1
|
Hazra S, Jana B. Evaluating long-range orientational ordering of water around proteins: signature of a tug-of-war scenario. Phys Chem Chem Phys 2025; 27:3930-3940. [PMID: 39902481 DOI: 10.1039/d4cp04451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Long-range perturbations of water structure and dynamics by biomolecules are of great interest owing to their potential role in biomolecular recognition. In this article, we examined the local and long-range orientational structure of water molecules surrounding proteins with different total charges (+8, 0 and -8), both with and without the presence of a physiological salt environment. A prominent population of in-oriented water molecules was observed in the first hydration shell of the proteins, irrespective of their total charges. Starting from the third hydration layer, water molecules primarily reflected the total charge of the respective protein. This long-range ordering persisted up to the ninth hydration layer without a physiological salt environment and vanished beyond the fifth hydration shell in the presence of a physiological salt environment. Long-range orientational ordering around different types of surface atoms of a protein showed a particularly rich and heterogeneous behaviour. When the surface atom's charge and the protein's total charge were opposite, a clear signature of a tug-of-war was demonstrated in the long-range orientational ordering of water molecules. While water molecules reported the surface atom's charge at shorter distances, at longer distances, water molecules reported the total charge of the protein, with a crossover occurring around 10 Å. This phenomenon persisted even in the presence of a physiological salt environment. Evidence of destructive/constructive superposition of water-mediated orientation waves originating from two individual proteins with similar/opposite total charges was also demonstrated. These results are important for understanding long-range water-mediated recognition phenomena among biomolecules (e.g., protein-protein, protein-ligand, and protein-DNA interactions).
Collapse
Affiliation(s)
- Subhabrata Hazra
- School of Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Biman Jana
- School of Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
2
|
Ni Z, Tan J, Luo Y, Ye S. Dynamic protein hydration water mediates the aggregation kinetics of amyloid β peptides at interfaces. J Colloid Interface Sci 2025; 679:539-546. [PMID: 39467365 DOI: 10.1016/j.jcis.2024.10.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Protein hydration water is essential for protein misfolding and amyloid formation, but how it directs the course of amyloid formation has yet to be elucidated. Here, we experimentally demonstrated that femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) and the femtosecond IR pump-SFG probe technique can serve as powerful tools for addressing this issue. Using amyloid β(1-42) peptide as a model, we determined the transient misfolding intermediates by probing the amide band spectral features and the local hydration water changes by measuring the ultrafast vibrational dynamics of the amide I band. For the first time, we established a correlation between the dynamic change in protein hydration water and aggregation propensity. The aggregation propensity depends on the dynamic change in the hydration water, rather than the static hydration water content of the initial protein state. Water expulsion enhances the aggregation propensity and promotes amyloid formation, while protein hydration attenuates the aggregation propensity and inhibits amyloid formation. The suppression of water expulsion and protein hydration can prevent protein aggregation and stabilize proteins. These findings contribute to a better understanding of the underlying effect of hydration water on amyloid formation and protein structural stability and provide a strategy for maintaining long-term stabilization of biomolecules.
Collapse
Affiliation(s)
- Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
| |
Collapse
|
3
|
Qin X, Fang J, Chen AA, Sarker P, Sajib MSJ, Uline MJ, Wei T. Hydration and Antibiofouling Behavior of Zwitterionic Polycarboxybetaine-Grafted Surfaces Studied with Atomistic Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1005-1012. [PMID: 39723936 DOI: 10.1021/acs.langmuir.4c04281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Fouling-resistant coating materials have important applications in marine industry and biomedicine. Zwitterionic carboxybetaine polymers have demonstrated robust antibiofouling functionalities in experiments. In this work, we performed atomistic molecular dynamics simulations to study the molecular mechanism of hydration and antibiofouling of poly(carboxybetaine acrylamide) (polyCBAA) brush surfaces. We focused on the zwitterionic carboxybetaine, which has only a short methylene spacer between the positive quaternary ammonium and the negative carboxylate groups. Our study shows that a large amount of water is present within the polyCBAA surface, and a condensed water layer of single-molecular thickness covers the top of the polymer surface. Moreover, the clustering of the zwitterionic chains results in an amorphous structure of the polymer surface, a reduced degree of order in the interfacial water molecules, and weak protein attachment. The low protein desorption free energy demonstrates that the polyCBAA surface exhibits strong fouling resistance due to its significant interfacial hydration and the small dipole moment of the carboxybetaine group, minimizing protein-surface electrostatic interactions. Our study at the molecular level will be important to the future development of zwitterionic materials.
Collapse
Affiliation(s)
- Xiaoxue Qin
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jiahuiyu Fang
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | | | - Pranab Sarker
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Md Symon Jahan Sajib
- Department of Chemical Engineering, Howard University, Washington, District of Columbia 20059, United States
| | - Mark J Uline
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Tao Wei
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
4
|
Trewhella J, Vachette P, Larsen AH. Benchmarking predictive methods for small-angle X-ray scattering from atomic coordinates of proteins using maximum likelihood consensus data. IUCRJ 2024; 11:762-779. [PMID: 38989800 PMCID: PMC11364021 DOI: 10.1107/s205225252400486x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024]
Abstract
Stimulated by informal conversations at the XVII International Small Angle Scattering (SAS) conference (Traverse City, 2017), an international team of experts undertook a round-robin exercise to produce a large dataset from proteins under standard solution conditions. These data were used to generate consensus SAS profiles for xylose isomerase, urate oxidase, xylanase, lysozyme and ribonuclease A. Here, we apply a new protocol using maximum likelihood with a larger number of the contributed datasets to generate improved consensus profiles. We investigate the fits of these profiles to predicted profiles from atomic coordinates that incorporate different models to account for the contribution to the scattering of water molecules of hydration surrounding proteins in solution. Programs using an implicit, shell-type hydration layer generally optimize fits to experimental data with the aid of two parameters that adjust the volume of the bulk solvent excluded by the protein and the contrast of the hydration layer. For these models, we found the error-weighted residual differences between the model and the experiment generally reflected the subsidiary maxima and minima in the consensus profiles that are determined by the size of the protein plus the hydration layer. By comparison, all-atom solute and solvent molecular dynamics (MD) simulations are without the benefit of adjustable parameters and, nonetheless, they yielded at least equally good fits with residual differences that are less reflective of the structure in the consensus profile. Further, where MD simulations accounted for the precise solvent composition of the experiment, specifically the inclusion of ions, the modelled radius of gyration values were significantly closer to the experiment. The power of adjustable parameters to mask real differences between a model and the structure present in solution is demonstrated by the results for the conformationally dynamic ribonuclease A and calculations with pseudo-experimental data. This study shows that, while methods invoking an implicit hydration layer have the unequivocal advantage of speed, care is needed to understand the influence of the adjustable parameters. All-atom solute and solvent MD simulations are slower but are less susceptible to false positives, and can account for thermal fluctuations in atomic positions, and more accurately represent the water molecules of hydration that contribute to the scattering profile.
Collapse
Affiliation(s)
- Jill Trewhella
- School of Life and Environmental SciencesUniversity of SydneyNSW2006Australia
| | - Patrice Vachette
- Institute for Integrative Biology of the Cell (12BC)Université Paris-Saclay, CEA, CNRSGif-sur-YvetteParis91198France
| | - Andreas Haahr Larsen
- Department of NeuroscienceUniversity of CopenhagenBlegdamsvej 32200CopenhagenDenmark
| |
Collapse
|
5
|
Linse JB, Hub JS. Scrutinizing the protein hydration shell from molecular dynamics simulations against consensus small-angle scattering data. Commun Chem 2023; 6:272. [PMID: 38086909 PMCID: PMC10716392 DOI: 10.1038/s42004-023-01067-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/20/2023] [Indexed: 06/09/2024] Open
Abstract
Biological macromolecules in solution are surrounded by a hydration shell, whose structure differs from the structure of bulk solvent. While the importance of the hydration shell for numerous biological functions is widely acknowledged, it remains unknown how the hydration shell is regulated by macromolecular shape and surface composition, mainly because a quantitative probe of the hydration shell structure has been missing. We show that small-angle scattering in solution using X-rays (SAXS) or neutrons (SANS) provide a protein-specific probe of the protein hydration shell that enables quantitative comparison with molecular simulations. Using explicit-solvent SAXS/SANS predictions, we derived the effect of the hydration shell on the radii of gyration Rg of five proteins using 18 combinations of protein force field and water model. By comparing computed Rg values from SAXS relative to SANS in D2O with consensus SAXS/SANS data from a recent worldwide community effort, we found that several but not all force fields yield a hydration shell contrast in remarkable agreement with experiments. The hydration shell contrast captured by Rg values depends strongly on protein charge and geometric shape, thus providing a protein-specific footprint of protein-water interactions and a novel observable for scrutinizing atomistic hydration shell models against experimental data.
Collapse
Affiliation(s)
- Johanna-Barbara Linse
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, 66123, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, 66123, Germany.
| |
Collapse
|
6
|
Ballabio F, Paissoni C, Bollati M, de Rosa M, Capelli R, Camilloni C. Accurate and Efficient SAXS/SANS Implementation Including Solvation Layer Effects Suitable for Molecular Simulations. J Chem Theory Comput 2023; 19:8401-8413. [PMID: 37923304 PMCID: PMC10687869 DOI: 10.1021/acs.jctc.3c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Small-angle X-ray and neutron scattering (SAXS/SANS) provide valuable insights into the structure and dynamics of biomolecules in solution, complementing a wide range of structural techniques, including molecular dynamics simulations. As contrast-based methods, they are sensitive not only to structural properties but also to solvent-solute interactions. Their use in molecular dynamics simulations requires a forward model that should be as fast and accurate as possible. In this work, we demonstrate the feasibility of calculating SAXS and SANS intensities using a coarse-grained representation consisting of one bead per amino acid and three beads per nucleic acid, with form factors that can be corrected on the fly to account for solvation effects at no additional computational cost. By coupling this forward model with molecular dynamics simulations restrained with SAS data, it is possible to determine conformational ensembles or refine the structure and dynamics of proteins and nucleic acids in agreement with the experimental results. To assess the robustness of this approach, we applied it to gelsolin, for which we acquired SAXS data on its closed state, and to a UP1-microRNA complex, for which we used previously collected measurements. Our hybrid-resolution small-angle scattering (hySAS) implementation, being distributed in PLUMED, can be used with atomistic and coarse-grained simulations using diverse restraining strategies.
Collapse
Affiliation(s)
- Federico Ballabio
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, via Celoria 26, 20133 Milano, Italy
| | - Cristina Paissoni
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, via Celoria 26, 20133 Milano, Italy
| | - Michela Bollati
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, via Celoria 26, 20133 Milano, Italy
- Istituto
di Biofisica, Consiglio Nazionale delle
Ricerche (IBF-CNR), via
Alfonso Corti 12, 20133 Milano, Italy
| | - Matteo de Rosa
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, via Celoria 26, 20133 Milano, Italy
- Istituto
di Biofisica, Consiglio Nazionale delle
Ricerche (IBF-CNR), via
Alfonso Corti 12, 20133 Milano, Italy
| | - Riccardo Capelli
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, via Celoria 26, 20133 Milano, Italy
| | - Carlo Camilloni
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
7
|
DeStefano A, Nguyen M, Fredrickson GH, Han S, Segalman RA. Design of Soft Material Surfaces with Rationally Tuned Water Diffusivity. ACS CENTRAL SCIENCE 2023; 9:1019-1024. [PMID: 37252353 PMCID: PMC10214527 DOI: 10.1021/acscentsci.3c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 05/31/2023]
Abstract
Water structure and dynamics can be key modulators of adsorption, separations, and reactions at soft material interfaces, but systematically tuning water environments in an aqueous, accessible, and functionalizable material platform has been elusive. This work leverages variations in excluded volume to control and measure water diffusivity as a function of position within polymeric micelles using Overhauser dynamic nuclear polarization spectroscopy. Specifically, a versatile materials platform consisting of sequence-defined polypeptoids simultaneously offers a route to controlling the functional group position and a unique opportunity to generate a water diffusivity gradient extending away from the polymer micelle core. These results demonstrate an avenue not only to rationally design the chemical and structural properties of polymer surfaces but also to design and tune the local water dynamics that, in turn, can adjust the local activity for solutes.
Collapse
Affiliation(s)
- Audra
J. DeStefano
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - My Nguyen
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
| | - Songi Han
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Guidugli S, Villegas M, Benegas J, Donati I, Paoletti S. Solvation and expansion of neutral and charged chains of a carbohydrate polyelectrolyte: Galacturonan in water. A critical revisiting. Biophys Chem 2023; 295:106960. [PMID: 36806954 DOI: 10.1016/j.bpc.2023.106960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
Experimental and theoretical data have been revisited to shed light onto the aspects of hydration and chain expansion of pectic acid (galacturonan) upon charging. The prediction of the variation of the number of solvation water molecules between the two limit ionization states from theoretical calculations was confirmed to a very high accuracy by the corresponding number evaluated form dilatometric measurements. The relevance of hydration to the mechanism of bonding of calcium ions by sodium pectate is discussed. Characterization of polymer expansion has been obtained by calculating the values of the characteristic ratio and/or the persistence length on the respective populations and comparing the theoretical predictions with experimental data. The results show that a charged chain in typical conditions of ionic strength is more expanded than its neutral counterpart, whereas the ideal limit (31 and 21) helical conformations in the uncharged and totally charged conditions, respectively, share the same value of the linear advance of the helical repeat, when the ionic strength tends to infinite. Total divergence between theoretical predictions and experimental evidence rules out the possibility that carboxylate charge reduction by protonation and by methyl esterification are equivalent in determining the solution behavior of galacturonan.
Collapse
Affiliation(s)
- Silvina Guidugli
- Instituto de Matemática Aplicada San Luis (IMASL), Departamento de Física, Universidad Nacional de San Luis, CONICET, Ejército De Los Andes 950, 5700 San Luis, Argentina
| | - Myriam Villegas
- Instituto de Matemática Aplicada San Luis (IMASL), Departamento de Física, Universidad Nacional de San Luis, CONICET, Ejército De Los Andes 950, 5700 San Luis, Argentina
| | - Julio Benegas
- Instituto de Matemática Aplicada San Luis (IMASL), Departamento de Física, Universidad Nacional de San Luis, CONICET, Ejército De Los Andes 950, 5700 San Luis, Argentina
| | - Ivan Donati
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, I-34127 Trieste, Italy.
| | - Sergio Paoletti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, I-34127 Trieste, Italy
| |
Collapse
|
9
|
Shi J, Cho JH, Hwang W. Heterogeneous and Allosteric Role of Surface Hydration for Protein-Ligand Binding. J Chem Theory Comput 2023; 19:1875-1887. [PMID: 36820489 PMCID: PMC10848206 DOI: 10.1021/acs.jctc.2c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 02/24/2023]
Abstract
Atomistic-level understanding of surface hydration mediating protein-protein interactions and ligand binding has been a challenge due to the dynamic nature of water molecules near the surface. We develop a computational method to evaluate the solvation free energy based on the density map of the first hydration shell constructed from all-atom molecular dynamics simulation and use it to examine the binding of two intrinsically disordered ligands to their target protein domain. One ligand is from the human protein, and the other is from the 1918 Spanish flu virus. We find that the viral ligand incurs a 6.9 kcal/mol lower desolvation penalty upon binding to the target, which is consistent with its stronger binding affinity. The difference arises from the spatially fragmented and nonuniform water density profiles of the first hydration shell. In particular, residues that are distal from the ligand-binding site contribute to a varying extent to the desolvation penalty, among which the "entropy hotspot" residues contribute significantly. Thus, ligand binding alters hydration on remote sites in addition to affecting the binding interface. The nonlocal effect disappears when the conformational motion of the protein is suppressed. The present results elucidate the interplay between protein conformational dynamics and surface hydration. Our approach of measuring the solvation free energy based on the water density of the first hydration shell is tolerant of the conformational fluctuation of protein, and we expect it to be applicable to investigating a broad range of biomolecular interfaces.
Collapse
Affiliation(s)
- Jie Shi
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 777843, United States
| | - Jae-Hyun Cho
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
| | - Wonmuk Hwang
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
- Department
of Physics and Astronomy, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
10
|
Chathoth NE, Nair AG, Anjukandi P. Multifaceted folding-unfolding landscape of the TrpZip2 β-hairpin and the role of external sub-piconewton mechanical tensions. Phys Chem Chem Phys 2023; 25:11093-11101. [PMID: 36938693 DOI: 10.1039/d2cp05770k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Proteins can experience uneven tensions of the order of tens of piconewtons when exposed to different solvent environment due to the thermal motion of the solvent. It is also true that biomolecules, especially proteins, are subjected to a variety of mechanical tensions generated by several factors, including mechanically assisted translocation and pressure gradients within living systems. Here, we use metadynamics simulations to revisit the folding-unfolding of the TrpZip2 β-hairpin and redefine it from the perspective of an external force of a sub-piconewton magnitude acting on the ends of the hairpin. The chosen forces, while preserving the morphology of the β-hairpin chain when it is pulled, are capable of influencing the conformational behavior of the chain during folding and unfolding. Our investigations confirm that the TrpZip2 β-hairpin exhibits a zipper (zip-out) mechanism for folding-unfolding in both mechanically unbiased and biased (with a 30 pN end force) situations. However, it is important to note that they present marked differences in their folding and unfolding paths, with the mechanically biased system capable of becoming trapped in various intermediate states. Both unbiased and biased scenarios of the hairpin indicate that the hairpin turn is highly stable during the folding-unfolding event and initiates folding. More importantly we confirm that the existing heterogeneity in the TrpZip2 β-hairpin folding-unfolding is a consequence of the wide range of conformations observed, owing to the different trapped intermediates caused by the uneven forces it may experience in solution.
Collapse
Affiliation(s)
- Nayana Edavan Chathoth
- Department of Chemistry, Indian Institute of Technology, Palakkad-678557, Kerala, India.
| | - Aparna G Nair
- Department of Chemistry, Indian Institute of Technology, Palakkad-678557, Kerala, India.
| | - Padmesh Anjukandi
- Department of Chemistry, Indian Institute of Technology, Palakkad-678557, Kerala, India.
| |
Collapse
|
11
|
Hu K, Shirakashi R. Dynamic Electric Field Alignment Determines the Water Rotational Motion around Protein. J Phys Chem B 2023; 127:1376-1384. [PMID: 36749793 DOI: 10.1021/acs.jpcb.2c07405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Water rotational dynamics in biomolecular solution is crucial to evaluating and controlling biomolecule stability. In this molecular dynamics simulation (MD) study on lysozyme solutions, we present how the exerted internal electric field determines water rotational dynamics. We find that the relaxation time of water rotation is equivalent to that of the reorientation of the exerted overall electric field for every single water molecule, regardless of its translation mode. Namely, water molecular rotation synchronizes with the exerted field reorientation. We also map the reorientation process of the electric field at fixed points relative to protein in the solution, which displays the local hydration dynamics commensurate with the reported time-dependent fluorescence Stokes shift (TDFSS) measurements. Comparing the spatial distribution of local field reorientation relaxation time with that of rotational relaxation time, we further suggest that water rotation dynamics are subject to the reorientation of the local overall field within the hydration layer. While outside the hydration layer, the relaxation time of the local electric field reorientation is short enough (subpicosecond) to assume the δ function, showing the electric force with randomly changing orientation is applied to each water molecule.
Collapse
Affiliation(s)
- Kang Hu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan.,Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan
| |
Collapse
|
12
|
Sato K, Oide M, Nakasako M. Prediction of hydrophilic and hydrophobic hydration structure of protein by neural network optimized using experimental data. Sci Rep 2023; 13:2183. [PMID: 36750742 PMCID: PMC9905073 DOI: 10.1038/s41598-023-29442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
The hydration structures of proteins, which are necessary for their folding, stability, and functions, were visualized using X-ray and neutron crystallography and transmission electron microscopy. However, complete visualization of hydration structures over the entire protein surface remains difficult. To compensate for this incompleteness, we developed a three-dimensional convolutional neural network to predict the probability distribution of hydration water molecules on the hydrophilic and hydrophobic surfaces, and in the cavities of proteins. The neural network was optimized using the distribution patterns of protein atoms around the hydration water molecules identified in the high-resolution X-ray crystal structures. We examined the feasibility of the neural network using water sites in the protein crystal structures that were not included in the datasets. The predicted distribution covered most of the experimentally identified hydration sites, with local maxima appearing in their vicinity. This computational approach will help to highlight the relevance of hydration structures to the biological functions and dynamics of proteins.
Collapse
Affiliation(s)
- Kochi Sato
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan. .,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| |
Collapse
|
13
|
Havlíková M, Jugl A, Kadlec M, Smilek J, Chang CH, Pekař M, Mravec F. Catanionic vesicles and their complexes with hyaluronan – A way how to tailor physicochemical properties via ionic strength. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Hyaluronan-cecropin B interactions studied by ultrasound velocimetry and isothermal titration calorimetry. Int J Biol Macromol 2023; 227:786-794. [PMID: 36549616 DOI: 10.1016/j.ijbiomac.2022.12.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Interactions between hyaluronan and the antimicrobial peptide cecropin B were studied in water and PBS using high-resolution ultrasonic spectroscopy and isothermal titration calorimetry. Although each technique is fundamentally different, they both gave identical results. It was found that the molecular weight of hyaluronan plays an important role in the interactions - in particular, the transition between the rod conformation and the random coil conformation. In water, interactions were saturated in a molar charge ratio of 1.5 and not 1.0 as expected. The later saturation of the interaction probably occurred either for steric reasons or due to the interaction between functional groups in the cecropin structure, which allowed complete dissociation of the antimicrobial peptide. In PBS, in contrast to water, no interactions were observed, irrespective of the molecular weight of hyaluronan. Thus, at a sufficiently high ionic strength, the interactions were suppressed.
Collapse
|
15
|
Kumar V, van Rensburg W, Snoep JL, Paradies HH, Borrageiro C, de Villiers C, Singh R, Joshi KB, Rautenbach M. Antimicrobial nano-assemblies of tryptocidine C, a tryptophan-rich cyclic decapeptide, from ethanolic solutions. Biochimie 2023; 204:22-32. [PMID: 36057373 DOI: 10.1016/j.biochi.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 01/12/2023]
Abstract
Tryptocidine C (TpcC), a Trp-rich cyclodecapeptide is a minor constituent in the antibiotic tyrothricin complex from Brevibacillus parabrevis. TpcC possesses a high tendency to oligomerise in aqueous solutions and dried TpcC forms distinct self-assembled nanoparticles. High-resolution scanning electron microscopy revealed the influence of different ethanol:water solvent systems on TpcC self-assembly, with the TpcC, dried from a high concentration in 15% ethanol, primarily assembling into small nanospheres with 24.3 nm diameter and 0.05 polydispersity. TpcC at 16 μM, near its CMC, formed a variety of structures such as small nanospheres, large dense nanospheroids and facetted 3-D-crystals, as well as sheets and coarse carpet-like structures which depended on ethanol concentration. Drying 16 μM TpcC from 75% ethanol resulted in highly facetted 3-D crystals, as well as small nanospheres, while those in 10% ethanol preparation had less defined facets. Drying from 20 to 50% ethanol led to polymorphic architectures with a few defined nanospheroids and various small nanoparticles, imbedded in carpet- and sheet-like structures. These polymorphic surface morphologies correlated with maintenance of fluorescence properties and the surface-derived antibacterial activity against Staphylococcus aureus over time, while there was a significant change in fluorescence and loss in activity in the 10% and 75% preparations where 3-D crystals were observed. This indicated that TpcC oligomerisation in solutions with 20-50% ethanol leads to metastable structures with a high propensity for release of antimicrobial moieties, while those leading to crystallisation limit active moieties release. TpcC nano-assemblies can find application in antimicrobial coatings, surface disinfectants, food packaging and wound healing materials.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Wilma van Rensburg
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Jacky L Snoep
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa; Molecular Cell Biology, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, the Netherlands
| | - Henrich H Paradies
- Jacobs-University, Department of Chemistry and Life Science, Bremen, 30110, Germany
| | | | - Carmen de Villiers
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Ramesh Singh
- Department of Chemistry, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Marina Rautenbach
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
16
|
A Structure-Based Mechanism for the Denaturing Action of Urea, Guanidinium Ion and Thiocyanate Ion. BIOLOGY 2022; 11:biology11121764. [PMID: 36552273 PMCID: PMC9775367 DOI: 10.3390/biology11121764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
An exhaustive analysis of all the protein structures deposited in the Protein Data Bank, here performed, has allowed the identification of hundredths of protein-bound urea molecules and the structural characterization of such binding sites. It emerged that, even though urea molecules are largely involved in hydrogen bonds with both backbone and side chains, they are also able to make van der Waals contacts with nonpolar moieties. As similar findings have also been previously reported for guanidinium and thiocyanate, this observation suggests that promiscuity is a general property of protein denaturants. Present data provide strong support for a mechanism based on the protein-denaturant direct interactions with a denaturant binding model to equal and independent sites. In this general framework, our investigations also highlight some interesting insights into the different denaturing power of urea compared to guanidinium/thiocyanate.
Collapse
|
17
|
Chatzimagas L, Hub JS. Structure and ensemble refinement against SAXS data: Combining MD simulations with Bayesian inference or with the maximum entropy principle. Methods Enzymol 2022; 678:23-54. [PMID: 36641209 DOI: 10.1016/bs.mie.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Small-angle X-ray scattering (SAXS) is a powerful method for tracking conformational transitions of proteins or soft-matter complexes in solution. However, the interpretation of the experimental data is challenged by the low spatial resolution and the low information content of the data, which lead to a high risk of overinterpreting the data. Here, we illustrate how SAXS data can be integrated into all-atom molecular dynamics (MD) simulation to derive atomic structures or heterogeneous ensembles that are compatible with the data. Besides providing atomistic insight, the MD simulation adds physicochemical information, as encoded in the MD force fields, which greatly reduces the risk of overinterpretation. We present an introduction into the theory of SAXS-driven MD simulations as implemented in GROMACS-SWAXS, a modified version of the GROMACS simulation software. We discuss SAXS-driven parallel-replica ensemble refinement with commitment to the maximum entropy principle as well as a Bayesian formulation of SAXS-driven structure refinement. Practical considerations for running and interpreting the simulations are presented. The methods are freely available via GitLab at https://gitlab.com/cbjh/gromacs-swaxs.
Collapse
Affiliation(s)
- Leonie Chatzimagas
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
18
|
Hydration and antibiofouling of TMAO-derived zwitterionic polymers surfaces studied with atomistic molecular dynamics simulations. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Effect of hemoglobin hydration on the physical properties of erythrocyte cytoplasm and whole blood. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Cheung E, Xia Y, Caporini MA, Gilmore JL. Tools shaping drug discovery and development. BIOPHYSICS REVIEWS 2022; 3:031301. [PMID: 38505278 PMCID: PMC10903431 DOI: 10.1063/5.0087583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 03/21/2024]
Abstract
Spectroscopic, scattering, and imaging methods play an important role in advancing the study of pharmaceutical and biopharmaceutical therapies. The tools more familiar to scientists within industry and beyond, such as nuclear magnetic resonance and fluorescence spectroscopy, serve two functions: as simple high-throughput techniques for identification and purity analysis, and as potential tools for measuring dynamics and structures of complex biological systems, from proteins and nucleic acids to membranes and nanoparticle delivery systems. With the expansion of commercial small-angle x-ray scattering instruments into the laboratory setting and the accessibility of industrial researchers to small-angle neutron scattering facilities, scattering methods are now used more frequently in the industrial research setting, and probe-less time-resolved small-angle scattering experiments are now able to be conducted to truly probe the mechanism of reactions and the location of individual components in complex model or biological systems. The availability of atomic force microscopes in the past several decades enables measurements that are, in some ways, complementary to the spectroscopic techniques, and wholly orthogonal in others, such as those related to nanomechanics. As therapies have advanced from small molecules to protein biologics and now messenger RNA vaccines, the depth of biophysical knowledge must continue to serve in drug discovery and development to ensure quality of the drug, and the characterization toolbox must be opened up to adapt traditional spectroscopic methods and adopt new techniques for unraveling the complexities of the new modalities. The overview of the biophysical methods in this review is meant to showcase the uses of multiple techniques for different modalities and present recent applications for tackling particularly challenging situations in drug development that can be solved with the aid of fluorescence spectroscopy, nuclear magnetic resonance spectroscopy, atomic force microscopy, and small-angle scattering.
Collapse
Affiliation(s)
- Eugene Cheung
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Yan Xia
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Marc A. Caporini
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Jamie L. Gilmore
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
21
|
Xu AY, Rinee KC, Stemple C, Castellanos MM, Bakshi K, Krueger S, Curtis JE. Counting the water: Characterize the hydration level of aluminum adjuvants using contrast matching small-angle neutron scattering. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Nishida K, Anada T, Tanaka M. Roles of interfacial water states on advanced biomedical material design. Adv Drug Deliv Rev 2022; 186:114310. [PMID: 35487283 DOI: 10.1016/j.addr.2022.114310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
When biomedical materials come into contact with body fluids, the first reaction that occurs on the material surface is hydration; proteins are then adsorbed and denatured on the hydrated material surface. The amount and degree of denaturation of adsorbed proteins affect subsequent cell behavior, including cell adhesion, migration, proliferation, and differentiation. Biomolecules are important for understanding the interactions and biological reactions of biomedical materials to elucidate the role of hydration in biomedical materials and their interaction partners. Analysis of the water states of hydrated materials is complicated and remains controversial; however, knowledge about interfacial water is useful for the design and development of advanced biomaterials. Herein, we summarize recent findings on the hydration of synthetic polymers, supramolecular materials, inorganic materials, proteins, and lipid membranes. Furthermore, we present recent advances in our understanding of the classification of interfacial water and advanced polymer biomaterials, based on the intermediate water concept.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Japan(1)
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan.
| |
Collapse
|
23
|
Luo J, Liu M, Xing Y, Gui X, Li J. Investigating agglomeration of kaolinite particles in the presence of dodecylamine by force testing and molecular dynamics simulation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Hu K, Matsuura H, Shirakashi R. Stochastic Analysis of Molecular Dynamics Reveals the Rotation Dynamics Distribution of Water around Lysozyme. J Phys Chem B 2022; 126:4520-4530. [PMID: 35675630 DOI: 10.1021/acs.jpcb.2c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water dynamics is essential to biochemical processes by mediating all such reactions, including biomolecular degeneration in solutions. To disentangle the molecular-scale distribution of water dynamics around a solute biomolecule, we investigated here the rotational dynamics of water around lysozyme by combining molecular dynamics (MD) simulations and broadband dielectric spectroscopy (BDS). A statistical analysis using the relaxation times and trajectories of every single water molecule was proposed, and the two-dimensional probability distribution of water at a distance from the lysozyme surface with a rotational relaxation time was given. For the observed lysozyme solutions of 34-284 mg/mL, we discovered that the dielectric relaxation time obtained from this distribution agrees well with the measured γ relaxation time, which suggests that rotational self-correlation of water molecules underlies the gigahertz domain of the dielectric spectra. Regardless of protein concentration, water rotational relaxation time versus the distance from the lysozyme surface revealed that the water rotation is severely retarded within 3 Å from the lysozyme surface and is nearly comparable to pure water when farther than 10 Å. The dimension of the first hydration layer was subsequently identified in terms of the relationship between the acceleration of water rotation and the distance from the protein surface.
Collapse
Affiliation(s)
- Kang Hu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan.,Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Matsuura
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan
| |
Collapse
|
25
|
Lansky S, Salama R, Biarnés X, Shwartstein O, Schneidman-Duhovny D, Planas A, Shoham Y, Shoham G. Integrative structure determination reveals functional global flexibility for an ultra-multimodular arabinanase. Commun Biol 2022; 5:465. [PMID: 35577850 PMCID: PMC9110388 DOI: 10.1038/s42003-022-03054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/15/2021] [Indexed: 11/08/2022] Open
Abstract
AbnA is an extracellular GH43 α-L-arabinanase from Geobacillus stearothermophilus, a key bacterial enzyme in the degradation and utilization of arabinan. We present herein its full-length crystal structure, revealing the only ultra-multimodular architecture and the largest structure to be reported so far within the GH43 family. Additionally, the structure of AbnA appears to contain two domains belonging to new uncharacterized carbohydrate-binding module (CBM) families. Three crystallographic conformational states are determined for AbnA, and this conformational flexibility is thoroughly investigated further using the "integrative structure determination" approach, integrating molecular dynamics, metadynamics, normal mode analysis, small angle X-ray scattering, dynamic light scattering, cross-linking, and kinetic experiments to reveal large functional conformational changes for AbnA, involving up to ~100 Å movement in the relative positions of its domains. The integrative structure determination approach demonstrated here may apply also to the conformational study of other ultra-multimodular proteins of diverse functions and structures.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion, Haifa, 3200, Israel
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Omer Shwartstein
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion, Haifa, 3200, Israel.
| | - Gil Shoham
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
26
|
Stasiulewicz M, Panuszko A, Bruździak P, Stangret J. Mechanism of Osmolyte Stabilization-Destabilization of Proteins: Experimental Evidence. J Phys Chem B 2022; 126:2990-2999. [PMID: 35441516 PMCID: PMC9059127 DOI: 10.1021/acs.jpcb.2c00281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this work, we
investigated the influence of stabilizing (N,N,N-trimethylglycine)
and destabilizing (urea) osmolytes on the hydration spheres of biomacromolecules
in folded forms (trpzip-1 peptide and hen egg white
lysozyme—hewl) and unfolded protein models
(glycine—GLY and N-methylglycine—NMG)
by means of infrared spectroscopy. GLY and NMG were clearly limited
as minimal models for unfolded proteins and should be treated with
caution. We isolated the spectral share of water changed simultaneously
by the biomacromolecule/model molecule and the osmolyte, which allowed
us to provide unambiguous experimental arguments for the mechanism
of stabilization/destabilization of proteins by osmolytes. In the
case of both types of osmolytes, the decisive factor determining the
equilibrium folded/unfolded state of protein was the enthalpy effect
exerted on the hydration spheres of proteins in both forms. In the
case of stabilizing osmolytes, enthalpy was also favored by entropy,
as the unfolded state of a protein was more entropically destabilized
than the folded state.
Collapse
Affiliation(s)
- Marcin Stasiulewicz
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Aneta Panuszko
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Piotr Bruździak
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Janusz Stangret
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| |
Collapse
|
27
|
Yablonskaya OI, Voeikov VL, Novikov KN, Buravleva EV, Menshov VA, Trofimov AV. Effect of Humid Air Exposed to IR Radiation on Enzyme Activity. Int J Mol Sci 2022; 23:ijms23020601. [PMID: 35054784 PMCID: PMC8775401 DOI: 10.3390/ijms23020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
Water vapor absorbs well in the infra-red region of the electromagnetic spectrum. Absorption of radiant energy by water or water droplets leads to formation of exclusion zone water that possesses peculiar physico-chemical properties. In the course of this study, normally functioning and damaged alkaline phosphatase, horseradish peroxidase and catalase were treated with humid air irradiated with infrared light with a wavelength in the range of 1270 nm and referred to as coherent humidity (CoHu). One-minute long treatment with CoHu helped to partially protect enzymes from heat inactivation, mixed function oxidation, and loss of activity due to partial unfolding. Authors suggest that a possible mechanism underlying the observed effects involves altering the physicochemical properties of aqueous media while treatment of the objects with CoHu where CoHu acts as an intermediary.
Collapse
Affiliation(s)
- Olga I. Yablonskaya
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (V.A.M.); (A.V.T.)
- Correspondence:
| | - Vladimir L. Voeikov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.L.V.); (K.N.N.); (E.V.B.)
| | - Kirill N. Novikov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.L.V.); (K.N.N.); (E.V.B.)
| | - Ekaterina V. Buravleva
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.L.V.); (K.N.N.); (E.V.B.)
| | - Valeriy A. Menshov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (V.A.M.); (A.V.T.)
| | - Aleksei V. Trofimov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (V.A.M.); (A.V.T.)
| |
Collapse
|
28
|
Predicting solution scattering patterns with explicit-solvent molecular simulations. Methods Enzymol 2022; 677:433-456. [DOI: 10.1016/bs.mie.2022.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Scollo F, Evci H, Amaro M, Jurkiewicz P, Sykora J, Hof M. What Does Time-Dependent Fluorescence Shift (TDFS) in Biomembranes (and Proteins) Report on? Front Chem 2021; 9:738350. [PMID: 34778202 PMCID: PMC8586494 DOI: 10.3389/fchem.2021.738350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
The organization of biomolecules and bioassemblies is highly governed by the nature and extent of their interactions with water. These interactions are of high intricacy and a broad range of methods based on various principles have been introduced to characterize them. As these methods view the hydration phenomena differently (e.g., in terms of time and length scales), a detailed insight in each particular technique is to promote the overall understanding of the stunning “hydration world.” In this prospective mini-review we therefore critically examine time-dependent fluorescence shift (TDFS)—an experimental method with a high potential for studying the hydration in the biological systems. We demonstrate that TDFS is very useful especially for phospholipid bilayers for mapping the interfacial region formed by the hydrated lipid headgroups. TDFS, when properly applied, reports on the degree of hydration and mobility of the hydrated phospholipid segments in the close vicinity of the fluorophore embedded in the bilayer. Here, the interpretation of the recorded TDFS parameters are thoroughly discussed, also in the context of the findings obtained by other experimental techniques addressing the hydration phenomena (e.g., molecular dynamics simulations, NMR spectroscopy, scattering techniques, etc.). The differences in the interpretations of TDFS outputs between phospholipid biomembranes and proteins are also addressed. Additionally, prerequisites for the successful TDFS application are presented (i.e., the proper choice of fluorescence dye for TDFS studies, and TDFS instrumentation). Finally, the effects of ions and oxidized phospholipids on the bilayer organization and headgroup packing viewed from TDFS perspective are presented as application examples.
Collapse
Affiliation(s)
- Federica Scollo
- J. Heyrovský Institute of Physical Chemistry of the CAS, Prague, Czechia
| | - Hüseyin Evci
- J. Heyrovský Institute of Physical Chemistry of the CAS, Prague, Czechia
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the CAS, Prague, Czechia
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the CAS, Prague, Czechia
| | - Jan Sykora
- J. Heyrovský Institute of Physical Chemistry of the CAS, Prague, Czechia
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the CAS, Prague, Czechia
| |
Collapse
|
30
|
Biswas A, Barone V, Daidone I. High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins. J Phys Chem Lett 2021; 12:8777-8783. [PMID: 34491750 PMCID: PMC8450935 DOI: 10.1021/acs.jpclett.1c01855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/16/2021] [Indexed: 05/30/2023]
Abstract
Antifreeze proteins (AFPs) can bind to ice nuclei thereby inhibiting their growth and their hydration shell is believed to play a fundamental role. Here, we use molecular dynamics simulations to characterize the hydration shell of four moderately-active and four hyperactive AFPs. The local water density around the ice-binding-surface (IBS) is found to be lower than that around the non-ice-binding surface (NIBS) and this difference correlates with the higher hydrophobicity of the former. While the water-density increase (with respect to bulk) around the IBS is similar between moderately-active and hyperactive AFPs, it differs around the NIBS, being higher for the hyperactive AFPs. We hypothesize that while the lower water density at the IBS can pave the way to protein binding to ice nuclei, irrespective of the antifreeze activity, the higher density at the NIBS of the hyperactive AFPs contribute to their enhanced ability in inhibiting ice growth around the bound AFPs.
Collapse
Affiliation(s)
- Akash
Deep Biswas
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, Pisa 56126, Italy
- Department
of Physical and Chemical Sciences, University
of L’Aquila, via
Vetoio (Coppito 1), 67010 L’Aquila, Italy
| | - Vincenzo Barone
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, Pisa 56126, Italy
- National
Institute for Nuclear Physics (INFN) Pisa Section, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Isabella Daidone
- Department
of Physical and Chemical Sciences, University
of L’Aquila, via
Vetoio (Coppito 1), 67010 L’Aquila, Italy
| |
Collapse
|
31
|
Bin M, Yousif R, Berkowicz S, Das S, Schlesinger D, Perakis F. Wide-angle X-ray scattering and molecular dynamics simulations of supercooled protein hydration water. Phys Chem Chem Phys 2021; 23:18308-18313. [PMID: 34269785 DOI: 10.1039/d1cp02126e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the mechanism responsible for the protein low-temperature crossover observed at T≈ 220 K can help us improve current cryopreservation technologies. This crossover is associated with changes in the dynamics of the system, such as in the mean-squared displacement, whereas experimental evidence of structural changes is sparse. Here we investigate hydrated lysozyme proteins by using a combination of wide-angle X-ray scattering and molecular dynamics (MD) simulations. Experimentally we suppress crystallization by accurate control of the protein hydration level, which allows access to temperatures down to T = 175 K. The experimental data indicate that the scattering intensity peak at Q = 1.54 Å-1, attributed to interatomic distances, exhibits temperature-dependent changes upon cooling. In the MD simulations it is possible to decompose the water and protein contributions and we observe that, while the protein component is nearly temperature independent, the hydration water peak shifts in a fashion similar to that of bulk water. The observed trends are analysed by using the water-water and water-protein radial distribution functions, which indicate changes in the local probability density of hydration water.
Collapse
Affiliation(s)
- Maddalena Bin
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
32
|
Havlíková M, Jugl A, Krouská J, Szabová J, Mravcová L, Venerová T, Chang CH, Pekař M, Mravec F. Interactions between Cationic Ion Pair Amphiphile Vesicles and Hyaluronan-A Physicochemical Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8525-8533. [PMID: 34214390 DOI: 10.1021/acs.langmuir.1c00993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-resolution ultrasound spectroscopy (HR-US), size and ζ-potential titrations, and isothermal titration calorimetry (ITC) were used to characterize the interactions between hyaluronan and catanionic ion pair amphiphile vesicles composed of hexadecyltrimethylammonium-dodecylsulphate (HTMA-DS), dioctadecyldimethylammonium chloride (DODAC), and cholesterol. In addition to these methods, visual observations were performed with the selected molecular weight of hyaluronan. A very good correlation was obtained between data from size titration, HR-US, and visual observation, which indicated in lower charge ratios the formation of hyaluronan-coated vesicles. On the contrary, at higher charge ratios, coated vesicles disintegrated to a size of around 2000 nm. The intensity of these interactions and the disaggregation were dependent on the molecular weight of hyaluronan. All interactions studied by ITC showed strong exothermic behavior, and these interactions between vesicles and hyaluronan were confirmed from the first addition, independently of the molecular weight of hyaluronan.
Collapse
Affiliation(s)
- Martina Havlíková
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Adam Jugl
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Jitka Krouská
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Jana Szabová
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Ludmila Mravcová
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Tereza Venerová
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| | - Miloslav Pekař
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Filip Mravec
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| |
Collapse
|
33
|
Savelyev A. Assessment of the DNA partial specific volume and hydration layer properties from CHARMM Drude polarizable and additive MD simulations. Phys Chem Chem Phys 2021; 23:10524-10535. [PMID: 33899879 PMCID: PMC8121142 DOI: 10.1039/d1cp00688f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study we report on the accurate computation of the biomolecular partial specific volume (PSV) from explicit-solvent molecular dynamics (MD) simulations. The case of DNA is considered, and the predictions from two state-of-the-art biomolecular force fields, the CHARMM36 additive (C36) and Drude polarizable models, are presented. Unlike most of the existing approaches to assess the biomolecular PSV, our proposed method bypasses the need for the arbitrarily defined volume partitioning scheme into the intrinsic solute and solvent contributions. At the same time, to assess the density of the hydration layer water, we combine our simulation analysis approach with some of the existing fixed-size methods to determine the solute's intrinsic volume, and also propose our own approach to compute all required quantities exclusively from MD simulations. Our findings provide useful insights into the properties of the hydration layer, specifically its size and density, parameters of great importance to the variety of techniques used to model hydrodynamic and structural properties of biological molecules. The computed PSV values are found to be in close agreement with the values obtained from analytical ultracentrifugation (AUC) experiments performed on canonical B-form duplex DNAs and single-stranded DNAs forming G-quadruplex structures. Since the biomolecular PSV represents an important quantitative measure of solute-solvent interactions, near quantitative agreement with AUC measurements is indicative of the quality of the all-atom models used in the MD simulations, particularly the reliability of the CHARMM force-field parameters for nucleic acids, water, mobile ions, and interactions among these entities.
Collapse
Affiliation(s)
- Alexey Savelyev
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
34
|
Maurya M, Metya AK, Singh JK, Saito S. Effects of interfaces on structure and dynamics of water droplets on a graphene surface: A molecular dynamics study. J Chem Phys 2021; 154:164704. [PMID: 33940844 DOI: 10.1063/5.0046817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structure and dynamics of water droplets on a bilayer graphene surface are investigated using molecular dynamics simulations. The effects of solid/water and air/water interfaces on the local structure of water droplets are analyzed in terms of the hydrogen bond distribution and tetrahedral order parameter. It is found that the local structure in the core region of a water droplet is similar to that in liquid water. On the other hand, the local structure of water molecules at the solid/water and air/water interfaces, referred to as the interface and surface regions, respectively, consists mainly of three-coordinated molecules that are greatly distorted from a tetrahedral structure. This study reveals that the dynamics in different regions of the water droplets affects the intermolecular vibrational density of states: It is found that in the surface and interface regions, the intensity of vibrational density of states at ∼50 cm-1 is enhanced, whereas those at ∼200 and ∼500 cm-1 are weakened and redshifted. These changes are attributed to the increase in the number of molecules having fewer hydrogen bonds in the interface and surface regions. Both single-molecule and collective orientation relaxations are also examined. Single-molecule orientation relaxation is found to be marginally slower than that in liquid water. On the other hand, the collective orientation relaxation of water droplets is found to be significantly faster than that of liquid water because of the destructive correlation of dipole moments in the droplets. The negative correlation between distinct dipole moments also yields a blueshifted libration peak in the absorption spectrum. It is also found that the water-graphene interaction affects the structure and dynamics of the water droplets, such as the local water structure, collective orientation relaxation, and the correlation between dipole moments. This study reveals that the water/solid and water/air interfaces strongly affect the structure and intermolecular dynamics of water droplets and suggests that the intermolecular dynamics, such as energy relaxation dynamics, in other systems with interfaces are different from those in liquid water.
Collapse
Affiliation(s)
- Manish Maurya
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Atanu K Metya
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihar 801106, India
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
35
|
Stasiulewicz M, Panuszko A, Śmiechowski M, Bruździak P, Maszota P, Stangret J. Effect of urea and glycine betaine on the hydration sphere of model molecules for the surface features of proteins. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Bruntha A, Radhipriya R, Palanisamy T, Dhathathreyan A. Elastic compliance and adsorption profiles of Bovine serum albumin at fluid/solid interface in the presence of electrolytes. Biophys Chem 2021; 269:106523. [PMID: 33341694 DOI: 10.1016/j.bpc.2020.106523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022]
Abstract
Non-trivial topology of proteins under shear suggests that even small structural changes in proteins result in dramatic variations in the mechanical properties and stability. In this study, we have analysed the elastic compliance of solvated bovine serum albumin (BSA) with NaCl,MgCl2, FeCl3 of concentration-ranging from 50 mM to 250 mM using Quartz crystal microbalance with dissipation. The compliance shows a reverse Hofmeister trend (Na +
Collapse
Affiliation(s)
- A Bruntha
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - R Radhipriya
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Thanikaivelan Palanisamy
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - A Dhathathreyan
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
37
|
Liu X, Xiao L, Weng J, Xu Q, Li W, Zhao C, Xu J, Zhao Y. Regulating the reactivity of black phosphorus via protective chemistry. SCIENCE ADVANCES 2020; 6:6/46/eabb4359. [PMID: 33177081 PMCID: PMC7673725 DOI: 10.1126/sciadv.abb4359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/22/2020] [Indexed: 05/05/2023]
Abstract
Rationally regulating the reactivity of molecules or functional groups is common in organic chemistry, both in laboratory and industry synthesis. This concept can be applied to inorganic nanomaterials, particularly two-dimensional black phosphorus (BP) nanosheets. The high reactivity of few-layer (even monolayer) BP is expected to be "shut down" when not required and to be resumed upon application. Here, we demonstrate a protective chemistry-based methodology for regulating BP reactivity. The protective step initiates from binding Al3+ with lone pair electrons from P to decrease the electron density on the BP surface, and ends with an oxygen/water-resistant layer through the self-assembly of hydrophobic 1,2-benzenedithiol (BDT) on BP/Al3+ This protective step yields a stabilized BP with low reactivity. Deprotection of the obtained BP/Al3+/BDT is achieved by chelator treatment, which removes Al3+ and BDT from the BP surface. The deprotective process recovers the electron density of BP and thus restores the reactivity of BP.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Liangping Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jian Weng
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Qingchi Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Wanli Li
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Chunhui Zhao
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Jun Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
38
|
Belousov R, Qaisrani MN, Hassanali A, Roldán É. First-passage fingerprints of water diffusion near glutamine surfaces. SOFT MATTER 2020; 16:9202-9216. [PMID: 32510065 DOI: 10.1039/d0sm00541j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The extent to which biological interfaces affect the dynamics of water plays a key role in the exchange of matter and chemical interactions that are essential for life. The density and the mobility of water molecules depend on their proximity to biological interfaces and can play an important role in processes such as protein folding and aggregation. In this work, we study the dynamics of water near glutamine surfaces-a system of interest in studies of neurodegenerative diseases. Combining molecular-dynamics simulations and stochastic modelling, we study how the mean first-passage time and related statistics of water molecules escaping subnanometer-sized regions vary from the interface to the bulk. Our analysis reveals a dynamical complexity that reflects underlying chemical and geometrical properties of the glutamine surfaces. From the first-passage time statistics of water molecules, we infer their space-dependent diffusion coefficient in directions normal to the surfaces. Interestingly, our results suggest that the mobility of water varies over a longer length scale than the chemical potential associated with the water-protein interactions. The synergy of molecular dynamics and first-passage techniques opens the possibility for extracting space-dependent diffusion coefficients in more complex, inhomogeneous environments that are commonplace in living matter.
Collapse
Affiliation(s)
- Roman Belousov
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy.
| | - Muhammad Nawaz Qaisrani
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy. and SISSA - International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
| | - Ali Hassanali
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy.
| | - Édgar Roldán
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy.
| |
Collapse
|
39
|
Jugl A, Pekař M. Hyaluronan-Arginine Interactions-An Ultrasound and ITC Study. Polymers (Basel) 2020; 12:polym12092069. [PMID: 32932626 PMCID: PMC7570013 DOI: 10.3390/polym12092069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
High-resolution ultrasound spectroscopy and isothermal titration calorimetry were used to characterize interactions between hyaluronan and arginine oligomers. The molecular weight of arginine oligomer plays an important role in interactions with hyaluronan. Interactions were observable for arginine oligomers with eight monomer units and longer chains. The effect of the ionic strength and molecular weight of hyaluronan on interactions was tested. In an environment with increased ionic strength, the length of the arginine oligomer was crucial. Generally, sufficiently high ionic strength suppresses interactions between hyaluronan and arginine oligomers, which demonstrated interactions in water. From the point of view of the molecular weight of hyaluronan, the transition between the rod conformation and the random coil conformation appeared to be important.
Collapse
|
40
|
Li R, Liu Z, Li L, Huang J, Yamada T, Sakai VG, Tan P, Hong L. Anomalous sub-diffusion of water in biosystems: From hydrated protein powders to concentrated protein solution to living cells. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:054703. [PMID: 33094127 PMCID: PMC7556885 DOI: 10.1063/4.0000036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Water is essential to life and its translational motion in living systems mediates various biological processes, including transportation of function-required ingredients and facilitating the interaction between biomacromolecules. By combining neutron scattering and isotopic labeling, the present work characterizes translational motion of water on a biomolecular surface, in a range of systems: a hydrated protein powder, a concentrated protein solution, and in living Escherichia coli (E. coli) cells. Anomalous sub-diffusion of water is observed in all samples, which is alleviated upon increasing the water content. Complementary molecular dynamics simulations and coarse-grained numerical modeling demonstrated that the sub-diffusive behavior results from the heterogeneous distribution of microscopic translational mobility of interfacial water. Moreover, by comparing the experimental results measured on E. coli cells with those from a concentrated protein solution with the same amount of water, we show that water in the two samples has a similar average mobility, however the underlying distribution of motion is more heterogeneous in the living cell.
Collapse
Affiliation(s)
| | | | - Like Li
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Ibaraki 319-1106, Japan
| | - Victoria García Sakai
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Pan Tan
- Authors to whom correspondence should be addressed: and
| | - Liang Hong
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
41
|
Phan-Xuan T, Bogdanova E, Millqvist Fureby A, Fransson J, Terry AE, Kocherbitov V. Hydration-Induced Structural Changes in the Solid State of Protein: A SAXS/WAXS Study on Lysozyme. Mol Pharm 2020; 17:3246-3258. [PMID: 32787275 PMCID: PMC7482395 DOI: 10.1021/acs.molpharmaceut.0c00351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
The stability of biologically produced
pharmaceuticals is the limiting
factor to various applications, which can be improved by formulation
in solid-state forms, mostly via lyophilization. Knowledge about the
protein structure at the molecular level in the solid state and its
transition upon rehydration is however scarce, and yet it most likely
affects the physical and chemical stability of the biological drug.
In this work, synchrotron small- and wide-angle X-ray scattering (SWAXS)
are used to characterize the structure of a model protein, lysozyme,
in the solid state and its structural transition upon rehydration
to the liquid state. The results show that the protein undergoes distortion
upon drying to adopt structures that can continuously fill the space
to remove the protein–air interface that may be formed upon
dehydration. Above a hydration threshold of 35 wt %, the native structure
of the protein is recovered. The evolution of SWAXS peaks as a function
of water content in a broad range of concentrations is discussed in
relation to the structural changes in the protein. The findings presented
here can be used for the design and optimization of solid-state formulations
of proteins with improved stability.
Collapse
Affiliation(s)
- Tuan Phan-Xuan
- Biomedical Science, Malmö University, 214 32 Malmö, Sweden.,Biofilms Research Center for Biointerfaces, Malmö University, 214 32 Malmö, Sweden.,Max IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Ekaterina Bogdanova
- Biomedical Science, Malmö University, 214 32 Malmö, Sweden.,Biofilms Research Center for Biointerfaces, Malmö University, 214 32 Malmö, Sweden
| | | | | | - Ann E Terry
- Max IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Vitaly Kocherbitov
- Biomedical Science, Malmö University, 214 32 Malmö, Sweden.,Biofilms Research Center for Biointerfaces, Malmö University, 214 32 Malmö, Sweden
| |
Collapse
|
42
|
Shiraga K, Urabe M, Matsui T, Kikuchi S, Ogawa Y. Highly precise characterization of the hydration state upon thermal denaturation of human serum albumin using a 65 GHz dielectric sensor. Phys Chem Chem Phys 2020; 22:19468-19479. [PMID: 32761010 DOI: 10.1039/d0cp02265a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biological functions of proteins depend on harmonization with hydration water surrounding them. Indeed, the dynamical transition of proteins, such as thermal denaturation, is dependent on the changes in the mobility of hydration water. However, the role of hydration water during dynamical transition is yet to be fully understood due to technical limitations in precisely characterizing the amount of hydration water. A state-of-the-art CMOS dielectric sensor consisting of 65 GHz LC resonators addressed this issue by utilizing the feature that oscillation frequency sensitively shifts in response to the complex dielectric constant at 65 GHz with extremely high precision. This study aimed to establish an analytical algorithm to derive the hydration number from the measured frequency shift and to demonstrate the transition of hydration number upon the thermal denaturation of human serum albumin. The determined hydration number in the native state drew a "global" hydration picture beyond the first solvation shell, with substantially reduced uncertainty of the hydration number (about ±1%). This allowed the detection of a rapid increase in the hydration number at about 55 °C during the heating process, which was in excellent phase with the irreversible rupture of the α-helical structure into solvent-exposed extended chains, whereas the hydration number did not trace the forward path in the subsequent cooling process. Our result indicates that the weakening of water hydrogen bonds trigger the unfolding of the protein structure first, followed by the changes in the number of hydration water as a consequence of thermal denaturation.
Collapse
Affiliation(s)
- Keiichiro Shiraga
- RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | |
Collapse
|
43
|
Sung HL, Nesbitt DJ. High pressure single-molecule FRET studies of the lysine riboswitch: cationic and osmolytic effects on pressure induced denaturation. Phys Chem Chem Phys 2020; 22:15853-15866. [PMID: 32706360 DOI: 10.1039/d0cp01921f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deep sea biology is known to thrive at pressures up to ≈1 kbar, which motivates fundamental biophysical studies of biomolecules under such extreme environments. In this work, the conformational equilibrium of the lysine riboswitch has been systematically investigated by single molecule FRET (smFRET) microscopy at pressures up to 1500 bar. The lysine riboswitch preferentially unfolds with increasing pressure, which signals an increase in free volume (ΔV0 > 0) upon folding of the biopolymer. Indeed, the effective lysine binding constant increases quasi-exponentially with pressure rise, which implies a significant weakening of the riboswitch-ligand interaction in a high-pressure environment. The effects of monovalent/divalent cations and osmolytes on folding are also explored to acquire additional insights into cellular mechanisms for adapting to high pressures. For example, we find that although Mg2+ greatly stabilizes folding of the lysine riboswitch (ΔΔG0 < 0), there is negligible impact on changes in free volume (ΔΔV0 ≈ 0) and thus any pressure induced denaturation effects. Conversely, osmolytes (commonly at high concentrations in deep sea marine species) such as the trimethylamine N-oxide (TMAO) significantly reduce free volumes (ΔΔV0 < 0) and thereby diminish pressure-induced denaturation. We speculate that, besides stabilizing RNA structure, enhanced levels of TMAO in cells might increase the dynamic range for competent riboswitch folding by suppressing the pressure-induced denaturation response. This in turn could offer biological advantage for vertical migration of deep-sea species, with impacts on food searching in a resource limited environment.
Collapse
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA. and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA. and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA and Department of Physics, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
44
|
Aggarwal L, Biswas P. Interaction Volume Is a Measure of the Aggregation Propensity of Amyloid-β. J Phys Chem Lett 2020; 11:3993-4000. [PMID: 32352786 DOI: 10.1021/acs.jpclett.0c00922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study highlights the significance of the partial molar volume of amino acids in predicting the aggregation propensity of an intrinsically disordered protein, amyloid-β (Aβ), and its mutants in aqueous solution. The change in the interaction volume of the protein or mutant is quantitatively correlated with its calculated experimental aggregation propensity. This method also reveals how the interaction volume may be tuned by changing the charge and hydrophobicity of Aβ. While a positive change in the interaction volume and a higher aggregation propensity are observed for mutants with a decrease in the overall charge and/or an increase in hydrophobicity, a reverse trend is observed for the mutants with a decrease in the hydrophobicity and/or an increase in its charge. Hence, the interaction volume may be considered as a key parameter for monitoring protein aggregation that bridges the gap between the experimental aggregation kinetics and solvation thermodynamics.
Collapse
Affiliation(s)
- Leena Aggarwal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
45
|
Biswas AD, Barone V, Amadei A, Daidone I. Length-scale dependence of protein hydration-shell density. Phys Chem Chem Phys 2020; 22:7340-7347. [PMID: 32211621 DOI: 10.1039/c9cp06214a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we present a computational approach based on molecular dynamics (MD) simulation to study the dependence of the protein hydration-shell density on the size of the protein molecule. The hydration-shell density of eighteen different proteins, differing in size, shape and function (eight of them are antifreeze proteins), is calculated. The results obtained show that an increase in the hydration-shell density, relative to that of the bulk, is observed (in the range of 4-14%) for all studied proteins and that this increment strongly correlates with the protein size. In particular, a decrease in the density increment is observed for decreasing protein size. A simple model is proposed in which the basic idea is to approximate the protein molecule as an effective ellipsoid and to partition the relevant parameters, i.e. the solvent-accessible volume and the corresponding solvent density, into two regions: inside and outside the effective protein ellipsoid. It is found that, within the model developed here, almost all of the hydration-density increase is located inside the protein ellipsoid, basically corresponding to pockets within, or at the surface of the protein molecule. The observed decrease in the density increment is caused by the protein size only and no difference is found between antifreeze and non-antifreeze proteins.
Collapse
Affiliation(s)
- Akash Deep Biswas
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio (Coppito 1), 67010 L'Aquila, Italy.
| | | | | | | |
Collapse
|
46
|
Why do water molecules around small hydrophobic solutes form stronger hydrogen bonds than in the bulk? Biochim Biophys Acta Gen Subj 2020; 1864:129537. [DOI: 10.1016/j.bbagen.2020.129537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 11/15/2022]
|
47
|
Schirò G, Weik M. Role of hydration water in the onset of protein structural dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:463002. [PMID: 31382251 DOI: 10.1088/1361-648x/ab388a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteins are the molecular workhorses in a living organism. Their 3D structures are animated by a multitude of equilibrium fluctuations and specific out-of-equilibrium motions that are required for proteins to be biologically active. When studied as a function of temperature, functionally relevant dynamics are observed at and above the so-called protein dynamical transition (~240 K) in hydrated, but not in dry proteins. In this review we present and discuss the main experimental and computational results that provided evidence for the dynamical transition, with a focus on the role of hydration water dynamics in sustaining functional protein dynamics. The coupling and mutual influence of hydration water dynamics and protein dynamics are discussed and the hypotheses illustrated that have been put forward to explain the physical origin of their onsets.
Collapse
Affiliation(s)
- Giorgio Schirò
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | | |
Collapse
|
48
|
Generation of the configurational ensemble of an intrinsically disordered protein from unbiased molecular dynamics simulation. Proc Natl Acad Sci U S A 2019; 116:20446-20452. [PMID: 31548393 DOI: 10.1073/pnas.1907251116] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are abundant in eukaryotic proteomes, play a major role in cell signaling, and are associated with human diseases. To understand IDP function it is critical to determine their configurational ensemble, i.e., the collection of 3-dimensional structures they adopt, and this remains an immense challenge in structural biology. Attempts to determine this ensemble computationally have been hitherto hampered by the necessity of reweighting molecular dynamics (MD) results or biasing simulation in order to match ensemble-averaged experimental observables, operations that reduce the precision of the generated model because different structural ensembles may yield the same experimental observable. Here, by employing enhanced sampling MD we reproduce the experimental small-angle neutron and X-ray scattering profiles and the NMR chemical shifts of the disordered N terminal (SH4UD) of c-Src kinase without reweighting or constraining the simulations. The unbiased simulation results reveal a weakly funneled and rugged free energy landscape of SH4UD, which gives rise to a heterogeneous ensemble of structures that cannot be described by simple polymer theory. SH4UD adopts transient helices, which are found away from known phosphorylation sites and could play a key role in the stabilization of structural regions necessary for phosphorylation. Our findings indicate that adequately sampled molecular simulations can be performed to provide accurate physical models of flexible biosystems, thus rationalizing their biological function.
Collapse
|
49
|
Morales-Hernández JA, Singh AK, Villanueva-Rodriguez SJ, Castro-Camus E. Hydration shells of carbohydrate polymers studied by calorimetry and terahertz spectroscopy. Food Chem 2019; 291:94-100. [DOI: 10.1016/j.foodchem.2019.03.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 11/15/2022]
|
50
|
Maurer M, Oostenbrink C. Water in protein hydration and ligand recognition. J Mol Recognit 2019; 32:e2810. [PMID: 31456282 PMCID: PMC6899928 DOI: 10.1002/jmr.2810] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022]
Abstract
This review describes selected basics of water in biomolecular recognition. We focus on a qualitative understanding of the most important physical aspects, how these change in magnitude between bulk water and protein environment, and how the roles that water plays for proteins arise from them. These roles include mechanical support, thermal coupling, dielectric screening, mass and charge transport, and the competition with a ligand for the occupation of a binding site. The presence or absence of water has ramifications that range from the thermodynamic binding signature of a single ligand up to cellular survival. The large inhomogeneity in water density, polarity and mobility around a solute is hard to assess in experiment. This is a source of many difficulties in the solvation of protein models and computational studies that attempt to elucidate or predict ligand recognition. The influence of water in a protein binding site on the experimental enthalpic and entropic signature of ligand binding is still a point of much debate. The strong water‐water interaction in enthalpic terms is counteracted by a water molecule's high mobility in entropic terms. The complete arrest of a water molecule's mobility sets a limit on the entropic contribution of a water displacement process, while the solvent environment sets limits on ligand reactivity.
Collapse
Affiliation(s)
- Manuela Maurer
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|