E6-AP and rat p100 and an E3 that conjugates ubiquitin to histone H2A, they also supported conjugation of ubiquitin to distinct subsets of testis proteins. UBC4-1 showed an 11-fold greater ability to support conjugation of ubiquitin to endogenous substrates present in a testis nuclear fraction. Site-directed mutagenesis of the UBC4-testis isoform was undertaken to identify regions of the molecule responsible for the observed difference in substrate specificity. Four residues (Gln-15, Ala-49, Ser-107, and Gln-125) scattered on surfaces away from the active site appeared necessary and sufficient for UBC4-1-like conjugation. These four residues identify a large surface of the E2 core domain that may represent an area of binding to E3s or substrates. These findings demonstrate that a limited number of amino acid substitutions in E2s can dictate conjugation of ubiquitin to different proteins and indicate a mechanism by which small E2 molecules can encode a wide range of substrate specificities.
Collapse
Affiliation(s)
- R Oughtred
- Department of Medicine, Polypeptide Laboratory, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | |
Collapse
|
44
|
Chen HY, Sun JM, Zhang Y, Davie JR, Meistrich ML. Ubiquitination of histone H3 in elongating spermatids of rat testes. J Biol Chem 1998; 273:13165-9. [PMID: 9582357 DOI: 10.1074/jbc.273.21.13165] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because of the potential role of histone ubiquitination in altering chromatin structure, we characterized the levels of ubiquitination of specific histones in meiotic and postmeiotic germ cells in rat testes by two-dimensional gel electrophoresis. The levels of the major ubiquitinated histone forms, mono- and poly-ubiquitinated H2A, were highest in the pachytene spermatocyte stage, declined thereafter through the round spermatid stage, and reached their lowest levels in elongating spermatids. Three additional ubiquitinated histone species, besides H2A, were detected using anti-ubiquitin antibodies specifically in the fraction enriched in elongating spermatids. Based on their electrophoretic mobilities, they corresponded to uH3, uTH3, and uH2B. Polyubiquitinated forms of these proteins were also observed. The identity of these proteins was confirmed by immunoblotting with anti-H3 antisera and by differential extraction of the proteins from the nucleus with increasing salt concentrations. This is the first report of ubiquitination of H3 in vivo. We speculate that its ubiquitination could loosen the nucleosome structure in preparation for histone removal, be a consequence of nucleosome relaxation or disruption caused by other means, or target H3 for degradation.
Collapse
Affiliation(s)
- H Y Chen
- Department of Biochemistry and Molecular Biology, University of Manitoba, Winnipeg, Manitoba, R3E 0W3 Canada
| | | | | | | | | |
Collapse
|
45
|
Attaix D, Taillandier D. The Critical Role of the Ubiquitin-Proteasome Pathway in Muscle Wasting in Comparison to Lysosomal and Ca2+-Dependent Systems. INTRACELLULAR PROTEIN DECRADATION 1998. [DOI: 10.1016/s1569-2558(08)60463-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
46
|
Mezquita J, Pau M, Mezquita C. Characterization and expression of two chicken cDNAs encoding ubiquitin fused to ribosomal proteins of 52 and 80 amino acids. Gene X 1997; 195:313-9. [PMID: 9305777 DOI: 10.1016/s0378-1119(97)00189-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have determined the complete nucleotide sequence of two chicken cDNAs, Ub-t52 and Ub-t80, encoding ubiquitin fused to ribosomal proteins of 52 and 80 amino acids. The deduced amino acid sequences of the ribosomal proteins are identical or very similar to the homologous human and rat proteins and to the corresponding proteins of other species. Unexpectedly, the ubiquitin moiety of the Ub-t52 protein showed two amino acid substitutions: serine-20 has been replaced by asparagine and serine-57 by alanine. Ubiquitin is a protein strongly conserved during evolution, with no changes in sequence previously reported in vertebrates. Ub-t52 and Ub-t80 are highly expressed in early embryogenesis and during postmitotic stages of spermatogenesis, in parallel with the expression of the polyubiquitin gene UbII. Whereas the 5' untranslated regions (5'UTRs) of the chicken polyubiquitin mRNAs showed marked differences in mature testes in relation to somatic tissues, no differences were observed in the 5'UTRs of the ubiquitin-ribosomal protein mRNAs. These mRNAs possess a 5'-terminal oligopyrimidine tract that could be used as a mechanism to postpone translation during postmitotic stages of spermatogenesis, as has been proposed in quiescent cells.
Collapse
Affiliation(s)
- J Mezquita
- Molecular Genetics Research Group, Faculty of Medicine, University of Barcelona, Casanova, Spain.
| | | | | |
Collapse
|
47
|
Cenci G, Rawson RB, Belloni G, Castrillon DH, Tudor M, Petrucci R, Goldberg ML, Wasserman SA, Gatti M. UbcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behavior. Genes Dev 1997; 11:863-75. [PMID: 9106658 DOI: 10.1101/gad.11.7.863] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The end-to-end association of chromosomes through their telomeres has been observed in normal cells of certain organisms, as well as in senescent and tumor cells. The molecular mechanisms underlying this phenomenon are currently unknown. We show here that five independent mutant alleles in the Drosophila UbcD1 gene cause frequent telomere-telomere attachments during both mitosis and male meiosis that are not seen in wild type. These telomeric associations involve all the telomeres of the D. melanogaster chromosome complement, albeit with different frequencies. The pattern of telomeric associations observed in UbcD1 mutants suggests strongly that the interphase chromosomes of wild-type larval brain cells maintain a Rab1 orientation within the nucleus, with the telomeres and centromeres segregated to opposite sides of the nucleus. The UbcD1 gene encodes a class I ubiquitin-conjugating (E2) enzyme. This indicates that ubiquitin-mediated proteolysis is normally needed to ensure proper telomere behavior during Drosophila cell division. We therefore suggest that at least one of the targets of UbcD1 ubiquitination is a telomere-associated polypeptide that may help maintain proper chromosomal orientation during interphase.
Collapse
Affiliation(s)
- G Cenci
- Dipartimento di Genetica e Biologia Molecolare, Universitá di Roma La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mezquita J, Pau M, Mezquita C. Heat-shock inducible polyubiquitin gene UbI undergoes alternative initiation and alternative splicing in mature chicken testes. Mol Reprod Dev 1997; 46:471-5. [PMID: 9094093 DOI: 10.1002/(sici)1098-2795(199704)46:4<471::aid-mrd4>3.0.co;2-l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ubiquitin, a heat-shock protein highly expressed during spermatogenesis, plays an essential role in the differentiation of the germinal cells, particularly in the structural changes of chromatin taking place at the end of the process. To shed light on the mechanisms that modulate transcriptional activity of the heat-shock inducible polyubiquitin gene UbI during spermatogenesis and stabilize the message when transcription is not longer active, we have compared the characteristics of UbI transcripts in mature and immature testes and somatic cells. In mature chicken testes, transcription starts at a site placed closer to the heat-shock promoters than in somatic tissues. This site is upstream from the TATA box used in somatic cells. In addition, UbI transcript undergoes an alternative splicing that produces a longer 5' untranslated region in mature testis. These findings may provide a basis for the observed increase in expression of UbI in mature chicken testes and for the stability of the message when transcription ceases at the end of spermatogenesis.
Collapse
Affiliation(s)
- J Mezquita
- Molecular Genetics Research Group, Faculty of Medicine, University of Barcelona, Spain
| | | | | |
Collapse
|
49
|
Døskeland AP, Flatmark T. Recombinant human phenylalanine hydroxylase is a substrate for the ubiquitin-conjugating enzyme system. Biochem J 1996; 319 ( Pt 3):941-5. [PMID: 8921003 PMCID: PMC1217879 DOI: 10.1042/bj3190941] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian phenylalanine hydroxylase (PAH) catalyses the conversion of L-phenylalanine to L-tyrosine in the presence of dioxygen and tetrahydrobiopterin; it is a highly regulated enzyme. Little is known about the rates of synthesis and degradation of PAH in vivo. The enzyme has been reported to have a half-life of approx. 2 days in rat liver and 7-8 h in rat hepatoma cells, but the mechanism of its degradation is not known. In the present study it is shown that the tetrameric form of the recombinant wild-type human enzyme is a substrate for the ubiquitin-conjugating enzyme system in the cytosolic fraction of rat testis. Our findings support the conclusion that multi-/poly-ubiquitination of human PAH plays a key role in the turnover of this cytosolic liver enzyme and provides a mechanism for the increased turnover observed for a number of recombinant mutant forms of the enzyme related to the metabolic disorder phenylketonuria, when expressed in eukaryotic cells.
Collapse
Affiliation(s)
- A P Døskeland
- Department of Biochemistry and Molecular Biology, University of Bergen, Norway
| | | |
Collapse
|
50
|
Roest HP, van Klaveren J, de Wit J, van Gurp CG, Koken MH, Vermey M, van Roijen JH, Hoogerbrugge JW, Vreeburg JT, Baarends WM, Bootsma D, Grootegoed JA, Hoeijmakers JH. Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell 1996; 86:799-810. [PMID: 8797826 DOI: 10.1016/s0092-8674(00)80154-3] [Citation(s) in RCA: 313] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ubiquitin-conjugating yeast enzyme RAD6 and its human homologs hHR6A and hHR6B are implicated in postreplication repair and damage-induced mutagenesis. The yeast protein is also required for sporulation and may modulate chromatin structure via histone ubiquitination. We report the phenotype of the first animal mutant in the ubiquitin pathway: inactivation of the hHR6B-homologous gene in mice causes male infertility. Derailment of spermatogenesis becomes overt during the postmeiotic condensation of chromatin in spermatids. These findings provide a parallel between yeast sporulation and mammalian spermatogenesis and strongly implicate hHR6-dependent ubiquitination in chromatin remodeling. Since heterozygous male mice and even knockout female mice are completely normal and fertile and thus able to transmit the defect, similar hHR6B mutations may cause male infertility in man.
Collapse
Affiliation(s)
- H P Roest
- MGC-Department of Cell Biology and Genetics, Faculty of Medicine and Health Sciences Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|