1
|
Felipe-Ruiz A, Zamora-Caballero S, Bendori SO, Penadés JR, Eldar A, Marina A. Extracellular proteolysis of tandemly duplicated pheromone propeptides affords additional complexity to bacterial quorum sensing. PLoS Biol 2024; 22:e3002744. [PMID: 39137235 PMCID: PMC11343458 DOI: 10.1371/journal.pbio.3002744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/23/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Bacterial interactions are vital for adapting to changing environments, with quorum sensing (QS) systems playing a central role in coordinating behaviors through small signaling molecules. The RRNPPA family is the prevalent QS systems in Bacillota and mediating communication through secreted oligopeptides, which are processed into active pheromones by extracellular proteases. Notably, in several cases the propeptides show the presence of multiple putative pheromones within their sequences, which has been proposed as a mechanism to diversify peptide-receptor specificity and potentially facilitate new functions. However, neither the processes governing the maturation of propeptides containing multiple pheromones, nor their functional significance has been evaluated. Here, using 2 Rap systems from bacteriophages infecting Bacillus subtilis that exhibit different types of pheromone duplication in their propeptides, we investigate the maturation process and the molecular and functional activities of the produced pheromones. Our results reveal that distinct maturation processes generate multiple mature pheromones, which bind to receptors with varying affinities but produce identical structural and biological responses. These findings add additional layers in the complexity of QS communication and regulation, opening new possibilities for microbial social behaviors, highlighting the intricate nature of bacterial interactions and adaptation.
Collapse
Affiliation(s)
- Alonso Felipe-Ruiz
- Instituto de Biomedicina de Valencia (IBV)-CSIC and CIBER de Enfermedades Raras (CIBERER)-ISCIII, Valencia, Spain
| | - Sara Zamora-Caballero
- Instituto de Biomedicina de Valencia (IBV)-CSIC and CIBER de Enfermedades Raras (CIBERER)-ISCIII, Valencia, Spain
| | - Shira Omer Bendori
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - José R. Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, United Kingdom
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca, Spain
| | - Avigdor Eldar
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV)-CSIC and CIBER de Enfermedades Raras (CIBERER)-ISCIII, Valencia, Spain
| |
Collapse
|
2
|
DiCandia MA, Edwards AN, Alcaraz YB, Monteiro MP, Lee CD, Vargas Cuebas G, Bagchi P, McBride SM. A conserved switch controls virulence, sporulation, and motility in C. difficile. PLoS Pathog 2024; 20:e1012224. [PMID: 38739653 PMCID: PMC11115286 DOI: 10.1371/journal.ppat.1012224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Spore formation is required for environmental survival and transmission of the human enteropathogenic Clostridioides difficile. In all bacterial spore formers, sporulation is regulated through activation of the master response regulator, Spo0A. However, the factors and mechanisms that directly regulate C. difficile Spo0A activity are not defined. In the well-studied Bacillus species, Spo0A is directly inactivated by Spo0E, a small phosphatase. To understand Spo0E function in C. difficile, we created a null mutation of the spo0E ortholog and assessed sporulation and physiology. The spo0E mutant produced significantly more spores, demonstrating Spo0E represses C. difficile sporulation. Unexpectedly, the spo0E mutant also exhibited increased motility and toxin production, and enhanced virulence in animal infections. We uncovered that Spo0E interacts with both Spo0A and the toxin and motility regulator, RstA. Direct interactions between Spo0A, Spo0E, and RstA constitute a previously unknown molecular switch that coordinates sporulation with motility and toxin production. Reinvestigation of Spo0E function in B. subtilis revealed that Spo0E induced motility, demonstrating Spo0E regulation of motility and sporulation among divergent species. Further, 3D structural analyses of Spo0E revealed specific and exclusive interactions between Spo0E and binding partners in C. difficile and B. subtilis that provide insight into the conservation of this regulatory mechanism among different species.
Collapse
Affiliation(s)
- Michael A. DiCandia
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| | - Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| | - Ysabella B. Alcaraz
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| | - Marcos P. Monteiro
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| | - Cheyenne D. Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| | - Germán Vargas Cuebas
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, United States of America
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| |
Collapse
|
3
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
4
|
Guerrero M. GG. Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a rod-shaped, Gram-positive soil bacterium that belongs to the phylum Firmicutes and the genus Bacillus. It is a spore-forming bacterium. During sporulation, it produces a wide range of crystalline proteins that are toxic to different orders of insects. Sporulation, structure assembly, and germination are essential stages in the cell cycle of B. thuringiensis. The majority of studies on these issues have focused on the model organism Bacillus subtilis, followed by Bacillus cereus and Bacillus anthracis. The machinery for sporulation and germination extrapolated to B. thuringiensis. However, in the light of recent findings concerning the role of the sporulation proteins (SPoVS), the germination receptors (Gr), and the cortical enzymes in Bt, the theory strengthened that conservation in sporulation, structure assembly, and germination programs drive the survival and success of B. thuringiensis in the environment and the insect host. In the present minireview, the latter pinpointed and reviewed.
Collapse
Affiliation(s)
- Gloria G. Guerrero M.
- Unidad Académica de Ciencias Biológicas, Laboratorio de Immunobiología, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Col. Agronomicas, Zacatecas 98066, Mexico
| |
Collapse
|
5
|
DiCandia MA, Edwards AN, Lee CD, Monteiro MP, Cuebas GNV, Bagchi P, McBride SM. A Conserved Switch Controls Virulence, Sporulation, and Motility in C. difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534590. [PMID: 37034656 PMCID: PMC10081167 DOI: 10.1101/2023.03.28.534590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Spore formation is required for environmental survival and transmission of the human enteropathogenic Clostridioides difficile . In all bacterial spore formers, sporulation is regulated through activation of the master response regulator, Spo0A. However, the factors and mechanisms that directly regulate C. difficile Spo0A activity are not defined. In the well-studied Bacillus species, Spo0A is directly inactivated by Spo0E, a small phosphatase. To understand Spo0E function in C. difficile , we created a null mutation of the spo0E ortholog and assessed sporulation and physiology. The spo0E mutant produced significantly more spores, demonstrating Spo0E represses C. difficile sporulation. Unexpectedly, the spo0E mutant also exhibited increased motility and toxin production, and enhanced virulence in animal infections. We uncovered that Spo0E interacts with both Spo0A and the toxin and motility regulator, RstA. Direct interactions between Spo0A, Spo0E, and RstA constitute a previously unknown molecular switch that coordinates sporulation with motility and toxin production. Reinvestigation of Spo0E function in B. subtilis revealed that Spo0E induced motility, demonstrating Spo0E regulation of motility and sporulation among divergent species. Further, we found that Spo0E orthologs are widespread among prokaryotes, suggesting that Spo0E performs conserved regulatory functions in diverse bacteria.
Collapse
|
6
|
Abstract
The ability of the anaerobic gastrointestinal pathogen Clostridioides difficile to survive outside the host relies on the formation of dormant endospores. Spore formation is contingent on the activation of a conserved transcription factor, Spo0A, by phosphorylation. Multiple kinases and phosphatases regulate Spo0A activity in other spore-forming organisms; however, these factors are not well conserved in C. difficile. Previously, we discovered that deletion of a predicted histidine kinase, CD1492, increases sporulation, indicating that CD1492 inhibits C. difficile spore formation. In this study, we investigate the functions of additional predicted orphan histidine kinases CD2492, CD1579, and CD1949, which are hypothesized to regulate Spo0A phosphorylation. Disruption of CD2492 also increased sporulation frequency, similarly to the CD1492 mutant and in contrast to a previous study. A CD1492 CD2492 mutant phenocopied the sporulation and gene expression patterns of the single mutants, suggesting that these proteins function in the same genetic pathway to repress sporulation. Deletion of CD1579 variably increased sporulation frequency; however, knockdown of CD1949 expression did not influence sporulation. We provide evidence that CD1492, CD2492, and CD1579 function as phosphatases, as mutation of the conserved histidine residue for phosphate transfer abolished CD2492 function, and expression of the CD1492 or CD2492 histidine site-directed mutants or the wild-type CD1579 allele in a parent strain resulted in a dominant-negative hypersporulation phenotype. Altogether, at least three predicted histidine kinases, CD1492, CD2492, and CD1579 (herein, PtpA, PtpB and PtpC), repress C. difficile sporulation initiation by regulating activity of Spo0A. IMPORTANCE The formation of inactive spores is critical for the long-term survival of the gastrointestinal pathogen Clostridioides difficile. The onset of sporulation is controlled by the master regulator of sporulation, Spo0A, which is activated by phosphorylation. Multiple kinases and phosphatases control Spo0A phosphorylation; however, this regulatory pathway is not defined in C. difficile. We show that two predicted histidine kinase proteins, CD1492 (PtpA) and CD2492 (PtpB), function in the same regulatory pathway to repress sporulation by preventing Spo0A phosphorylation. We show that another predicted histidine kinase protein, CD1579 (PtpC), also represses sporulation and present evidence that a fourth predicted histidine kinase protein, CD1949, does not impact sporulation. These results support the idea that C. difficile inhibits sporulation initiation through multiple phosphatases.
Collapse
|
7
|
The transcription factor CpcR determines cell fate by modulating the initiation of sporulation in Bacillus thuringiensis. Appl Environ Microbiol 2022; 88:e0237421. [PMID: 35108078 DOI: 10.1128/aem.02374-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis is a bacterium capable of differentiating into a spore, a dormant and highly resistant cellular form. During the sporulation process, this bacterium produces insecticidal toxins in the form of a crystal inclusion, usually in the sporulating cell. We previously reported that the B. thuringiensis LM1212 strain can differentiate into two distinct subpopulations of spore formers and crystal producers, and that this division of labour phenotype provides bacterium with a fitness advantage in competition with a typical B. thuringiensis strain. The transcription factor CpcR was characterized as the regulator responsible for this phenotype. Here, we examined how CpcR interacts with sporulation network to control the cell differentiation. We found sporulation process was inhibited prior to polar septum formation, and that Spo0A activity was impaired, in the presence of cpcR in LM1212 strain. Using bioinformatics and genetic tools, we identified a gene positively controlled by CpcR encoding a putative phosphatase of Spo0E family known to specifically dephosphorylate Spo0A-P. We showed that this protein (called Spo0E1) is a negative regulator of sporulation and that variations in spo0E1 expression can modulate the production of spores. Using fluorescent reporters to follow gene expression at the single-cell level, we correlated expression of cpcR and sporulation genes to the formation of the two differentiated subpopulations. IMPORTANCE Formation of spores is a paradigm for study of cell differentiation in prokaryotes. Sporulation initiation is governed by a gradual increase in the level and activity of the master regulator Spo0A. Spo0A is usually indirectly phosphorylated by a multicomponent phosphorelay and modulation of this phosphorelay system is a critical aspect of Bacillus physiology. Though we know this phosphorelay system is usually affected by two negative regulatory mechanisms: rap genes and spo0E family genes, the regulatory mechanisms controlling the transcription of these genes are poorly understood. Here, we reported the transcription factor CpcR positively regulates a spo0E family gene and variations in spo0E expression can modulate the production of spores in B. thuringiensis. This work emphasizes the diversity in modes of sporulation and illustrate the diversity in the strategies employed by bacteria to control this differentiation pathway and ensure their survival.
Collapse
|
8
|
Tagua VG, Molina‐Henares MA, Travieso ML, Nisa‐Martínez R, Quesada JM, Espinosa‐Urgel M, Ramos‐González MI. C‐di‐GMP
and biofilm are regulated in
Pseudomonas putida
by the
CfcA
/
CfcR
two‐component system in response to salts. Environ Microbiol 2022; 24:158-178. [DOI: 10.1111/1462-2920.15891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/14/2021] [Accepted: 12/26/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Víctor G. Tagua
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | | | - María L. Travieso
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - Rafael Nisa‐Martínez
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - José Miguel Quesada
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - Manuel Espinosa‐Urgel
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | | |
Collapse
|
9
|
Lee CD, Rizvi A, Edwards AN, DiCandia MA, Vargas Cuebas GG, Monteiro MP, McBride SM. Genetic mechanisms governing sporulation initiation in Clostridioides difficile. Curr Opin Microbiol 2021; 66:32-38. [PMID: 34933206 DOI: 10.1016/j.mib.2021.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022]
Abstract
As an anaerobe, Clostridioides difficile relies on the formation of a dormant spore for survival outside of the mammalian host's gastrointestinal tract. The spore is recalcitrant to desiccation, numerous disinfectants, UV light, and antibiotics, permitting long-term survival against environmental insults and efficient transmission from host to host. Although the morphological stages of spore formation are similar between C. difficile and other well-studied endospore-forming bacteria, the C. difficile genome does not appear to encode many of the known, conserved regulatory factors that are necessary to initiate sporulation in other spore-forming bacteria. The absence of early sporulation-specific orthologs suggests that C. difficile has evolved to control sporulation initiation in response to its unique and specific ecological niche and environmental cues within the host. Here, we review our current understanding and highlight the recent discoveries that have begun to unravel the regulatory pathways and molecular mechanisms by which C. difficile induces spore formation.
Collapse
Affiliation(s)
- Cheyenne D Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Arshad Rizvi
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Michael A DiCandia
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Germán G Vargas Cuebas
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Marcos P Monteiro
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA.
| |
Collapse
|
10
|
DnaJ and ClpX are required for HitRS and HssRS two-component system signaling in Bacillus anthracis. Infect Immun 2021; 90:e0056021. [PMID: 34748369 DOI: 10.1128/iai.00560-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis is the causative agent of anthrax. This Gram-positive bacterium poses a substantial risk to human health due to high mortality rates and the potential for malicious use as a bioterror weapon. To survive within the vertebrate host, B. anthracis relies on two-component system (TCS) signaling to sense host-induced stresses and respond to alterations in the environment through changes in target gene expression. HitRS and HssRS are cross-regulating TCSs in B. anthracis that respond to cell envelope disruptions and high heme levels, respectively. In this study, an unbiased and targeted genetic selection was designed to identify gene products that are involved in HitRS and HssRS signaling. This selection led to the identification of inactivating mutations within dnaJ and clpX that disrupt HitRS- and HssRS-dependent gene expression. DnaJ and ClpX are the substrate-binding subunits of the DnaJK protein chaperone and ClpXP protease, respectively. DnaJ regulates the levels of HitR and HitS to facilitate signal transduction, while ClpX specifically regulates HitS levels. Together these results reveal that the protein homeostasis regulators, DnaJ and ClpX, function to maintain B. anthracis signal transduction activities through TCS regulation. One sentence summary: Use of a genetic selection strategy to identify modulators of two-component system signaling in Bacillus anthracis.
Collapse
|
11
|
Paz HES, Monteiro MF, Stolf CS, Altabtbaei K, Casati MZ, Casarin RCV, Kumar PS. Predicted functional and taxonomic analysis of subgingival biofilm of grade C periodontitis in young patients under maintenance therapy. J Periodontol 2021; 93:1119-1130. [PMID: 34727386 DOI: 10.1002/jper.21-0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND In Grade C periodontitis in young patients (PerioC-Y), the functional roles of the subgingival community after years of periodontal treatment are still underexplored. This study evaluated the taxonomic and predicted functional content of the subgingival microbiome of PerioC-Y patients under supportive periodontal therapy (SPT). METHODS Clinical and microbiological data from subgingival biofilm were assessed from 10 PerioC-Y patients at two time points: at baseline and after 5.7±1.3 years of SPT. This was compared to 15 patients without a history of periodontitis. The V1-V3 and V4-V5 regions of the 16S rRNA were sequenced using the Illumina Miseq. Microbial composition was evaluated by the core microbiome, and alpha- and beta-diversity. The microbiome functional content was predicted using Picrust2, and the gene differential abundance was analyzed with DESeq2. RESULTS Clinical improvements were seen in PerioC-Y-SPT. Differences in β-diversity between PerioC-Y and Health were observed (Health x PerioC-Y-baseline, p = 0.02; Health x PerioC-Y-SPT, p = 0.05). Moreover, although β-diversity did not statistically change between baseline and SPT in PerioC-Y, the microbial correlation evidenced increased Streptococcus and decreased Treponema network contributions during SPT. Based on predicted functional data, treatment induced a reduction in genes related to flagellar protein and signal transduction in PerioC-Y. However, compared to healthy individuals, some genes remained more highly abundant in PerioC-Y-SPT, such as quorum sensing and efflux pump transporters. CONCLUSION Despite clinical improvements and a shift in taxonomic composition, the PerioC-Y patients' periodontal treatment was not enough to reach a similar microbiome to patients without disease experience. Some functional content in this biofilm remained altered in PerioC-Y regardless of disease control. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hélvis E S Paz
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Mabelle F Monteiro
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Camila S Stolf
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Khaled Altabtbaei
- Department of Periodontology, School of Dentistry, University of Alberta, Edmonton, Canada
| | - Márcio Z Casati
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Renato C V Casarin
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Purnima S Kumar
- Department of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
Bourret RB, Kennedy EN, Foster CA, Sepúlveda VE, Goldman WE. A Radical Reimagining of Fungal Two-Component Regulatory Systems. Trends Microbiol 2021; 29:883-893. [PMID: 33853736 DOI: 10.1016/j.tim.2021.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022]
Abstract
Bacterial two-component regulatory systems (TCSs) mediate signal transduction by transferring phosphoryl groups between sensor kinase and response regulator proteins, sometimes using intermediary histidine-phosphotransferase (Hpt) domains to form multistep phosphorelays. Because (i) almost all known fungal sensor kinases exhibit a domain architecture characteristic of bacterial TCS phosphorelays, (ii) all known fungal Hpts are stand-alone proteins suited to shuttle between cytoplasm and nucleus, and (iii) the best-characterized fungal TCS is a canonical phosphorelay, it is widely assumed that most or all fungal TCSs function via phosphorelays. However, fungi generally encode more sensor kinases than Hpts or response regulators, leading to a disparity between putative phosphorelay inputs and outputs. The simplest resolution of this paradox is to hypothesize that most fungal sensor kinases do not participate in phosphorelays. Reimagining how fungal TCSs might function leads to multiple testable predictions.
Collapse
Affiliation(s)
- Robert B Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA.
| | - Emily N Kennedy
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Clay A Foster
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Victoria E Sepúlveda
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - William E Goldman
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| |
Collapse
|
13
|
Meijer WJJ, Boer DR, Ares S, Alfonso C, Rojo F, Luque-Ortega JR, Wu LJ. Multiple Layered Control of the Conjugation Process of the Bacillus subtilis Plasmid pLS20. Front Mol Biosci 2021; 8:648468. [PMID: 33816561 PMCID: PMC8014075 DOI: 10.3389/fmolb.2021.648468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Bacterial conjugation is the main horizontal gene transfer route responsible for the spread of antibiotic resistance, virulence and toxin genes. During conjugation, DNA is transferred from a donor to a recipient cell via a sophisticated channel connecting the two cells. Conjugation not only affects many different aspects of the plasmid and the host, ranging from the properties of the membrane and the cell surface of the donor, to other developmental processes such as competence, it probably also poses a burden on the donor cell due to the expression of the large number of genes involved in the conjugation process. Therefore, expression of the conjugation genes must be strictly controlled. Over the past decade, the regulation of the conjugation genes present on the conjugative Bacillus subtilis plasmid pLS20 has been studied using a variety of methods including genetic, biochemical, biophysical and structural approaches. This review focuses on the interplay between RcopLS20, RappLS20 and Phr*pLS20, the proteins that control the activity of the main conjugation promoter Pc located upstream of the conjugation operon. Proper expression of the conjugation genes requires the following two fundamental elements. First, conjugation is repressed by default and an intercellular quorum-signaling system is used to sense conditions favorable for conjugation. Second, different layers of regulation act together to repress the Pc promoter in a strict manner but allowing rapid activation. During conjugation, ssDNA is exported from the cell by a membrane-embedded DNA translocation machine. Another membrane-embedded DNA translocation machine imports ssDNA in competent cells. Evidences are reviewed indicating that conjugation and competence are probably mutually exclusive processes. Some of the questions that remain unanswered are discussed.
Collapse
Affiliation(s)
- Wilfried J J Meijer
- Laboratory 402, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | - Saúl Ares
- Laboratory 35, C. Grupo Interdisciplinar de Sistemas Complejos and Departamento de Biología de Sistemas, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Carlos Alfonso
- Laboratory B08, Systems Biochemistry of Bacterial Division Lab, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Fernando Rojo
- Laboratory 216, Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Juan R Luque-Ortega
- Laboratory S07, Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
14
|
Yi Z, Zhang T, Xie J, Zhu Z, Luo S, Zhou K, Zhou P, Chen W, Zhao X, Sun Y, Xia L, Ding X. iTRAQ analysis reveals the effect of gabD and sucA gene knockouts on lysine metabolism and crystal protein formation in Bacillus thuringiensis. Environ Microbiol 2021; 23:2230-2243. [PMID: 33331075 DOI: 10.1111/1462-2920.15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/08/2020] [Indexed: 11/27/2022]
Abstract
Lysine metabolism plays an important role in the formation of the insecticidal crystal proteins of Bacillus thuringiensis (Bt). The genes lam, gabD and sucA encode three key enzymes of the lysine metabolic pathway in Bt4.0718. The lam gene mainly affects the cell growth at stable period, negligibly affected sporulation and insecticidal crystal protein (ICP) production. While, the deletion mutant strains of the gabD and sucA genes showed that the growth, sporulation and crystal protein formation were inhibited, cells became slender, and insecticidal activity was significantly reduced. iTRAQ proteomics and qRT-PCR used to analyse the differentially expressed protein (DEP) between the two mutant strains and the wild type strain. The functions of DEPs were visualized and statistically classified, which affect bacterial growth and metabolism by regulating biological metabolism pathways: the major carbon metabolism pathways, amino acid metabolism, oxidative phosphorylation pathways, nucleic acid metabolism, fatty acid synthesis and peptidoglycan synthesis. The gabD and sucA genes in lysine metabolic pathway are closely related to the sporulation and crystal proteins formation. The effects of DEPs and functional genes on basic cellular metabolic pathways were studied to provide new strategies for the construction of highly virulent insecticidal strains, the targeted transformation of functional genes.
Collapse
Affiliation(s)
- Zixian Yi
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Tong Zhang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Junyan Xie
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Sisi Luo
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Kexuan Zhou
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Pengji Zhou
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Wenhui Chen
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xiaoli Zhao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
15
|
Rap Protein Paralogs of Bacillus thuringiensis: a Multifunctional and Redundant Regulatory Repertoire for the Control of Collective Functions. J Bacteriol 2020; 202:JB.00747-19. [PMID: 31871034 DOI: 10.1128/jb.00747-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) is a mechanism of synthesis and detection of signaling molecules to regulate gene expression and coordinate behaviors in bacterial populations. In Bacillus subtilis, multiple paralog Rap-Phr QS systems (receptor-signaling peptides) are highly redundant and multifunctional, interconnecting the regulation of differentiation processes such as sporulation and competence. However, their functions in the Bacillus cereus group are largely unknown. We evaluated the functions of Rap proteins in Bacillus thuringiensis Bt8741, which codes for eight Rap-Phr systems; these were individually overexpressed to study their participation in sporulation, biofilm formation, spreading, and extracellular proteolytic activity. Our results show that four Rap-Phr systems (RapC, RapK, RapF, and RapLike) inhibit sporulation, two of which (RapK and RapF) probably dephosphorylate Spo0F from the Spo0A phosphorelay; these two Rap proteins also inhibit biofilm formation. Four systems (RapC, RacF1, RacF2, and RapLike) participate in spreading inhibition; finally, six systems (RapC, -F, -F2, -I, and -I1 and RapLike) decrease extracellular proteolytic activity. We foresee that functions performed by Rap proteins of Bt8741 could also be carried out by Rap homologs in other strains within the B. cereus group. These results indicate that Rap-Phr systems constitute a highly multifunctional and redundant regulatory repertoire that enables B. thuringiensis and other species from the B. cereus group to efficiently regulate collective functions during their life cycle in the face of changing environments.IMPORTANCE The Bacillus cereus group of bacteria includes species of high economic, clinical, biological warfare, and biotechnological interest, e.g., B. anthracis in bioterrorism, B. cereus in food intoxications, and B. thuringiensis in biocontrol. Knowledge about the ecology of these bacteria is hindered by our limited understanding of the regulatory circuits that control differentiation and specialization processes. Here, we uncover the participation of eight Rap quorum-sensing receptors in collective functions of B. thuringiensis These proteins are highly multifunctional and redundant in their functions, linking ecologically relevant processes such as sporulation, biofilm formation, spreading, extracellular proteolytic activity, and probably other functions in species from the B. cereus group.
Collapse
|
16
|
Perez-Riba A, Synakewicz M, Itzhaki LS. Folding cooperativity and allosteric function in the tandem-repeat protein class. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0188. [PMID: 29735741 DOI: 10.1098/rstb.2017.0188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 01/08/2023] Open
Abstract
The term allostery was originally developed to describe structural changes in one binding site induced by the interaction of a partner molecule with a distant binding site, and it has been studied in depth in the field of enzymology. Here, we discuss the concept of action at a distance in relation to the folding and function of the solenoid class of tandem-repeat proteins such as tetratricopeptide repeats (TPRs) and ankyrin repeats. Distantly located repeats fold cooperatively, even though only nearest-neighbour interactions exist in these proteins. A number of repeat-protein scaffolds have been reported to display allosteric effects, transferred through the repeat array, that enable them to direct the activity of the multi-subunit enzymes within which they reside. We also highlight a recently identified group of tandem-repeat proteins, the RRPNN subclass of TPRs, recent crystal structures of which indicate that they function as allosteric switches to modulate multiple bacterial quorum-sensing mechanisms. We believe that the folding cooperativity of tandem-repeat proteins and the biophysical mechanisms that transform them into allosteric switches are intimately intertwined. This opinion piece aims to combine our understanding of the two areas and develop ideas on their common underlying principles.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Albert Perez-Riba
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Marie Synakewicz
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
17
|
Bourret RB, Silversmith RE. Measuring the Activities of Two-Component Regulatory System Phosphatases. Methods Enzymol 2018; 607:321-351. [PMID: 30149864 DOI: 10.1016/bs.mie.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two-component regulatory systems (TCSs) are used for signal transduction by organisms from all three phylogenetic domains of the living world. TCSs use transient protein phosphorylation and dephosphorylation reactions to convert stimuli into appropriate responses to changing environmental conditions. Phosphoryl groups flow from ATP to sensor kinases (which detect stimuli) to response regulators (which implement responses) to inorganic phosphate (Pi). The phosphorylation state of response regulators controls their output activity. The rate at which phosphoryl groups are removed from response regulators correlates with the timescale of the corresponding biological function. Dephosphorylation reactions are fastest in chemotaxis TCS and slower in other TCS. Response regulators catalyze their own dephosphorylation, but at least five types of phosphatases are known to enhance dephosphorylation of response regulators. In each case, the phosphatases are believed to stimulate the intrinsic autodephosphorylation reaction. We discuss in depth the properties of TCS (particularly the differences between chemotaxis and nonchemotaxis TCS) relevant to designing in vitro assays for TCS phosphatases. We describe detailed assay methods for chemotaxis TCS phosphatases using loss of 32P, change in intrinsic fluorescence as a result of dephosphorylation, or release of Pi. The phosphatase activities of nonchemotaxis TCS phosphatases are less well characterized. We consider how the properties of nonchemotaxis TCS affect assay design and suggest suitable modifications for phosphatases from nonchemotaxis TCS, with an emphasis on the Pi release method.
Collapse
Affiliation(s)
- Robert B Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States.
| | - Ruth E Silversmith
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
18
|
Abstract
This is a tale of how technology drove the discovery of the molecular basis for signal transduction in the initiation of sporulation in Bacillus subtilis and in bacterial two-component systems. It progresses from genetics to cloning and sequencing to biochemistry to structural biology to an understanding of how proteins evolve interaction specificity and to identification of interaction surfaces by statistical physics. This is about how the people in my laboratory accomplished this feat; without them little would have been done.
Collapse
Affiliation(s)
- James A Hoch
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037;
| |
Collapse
|
19
|
Fazion F, Perchat S, Buisson C, Vilas-Bôas G, Lereclus D. A plasmid-borne Rap-Phr system regulates sporulation ofBacillus thuringiensisin insect larvae. Environ Microbiol 2017; 20:145-155. [DOI: 10.1111/1462-2920.13946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/28/2017] [Accepted: 09/23/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Fernanda Fazion
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
- Universidade Estadual de Londrina, Bio/CCB; Londrina Brazil
| | - Stéphane Perchat
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
| | - Christophe Buisson
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
| | | | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
| |
Collapse
|
20
|
Bidnenko V, Nicolas P, Grylak-Mielnicka A, Delumeau O, Auger S, Aucouturier A, Guerin C, Repoila F, Bardowski J, Aymerich S, Bidnenko E. Termination factor Rho: From the control of pervasive transcription to cell fate determination in Bacillus subtilis. PLoS Genet 2017; 13:e1006909. [PMID: 28723971 PMCID: PMC5540618 DOI: 10.1371/journal.pgen.1006909] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/02/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, RNA species originating from pervasive transcription are regulators of various cellular processes, from the expression of individual genes to the control of cellular development and oncogenesis. In prokaryotes, the function of pervasive transcription and its output on cell physiology is still unknown. Most bacteria possess termination factor Rho, which represses pervasive, mostly antisense, transcription. Here, we investigate the biological significance of Rho-controlled transcription in the Gram-positive model bacterium Bacillus subtilis. Rho inactivation strongly affected gene expression in B. subtilis, as assessed by transcriptome and proteome analysis of a rho-null mutant during exponential growth in rich medium. Subsequent physiological analyses demonstrated that a considerable part of Rho-controlled transcription is connected to balanced regulation of three mutually exclusive differentiation programs: cell motility, biofilm formation, and sporulation. In the absence of Rho, several up-regulated sense and antisense transcripts affect key structural and regulatory elements of these differentiation programs, thereby suppressing motility and biofilm formation and stimulating sporulation. We dissected how Rho is involved in the activity of the cell fate decision-making network, centered on the master regulator Spo0A. We also revealed a novel regulatory mechanism of Spo0A activation through Rho-dependent intragenic transcription termination of the protein kinase kinB gene. Altogether, our findings indicate that distinct Rho-controlled transcripts are functional and constitute a previously unknown built-in module for the control of cell differentiation in B. subtilis. In a broader context, our results highlight the recruitment of the termination factor Rho, for which the conserved biological role is probably to repress pervasive transcription, in highly integrated, bacterium-specific, regulatory networks.
Collapse
Affiliation(s)
- Vladimir Bidnenko
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pierre Nicolas
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Aleksandra Grylak-Mielnicka
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Olivier Delumeau
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sandrine Auger
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Anne Aucouturier
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Cyprien Guerin
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Francis Repoila
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jacek Bardowski
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Stéphane Aymerich
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elena Bidnenko
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
21
|
Gauvry E, Mathot AG, Leguérinel I, Couvert O, Postollec F, Broussolle V, Coroller L. Knowledge of the physiology of spore-forming bacteria can explain the origin of spores in the food environment. Res Microbiol 2017; 168:369-378. [DOI: 10.1016/j.resmic.2016.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/22/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
22
|
The Phosphotransfer Protein CD1492 Represses Sporulation Initiation in Clostridium difficile. Infect Immun 2016; 84:3434-3444. [PMID: 27647869 DOI: 10.1128/iai.00735-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
The formation of spores is critical for the survival of Clostridium difficile outside the host gastrointestinal tract. Persistence of C. difficile spores greatly contributes to the spread of C. difficile infection (CDI), and the resistance of spores to antimicrobials facilitates the relapse of infection. Despite the importance of sporulation to C. difficile pathogenesis, the molecular mechanisms controlling spore formation are not well understood. The initiation of sporulation is known to be regulated through activation of the conserved transcription factor Spo0A. Multiple regulators influence Spo0A activation in other species; however, many of these factors are not conserved in C. difficile and few novel factors have been identified. Here, we investigated the function of a protein, CD1492, that is annotated as a kinase and was originally proposed to promote sporulation by directly phosphorylating Spo0A. We found that deletion of CD1492 resulted in increased sporulation, indicating that CD1492 is a negative regulator of sporulation. Accordingly, we observed increased transcription of Spo0A-dependent genes in the CD1492 mutant. Deletion of CD1492 also resulted in decreased toxin production in vitro and in decreased virulence in the hamster model of CDI. Further, the CD1492 mutant demonstrated effects on gene expression that are not associated with Spo0A activation, including lower sigD and rstA transcription, suggesting that this protein interacts with factors other than Spo0A. Altogether, the data indicate that CD1492 negatively affects sporulation and positively influences motility and virulence. These results provide further evidence that C. difficile sporulation is regulated differently from that of other endospore-forming species.
Collapse
|
23
|
Salazar ME, Podgornaia AI, Laub MT. The small membrane protein MgrB regulates PhoQ bifunctionality to control PhoP target gene expression dynamics. Mol Microbiol 2016; 102:430-445. [PMID: 27447896 DOI: 10.1111/mmi.13471] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2016] [Indexed: 01/19/2023]
Abstract
In Escherichia coli and other γ-proteobacteria, the PhoQ-PhoP two-component signaling system responds to low extracellular Mg++ and cationic antimicrobial peptides. On transition to inducing conditions, the expression of PhoP-dependent genes increases rapidly, but then decays to a new, intermediate steady-state level, a phenomenon often referred to as partial adaptation. The molecular basis for this partial adaptation has been unclear. Here, using time-lapse fluorescence microscopy to examine PhoP-dependent gene expression in individual E. coli cells we show that partial adaptation arises through a negative feedback loop involving the small protein MgrB. When E. coli cells are shifted to low Mg++ , PhoQ engages in multiple rounds of autophosphorylation and phosphotransfer to PhoP, which, in turn, drives the expression of mgrB. MgrB then feeds back to inhibit the kinase activity of PhoQ. PhoQ is bifunctional such that, when not active as a kinase, it can stimulate the dephosphorylation of PhoP. Thus, MgrB drives the inactivation of PhoP and the observed adaptation in PhoP-dependent gene expression. Our results clarify the source of feedback inhibition in the E. coli PhoQ-PhoP system and reveal how exogenous factors, such as MgrB, can combine with a canonical two-component signaling pathway to produce complex temporal dynamics in target gene expression.
Collapse
Affiliation(s)
- Michael E Salazar
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
| |
Collapse
|
24
|
Randazzo P, Aubert-Frambourg A, Guillot A, Auger S. The MarR-like protein PchR (YvmB) regulates expression of genes involved in pulcherriminic acid biosynthesis and in the initiation of sporulation in Bacillus subtilis. BMC Microbiol 2016; 16:190. [PMID: 27542896 PMCID: PMC4992311 DOI: 10.1186/s12866-016-0807-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/07/2016] [Indexed: 12/27/2022] Open
Abstract
Background Cyclodipeptides and their derivatives constitute a large class of peptide natural products with noteworthy biological activities. In some yeasts and bacterial species, pulcherriminic acid derived from cyclo-L-leucyl-L-leucyl is excreted and chelates free ferric ions to form the pulcherrimin. In Bacillus subtilis, the enzymes YvmC and CypX are known to be involved in pulcherriminic acid biosynthesis. However, the mechanisms controlling the transcription of the yvmC-cypX operon are still unknown. Results In this work, we demonstrated that the B. subtilis YvmB MarR-like regulator is the major transcription factor controlling yvmC-cypX expression. A comprehensive quantitative proteomic analysis revealed a wide and prominent effect of yvmB deletion on proteins involved in cellular processes depending on iron availability. In addition, expression of yvmB depends on iron availability. Further analysis with real-time in vivo transcriptional profiling allowed us to define the YvmB regulon. We identified yvmBA, yvmC-cypX and yvnB for negative regulation and yisI for positive regulation. In combination with genetic approaches, gel mobility shift assays indicated that a 14-bp palindromic motif constitutes the YvmB binding site. It was unexpected that YvmB controls expression of yisI, whose encoding protein plays a negative role in the regulation of the sporulation initiation pathway. YvmB appears as an additional regulatory element into the cell’s decision to grow or sporulate. Conclusion Our findings reveal a possible role of the B. subtilis YvmB regulator in the regulatory networks connected to iron metabolism and to the control of proper timing of sporulation. YvmB was renamed as PchR controlling the pulcherriminic acid biosynthetic pathway of B. subtilis. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0807-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Randazzo
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anne Aubert-Frambourg
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Sandrine Auger
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
25
|
Dubnau EJ, Carabetta VJ, Tanner AW, Miras M, Diethmaier C, Dubnau D. A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Mol Microbiol 2016; 101:606-24. [PMID: 27501195 DOI: 10.1111/mmi.13411] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2016] [Indexed: 01/19/2023]
Abstract
Bacillus subtilis can enter three developmental pathways to form spores, biofilms or K-state cells. The K-state confers competence for transformation and antibiotic tolerance. Transition into each of these states requires a stable protein complex formed by YlbF, YmcA and YaaT. We have reported that this complex acts in sporulation by accelerating the phosphorylation of the response regulator Spo0A. Phosphorelay acceleration was also predicted to explain their involvement in biofilm formation and the K-state. This view has been challenged in the case of biofilms, by the suggestion that the three proteins act in association with the mRNA degradation protein RNaseY (Rny) to destabilize the sinR transcript. Here, we reaffirm the roles of the three proteins in supporting the phosphorylation of Spo0A for all three developmental pathways and show that in their absence sinR mRNA is not stabilized. We demonstrate that the three proteins also play unknown Spo0A-P-independent roles in the expression of biofilm matrix and in the production of ComK, the master transcription factor for competence. Finally, we show that domesticated strains of B. subtilis carry a mutation in sigH, which influences the expression kinetics of the early spore gene spoIIG, thereby increasing the penetrance of the ylbF, ymcA and yaaT sporulation phenotypes.
Collapse
Affiliation(s)
- Eugenie J Dubnau
- Public Health Research Institute Center.,Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Valerie J Carabetta
- Public Health Research Institute Center.,Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Andrew W Tanner
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | | | | | - David Dubnau
- Public Health Research Institute Center.,Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| |
Collapse
|
26
|
Babel H, Bischofs IB. Molecular and cellular factors control signal transduction via switchable allosteric modulator proteins (SAMPs). BMC SYSTEMS BIOLOGY 2016; 10:35. [PMID: 27122155 PMCID: PMC4849100 DOI: 10.1186/s12918-016-0274-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/05/2016] [Indexed: 11/21/2022]
Abstract
Background Rap proteins from Bacilli directly target response regulators of bacterial two-component systems and modulate their activity. Their effects are controlled by binding of signaling peptides to an allosteric site. Hence Raps exemplify a class of monomeric signaling receptors, which we call switchable allosteric modulator proteins (SAMPs). These proteins have potential applications in diverse biomedical and biotechnical settings, but a quantitative understanding of the impact of molecular and cellular factors on signal transduction is lacking. Here we introduce mathematical models that elucidate how signals are propagated though the network upon receptor stimulation and control the level of active response regulator. Results Based on a systematic parameter analysis of the models, we show that key features of the dose-response behavior at steady state are controlled either by the molecular properties of the modulator or the signaling context. In particular, we find that the biochemical activity (i.e. non-enzymatic vs. enzymatic) and allosteric properties of the modulator control the response amplitude. The Hill coefficient and the EC50 are controlled in addition by the relative ligand affinities. By tuning receptor properties, either graded or more switch-like (memory-less) response functions can be fashioned. Furthermore, we show that other contextual factors (e.g. relative concentrations of network components and kinase activity) have a substantial impact on the response, and we predict that there exists a modulator concentration which is optimal for response amplitude. Conclusion We discuss data on Rap-Phr systems in B. subtilis to show how our models can contribute to an integrated view of SAMP signaling by combining biochemical, structural and physiological insights. Our results also suggest that SAMPs could be evolved or engineered to implement diverse response behaviors. However—without additional regulatory controls—they can generate rather variable cellular outputs. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0274-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heiko Babel
- Center for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.,Center for the Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany
| | - Ilka B Bischofs
- Center for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany. .,Center for the Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
27
|
Abstract
Bacillus subtilis is an important model bacterium for the study of developmental adaptations that enhance survival in the face of fluctuating environmental challenges. These adaptations include sporulation, biofilm formation, motility, cannibalism, and competence. Remarkably, not all the cells in a given population exhibit the same response. The choice of fate by individual cells is random but is also governed by complex signal transduction pathways and cross talk mechanisms that reinforce decisions once made. The interplay of stochastic and deterministic mechanisms governing the selection of developmental fate on the single-cell level is discussed in this article.
Collapse
|
28
|
Mitchell SL, Ismail AM, Kenrick SA, Camilli A. The VieB auxiliary protein negatively regulates the VieSA signal transduction system in Vibrio cholerae. BMC Microbiol 2015; 15:59. [PMID: 25887601 PMCID: PMC4352251 DOI: 10.1186/s12866-015-0387-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vibrio cholerae is a facultative pathogen that lives in the aquatic environment and the human host. The ability of V. cholerae to monitor environmental changes as it transitions between these diverse environments is vital to its pathogenic lifestyle. One way V. cholerae senses changing external stimuli is through the three-component signal transduction system, VieSAB, which is encoded by the vieSAB operon. The VieSAB system plays a role in the inverse regulation of biofilm and virulence genes by controlling the concentration of the secondary messenger, cyclic-di-GMP. While the sensor kinase, VieS, and the response regulator, VieA, behave similar to typical two-component phosphorelay systems, the role of the auxiliary protein, VieB, is unclear. RESULTS Here we show that VieB binds to VieS and inhibits its autophosphorylation and phosphotransfer activity thus preventing phosphorylation of VieA. Additionally, we show that phosphorylation of the highly conserved Asp residue in the receiver domain of VieB regulates the inhibitory activity of VieB. CONCLUSION Taken together, these data point to an inhibitory role of VieB on the VieSA phosphorelay, allowing for additional control over the signal output. Insight into the function and regulatory mechanism of the VieSAB system improves our understanding of how V. cholerae controls gene expression as it transitions between the aquatic environment and human host.
Collapse
Affiliation(s)
- Stephanie L Mitchell
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, USA.
| | - Ayman M Ismail
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, USA.
| | | | - Andrew Camilli
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, USA.
| |
Collapse
|
29
|
Boguslawski KM, Hill PA, Griffith KL. Novel mechanisms of controlling the activities of the transcription factors Spo0A and ComA by the plasmid-encoded quorum sensing regulators Rap60-Phr60 in Bacillus subtilis. Mol Microbiol 2015; 96:325-48. [PMID: 25598361 DOI: 10.1111/mmi.12939] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2015] [Indexed: 01/09/2023]
Abstract
Bacillus subtilis and its closest relatives have multiple rap-phr quorum sensing gene pairs that coordinate a variety of physiological processes with population density. Extra-chromosomal rap-phr genes are also present on mobile genetic elements, yet relatively little is known about their function. In this work, we demonstrate that Rap60-Phr60 from plasmid pTA1060 coordinates a variety of biological processes with population density including sporulation, cannibalism, biofilm formation and genetic competence. Similar to other Rap proteins that control sporulation, Rap60 modulates phosphorylation of the transcription factor Spo0A by acting as a phosphatase of Spo0F∼P, an intermediate of the sporulation phosphorelay system. Additionally, Rap60 plays a noncanonical role in regulating the autophosphorylation of the sporulation-specific kinase KinA, a novel activity for Rap proteins. In contrast, Rap proteins that modulate genetic competence interfere with DNA binding by the transcription factor ComA. Rap60 regulates the activity of ComA in a unique manner by forming a Rap60-ComA-DNA ternary complex that inhibits transcription of target genes. Taken together, this work provides new insight into two novel mechanisms of regulating Spo0A and ComA by Rap60 and expands our general understanding of how plasmid-encoded quorum sensing pairs regulate important biological processes.
Collapse
Affiliation(s)
- Kristina M Boguslawski
- Medical Scientist Training Program, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | | | | |
Collapse
|
30
|
Abstract
Since the first application of high hydrostatic pressure (HHP) for food preservation more than 100 years ago, a wealth of knowledge has been gained on molecular mechanisms underlying the HHP-mediated destruction of microorganisms. However, one observation made back then is still valid, i.e. that HHP alone is not sufficient for the complete inactivation of bacterial endospores. To achieve "commercial sterility" of low-acid foods, i.e. inactivation of spores capable of growing in a specific product under typical storage conditions, a combination of HHP with other hurdles is required (most effectively with heat (HPT)). Although HPT processes are not yet industrially applied, continuous technical progress and increasing consumer demand for minimally processed, additive-free food with long shelf life, makes HPT sterilization a promising alternative to thermal processing.In recent years, considerable progress has been made in understanding the response of spores of the model organism B. subtilis to HPT treatments and detailed insights into some basic mechanisms in Clostridium species shed new light on differences in the HPT-mediated inactivation of Bacillus and Clostridium spores. In this chapter, current knowledge on sporulation and germination processes, which presents the basis for understanding development and loss of the extreme resistance properties of spores, is summarized highlighting commonalities and differences between Bacillus and Clostridium species. In this context, the effect of HPT treatments on spores, inactivation mechanism and kinetics, the role of population heterogeneity, and influence factors on the results of inactivation studies are discussed.
Collapse
Affiliation(s)
- Christian A Lenz
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, 85354, Freising, Germany
| | | |
Collapse
|
31
|
Abstract
Sporulation by Bacillus subtilis is a cell density-dependent response to nutrient deprivation. Central to the decision of entering sporulation is a phosphorelay, through which sensor kinases promote phosphorylation of Spo0A. The phosphorelay integrates both positive and negative signals, ensuring that sporulation, a time- and energy-consuming process that may bring an ecological cost, is only triggered should other adaptations fail. Here we report that a gastrointestinal isolate of B. subtilis sporulates with high efficiency during growth, bypassing the cell density, nutritional, and other signals that normally make sporulation a post-exponential-phase response. Sporulation during growth occurs because Spo0A is more active per cell and in a higher fraction of the population than in a laboratory strain. This in turn, is primarily caused by the absence from the gut strain of the genes rapE and rapK, coding for two aspartyl phosphatases that negatively modulate the flow of phosphoryl groups to Spo0A. We show, in line with recent results, that activation of Spo0A through the phosphorelay is the limiting step for sporulation initiation in the gut strain. Our results further suggest that the phosphorelay is tuned to favor sporulation during growth in gastrointestinal B. subtilis isolates, presumably as a form of survival and/or propagation in the gut environment.
Collapse
|
32
|
Edwards AN, McBride SM. Initiation of sporulation in Clostridium difficile: a twist on the classic model. FEMS Microbiol Lett 2014; 358:110-8. [PMID: 24910370 DOI: 10.1111/1574-6968.12499] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/02/2014] [Indexed: 01/05/2023] Open
Abstract
The formation of dormant endospores is a complex morphological process that permits long-term survival in inhospitable environments for many Gram-positive bacteria. Sporulation for the anaerobic gastrointestinal pathogen Clostridium difficile is necessary for survival outside of the gastrointestinal tract of its host. While the developmental stages of spore formation are largely conserved among endospore-forming bacteria, the genus Clostridium appears to be missing a number of conserved regulators required for efficient sporulation in other spore-forming bacteria. Several recent studies have discovered novel mechanisms and distinct regulatory pathways that control the initiation of sporulation and early-sporulation-specific gene expression. These differences in regulating the decision to undergo sporulation reflects the unique ecological niche and environmental conditions that C. difficile inhabits and encounters within the mammalian host.
Collapse
Affiliation(s)
- Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
33
|
Feng J, Gu Y, Wang J, Song C, Yang C, Xie H, Zhang W, Wang S. Curing the plasmid pMC1 from the poly (γ-glutamic acid) producing Bacillus amyloliquefaciens LL3 strain using plasmid incompatibility. Appl Biochem Biotechnol 2013; 171:532-42. [PMID: 23873640 DOI: 10.1007/s12010-013-0382-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/01/2013] [Indexed: 11/26/2022]
Abstract
Bacillus amyloliquefaciens LL3 is a glutamate-independent poly-γ-glutamic acid (γ-PGA) producing strain which consists of a circular chromosome (3,995,227 bp) and an endogenous plasmid pMC1 (6,758 bp). The study of the function of native plasmid and the genome-size reduction of the B. amyloliquefaciens LL3 strain requires elimination of the endogenous plasmid. Traditional plasmid-curing procedures using sodium dodecyl sulfate (SDS) or acridine orange combined with heat treatment have been shown to be ineffective in this strain. Plasmid incompatibility is an effective method for curing which has been studied before. In our research, the hypothetical Rep protein gene and the origin of replication of the endogenous plasmid were cloned into the temperature-sensitive vector yielding the incompatible plasmid pKSV7-rep-ori. This plasmid was transformed into LL3 by electroporation. The analysis of the strain bearing incompatible plasmids after incubation at 30 °C for 30 generations showed the production of plasmid cured strains. High frequency of elimination was achieved with more than 93 % of detected strains showing to be plasmid-cured. This is the first report describing plasmid cured in a γ-PGA producing strain using this method. The plasmid-cured strains showed an increase of γ-PGA production by 6 % and led to a yield of 4.159 g/l, compared to 3.918 g/l in control and cell growth increased during the early stages of the exponential phase. Gel permeation chromatography (GPC) characterization revealed that the γ-PGA produced by plasmid-cured strains and the wild strains were identical in terms of molecular weight. What is more, the further study of plasmid function showed that curing of the endogenous plasmid did not affect its sporulation efficiency.
Collapse
Affiliation(s)
- Jun Feng
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
A genome-wide transcriptional profiling of sporulating Bacillus subtilis strain lacking PrpE protein phosphatase. Mol Genet Genomics 2013; 288:469-81. [PMID: 23824080 PMCID: PMC3782651 DOI: 10.1007/s00438-013-0763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/15/2013] [Indexed: 11/01/2022]
Abstract
The sporulation process is a complex genetic developmental program leading to profound changes in global gene expression profile. In this work, we have applied genome-wide microarray approach for transcriptional profiling of Bacillus subtilis strain lacking a gene coding for PrpE protein phosphatase. This protein was previously shown to be involved in the regulation of germination of B. subtilis spores. Moreover, the deletion of prpE gene resulted in changing the resistance properties of spores. Our results provide genome-wide insight into the influence of this protein phosphatase on the physiology of B. subtilis cells. Although the precise role of PrpE in shaping the observed phenotype of ΔprpE mutant strain still remains beyond the understanding, our experiments brought observations of possible indirect implication of this protein in the regulation of cell motility and chemotaxis, as well as the development of competence. Surprisingly, prpE-deleted cells showed elevated level of general stress response, which turned out to be growth medium specific.
Collapse
|
35
|
Carabetta VJ, Tanner AW, Greco TM, Defrancesco M, Cristea IM, Dubnau D. A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Mol Microbiol 2013; 88:283-300. [PMID: 23490197 PMCID: PMC3781937 DOI: 10.1111/mmi.12186] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 11/27/2022]
Abstract
Bacillus subtilis has adopted a bet-hedging strategy to ensure survival in changing environments. From a clonal population, numerous sub-populations can emerge, expressing different sets of genes that govern the developmental processes of sporulation, competence and biofilm formation. The master transcriptional regulator Spo0A controls the entry into all three fates and the production of the phosphorylated active form of Spo0A is precisely regulated via a phosphorelay, involving at least four proteins. Two proteins, YmcA and YlbF were previously shown to play an unidentified role in the regulation of biofilm formation, and in addition, YlbF was shown to regulate competence and sporulation. Using an unbiased proteomics screen, we demonstrate that YmcA and YlbF interact with a third protein, YaaT to form a tripartite complex. We show that all three proteins are required for proper establishment of the three above-mentioned developmental states. We show that the complex regulates the activity of Spo0A in vivo and, using in vitro reconstitution experiments, determine that they stimulate the phosphorelay, probably by interacting with Spo0F and Spo0B. We propose that the YmcA-YlbF-YaaT ternary complex is required to increase Spo0A~P levels above the thresholds needed to induce development.
Collapse
Affiliation(s)
- Valerie J. Carabetta
- Public Health Research Center at New Jersey Medical School, 225 Warren Street, Newark, NJ 07103
| | - Andrew W. Tanner
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, 225 Warren Street, Newark NJ 07103
| | - Todd M. Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Melissa Defrancesco
- Public Health Research Center at New Jersey Medical School, 225 Warren Street, Newark, NJ 07103
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - David Dubnau
- Public Health Research Center at New Jersey Medical School, 225 Warren Street, Newark, NJ 07103
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, 225 Warren Street, Newark NJ 07103
| |
Collapse
|
36
|
Perego M. Forty years in the making: understanding the molecular mechanism of peptide regulation in bacterial development. PLoS Biol 2013; 11:e1001516. [PMID: 23526885 PMCID: PMC3601992 DOI: 10.1371/journal.pbio.1001516] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signal transduction systems are influenced by positive and negative forces resulting in an output reflecting the sum of the opposing forces. The Rap family of regulatory protein modules control the output of two-component signal transduction systems through protein∶protein and protein∶peptide interactions. These modules and their peptide regulators are found in complex signaling pathways, including the bacterial developmental pathway to sporulation, competence, and protease secretion. Two articles published in the current issue of PLOS Biology reveal by means of crystallographic analyses how the Rap proteins of bacilli are regulated by their inhibitor Phr peptide and provide a mechanistic explanation for a genetic phenotype isolated decades earlier. The Rap-Phr module of bacterial regulators was the prototype of a family that now extends to other bacterial signaling proteins that involve the use of the tetratricopeptide repeat structural fold. The results invite speculation regarding the potential exploitation of this module as a molecular tool for applications in therapeutic design and biotechnology.
Collapse
Affiliation(s)
- Marta Perego
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America.
| |
Collapse
|
37
|
Expression of kinA and kinB of Bacillus subtilis, necessary for sporulation initiation, is under positive stringent transcription control. J Bacteriol 2013; 195:1656-65. [PMID: 23378509 DOI: 10.1128/jb.02131-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bacillus subtilis cells were exposed to decoyinine to trigger stringent transcription control through inhibition of GMP synthase; amino acid starvation results in the same control through inhibition of GMP kinase by 5'-diphosphate 3'-diphosphate guanosine. The positive and negative transcription control of the stringent genes involves adenine and guanine at the transcription initiation sites, whereby they sense an increase and a decrease in the in vivo ATP and GTP pools, respectively. Decoyinine also induces sporulation in minimum medium. DNA microarray analysis revealed that decoyinine induced two major sensor kinase genes, kinA and kinB, involved in the phosphorelay leading to spore formation. lacZ fusion experiments involving the core promoter regions of kinA and kinB, whose transcription initiation bases are adenines, indicated that decoyinine induced their expression. This induction was independent of CodY and AbrB. When the adenines were replaced with guanines or cytosines, the induction by decoyinine decreased. The in situ replacement of the adenines with guanines actually affected this decoyinine-induced sporulation as well as massive sporulation in nutrient medium. These results imply that operation of the positive stringent transcription control of kinA and kinB, which is mediated by an increase in the ATP pool, is likely a prerequisite for the phosphorelay to transfer the phosphoryl group to Spo0A to initiate sporulation.
Collapse
|
38
|
Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 2012; 14:2870-90. [PMID: 22882546 PMCID: PMC3533761 DOI: 10.1111/j.1462-2920.2012.02841.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Petters T, Zhang X, Nesper J, Treuner-Lange A, Gomez-Santos N, Hoppert M, Jenal U, Søgaard-Andersen L. The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus. Mol Microbiol 2012; 84:147-65. [PMID: 22394314 PMCID: PMC3509222 DOI: 10.1111/j.1365-2958.2012.08015.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In Myxococcus xanthus the extracellular matrix is essential for type IV pili-dependent motility and starvation-induced fruiting body formation. Proteins of two-component systems including the orphan DNA binding response regulator DigR are essential in regulating the composition of the extracellular matrix. We identify the orphan hybrid histidine kinase SgmT as the partner kinase of DigR. In addition to kinase and receiver domains, SgmT consists of an N-terminal GAF domain and a C-terminal GGDEF domain. The GAF domain is the primary sensor domain. The GGDEF domain binds the second messenger bis-(3′-5′)-cyclic-dimeric-GMP (c-di-GMP) and functions as a c-di-GMP receptor to spatially sequester SgmT. We identify the DigR binding site in the promoter of the fibA gene, which encodes an abundant extracellular matrix metalloprotease. Whole-genome expression profiling experiments in combination with the identified DigR binding site allowed the identification of the DigR regulon and suggests that SgmT/DigR regulates the expression of genes for secreted proteins and enzymes involved in secondary metabolite synthesis. We suggest that SgmT/DigR regulates extracellular matrix composition and that SgmT activity is regulated by two sensor domains with ligand binding to the GAF domain resulting in SgmT activation and c-di-GMP binding to the GGDEF domain resulting in spatial sequestration of SgmT.
Collapse
Affiliation(s)
- Tobias Petters
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide. J Bacteriol 2012; 194:1378-88. [PMID: 22267516 DOI: 10.1128/jb.06747-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rap proteins in Bacillus subtilis regulate the phosphorylation level or the DNA-binding activity of response regulators such as Spo0F, involved in sporulation initiation, or ComA, regulating competence development. Rap proteins can be inhibited by specific peptides generated by the export-import processing pathway of the Phr proteins. Rap proteins have a modular organization comprising an amino-terminal alpha-helical domain connected to a domain formed by six tetratricopeptide repeats (TPR). In this study, the molecular basis for the specificity of the RapA phosphatase for its substrate, phosphorylated Spo0F (Spo0F∼P), and its inhibitor pentapeptide, PhrA, was analyzed in part by generating chimeric proteins with RapC, which targets the DNA-binding domain of ComA, rather than Spo0F∼P, and is inhibited by the PhrC pentapeptide. In vivo analysis of sporulation efficiency or competence-induced gene expression, as well as in vitro biochemical assays, allowed the identification of the amino-terminal 60 amino acids as sufficient to determine Rap specificity for its substrate and the central TPR3 to TPR5 (TPR3-5) repeats as providing binding specificity toward the Phr peptide inhibitor. The results allowed the prediction and testing of key residues in RapA that are essential for PhrA binding and specificity, thus demonstrating how the widespread structural fold of the TPR is highly versatile, using a common interaction mechanism for a variety of functions in eukaryotic and prokaryotic organisms.
Collapse
|
41
|
Evolving a robust signal transduction pathway from weak cross-talk. Mol Syst Biol 2011; 6:452. [PMID: 21179024 PMCID: PMC3018164 DOI: 10.1038/msb.2010.105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 11/05/2010] [Indexed: 11/15/2022] Open
Abstract
We have evolved a robust two-component signal transduction pathway from a sensor kinase (SK) and non-partner response regulator (RR) that show weak cross-talk in vitro and no detectable cross-talk in vivo in wild-type strains. The SK, CpxA, is bifunctional, with both kinase and phosphatase activities for its partner RR. We show that by combining a small number of mutations in CpxA that individually increase phosphorylation of the non-partner RR OmpR, phosphatase activity against phospho-OmpR emerges. The resulting circuit also becomes responsive to input signal to CpxA. The effects of combining these mutations in CpxA appear to reflect complex intragenic interactions between multiple sites in the protein. However, by analyzing a simple model of two-component signaling, we show that the behavior can be explained by a monotonic change in a single parameter controlling protein–protein interaction strength. The results suggest one possible mode of evolution for two-component systems with bifunctional SKs whereby the remarkable properties and competing reactions that characterize these systems can emerge by combining mutations of the same effect.
Collapse
|
42
|
Steiner E, Dago AE, Young DI, Heap JT, Minton NP, Hoch JA, Young M. Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum. Mol Microbiol 2011; 80:641-54. [PMID: 21401736 DOI: 10.1111/j.1365-2958.2011.07608.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The phosphorylated Spo0A transcription factor controls the initiation of endospore formation in Clostridium acetobutylicum, but genes encoding key phosphorelay components, Spo0F and Spo0B, are missing in the genome. We hypothesized that the five orphan histidine kinases of C. acetobutylicum interact directly with Spo0A to control its phosphorylation state. Sequential targeted gene disruption and gene expression profiling provided evidence for two pathways for Spo0A activation, one dependent on a histidine kinase encoded by cac0323, the other on both histidine kinases encoded by cac0903 and cac3319. Purified Cac0903 and Cac3319 kinases autophosphorylated and transferred phosphoryl groups to Spo0A in vitro, confirming their role in Spo0A activation in vivo. A cac0437 mutant hyper-sporulated, suggesting that Cac0437 is a modulator that prevents sporulation and maintains cellular Spo0A∼P homeostasis during growth. Accordingly, Cac0437 has apparently lost the ability to autophosphorylate in vitro; instead it catalyses the ATP-dependent dephosphorylation of Spo0A∼P releasing inorganic phosphate. Direct phosphorylation of Spo0A by histidine kinases and dephosphorylation by kinase-like proteins may be a common feature of the clostridia that may represent the ancestral state before the great oxygen event some 2.4 billion years ago, after which additional phosphorelay proteins were recruited in the evolutionary lineage that led to the bacilli.
Collapse
Affiliation(s)
- Elisabeth Steiner
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Ceredigion SY23 3DD, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation. Proc Natl Acad Sci U S A 2011; 108:5027-32. [PMID: 21383169 DOI: 10.1073/pnas.1016657108] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Before the anthrax letter attacks of 2001, the developing field of microbial forensics relied on microbial genotyping schemes based on a small portion of a genome sequence. Amerithrax, the investigation into the anthrax letter attacks, applied high-resolution whole-genome sequencing and comparative genomics to identify key genetic features of the letters' Bacillus anthracis Ames strain. During systematic microbiological analysis of the spore material from the letters, we identified a number of morphological variants based on phenotypic characteristics and the ability to sporulate. The genomes of these morphological variants were sequenced and compared with that of the B. anthracis Ames ancestor, the progenitor of all B. anthracis Ames strains. Through comparative genomics, we identified four distinct loci with verifiable genetic mutations. Three of the four mutations could be directly linked to sporulation pathways in B. anthracis and more specifically to the regulation of the phosphorylation state of Spo0F, a key regulatory protein in the initiation of the sporulation cascade, thus linking phenotype to genotype. None of these variant genotypes were identified in single-colony environmental B. anthracis Ames isolates associated with the investigation. These genotypes were identified only in B. anthracis morphotypes isolated from the letters, indicating that the variants were not prevalent in the environment, not even the environments associated with the investigation. This study demonstrates the forensic value of systematic microbiological analysis combined with whole-genome sequencing and comparative genomics.
Collapse
|
44
|
Structural basis of response regulator dephosphorylation by Rap phosphatases. PLoS Biol 2011; 9:e1000589. [PMID: 21346797 PMCID: PMC3035606 DOI: 10.1371/journal.pbio.1000589] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/22/2010] [Indexed: 01/03/2023] Open
Abstract
Bacterial Rap family proteins have been most extensively studied in Bacillus subtilis, where they regulate activities including sporulation, genetic competence, antibiotic expression, and the movement of the ICEBs1 transposon. One subset of Rap proteins consists of phosphatases that control B. subtilis and B. anthracis sporulation by dephosphorylating the response regulator Spo0F. The mechanistic basis of Rap phosphatase activity was unknown. Here we present the RapH-Spo0F X-ray crystal structure, which shows that Rap proteins consist of a 3-helix bundle and a tetratricopeptide repeat domain. Extensive biochemical and genetic functional studies reveal the importance of the observed RapH-Spo0F interactions, including the catalytic role of a glutamine in the RapH 3-helix bundle that inserts into the Spo0F active site. We show that in addition to dephosphorylating Spo0F, RapH can antagonize sporulation by sterically blocking phosphoryl transfer to and from Spo0F. Our structure-function analysis of the RapH-Spo0F interaction identified Rap protein residues critical for Spo0F phosphatase activity. This information enabled us to assign Spo0F phosphatase activity to a Rap protein based on sequence alone, which was not previously possible. Finally, as the ultimate test of our newfound understanding of the structural requirements for Rap phosphatase function, a non-phosphatase Rap protein that inhibits the binding of the response regulator ComA to DNA was rationally engineered to dephosphorylate Spo0F. In addition to revealing the mechanistic basis of response regulator dephosphorylation by Rap proteins, our studies support the previously proposed T-loop-Y allostery model of receiver domain regulation that restricts the aromatic "switch" residue to an internal position when the β4-α4 loop adopts an active-site proximal conformation.
Collapse
|
45
|
Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 2010; 107:8486-91. [PMID: 20404177 DOI: 10.1073/pnas.1002499107] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A model system for investigating how developmental regulatory networks determine cell fate is spore formation in Bacillus subtilis. The master regulator for sporulation is Spo0A, which is activated by phosphorylation via a phosphorelay that is subject to three positive feedback loops. The ultimate decision to sporulate is, however, stochastic in that only a portion of the population sporulates even under optimal conditions. It was previously assumed that activation of Spo0A and hence entry into sporulation is subject to a bistable switch mediated by one or more feedback loops. Here we reinvestigate the basis for bimodality in sporulation. We show that none of the feedback loops is rate limiting for the synthesis and phosphorylation of Spo0A. Instead, the loops ensure a just-in-time supply of relay components for rising levels of phosphorylated Spo0A, with phosphate flux through the relay being limiting for Spo0A activation and sporulation. In addition, genes under Spo0A control did not exhibit a bimodal pattern of expression as expected for a bistable switch. In contrast, we observed a highly heterogeneous pattern of Spo0A activation that increased in a nonlinear manner with time. We present a computational model for the nonlinear increase and propose that the phosphorelay is a noise generator and that only cells that attain a threshold level of phosphorylated Spo0A sporulate.
Collapse
|
46
|
Goulian M. Two-component signaling circuit structure and properties. Curr Opin Microbiol 2010; 13:184-9. [PMID: 20149717 DOI: 10.1016/j.mib.2010.01.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 12/18/2022]
Abstract
Various modeling and experimental studies have analyzed the reactions, interconnections, and motifs in two-component systems, with an eye toward understanding their physiological implications and the differences between alternative designs. Examples where recent progress has been made include aspects of autoregulation, signal integration in branched pathways, cross-talk suppression, and cross-regulation via connector proteins.
Collapse
Affiliation(s)
- Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.
| |
Collapse
|
47
|
Ninfa AJ. Use of two-component signal transduction systems in the construction of synthetic genetic networks. Curr Opin Microbiol 2010; 13:240-5. [PMID: 20149718 DOI: 10.1016/j.mib.2010.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/04/2010] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
Two-component signal transduction systems are a common type of signaling system in prokaryotes; the typical cell has dozens of systems regulating aspects of physiology and controlling responses to environmental conditions. In this review, I consider how these systems may be useful for engineering novel cell functions. Examples of successful incorporation of two-component systems into engineered systems are noted, and features of the systems that favor or hinder potential future use of these signaling systems for synthetic biology applications are discussed. The focus will be on the engineering of novel couplings of sensory functions to signaling outputs. Recent successes in this area are noted, such as the development of light-sensitive transmitter proteins and chemotactic receptors responsive to nitrate.
Collapse
Affiliation(s)
- Alexander J Ninfa
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA.
| |
Collapse
|
48
|
Measurement of Response Regulator Autodephosphorylation Rates Spanning Six Orders of Magnitude. Methods Enzymol 2010; 471:89-114. [DOI: 10.1016/s0076-6879(10)71006-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Buelow DR, Raivio TL. Three (and more) component regulatory systems - auxiliary regulators of bacterial histidine kinases. Mol Microbiol 2009; 75:547-66. [PMID: 19943903 DOI: 10.1111/j.1365-2958.2009.06982.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-component signal transduction (TCST) is the most prevalent mechanism employed by microbes to sense and respond to environmental changes. It is characterized by the signal-induced transfer of phosphate from a sensor histidine kinase (HK) to a response regulator (RR), resulting in a cellular response. An emerging theme in the field of TCST signalling is the discovery of auxiliary factors, distinct from the HK and RR, which are capable of influencing phosphotransfer. One group of TCST auxiliary proteins accomplishes this task by acting on HKs. Auxiliary regulators of HKs are widespread and have been identified in all cellular compartments, where they can influence HK activity through interactions with the sensing, transmembrane or enzymatic domains of the HK. The effects of an auxiliary regulator are controlled by its regulated expression, modification and/or through ligand binding. Ultimately, auxiliary regulators can connect a given TCST system to other regulatory networks in the cell or result in regulation of the TCST system in response to an expanded range of stimuli. The studies highlighted in this review draw attention to an emerging view of bacterial TCST systems as core signalling units upon which auxiliary factors act.
Collapse
Affiliation(s)
- Daelynn R Buelow
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | | |
Collapse
|
50
|
López D, Kolter R. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol Rev 2009; 34:134-49. [PMID: 20030732 DOI: 10.1111/j.1574-6976.2009.00199.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The soil-dwelling bacterium Bacillus subtilis differentiates into distinct subpopulations of specialized cells that coexist within highly structured communities. The coordination and interplay between these cell types requires extensive extracellular communication driven mostly by sensing self-generated secreted signals. These extracellular signals activate a set of sensor kinases, which respond by phosphorylating three major regulatory proteins, Spo0A, DegU and ComA. Each phosphorylated regulator triggers a specific differentiation program while at the same time repressing other differentiation programs. This allows a cell to differentiate in response to a specific cue, even in the presence of other, possibly conflicting, signals. The sensor kinases involved respond to an eclectic group of extracellular signals, such as quorum-sensing molecules, natural products, temperature, pH or scarcity of nutrients. This article reviews the cascades of cell differentiation pathways that are triggered by sensing extracellular signals. We also present a tentative developmental model in which the diverse cell types sequentially differentiate to achieve the proper development of the bacterial community.
Collapse
Affiliation(s)
- Daniel López
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|