1
|
Khoodoruth MAS, Khoodoruth WNCK, Uroos M, Al-Abdulla M, Khan YS, Mohammad F. Diagnostic and mechanistic roles of MicroRNAs in neurodevelopmental & neurodegenerative disorders. Neurobiol Dis 2024; 202:106717. [PMID: 39461569 DOI: 10.1016/j.nbd.2024.106717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
MicroRNAs (miRNAs) are emerging as crucial elements in the regulation of gene expression, playing a significant role in the underlying neurobiology of a wide range of neuropsychiatric disorders. This review examines the intricate involvement of miRNAs in neuropsychiatric disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Fragile X syndrome (FXS), autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), Tourette syndrome (TS), schizophrenia (SCZ), and mood disorders. This review highlights how miRNA dysregulation can illuminate the molecular pathways of these diseases and potentially serve as biomarkers for early diagnosis and prognosis. Specifically, miRNAs' ability to target genes critical to the pathology of neurodegenerative diseases, their role in the development of trinucleotide repeat and neurodevelopmental disorders, and their distinctive patterns in SCZ and mood disorders are discussed. The review also stresses the value of miRNAs in precision neuropsychiatry, where they could predict treatment outcomes and aid in disease management. Furthermore, the study of conserved miRNAs in model organisms like Drosophila underscores their broad utility and provides deeper mechanistic insights into their biological functions. This comprehensive examination of miRNAs across various conditions advocates for their integration into clinical practice, promising advancements in personalized healthcare for neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Mohamed Adil Shah Khoodoruth
- Child and Adolescent Mental Health Service, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar
| | | | | | - Majid Al-Abdulla
- Mental Health Service, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Yasser Saeed Khan
- Child and Adolescent Mental Health Service, Hamad Medical Corporation, Doha, Qatar
| | - Farhan Mohammad
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar.
| |
Collapse
|
2
|
Yadav M, Harding RJ, Li T, Xu X, Gall-Duncan T, Khan M, Bardile CF, Sequiera GL, Duan S, Chandrasekaran R, Pan A, Bu J, Yamazaki T, Hirose T, Prinos P, Tippett L, Turner C, Curtis MA, Faull RL, Pouladi MA, Pearson CE, He HH, Arrowsmith CH. Huntingtin is an RNA binding protein and participates in NEAT1-mediated paraspeckles. SCIENCE ADVANCES 2024; 10:eado5264. [PMID: 39028820 PMCID: PMC11259171 DOI: 10.1126/sciadv.ado5264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Huntingtin protein, mutated in Huntington's disease, is implicated in nucleic acid-mediated processes, yet the evidence for direct huntingtin-nucleic acid interaction is limited. Here, we show wild-type and mutant huntingtin copurify with nucleic acids, primarily RNA, and interact directly with G-rich RNAs in in vitro assays. Huntingtin RNA-immunoprecipitation sequencing from patient-derived fibroblasts and neuronal progenitor cells expressing wild-type and mutant huntingtin revealed long noncoding RNA NEAT1 as a significantly enriched transcript. Altered NEAT1 levels were evident in Huntington's disease cells and postmortem brain tissues, and huntingtin knockdown decreased NEAT1 levels. Huntingtin colocalized with NEAT1 in paraspeckles, and we identified a high-affinity RNA motif preferred by huntingtin. This study highlights NEAT1 as a huntingtin interactor, demonstrating huntingtin's involvement in RNA-mediated functions and paraspeckle regulation.
Collapse
Affiliation(s)
- Manisha Yadav
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rachel J. Harding
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Tiantian Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xin Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Terence Gall-Duncan
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mahreen Khan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Costanza Ferrari Bardile
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Glen L. Sequiera
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Shili Duan
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Anni Pan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jiachuan Bu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Lynette Tippett
- School of Psychology, University of Auckland, Auckland, New Zealand
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Anatomical Pathology, Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| | - Maurice A. Curtis
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L.M. Faull
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Mahmoud A. Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Christopher E. Pearson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
3
|
Mu C, Gao M, Xu W, Sun X, Chen T, Xu H, Qiu H. Mechanisms of microRNA-132 in central neurodegenerative diseases: A comprehensive review. Biomed Pharmacother 2024; 170:116029. [PMID: 38128185 DOI: 10.1016/j.biopha.2023.116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNA-132 (miR-132) is a highly conserved molecule that plays a crucial regulatory role in central nervous system (CNS) disorders. The expression levels of miR-132 exhibit variability in various neurological disorders and have been closely linked to disease onset and progression. The expression level of miR-132 in the CNS is regulated by a diverse range of stimuli and signaling pathways, including neuronal migration and integration, dendritic outgrowth, and complexity, synaptogenesis, synaptic plasticity, as well as inflammation and apoptosis activation. The aberrant expression of miR-132 in various central neurodegenerative diseases has garnered widespread attention. Clinical studies have revealed altered miR-132 expression levels in both chronic and acute CNS diseases, positioning miR-132 as a potential biomarker or therapeutic target. An in-depth exploration of miR-132 holds the promise of enhancing our understanding of the mechanisms underlying CNS diseases, thereby offering novel insights and strategies for disease diagnosis and treatment. It is anticipated that this review will assist researchers in recognizing the potential value of miR-132 and in generating innovative ideas for clinical trials related to CNS degenerative diseases.
Collapse
Affiliation(s)
- Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Meng Gao
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Weijing Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Tianhao Chen
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Hongbin Qiu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
4
|
Weng YT, Chang YM, Chern Y. The Impact of Dysregulated microRNA Biogenesis Machinery and microRNA Sorting on Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24043443. [PMID: 36834853 PMCID: PMC9959302 DOI: 10.3390/ijms24043443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
MicroRNAs (miRNAs) are 22-nucleotide noncoding RNAs involved in the differentiation, development, and function of cells in the body by targeting the 3'- untranslated regions (UTR) of mRNAs for degradation or translational inhibition. miRNAs not only affect gene expression inside the cells but also, when sorted into exosomes, systemically mediate the communication between different types of cells. Neurodegenerative diseases (NDs) are age-associated, chronic neurological diseases characterized by the aggregation of misfolded proteins, which results in the progressive degeneration of selected neuronal population(s). The dysregulation of biogenesis and/or sorting of miRNAs into exosomes was reported in several NDs, including Huntington's disease (HD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). Many studies support the possible roles of dysregulated miRNAs in NDs as biomarkers and therapeutic treatments. Understanding the molecular mechanisms underlying the dysregulated miRNAs in NDs is therefore timely and important for the development of diagnostic and therapeutic interventions. In this review, we focus on the dysregulated miRNA machinery and the role of RNA-binding proteins (RBPs) in NDs. The tools that are available to identify the target miRNA-mRNA axes in NDs in an unbiased manner are also discussed.
Collapse
|
5
|
Nabariya DK, Heinz A, Derksen S, Krauß S. Intracellular and intercellular transport of RNA organelles in CXG repeat disorders: The strength of weak ties. Front Mol Biosci 2022; 9:1000932. [PMID: 36589236 PMCID: PMC9800848 DOI: 10.3389/fmolb.2022.1000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
RNA is a vital biomolecule, the function of which is tightly spatiotemporally regulated. RNA organelles are biological structures that either membrane-less or surrounded by membrane. They are produced by the all the cells and indulge in vital cellular mechanisms. They include the intracellular RNA granules and the extracellular exosomes. RNA granules play an essential role in intracellular regulation of RNA localization, stability and translation. Aberrant regulation of RNA is connected to disease development. For example, in microsatellite diseases such as CXG repeat expansion disorders, the mutant CXG repeat RNA's localization and function are affected. RNA is not only transported intracellularly but can also be transported between cells via exosomes. The loading of the exosomes is regulated by RNA-protein complexes, and recent studies show that cytosolic RNA granules and exosomes share common content. Intracellular RNA granules and exosome loading may therefore be related. Exosomes can also transfer pathogenic molecules of CXG diseases from cell to cell, thereby driving disease progression. Both intracellular RNA granules and extracellular RNA vesicles may serve as a source for diagnostic and treatment strategies. In therapeutic approaches, pharmaceutical agents may be loaded into exosomes which then transport them to the desired cells/tissues. This is a promising target specific treatment strategy with few side effects. With respect to diagnostics, disease-specific content of exosomes, e.g., RNA-signatures, can serve as attractive biomarker of central nervous system diseases detecting early physiological disturbances, even before symptoms of neurodegeneration appear and irreparable damage to the nervous system occurs. In this review, we summarize the known function of cytoplasmic RNA granules and extracellular vesicles, as well as their role and dysfunction in CXG repeat expansion disorders. We also provide a summary of established protocols for the isolation and characterization of both cytoplasmic and extracellular RNA organelles.
Collapse
Affiliation(s)
| | | | | | - Sybille Krauß
- Human Biology/Neurobiology, Institute of Biology, Faculty IV, School of Science and Technology, University of Siegen, Siegen, Germany
| |
Collapse
|
6
|
Petry S, Keraudren R, Nateghi B, Loiselle A, Pircs K, Jakobsson J, Sephton C, Langlois M, St-Amour I, Hébert SS. Widespread alterations in microRNA biogenesis in human Huntington’s disease putamen. Acta Neuropathol Commun 2022; 10:106. [PMID: 35869509 PMCID: PMC9308264 DOI: 10.1186/s40478-022-01407-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
Altered microRNA (miRNA) expression is a common feature of Huntington’s disease (HD) and could participate in disease onset and progression. However, little is known about the underlying causes of miRNA disruption in HD. We and others have previously shown that mutant Huntingtin binds to Ago2, a central component of miRNA biogenesis, and disrupts mature miRNA levels. In this study, we sought to determine if miRNA maturation per se was compromised in HD. Towards this end, we characterized major miRNA biogenesis pathway components and miRNA maturation products (pri-miRNA, pre-miRNA, and mature) in human HD (N = 41, Vonsattel grades HD2-4) and healthy control (N = 25) subjects. Notably, the striatum (putamen) and cortex (BA39) from the same individuals were analyzed in parallel. We show that Ago2, Drosha, and Dicer were strongly downregulated in human HD at the early stages of the disease. Using a panel of HD-related miRNAs (miR-10b, miR-196b, miR-132, miR-212, miR-127, miR-128), we uncovered various types of maturation defects in the HD brain, the most prominent occurring at the pre-miRNA to mature miRNA maturation step. Consistent with earlier findings, we provide evidence that alterations in autophagy could participate in miRNA maturation defects. Notably, most changes occurred in the striatum, which is more prone to HTT aggregation and neurodegeneration. Likewise, we observed no significant alterations in miRNA biogenesis in human HD cortex and blood, strengthening tissue-specific effects. Overall, these data provide important clues into the underlying mechanisms behind miRNA alterations in HD-susceptible tissues. Further investigations are now required to understand the biological, diagnostic, and therapeutic implications of miRNA/RNAi biogenesis defects in HD and related neurodegenerative disorders.
Collapse
|
7
|
Weng YT, Chen HM, Chien T, Chiu FL, Kuo HC, Chern Y. TRAX Provides Neuroprotection for Huntington's Disease Via Modulating a Novel Subset of MicroRNAs. Mov Disord 2022; 37:2008-2020. [PMID: 35997316 DOI: 10.1002/mds.29174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/19/2022] [Accepted: 07/14/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disease caused by CAG-repeat expansions (>36) in exon 1 of HTT, which dysregulates multiple cellular machineries. Translin-associated protein X (TRAX) is a scaffold protein with diverse functions, including suppressing the microRNA (miRNA)-mediated silencing by degrading pre-miRNA. To date, the role of TRAX in neurodegenerative diseases remains unknown. OBJECTIVES We delineated the role of TRAX upregulation during HD progression. METHODS Expression of TRAX in the brains of humans and three mouse models with HD were analyzed by immunohistochemistry staining, western blot, and quantitative reverse transcription-polymerase chain reaction. Adeno-associated viruses harboring TRAX short hairpin RNA were intrastriatally injected into HD mice to downregulate TRAX. HD-like symptoms were analyzed by behavioral and biochemical assessments. The miRNA-sequencing and RNA-sequencing analyses were used to identify the TRAX- regulated miRNA-messenger RNA (mRNA) axis during HD progression. The identified gene targets were validated biochemically in mouse and human striatal cells. RESULTS We discovered that TRAX was upregulated in the brains of HD patients and three HD mouse models. Downregulation of TRAX enhanced 83 miRNAs (including miR-330-3p, miR-496a-3p) and subsequently changed the corresponding mRNA networks critical for HD pathogenesis (eg, DARPP-32 and brain-derived neurotrophic factor). Disruption of the TRAX-mediated miRNA-mRNA axis accelerated the progression of HD-like symptoms, including the degeneration of motor function, accumulation of mHTT aggregates, and shortened neurite outgrowth. CONCLUSIONS We demonstrated that TRAX upregulation is authentic and protective in HD. Our study provides a novel layer of regulation for HD pathogenesis and may lead to the development of new therapeutic strategies for HD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yu-Ting Weng
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting Chien
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Feng-Lan Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Roy B, Lee E, Li T, Rampersaud M. Role of miRNAs in Neurodegeneration: From Disease Cause to Tools of Biomarker Discovery and Therapeutics. Genes (Basel) 2022; 13:genes13030425. [PMID: 35327979 PMCID: PMC8951370 DOI: 10.3390/genes13030425] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases originate from neuronal loss in the central nervous system (CNS). These debilitating diseases progress with age and have become common due to an increase in longevity. The National Institute of Environmental Health Science’s 2021 annual report suggests around 6.2 million Americans are living with Alzheimer’s disease, and there is a possibility that there will be 1.2 million Parkinson’s disease patients in the USA by 2030. There is no clear-cut universal mechanism for identifying neurodegenerative diseases, and therefore, they pose a challenge for neurobiology scientists. Genetic and environmental factors modulate these diseases leading to familial or sporadic forms. Prior studies have shown that miRNA levels are altered during the course of the disease, thereby suggesting that these noncoding RNAs may be the contributing factor in neurodegeneration. In this review, we highlight the role of miRNAs in the pathogenesis of neurodegenerative diseases. Through this review, we aim to achieve four main objectives: First, we highlight how dysregulation of miRNA biogenesis led to these diseases. Second, we highlight the computational or bioinformatics tools required to identify the putative molecular targets of miRNAs, leading to biological molecular pathways or mechanisms involved in these diseases. Third, we focus on the dysregulation of miRNAs and their target genes leading to several neurodegenerative diseases. In the final section, we highlight the use of miRNAs as potential diagnostic biomarkers in the early asymptomatic preclinical diagnosis of these age-dependent debilitating diseases. Additionally, we discuss the challenges and advances in the development of miRNA therapeutics for brain targeting. We list some of the innovative strategies employed to deliver miRNA into target cells and the relevance of these viral and non-viral carrier systems in RNA therapy for neurodegenerative diseases. In summary, this review highlights the relevance of studying brain-enriched miRNAs, the mechanisms underlying their regulation of target gene expression, their dysregulation leading to progressive neurodegeneration, and their potential for biomarker marker and therapeutic intervention. This review thereby highlights ways for the effective diagnosis and prevention of these neurodegenerative disorders in the near future.
Collapse
Affiliation(s)
- Bidisha Roy
- Life Science Centre, Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07012, USA
- Correspondence:
| | - Erica Lee
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| | - Teresa Li
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| | - Maria Rampersaud
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| |
Collapse
|
9
|
Sharma R, Sharma S, Thakur A, Singh A, Singh J, Nepali K, Liou JP. The Role of Epigenetic Mechanisms in Autoimmune, Neurodegenerative, Cardiovascular, and Imprinting Disorders. Mini Rev Med Chem 2022; 22:1977-2011. [PMID: 35176978 DOI: 10.2174/1389557522666220217103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic mutations like aberrant DNA methylation, histone modifications, or RNA silencing are found in a number of human diseases. This review article discusses the epigenetic mechanisms involved in neurodegenerative disorders, cardiovascular disorders, auto-immune disorder, and genomic imprinting disorders. In addition, emerging epigenetic therapeutic strategies for the treatment of such disorders are presented. Medicinal chemistry campaigns highlighting the efforts of the chemists invested towards the rational design of small molecule inhibitors have also been included. Pleasingly, several classes of epigenetic inhibitors, DNMT, HDAC, BET, HAT, and HMT inhibitors along with RNA based therapies have exhibited the potential to emerge as therapeutics in the longer run. It is quite hopeful that epigenetic modulator-based therapies will advance to clinical stage investigations by leaps and bounds.
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Arshdeep Singh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jagjeet Singh
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia.,Department of Pharmacy, Rayat-Bahara Group of Institutes, Hoshiarpur, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Qi Z, Li J, Li M, Du X, Zhang L, Wang S, Xu B, Liu W, Xu Z, Deng Y. The Essential Role of Epigenetic Modifications in Neurodegenerative Diseases with Dyskinesia. Cell Mol Neurobiol 2021; 42:2459-2472. [PMID: 34383231 DOI: 10.1007/s10571-021-01133-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022]
Abstract
Epigenetics play an essential role in the occurrence and improvement of many diseases. Evidence shows that epigenetic modifications are crucial to the regulation of gene expression. DNA methylation is closely linked to embryonic development in mammalian. In recent years, epigenetic drugs have shown unexpected therapeutic effects on neurological diseases, leading to the study of the epigenetic mechanism in neurodegenerative diseases. Unlike genetics, epigenetics modify the genome without changing the DNA sequence. Research shows that epigenetics is involved in all aspects of neurodegenerative diseases. The study of epigenetic will provide valuable insights into the molecular mechanism of neurodegenerative diseases, which may lead to new treatments and diagnoses. This article reviews the role of epigenetic modifications neurodegenerative diseases with dyskinesia, and discusses the therapeutic potential of epigenetic drugs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Minghui Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Xianchao Du
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Lei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Shuang Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
11
|
Huntingtin and Its Role in Mechanisms of RNA-Mediated Toxicity. Toxins (Basel) 2021; 13:toxins13070487. [PMID: 34357961 PMCID: PMC8310054 DOI: 10.3390/toxins13070487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is caused by a CAG-repeat expansion mutation in the Huntingtin (HTT) gene. It is characterized by progressive psychiatric and neurological symptoms in combination with a progressive movement disorder. Despite the ubiquitous expression of HTT, pathological changes occur quite selectively in the central nervous system. Since the discovery of HD more than 150 years ago, a lot of research on molecular mechanisms contributing to neurotoxicity has remained the focal point. While traditionally, the protein encoded by the HTT gene remained the cynosure for researchers and was extensively reviewed elsewhere, several studies in the last few years clearly indicated the contribution of the mutant RNA transcript to cellular dysfunction as well. In this review, we outline recent studies on RNA-mediated molecular mechanisms that are linked to cellular dysfunction in HD models. These mechanisms include mis-splicing, aberrant translation, deregulation of the miRNA machinery, deregulated RNA transport and abnormal regulation of mitochondrial RNA. Furthermore, we summarize recent therapeutical approaches targeting the mutant HTT transcript. While currently available treatments are of a palliative nature only and do not halt the disease progression, recent clinical studies provide hope that these novel RNA-targeting strategies will lead to better therapeutic approaches.
Collapse
|
12
|
Gamarra M, de la Cruz A, Blanco-Urrejola M, Baleriola J. Local Translation in Nervous System Pathologies. Front Integr Neurosci 2021; 15:689208. [PMID: 34276318 PMCID: PMC8279726 DOI: 10.3389/fnint.2021.689208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Dendrites and axons can extend dozens to hundreds of centimeters away from the cell body so that a single neuron can sense and respond to thousands of stimuli. Thus, for an accurate function of dendrites and axons the neuronal proteome needs to be asymmetrically distributed within neurons. Protein asymmetry can be achieved by the transport of the protein itself or the transport of the mRNA that is then translated at target sites in neuronal processes. The latter transport mechanism implies local translation of localized mRNAs. The role of local translation in nervous system (NS) development and maintenance is well established, but recently there is growing evidence that this mechanism and its deregulation are also relevant in NS pathologies, including neurodegenerative diseases. For instance, upon pathological signals disease-related proteins can be locally synthesized in dendrites and axons. Locally synthesized proteins can exert their effects at or close to the site of translation, or they can be delivered to distal compartments like the nucleus and induce transcriptional responses that lead to neurodegeneration, nerve regeneration and other cell-wide responses. Relevant key players in the process of local protein synthesis are RNA binding proteins (RBPs), responsible for mRNA transport to neurites. Several neurological and neurodegenerative disorders, including amyotrophic lateral sclerosis or spinal motor atrophy, are characterized by mutations in genes encoding for RBPs and consequently mRNA localization and local translation are impaired. In other diseases changes in the local mRNA repertoire and altered local protein synthesis have been reported. In this review, we will discuss how deregulation of localized translation at different levels can contribute to the development and progression of nervous system pathologies.
Collapse
Affiliation(s)
- María Gamarra
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Aida de la Cruz
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Maite Blanco-Urrejola
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Departamento de Biología Celular e Histología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Jimena Baleriola
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Biología Celular e Histología, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
13
|
De D, Bhattacharyya SN. Amyloid-β oligomers block lysosomal targeting of miRNPs to prevent miRNP recycling and target repression in glial cells. J Cell Sci 2021; 134:269032. [PMID: 34096603 DOI: 10.1242/jcs.258360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Upon exposure to amyloid-β oligomers (Aβ1-42), glial cells start expressing proinflammatory cytokines, despite an increase in levels of repressive microRNAs (miRNAs). Exploring the mechanism of this potential immunity of target cytokine mRNAs against repressive miRNAs in amyloid-β-exposed glial cells, we have identified differential compartmentalization of repressive miRNAs in glial cells that explains this aberrant miRNA function. In Aβ1-42-treated cells, whereas target mRNAs were found to be associated with polysomes attached to endoplasmic reticulum (ER), the miRNA ribonucleoprotein complexes (miRNPs) were found to be present predominantly with endosomes that failed to recycle to ER-attached polysomes, preventing repression of mRNA targets. Aβ1-42 oligomers, by masking Rab7a proteins on endosomal surfaces, affected Rab7a interaction with Rab-interacting lysosomal protein (RILP), restricting the lysosomal targeting and recycling of miRNPs. RNA-processing body (P-body) localization of the miRNPs was found to be enhanced in amyloid-β-treated cells as a consequence of enhanced endosomal retention of miRNPs. Interestingly, depletion of P-body components partly rescued the miRNA function in glial cells exposed to amyloid-β and restricted the excess cytokine expression. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Dipayan De
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
14
|
Medina E, R Latham D, Sanabria H. Unraveling protein's structural dynamics: from configurational dynamics to ensemble switching guides functional mesoscale assemblies. Curr Opin Struct Biol 2021; 66:129-138. [PMID: 33246199 PMCID: PMC7965259 DOI: 10.1016/j.sbi.2020.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
Evidence regarding protein structure and function manifest the imperative role that dynamics play in proteins, underlining reconsideration of the unanimated sequence-to-structure-to-function paradigm. Structural dynamics portray a heterogeneous energy landscape described by conformational ensembles where each structural representation can be responsible for unique functions or enable macromolecular assemblies. Using the human p27/Cdk2/Cyclin A ternary complex as an example, we highlight the vital role of intramolecular and intermolecular dynamics for target recognition, binding, and inhibition as a critical modulator of cell division. Rapidly sampling configurations is critical for the population of different conformational ensembles encoding functional roles. To garner this knowledge, we present how the integration of (sub)ensemble and single-molecule fluorescence spectroscopy with molecular dynamic simulations can characterize structural dynamics linking the heterogeneous ensembles to function. The incorporation of dynamics into the sequence-to-structure-to-function paradigm promises to assist in tackling various challenges, including understanding the formation and regulation of mesoscale assemblies inside cells.
Collapse
Affiliation(s)
- Exequiel Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile; Department of Physics and Astronomy, Clemson University, Clemson 29634, United States
| | - Danielle R Latham
- Department of Physics and Astronomy, Clemson University, Clemson 29634, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson 29634, United States.
| |
Collapse
|
15
|
Gámez-Valero A, Guisado-Corcoll A, Herrero-Lorenzo M, Solaguren-Beascoa M, Martí E. Non-Coding RNAs as Sensors of Oxidative Stress in Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E1095. [PMID: 33171576 PMCID: PMC7695195 DOI: 10.3390/antiox9111095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress (OS) results from an imbalance between the production of reactive oxygen species and the cellular antioxidant capacity. OS plays a central role in neurodegenerative diseases, where the progressive accumulation of reactive oxygen species induces mitochondrial dysfunction, protein aggregation and inflammation. Regulatory non-protein-coding RNAs (ncRNAs) are essential transcriptional and post-transcriptional gene expression controllers, showing a highly regulated expression in space (cell types), time (developmental and ageing processes) and response to specific stimuli. These dynamic changes shape signaling pathways that are critical for the developmental processes of the nervous system and brain cell homeostasis. Diverse classes of ncRNAs have been involved in the cell response to OS and have been targeted in therapeutic designs. The perturbed expression of ncRNAs has been shown in human neurodegenerative diseases, with these changes contributing to pathogenic mechanisms, including OS and associated toxicity. In the present review, we summarize existing literature linking OS, neurodegeneration and ncRNA function. We provide evidences for the central role of OS in age-related neurodegenerative conditions, recapitulating the main types of regulatory ncRNAs with roles in the normal function of the nervous system and summarizing up-to-date information on ncRNA deregulation with a direct impact on OS associated with major neurodegenerative conditions.
Collapse
Affiliation(s)
- Ana Gámez-Valero
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Anna Guisado-Corcoll
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Marina Herrero-Lorenzo
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Maria Solaguren-Beascoa
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Eulàlia Martí
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28046 Madrid, Spain
| |
Collapse
|
16
|
Tian S, Curnutte HA, Trcek T. RNA Granules: A View from the RNA Perspective. Molecules 2020; 25:E3130. [PMID: 32650583 PMCID: PMC7397151 DOI: 10.3390/molecules25143130] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
RNA granules are ubiquitous. Composed of RNA-binding proteins and RNAs, they provide functional compartmentalization within cells. They are inextricably linked with RNA biology and as such are often referred to as the hubs for post-transcriptional regulation. Much of the attention has been given to the proteins that form these condensates and thus many fundamental questions about the biology of RNA granules remain poorly understood: How and which RNAs enrich in RNA granules, how are transcripts regulated in them, and how do granule-enriched mRNAs shape the biology of a cell? In this review, we discuss the imaging, genetic, and biochemical data, which have revealed that some aspects of the RNA biology within granules are carried out by the RNA itself rather than the granule proteins. Interestingly, the RNA structure has emerged as an important feature in the post-transcriptional control of granule transcripts. This review is part of the Special Issue in the Frontiers in RNA structure in the journal Molecules.
Collapse
Affiliation(s)
| | | | - Tatjana Trcek
- Homewood Campus, Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; (S.T.); (H.A.C.)
| |
Collapse
|
17
|
Palomino‐Hernandez O, Margreiter MA, Rossetti G. Challenges in RNA Regulation in Huntington's Disease: Insights from Computational Studies. Isr J Chem 2020. [DOI: 10.1002/ijch.202000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Oscar Palomino‐Hernandez
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM-9)/Instute for advanced simulations (IAS-5)Forschungszentrum Juelich 52425 Jülich Germany
- Faculty 1RWTH Aachen 52425 Aachen Germany
- Computation-based Science and Technology Research CenterThe Cyprus Institute Nicosia 2121 Cyprus
- Institute of Life ScienceThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Michael A. Margreiter
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM-9)/Instute for advanced simulations (IAS-5)Forschungszentrum Juelich 52425 Jülich Germany
- Faculty 1RWTH Aachen 52425 Aachen Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM-9)/Instute for advanced simulations (IAS-5)Forschungszentrum Juelich 52425 Jülich Germany
- Jülich Supercomputing Centre (JSC)Forschungszentrum Jülich 52425 Jülich Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation University Hospital AachenRWTH Aachen University Pauwelsstraße 30 52074 Aachen Germany
| |
Collapse
|
18
|
From the Argonauts Mythological Sailors to the Argonautes RNA-Silencing Navigators: Their Emerging Roles in Human-Cell Pathologies. Int J Mol Sci 2020; 21:ijms21114007. [PMID: 32503341 PMCID: PMC7312461 DOI: 10.3390/ijms21114007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Regulation of gene expression has emerged as a fundamental element of transcript homeostasis. Key effectors in this process are the Argonautes (AGOs), highly specialized RNA-binding proteins (RBPs) that form complexes, such as the RNA-Induced Silencing Complex (RISC). AGOs dictate post-transcriptional gene-silencing by directly loading small RNAs and repressing their mRNA targets through small RNA-sequence complementarity. The four human highly-conserved family-members (AGO1, AGO2, AGO3, and AGO4) demonstrate multi-faceted and versatile roles in transcriptome’s stability, plasticity, and functionality. The post-translational modifications of AGOs in critical amino acid residues, the nucleotide polymorphisms and mutations, and the deregulation of expression and interactions are tightly associated with aberrant activities, which are observed in a wide spectrum of pathologies. Through constantly accumulating information, the AGOs’ fundamental engagement in multiple human diseases has recently emerged. The present review examines new insights into AGO-driven pathology and AGO-deregulation patterns in a variety of diseases such as in viral infections and propagations, autoimmune diseases, cancers, metabolic deficiencies, neuronal disorders, and human infertility. Altogether, AGO seems to be a crucial contributor to pathogenesis and its targeting may serve as a novel and powerful therapeutic tool for the successful management of diverse human diseases in the clinic.
Collapse
|
19
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
20
|
Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P, Domanskyi A. Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20236055. [PMID: 31801298 PMCID: PMC6929013 DOI: 10.3390/ijms20236055] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are post-transcriptional regulators of gene expression, crucial for neuronal differentiation, survival, and activity. Age-related dysregulation of microRNA biogenesis increases neuronal vulnerability to cellular stress and may contribute to the development and progression of neurodegenerative diseases. All major neurodegenerative disorders are also associated with oxidative stress, which is widely recognized as a potential target for protective therapies. Albeit often considered separately, microRNA networks and oxidative stress are inextricably entwined in neurodegenerative processes. Oxidative stress affects expression levels of multiple microRNAs and, conversely, microRNAs regulate many genes involved in an oxidative stress response. Both oxidative stress and microRNA regulatory networks also influence other processes linked to neurodegeneration, such as mitochondrial dysfunction, deregulation of proteostasis, and increased neuroinflammation, which ultimately lead to neuronal death. Modulating the levels of a relatively small number of microRNAs may therefore alleviate pathological oxidative damage and have neuroprotective activity. Here, we review the role of individual microRNAs in oxidative stress and related pathways in four neurodegenerative conditions: Alzheimer’s (AD), Parkinson’s (PD), Huntington’s (HD) disease, and amyotrophic lateral sclerosis (ALS). We also discuss the problems associated with the use of oversimplified cellular models and highlight perspectives of studying microRNA regulation and oxidative stress in human stem cell-derived neurons.
Collapse
Affiliation(s)
- Julia Konovalova
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
| | - Dmytro Gerasymchuk
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
- Institute of Molecular Biology and Genetics, NASU, Kyiv 03143, Ukraine
| | - Ilmari Parkkinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
- Correspondence: ; Tel.: +358-50-448-4545
| |
Collapse
|
21
|
Regulatory roles of the miR-200 family in neurodegenerative diseases. Biomed Pharmacother 2019; 119:109409. [PMID: 31518873 DOI: 10.1016/j.biopha.2019.109409] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are chronic and progressive disorders which are not effectively treated through adopting conventional therapies. For this unmet medical need, alternative therapeutic methods including gene-based therapies are emphasized. MicroRNAs (miRNAs) are small non-coding RNAs which can regulate gene expression at the post-transcriptional level. In recent years, dysregulated miRNAs have been indicated to be implicated in the occurrence and development of neurodegenerative diseases. They are investigated as candidates for diagnostic and prognostic biomarkers, as well as therapeutic targets. The miR-200 family consists of miR-200a, -200b, -200c, -141, and -429. Numerous studies have found that miR-200 family members are associated with the pathogenesis of neurodegenerative diseases. It is reported that miR-200 family members are aberrantly expressed in several neurodegenerative diseases, participating in various cellular processes including beta-amyloid (Aβ) secretion, alpha-synuclein aggregation and DNA repair, etc. In the present review, we summarize the recent progress in the roles of miR-200 family in neurodegenerative diseases.
Collapse
|
22
|
Kim SH, Vieira M, Shim JY, Choi H, Park HY. Recent progress in single-molecule studies of mRNA localization in vivo. RNA Biol 2019; 16:1108-1118. [PMID: 30336727 PMCID: PMC6693552 DOI: 10.1080/15476286.2018.1536592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/28/2018] [Accepted: 10/08/2018] [Indexed: 12/26/2022] Open
Abstract
From biogenesis to degradation, mRNA goes through diverse types of regulation and interaction with other biomolecules. Uneven distribution of mRNA transcripts and the diverse isoforms and modifications of mRNA make us wonder how cells manage the complexity and keep the functional integrity for the normal development of cells and organisms. Single-molecule microscopy tools have expanded the scope of RNA research with unprecedented spatiotemporal resolution. In this review, we highlight the recent progress in the methods for labeling mRNA targets and analyzing the quantitative information from fluorescence images of single mRNA molecules. In particular, the MS2 system and its various applications are the main focus of this article. We also review how recent studies have addressed biological questions related to the significance of mRNA localization in vivo. Efforts to visualize the dynamics of single mRNA molecules in live cells will push forward our knowledge on the nature of heterogeneity in RNA sequence, structure, and distribution as well as their molecular function and coordinated interaction with RNA binding proteins.
Collapse
Affiliation(s)
- Songhee H. Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Melissa Vieira
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
| | - Jae Youn Shim
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Hongyoung Choi
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
- Institute of Applied Physics, Seoul National University, Seoul, Korea
| |
Collapse
|
23
|
Espinosa-Parrilla Y, Gonzalez-Billault C, Fuentes E, Palomo I, Alarcón M. Decoding the Role of Platelets and Related MicroRNAs in Aging and Neurodegenerative Disorders. Front Aging Neurosci 2019; 11:151. [PMID: 31312134 PMCID: PMC6614495 DOI: 10.3389/fnagi.2019.00151] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Platelets are anucleate cells that circulate in blood and are essential components of the hemostatic system. During aging, platelet numbers decrease and their aggregation capacity is reduced. Platelet dysfunctions associated with aging can be linked to molecular alterations affecting several cellular systems that include cytoskeleton rearrangements, signal transduction, vesicular trafficking, and protein degradation. Age platelets may adopt a phenotype characterized by robust secretion of extracellular vesicles that could in turn account for about 70-90% of blood circulating vesicles. Interestingly these extracellular vesicles are loaded with messenger RNAs and microRNAs that may have a profound impact on protein physiology at the systems level. Age platelet dysfunction is also associated with accumulation of reactive oxygen species. Thereby understanding the mechanisms of aging in platelets as well as their age-dependent dysfunctions may be of interest when evaluating the contribution of aging to the onset of age-dependent pathologies, such as those affecting the nervous system. In this review we summarize the findings that link platelet dysfunctions to neurodegenerative diseases including Alzheimer's Disease, Parkinson's Disease, Multiple Sclerosis, Huntington's Disease, and Amyotrophic Lateral Sclerosis. We discuss the role of platelets as drivers of protein dysfunctions observed in these pathologies, their association with aging and the potential clinical significance of platelets, and related miRNAs, as peripheral biomarkers for diagnosis and prognosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yolanda Espinosa-Parrilla
- School of Medicine, Universidad de Magallanes, Punta Arenas, Chile
- Laboratory of Molecular Medicine-LMM, Center for Education, Healthcare and Investigation-CADI, Universidad de Magallanes, Punta Arenas, Chile
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
| | - Christian Gonzalez-Billault
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism GERO, Santiago, Chile
- The Buck Institute for Research on Aging, Novato, CA, United States
| | - Eduardo Fuentes
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| | - Ivan Palomo
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| |
Collapse
|
24
|
MicroRNA-1224 Splicing CircularRNA-Filip1l in an Ago2-Dependent Manner Regulates Chronic Inflammatory Pain via Targeting Ubr5. J Neurosci 2019; 39:2125-2143. [PMID: 30651325 DOI: 10.1523/jneurosci.1631-18.2018] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022] Open
Abstract
Dysfunctions of gene transcription and translation in the nociceptive pathways play the critical role in development and maintenance of chronic pain. Circular RNAs (circRNAs) are emerging as new players in regulation of gene expression, but whether and how circRNAs are involved in chronic pain remain elusive. We showed here that complete Freund's adjuvant-induced chronic inflammation pain significantly increased circRNA-Filip1l (filamin A interacting protein 1-like) expression in spinal neurons of mice. Blockage of this increase attenuated complete Freund's adjuvant-induced nociceptive behaviors, and overexpression of spinal circRNA-Filip1l in naive mice mimicked the nociceptive behaviors as evidenced by decreased thermal and mechanical nociceptive threshold. Furthermore, we found that mature circRNA-Filip1l expression was negatively regulated by miRNA-1224 via binding and splicing of precursor of circRNA-Filip1l (pre-circRNA-Filip1l) in the Argonaute-2 (Ago2)-dependent manner. Increase of spinal circRNA-Filip1l expression resulted from the decrease of miRNA-1224 expression under chronic inflammation pain state. miRNA-1224 knockdown or Ago2 overexpression induced nociceptive behaviors in naive mice, which was prevented by the knockdown of spinal circRNA-Filip1l. Finally, we demonstrated that a ubiquitin protein ligase E3 component n-recognin 5 (Ubr5), validated as a target of circRNA-Filip1l, plays a pivotal role in regulation of nociception by spinal circRNA-Filip1l. These data suggest that miRNA-1224-mediated and Ago2-dependent modulation of spinal circRNA-Filip1l expression regulates nociception via targeting Ubr5, revealing a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.SIGNIFICANCE STATEMENT circRNAs are emerging as new players in regulation of gene expression. Here, we found that the increase of circRNA-Filip1l mediated by miRNA-1224 in an Ago2-dependent way in the spinal cord is involved in regulation of nociception via targeting Ubr5 Our study reveals a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.
Collapse
|
25
|
RNA Granules and Their Role in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:195-245. [DOI: 10.1007/978-3-030-31434-7_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Pircs K, Petri R, Jakobsson J. Crosstalk between MicroRNAs and Autophagy in Adult Neurogenesis: Implications for Neurodegenerative Disorders. Brain Plast 2018; 3:195-203. [PMID: 30151343 PMCID: PMC6091039 DOI: 10.3233/bpl-180066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adult neurogenesis in the mammalian brain, including in humans, occurs throughout life in distinct brain regions. Alterations in adult neurogenesis is a common phenomenon in several different neurodegenerative disorders, which is likely to contribute to the pathophysiology of these disorders. This review summarizes novel concepts related to the interplay between autophagy and microRNAs in control of adult neurogenesis, with a specific focus on its relevance to neurodegenerative diseases.
Collapse
Affiliation(s)
- Karolina Pircs
- Department of Experimental Medical Science, Laboratory of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Rebecca Petri
- Department of Experimental Medical Science, Laboratory of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Johan Jakobsson
- Department of Experimental Medical Science, Laboratory of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Meade N, Furey C, Li H, Verma R, Chai Q, Rollins MG, DiGiuseppe S, Naghavi MH, Walsh D. Poxviruses Evade Cytosolic Sensing through Disruption of an mTORC1-mTORC2 Regulatory Circuit. Cell 2018; 174:1143-1157.e17. [PMID: 30078703 DOI: 10.1016/j.cell.2018.06.053] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/19/2018] [Accepted: 06/27/2018] [Indexed: 01/12/2023]
Abstract
Viruses employ elaborate strategies to coopt the cellular processes they require to replicate while simultaneously thwarting host antiviral responses. In many instances, how this is accomplished remains poorly understood. Here, we identify a protein, F17 encoded by cytoplasmically replicating poxviruses, that binds and sequesters Raptor and Rictor, regulators of mammalian target of rapamycin complexes mTORC1 and mTORC2, respectively. This disrupts mTORC1-mTORC2 crosstalk that coordinates host responses to poxvirus infection. During infection with poxvirus lacking F17, cGAS accumulates together with endoplasmic reticulum vesicles around the Golgi, where activated STING puncta form, leading to interferon-stimulated gene expression. By contrast, poxvirus expressing F17 dysregulates mTOR, which localizes to the Golgi and blocks these antiviral responses in part through mTOR-dependent cGAS degradation. Ancestral conservation of Raptor/Rictor across eukaryotes, along with expression of F17 across poxviruses, suggests that mTOR dysregulation forms a conserved poxvirus strategy to counter cytosolic sensing while maintaining the metabolic benefits of mTOR activity.
Collapse
Affiliation(s)
- Nathan Meade
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Colleen Furey
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hua Li
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rita Verma
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qingqing Chai
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Madeline G Rollins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stephen DiGiuseppe
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
28
|
Huntingtin Aggregation Impairs Autophagy, Leading to Argonaute-2 Accumulation and Global MicroRNA Dysregulation. Cell Rep 2018; 24:1397-1406. [DOI: 10.1016/j.celrep.2018.07.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/19/2018] [Accepted: 07/04/2018] [Indexed: 11/21/2022] Open
|
29
|
Chauderlier A, Gilles M, Spolcova A, Caillierez R, Chwastyniak M, Kress M, Drobecq H, Bonnefoy E, Pinet F, Weil D, Buée L, Galas MC, Lefebvre B. Tau/DDX6 interaction increases microRNA activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:762-772. [DOI: 10.1016/j.bbagrm.2018.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022]
|
30
|
Neueder A, Bates GP. RNA Related Pathology in Huntington's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:85-101. [PMID: 29427099 DOI: 10.1007/978-3-319-71779-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This chapter summarises research investigating the expression of huntingtin sense and anti-sense transcripts, the effect of the mutation on huntingtin processing as well as the more global effect of the mutation on the coding and non-coding transcriptomes. The huntingtin gene is ubiquitously expressed, although expression levels vary between tissues and cell types. A SNP that affects NF-ĸB binding in the huntingtin promoter modulates the expression level of huntingtin transcripts and is associated with the age of disease onset. Incomplete splicing between exon 1 and exon 2 has been shown to result in the expression of a small polyadenylated mRNA that encodes the highly pathogenic exon 1 huntingtin protein. This occurs in a CAG-repeat length dependent manner in all full-length mouse models of HD as well as HD patient post-mortem brains and fibroblasts. An antisense transcript to huntingtin is generated that contains a CUG repeat that is expanded in HD patients. In myotonic dystrophy, expanded CUG repeats form RNA foci in cell nuclei that bind specific proteins (e.g. MBL1). Short, pure CAG RNAs of approximately 21 nucleotides that have been processed by DICER can inhibit the translation of other CAG repeat containing mRNAs. The HD mutation affects the transcriptome at the level of mRNA expression, splicing and the expression of non-coding RNAs. Finally, expanded repetitive stretched of nucleotides can lead to RAN translation, in which the ribosome translates from the expanded repeat in all possible reading frames, producing proteins with various poly-amino acid tracts. The extent to which these events contribute to HD pathogenesis is largely unknown.
Collapse
Affiliation(s)
- Andreas Neueder
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Gillian P Bates
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
31
|
Tervaniemi MH, Katayama S, Skoog T, Siitonen HA, Vuola J, Nuutila K, Tammimies K, Suomela S, Kankuri E, Kere J, Elomaa O. Intracellular signalling pathways and cytoskeletal functions converge on the psoriasis candidate gene CCHCR1 expressed at P-bodies and centrosomes. BMC Genomics 2018; 19:432. [PMID: 29866042 PMCID: PMC5987482 DOI: 10.1186/s12864-018-4810-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/21/2018] [Indexed: 11/23/2022] Open
Abstract
Background CCHCR1 (Coiled-Coil α-Helical Rod protein 1) is a putative psoriasis candidate gene with the risk alleles CCHCR1*WWCC and *Iso3, the latter inhibiting the translation of isoform 1. CCHCR1 was recently shown to be a centrosomal protein, as well as a component of cytoplasmic processing bodies (P-bodies) that regulate mRNA turnover. The function of CCHCR1 has remained unsettled, partly because of the inconsistent findings; it has been shown to play a wide variety of roles in divergent processes, e.g., cell proliferation and steroidogenesis. Here we utilized RNA sequencing (RNAseq) using HEK293 cells overexpressing isoforms 1 or 3 (Iso1, Iso3 cells), in combination with the coding non-risk or risk (*WWCC) haplotype of CCHCR1. Our aim was to study the overall role of CCHCR1 and the effects of its variants. Results The overexpression of CCHCR1 variants in HEK293 cells resulted in cell line-specific expression profiles though several similarities were observable. Overall the Iso1 and Iso3 cells showed a clear isoform-specific clustering as two separate groups, and the Non-risk and Risk cells often exhibited opposite effects. The RNAseq supported a role for CCHCR1 in the centrosomes and P-bodies; the most highlighted pathways included regulation of cytoskeleton, adherens and tight junctions, mRNA surveillance and RNA transport. Interestingly, both the RNAseq and immunofluorescent localization revealed variant-specific differences for CCHCR1 within the P-bodies. Conclusions CCHCR1 influenced a wide variety of signaling pathways, which could reflect its active role in the P-bodies and centrosomes that both are linked to the cytoskeleton; as a centrosomal P-body protein CCHCR1 may regulate diverse cytoskeleton-mediated functions, such as cell adhesion and -division. The present findings may explain the previous inconsistent observations about the functions of CCHCR1. Electronic supplementary material The online version of this article (10.1186/s12864-018-4810-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mari H Tervaniemi
- Folkhälsan Institute of Genetics, 00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tiina Skoog
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - H Annika Siitonen
- Folkhälsan Institute of Genetics, 00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Jyrki Vuola
- Helsinki Burn Center, Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristo Nuutila
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland
| | - Kristiina Tammimies
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Neuropsychiatry, Department of Women's and Children's Health, Center of Neurodevelopmental Disorders, Karolinska Institutet, Stockholm, Sweden
| | - Sari Suomela
- Department of Dermatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Folkhälsan Institute of Genetics, 00014, Helsinki, Finland. .,Department of Medical and Clinical Genetics, Medicum and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland. .,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden. .,School of Basic and Medical Biosciences, King's College London, London, UK.
| | - Outi Elomaa
- Folkhälsan Institute of Genetics, 00014, Helsinki, Finland. .,Department of Medical and Clinical Genetics, Medicum and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
32
|
A Liquid to Solid Phase Transition Underlying Pathological Huntingtin Exon1 Aggregation. Mol Cell 2018; 70:588-601.e6. [PMID: 29754822 PMCID: PMC5971205 DOI: 10.1016/j.molcel.2018.04.007] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 12/31/2022]
Abstract
Huntington’s disease is caused by an abnormally long polyglutamine tract in the huntingtin protein. This leads to the generation and deposition of N-terminal exon1 fragments of the protein in intracellular aggregates. We combined electron tomography and quantitative fluorescence microscopy to analyze the structural and material properties of huntingtin exon1 assemblies in mammalian cells, in yeast, and in vitro. We found that huntingtin exon1 proteins can form reversible liquid-like assemblies, a process driven by huntingtin’s polyQ tract and proline-rich region. In cells and in vitro, the liquid-like assemblies converted to solid-like assemblies with a fibrillar structure. Intracellular phase transitions of polyglutamine proteins could play a role in initiating irreversible pathological aggregation. Aggregates of huntingtin exon1 exist in distinct liquid-like and solid-like forms Liquid-like assembly formation is driven by polyQ and proline-rich regions of exon1 The liquid-like assemblies convert into solid-like assemblies in vitro and in cells Electron tomography reveals liquid and solid assemblies have distinct structures
Collapse
|
33
|
Epigenetic modulation by small molecule compounds for neurodegenerative disorders. Pharmacol Res 2018; 132:135-148. [PMID: 29684672 DOI: 10.1016/j.phrs.2018.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
The accumulation of somatic and genetic mutations which altered the structure and coding information of the DNA are the major cause of neurological disorders. However, our recent understanding of molecular mechanisms of 'epigenetic' phenomenon reveals that the modifications of chromatin play a significant role in the development and severity of neurological disorders. These epigenetic processes are dynamic and reversible as compared to genetic ablations which are stable and irreversible. Therefore, targeting these epigenetic processes through small molecule modulators are of great therapeutic potential. To date, large number of small molecule modulators have been discovered which are capable of altering the brain pathology by targeting epigenetic enzymes. In this review, we shall put forward the key studies supporting the role of altered epigenetic processes in neurological disorders with especial emphasis on neurodegenerative disorders. A few small molecule modulators which have been shown to possess promising results in the animal model system of neurological disorders will also be discussed with future perspectives.
Collapse
|
34
|
Fernández-Carrillo C, Pérez-Vilaró G, Díez J, Pérez-Del-Pulgar S. Hepatitis C virus plays with fire and yet avoids getting burned. A review for clinicians on processing bodies and stress granules. Liver Int 2018; 38:388-398. [PMID: 28782251 DOI: 10.1111/liv.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 08/02/2017] [Indexed: 02/13/2023]
Abstract
Over the last few years, many reports have defined several types of RNA cell granules composed of proteins and messenger RNA (mRNA) that regulate gene expression on a post-transcriptional level. Processing bodies (P-bodies) and stress granules (SGs) are among the best-known RNA granules, only detectable when they accumulate into very dynamic cytosolic foci. Recently, a tight association has been found between positive-stranded RNA viruses, including hepatitis C virus (HCV), and these granules. The present article offers a comprehensive review on the complex and paradoxical relationship between HCV, P-bodies and SGs from a translational perspective. Despite the fact that components of P-bodies and SGs have assiduously controlled mRNA expression, either by sequestration or degradation, for thousands of years, HCV has learned how to dangerously exploit certain of them for its own benefit in an endless biological war. Thus, HCV has gained the ability to hack ancient host machineries inherited from prokaryotic times. While P-bodies and SGs are crucial to the HCV cycle, in the interferon-free era we still lack detailed knowledge of the mechanisms involved, processes that may underlie the long-term complications of HCV infection.
Collapse
Affiliation(s)
| | - Gemma Pérez-Vilaró
- Department of Experimental and Health Sciences, Molecular Virology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Juana Díez
- Department of Experimental and Health Sciences, Molecular Virology, Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
35
|
Martí E. RNA toxicity induced by expanded CAG repeats in Huntington's disease. Brain Pathol 2018; 26:779-786. [PMID: 27529325 DOI: 10.1111/bpa.12427] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) belongs to the group of inherited polyglutamine (PolyQ) diseases caused by an expanded CAG repeat in the coding region of the Huntingtin (HTT) gene that results in an elongated polyQ stretch. Abnormal function and aggregation of the mutant protein has been typically delineated as the main molecular cause underlying disease development. However, the most recent advances have revealed novel pathogenic pathways directly dependent on an RNA toxic gain-of-function. Expanded CAG repeats within exon 1 of the HTT mRNA induce toxicity through mechanisms involving, at least in part, gene expression perturbations. This has important implications not only for basic and translational research in HD, but also for other types of diseases carrying the expanded CAG in other genes, which likely share pathogenic aspects. Here I will review the evidence and mechanisms underlying RNA toxicity in CAG repeat expansions, with particular focus on HD. These comprise abnormal subcellular localization of the transcripts containing the expanded CAG repeats; sequestration of several types of proteins by the expanded CAG repeat which results in defects of alternative splicing events and gene expression; and aberrant biogenesis and detrimental activity of small CAG repeated RNAs (sCAG) that produce altered gene silencing. Although these altered pathways have been detected in HD models, their contribution to disease development and progress requires further study.
Collapse
Affiliation(s)
- Eulàlia Martí
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, 08003, Spain.,Centro de Investigacion Biomedica en Red (CIBERESP), Madrid, Spain
| |
Collapse
|
36
|
Abstract
The dominant polyglutamine (polyQ) disorders are a group of progressive and incurable neurodegenerative disorders, which are caused by unstable expanded CAG trinucleotide repeats in the coding regions of their respective causative genes. The most prevalent polyQ disorders worldwide are Huntington’s disease and spinocerebellar ataxia type 3. Epigenetic mechanisms, such as DNA methylation, histone modifications and chromatin remodeling and noncoding RNA regulation, regulate gene expression or genome function. Epigenetic dysregulation has been suggested to play a pivotal role in the pathogenesis of polyQ disorders. Here, we summarize the current knowledge of epigenetic changes present in several representative polyQ disorders and discuss the potentiality of miRNAs as therapeutic targets for the clinic therapy of these disorders.
Collapse
Affiliation(s)
- Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Guo
- CAS Key Laboratory of Genomics & Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
37
|
Abstract
Huntingtin (HTT) is an essential protein during early embryogenesis and the development of the central nervous system (CNS). Conditional knock-out of mouse Huntingtin (Htt) expression in the CNS beginning during neural development, as well as reducing Htt expression only during embryonic and early postnatal stages, results in neurodegeneration in the adult brain. These findings suggest that HTT is important for the development and/or maintenance of the CNS, but they do not address the question of whether HTT is required specifically in the adult CNS for its normal functions and/or homeostasis. Recently, it was reported that although removing Htt expression in young adult mice causes lethality due to acute pancreatitis, loss of Htt expression in the adult brain is well tolerated and does not result in either motor deficits or neurodegeneration for up to 7 months after Htt inactivation. However, recent studies have also demonstrated that HTT participates in several cellular functions that are important for neuronal homeostasis and survival including sensing reactive oxygen species (ROS), DNA damage repair, and stress responses, in addition to its role in selective macroautophagy. In this review, HTT's functions in development and in the adult CNS will be discussed in the context of these recent discoveries, together with a discussion of their potential impact on the design of therapeutic strategies for Huntington's disease (HD) aimed at lowering total HTT expression.
Collapse
Affiliation(s)
| | - Scott O. Zeitlin
- Correspondence to: Scott O. Zeitlin, Ph.D., Department of Neuroscience, University of Virginia School of Medicine, 409 Lane Rd., Box 801392, MR4-5022, Charlottesville, VA 22908, USA. Tel.: +1 434 924 5011; Fax: +1 434 982 4380; E-mail:
| |
Collapse
|
38
|
The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat Rev Neurosci 2017; 18:347-361. [PMID: 28515491 DOI: 10.1038/nrn.2017.46] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epigenetic mechanisms - including DNA methylation, histone post-translational modifications and changes in nucleosome positioning - regulate gene expression, cellular differentiation and development in almost all tissues, including the brain. In adulthood, changes in the epigenome are crucial for higher cognitive functions such as learning and memory. Striking new evidence implicates the dysregulation of epigenetic mechanisms in neurodegenerative disorders and diseases. Although these disorders differ in their underlying causes and pathophysiologies, many involve the dysregulation of restrictive element 1-silencing transcription factor (REST), which acts via epigenetic mechanisms to regulate gene expression. Although not somatically heritable, epigenetic modifications in neurons are dynamic and reversible, which makes them good targets for therapeutic intervention.
Collapse
|
39
|
Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. Huntington's Disease: Mechanisms of Pathogenesis and Therapeutic Strategies. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024240. [PMID: 27940602 DOI: 10.1101/cshperspect.a024240] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease is a late-onset neurodegenerative disease caused by a CAG trinucleotide repeat in the gene encoding the huntingtin protein. Despite its well-defined genetic origin, the molecular and cellular mechanisms underlying the disease are unclear and complex. Here, we review some of the currently known functions of the wild-type huntingtin protein and discuss the deleterious effects that arise from the expansion of the CAG repeats, which are translated into an abnormally long polyglutamine tract. Finally, we outline some of the therapeutic strategies that are currently being pursued to slow down the disease.
Collapse
Affiliation(s)
- Maria Jimenez-Sanchez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, United Kingdom
| | - Floriana Licitra
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, United Kingdom
| | - Benjamin R Underwood
- Department of Old Age Psychiatry, Beechcroft, Fulbourn Hospital, Cambridge CB21 5EF, United Kingdom
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
40
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
41
|
Kim-Ha J, Kim YJ. Age-related epigenetic regulation in the brain and its role in neuronal diseases. BMB Rep 2017; 49:671-680. [PMID: 27866512 PMCID: PMC5346312 DOI: 10.5483/bmbrep.2016.49.12.184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 11/20/2022] Open
Abstract
Accumulating evidence indicates many brain functions are mediated by epigenetic regulation of neural genes, and their dysregulations result in neuronal disorders. Experiences such as learning and recall, as well as physical exercise, induce neuronal activation through epigenetic modifications and by changing the noncoding RNA profiles. Animal models, brain samples from patients, and the development of diverse analytical methods have broadened our understanding of epigenetic regulation in the brain. Diverse and specific epigenetic changes are suggested to correlate with neuronal development, learning and memory, aging and age-related neuronal diseases. Although the results show some discrepancies, a careful comparison of the data (including methods, regions and conditions examined) would clarify the problems confronted in understanding epigenetic regulation in the brain.
Collapse
Affiliation(s)
- Jeongsil Kim-Ha
- Department of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Young-Joon Kim
- Department of Integrated Omics for Biomedical Science, Graduate School, Yonsei University, and Department of Biochemistry, College of Life Science and Technology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
42
|
Shah P, Cho SK, Thulstrup PW, Bjerrum MJ, Lee PH, Kang JH, Bhang YJ, Yang SW. MicroRNA Biomarkers in Neurodegenerative Diseases and Emerging Nano-Sensors Technology. J Mov Disord 2017; 10:18-28. [PMID: 28122423 PMCID: PMC5288660 DOI: 10.14802/jmd.16037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/12/2016] [Accepted: 11/22/2016] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are essential small RNA molecules (20–24 nt) that negatively regulate the expression of target genes at the post-transcriptional level. Due to their roles in a variety of biological processes, the aberrant expression profiles of miRNAs have been identified as biomarkers for many diseases, such as cancer, diabetes, cardiovascular disease and neurodegenerative diseases. In order to precisely, rapidly and economically monitor the expression of miRNAs, many cutting-edge nanotechnologies have been developed. One of the nanotechnologies, based on DNA encapsulated silver nanoclusters (DNA/AgNCs), has increasingly been adopted to create nanoscale bio-sensing systems due to its attractive optical properties, such as brightness, tuneable emission wavelengths and photostability. Using the DNA/AgNCs sensor methods, the presence of miRNAs can be detected simply by monitoring the fluorescence alteration of DNA/AgNCs sensors. We introduce these DNA/ AgNCs sensor methods and discuss their possible applications for detecting miRNA biomarkers in neurodegenerative diseases.
Collapse
Affiliation(s)
- Pratik Shah
- UNIK Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Seok Keun Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | | | - Phil Hyu Lee
- Department of Neurology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Hypoxia-related Disease Research Center, Inha University School of Medicine, Incheon, Korea
| | | | - Seong Wook Yang
- UNIK Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark.,Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
43
|
Quinlan S, Kenny A, Medina M, Engel T, Jimenez-Mateos EM. MicroRNAs in Neurodegenerative Diseases. MIRNAS IN AGING AND CANCER 2017; 334:309-343. [DOI: 10.1016/bs.ircmb.2017.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Chen MZ, Mok SA, Ormsby AR, Muchowski PJ, Hatters DM. N-Terminal Fragments of Huntingtin Longer than Residue 170 form Visible Aggregates Independently to Polyglutamine Expansion. J Huntingtons Dis 2017; 6:79-91. [PMID: 28339398 DOI: 10.3233/jhd-160207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND A hallmark of Huntington's disease is the progressive aggregation of full length and N-terminal fragments of polyglutamine (polyQ)-expanded Huntingtin (Htt) into intracellular inclusions. The production of N-terminal fragments appears important for enabling pathology and aggregation; and hence the direct expression of a variety of N-terminal fragments are commonly used to model HD in animal and cellular models. OBJECTIVE It remains unclear how the length of the N-terminal fragments relates to polyQ - mediated aggregation. We investigated the fundamental intracellular aggregation process of eight different-length N-terminal fragments of Htt in both short (25Q) and long polyQ (97Q). METHODS N-terminal fragments were fused to fluorescent proteins and transiently expressed in mammalian cell culture models. These included the classic exon 1 fragment (90 amino acids) and longer forms of 105, 117, 171, 513, 536, 552, and 586 amino acids based on wild-type Htt (of 23Q) sequence length nomenclature. RESULTS N-terminal fragments of less than 171 amino acids only formed inclusions in polyQ-expanded form. By contrast the longer fragments formed inclusions irrespective of Q-length, with Q-length playing a negligible role in extent of aggregation. The inclusions could be classified into 3 distinct morphological categories. One type (Type A) was universally associated with polyQ expansions whereas the other two types (Types B and C) formed independently of polyQ length expansion. CONCLUSIONS PolyQ-expansion was only required for fragments of less than 171 amino acids to aggregate. Longer fragments aggregated predominately through a non-polyQ mechanism, involving at least one, and probably more distinct clustering mechanisms.
Collapse
Affiliation(s)
- Moore Z Chen
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC, Australia
| | - Sue-Ann Mok
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Angelique R Ormsby
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC, Australia
| | | | - Danny M Hatters
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC, Australia
| |
Collapse
|
45
|
Culver BP, DeClercq J, Dolgalev I, Yu MS, Ma B, Heguy A, Tanese N. Huntington's Disease Protein Huntingtin Associates with its own mRNA. J Huntingtons Dis 2016; 5:39-51. [PMID: 26891106 PMCID: PMC4927879 DOI: 10.3233/jhd-150177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: The Huntington’s disease (HD) protein huntingtin (Htt) plays a role in multiple cellular pathways. Deregulation of one or more of these pathways by the mutant Htt protein has been suggested to contribute to the disease pathogenesis. Our recent discovery-based proteomics studies have uncovered RNA binding proteins and translation factors associated with the endogenous Htt protein purified from mouse brains, suggesting a potential new role for Htt in RNA transport and translation. Objective: To investigate how Htt might affect RNA metabolism we set out to purify and analyze RNA associated with Htt. Methods: RNA was extracted from immunopurified Htt-containing protein complexes and analyzed by microarrays and RNA-Seq. Results: Surprisingly, the most enriched mRNA that co-purified with Htt was Htt mRNA itself. The association of Htt protein and Htt mRNA was detected independent of intact ribosomes suggesting that it is not an RNA undergoing translation. Furthermore, we identified the recently reported mis-spliced Htt mRNA encoding a truncated protein comprised of exon 1 and a portion of the downstream intron in the immunoprecipitates containing mutant Htt protein. We show that Htt protein co-localizes with Htt mRNA and that wild-type Htt reduces expression of a reporter construct harboring the Htt 3’ UTR. Conclusions: HD protein is found in a complex with its own mRNA and RNA binding proteins and translation factors. Htt may be involved in modulating its expression through post-transcriptional pathways. It is possible that Htt shares mechanistic properties similar to RNA binding proteins such as TDP-43 and FUS implicated in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Brady P Culver
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Josh DeClercq
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Igor Dolgalev
- Genome Technology Center, New York University School of Medicine, New York, NY, USA
| | - Man Shan Yu
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Bin Ma
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Adriana Heguy
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Genome Technology Center, New York University School of Medicine, New York, NY, USA
| | - Naoko Tanese
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
46
|
Ratovitski T, Chaerkady R, Kammers K, Stewart JC, Zavala A, Pletnikova O, Troncoso JC, Rudnicki DD, Margolis RL, Cole RN, Ross CA. Quantitative Proteomic Analysis Reveals Similarities between Huntington's Disease (HD) and Huntington's Disease-Like 2 (HDL2) Human Brains. J Proteome Res 2016; 15:3266-83. [PMID: 27486686 PMCID: PMC5555151 DOI: 10.1021/acs.jproteome.6b00448] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pathogenesis of HD and HDL2, similar progressive neurodegenerative disorders caused by expansion mutations, remains incompletely understood. No systematic quantitative proteomics studies, assessing global changes in HD or HDL2 human brain, were reported. To address this deficit, we used a stable isotope labeling-based approach to quantify the changes in protein abundances in the cortex of 12 HD and 12 control cases and, separately, of 6 HDL2 and 6 control cases. The quality of the tissues was assessed to minimize variability due to post mortem autolysis. We applied a robust median sweep algorithm to quantify protein abundance and performed statistical inference using moderated test statistics. 1211 proteins showed statistically significant fold changes between HD and control tissues; the differences in selected proteins were verified by Western blotting. Differentially abundant proteins were enriched in cellular pathways previously implicated in HD, including Rho-mediated, actin cytoskeleton and integrin signaling, mitochondrial dysfunction, endocytosis, axonal guidance, DNA/RNA processing, and protein transport. The abundance of 717 proteins significantly differed between control and HDL2 brain. Comparative analysis of the disease-associated changes in the HD and HDL2 proteomes revealed that similar pathways were altered, suggesting the commonality of pathogenesis between the two disorders.
Collapse
Affiliation(s)
- Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Raghothama Chaerkady
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway Street, Suite 371 BRB, Baltimore, Maryland 21205, United States
| | - Kai Kammers
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Jacqueline C. Stewart
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Anialak Zavala
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Dobrila D. Rudnicki
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Russell L. Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
- Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway Street, Suite 371 BRB, Baltimore, Maryland 21205, United States
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
- Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
47
|
Molasy M, Walczak A, Szaflik J, Szaflik JP, Majsterek I. MicroRNAs in glaucoma and neurodegenerative diseases. J Hum Genet 2016; 62:105-112. [PMID: 27412874 DOI: 10.1038/jhg.2016.91] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) constitute a class of short, non-coding RNAs, which have important role in post-transcriptional regulation of genes expression by base-pairing with their target messenger RNA (mRNA). In recent years, miRNAs biogenesis, gene silencing mechanism and implication in various diseases have been thoroughly investigated. Many scientific findings indicate the altered expression of specific miRNA in the brains of patients affected by neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease and Huntington disease. The progressive optic nerve neuropathy associated with changed miRNA profile was also observed during glaucoma development. This suggests that the miRNAs may have a crucial role in these disorders, contributing to the neuronal cell death. A better understanding of molecular mechanism of these disorders will open a new potential way of ND treatment. In this review, the miRNAs role in particular neurodegenerative disorders and their possible application in medicine was discussed.
Collapse
Affiliation(s)
- Milena Molasy
- Department of Clinical Chemistry and Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Anna Walczak
- Department of Clinical Chemistry and Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jerzy Szaflik
- Department of Ophthalmology, SPKSO Ophthalmic Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Jacek P Szaflik
- Department of Ophthalmology, SPKSO Ophthalmic Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
48
|
Poblete-Durán N, Prades-Pérez Y, Vera-Otarola J, Soto-Rifo R, Valiente-Echeverría F. Who Regulates Whom? An Overview of RNA Granules and Viral Infections. Viruses 2016; 8:v8070180. [PMID: 27367717 PMCID: PMC4974515 DOI: 10.3390/v8070180] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
After viral infection, host cells respond by mounting an anti-viral stress response in order to create a hostile atmosphere for viral replication, leading to the shut-off of mRNA translation (protein synthesis) and the assembly of RNA granules. Two of these RNA granules have been well characterized in yeast and mammalian cells, stress granules (SGs), which are translationally silent sites of RNA triage and processing bodies (PBs), which are involved in mRNA degradation. This review discusses the role of these RNA granules in the evasion of anti-viral stress responses through virus-induced remodeling of cellular ribonucleoproteins (RNPs).
Collapse
Affiliation(s)
- Natalia Poblete-Durán
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Yara Prades-Pérez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile.
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| |
Collapse
|
49
|
Bellato HM, Hajj GNM. Translational control by eIF2α in neurons: Beyond the stress response. Cytoskeleton (Hoboken) 2016; 73:551-565. [PMID: 26994324 DOI: 10.1002/cm.21294] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
The translation of mRNAs is a tightly controlled process that responds to multiple signaling pathways. In neurons, this control is also exerted locally due to the differential necessity of proteins in axons and dendrites. The phosphorylation of the alpha subunit of the translation initiation factor 2 (eIF2α) is one of the mechanisms of translational control. The phosphorylation of eIF2α has classically been viewed as a stress response, halting translation initiation. However, in the nervous system this type of regulation has been related to other mechanisms besides stress response, such as behavior, memory consolidation and nervous system development. Additionally, neurodegenerative diseases have a major stress component, thus eIF2α phosphorylation plays a preeminent role and its modulation is currently viewed as a new opportunity for therapeutic interventions. This review consolidates current information regarding eIF2α phosphorylation in neurons and its impact in neurodegenerative diseases. © 2016 Wiley Periodicals, Inc.
Collapse
|
50
|
Shrestha E, Hussein MA, Savas JN, Ouimet M, Barrett TJ, Leone S, Yates JR, Moore KJ, Fisher EA, Garabedian MJ. Poly(ADP-ribose) Polymerase 1 Represses Liver X Receptor-mediated ABCA1 Expression and Cholesterol Efflux in Macrophages. J Biol Chem 2016; 291:11172-84. [PMID: 27026705 DOI: 10.1074/jbc.m116.726729] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 11/06/2022] Open
Abstract
Liver X receptors (LXR) are oxysterol-activated nuclear receptors that play a central role in reverse cholesterol transport through up-regulation of ATP-binding cassette transporters (ABCA1 and ABCG1) that mediate cellular cholesterol efflux. Mouse models of atherosclerosis exhibit reduced atherosclerosis and enhanced regression of established plaques upon LXR activation. However, the coregulatory factors that affect LXR-dependent gene activation in macrophages remain to be elucidated. To identify novel regulators of LXR that modulate its activity, we used affinity purification and mass spectrometry to analyze nuclear LXRα complexes and identified poly(ADP-ribose) polymerase-1 (PARP-1) as an LXR-associated factor. In fact, PARP-1 interacted with both LXRα and LXRβ. Both depletion of PARP-1 and inhibition of PARP-1 activity augmented LXR ligand-induced ABCA1 expression in the RAW 264.7 macrophage line and primary bone marrow-derived macrophages but did not affect LXR-dependent expression of other target genes, ABCG1 and SREBP-1c. Chromatin immunoprecipitation experiments confirmed PARP-1 recruitment at the LXR response element in the promoter of the ABCA1 gene. Further, we demonstrated that LXR is poly(ADP-ribosyl)ated by PARP-1, a potential mechanism by which PARP-1 influences LXR function. Importantly, the PARP inhibitor 3-aminobenzamide enhanced macrophage ABCA1-mediated cholesterol efflux to the lipid-poor apolipoprotein AI. These findings shed light on the important role of PARP-1 on LXR-regulated lipid homeostasis. Understanding the interplay between PARP-1 and LXR may provide insights into developing novel therapeutics for treating atherosclerosis.
Collapse
Affiliation(s)
- Elina Shrestha
- From the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Maryem A Hussein
- From the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Jeffery N Savas
- the Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Mireille Ouimet
- the Department of Medicine, Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York 10016, and
| | - Tessa J Barrett
- the Department of Medicine, Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York 10016, and
| | - Sarah Leone
- From the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - John R Yates
- the Department of Chemical Physiology, Scripps Research Institute, La Jolla, California 92037
| | - Kathryn J Moore
- the Department of Medicine, Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York 10016, and
| | - Edward A Fisher
- the Department of Medicine, Division of Cardiology, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York 10016, and
| | - Michael J Garabedian
- From the Department of Microbiology, New York University School of Medicine, New York, New York 10016,
| |
Collapse
|