1
|
Uncu AT, Patat AS, Uncu AO. Whole-genome sequencing and identification of antimicrobial peptide coding genes in parsley (Petroselinum crispum), an important culinary and medicinal Apiaceae species. Funct Integr Genomics 2024; 24:142. [PMID: 39187716 DOI: 10.1007/s10142-024-01423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Parsley is a commonly cultivated Apiaceae species of culinary and medicinal importance. Parsley has several recognized health benefits and the species has been utilized in traditional medicine since ancient times. Although parsley is among the most commonly cultivated members of Apiaceae, no systematic genomic research has been conducted on parsley. In the present work, parsley genome was sequenced using the long-read HiFi (high fidelity) sequencing technology and a draft contig assembly of 1.57 Gb that represents 80.9% of the estimated genome size was produced. The assembly was highly repeat-rich with a repetitive DNA content of 81%. The assembly was phased into a primary and alternate assembly in order to minimize redundant contigs. Scaffolds were constructed with the primary assembly contigs, which were used for the identification of AMP (antimicrobial peptide) genes. Characteristic AMP domains and 3D structures were used to detect and verify antimicrobial peptides. As a result, 23 genes (PcAMP1-23) representing defensin, snakin, thionin, lipid transfer protein and vicilin-like AMP classes were identified. Bioinformatic analyses for the characterization of peptide physicochemical properties indicated that parsley AMPs are extracellular peptides, therefore, plausibly exert their antimicrobial effects through the most commonly described AMP action mechanism of membrane attack. AMPs are attracting increasing attention since they display their fast antimicrobial effects in small doses on both plant and animal pathogens with a significantly reduced risk of resistance development. Therefore, identification and characterization of AMPs is important for their incorporation into plant disease management protocols as well as medicinal research for the treatment of multi-drug resistant infections.
Collapse
Affiliation(s)
- Ali Tevfik Uncu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, Konya, 42090, Turkey
| | - Aysenur Soyturk Patat
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, Konya, 42090, Turkey
| | - Ayse Ozgur Uncu
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Meram, Konya, 42090, Turkey.
| |
Collapse
|
2
|
Barro-Trastoy D, Köhler C. Helitrons: genomic parasites that generate developmental novelties. Trends Genet 2024; 40:437-448. [PMID: 38429198 DOI: 10.1016/j.tig.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Helitrons, classified as DNA transposons, employ rolling-circle intermediates for transposition. Distinguishing themselves from other DNA transposons, they leave the original template element unaltered during transposition, which has led to their characterization as 'peel-and-paste elements'. Helitrons possess the ability to capture and mobilize host genome fragments, with enormous consequences for host genomes. This review discusses the current understanding of Helitrons, exploring their origins, transposition mechanism, and the extensive repercussions of their activity on genome structure and function. We also explore the evolutionary conflicts stemming from Helitron-transposed gene fragments and elucidate their domestication for regulating responses to environmental challenges. Looking ahead, further research in this evolving field promises to bring interesting discoveries on the role of Helitrons in shaping genomic landscapes.
Collapse
Affiliation(s)
- Daniela Barro-Trastoy
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Claudia Köhler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden.
| |
Collapse
|
3
|
Gao D. Introduction of Plant Transposon Annotation for Beginners. BIOLOGY 2023; 12:1468. [PMID: 38132293 PMCID: PMC10741241 DOI: 10.3390/biology12121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Transposons are mobile DNA sequences that contribute large fractions of many plant genomes. They provide exclusive resources for tracking gene and genome evolution and for developing molecular tools for basic and applied research. Despite extensive efforts, it is still challenging to accurately annotate transposons, especially for beginners, as transposon prediction requires necessary expertise in both transposon biology and bioinformatics. Moreover, the complexity of plant genomes and the dynamic evolution of transposons also bring difficulties for genome-wide transposon discovery. This review summarizes the three major strategies for transposon detection including repeat-based, structure-based, and homology-based annotation, and introduces the transposon superfamilies identified in plants thus far, and some related bioinformatics resources for detecting plant transposons. Furthermore, it describes transposon classification and explains why the terms 'autonomous' and 'non-autonomous' cannot be used to classify the superfamilies of transposons. Lastly, this review also discusses how to identify misannotated transposons and improve the quality of the transposon database. This review provides helpful information about plant transposons and a beginner's guide on annotating these repetitive sequences.
Collapse
Affiliation(s)
- Dongying Gao
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID 83210, USA
| |
Collapse
|
4
|
Inoue Y, Takeda H. Teratorn and its relatives - a cross-point of distinct mobile elements, transposons and viruses. Front Vet Sci 2023; 10:1158023. [PMID: 37187934 PMCID: PMC10175614 DOI: 10.3389/fvets.2023.1158023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mobile genetic elements (e.g., transposable elements and plasmids) and viruses display significant diversity with various life cycles, but how this diversity emerges remains obscure. We previously reported a novel and giant (180 kb long) mobile element, Teratorn, originally identified in the genome of medaka, Oryzias latipes. Teratorn is a composite DNA transposon created by a fusion of a piggyBac-like DNA transposon (piggyBac) and a novel herpesvirus of the Alloherpesviridae family. Genomic survey revealed that Teratorn-like herpesviruses are widely distributed among teleost genomes, the majority of which are also fused with piggyBac, suggesting that fusion with piggyBac is a trigger for the life-cycle shift of authentic herpesviruses to an intragenomic parasite. Thus, Teratorn-like herpesvirus provides a clear example of how novel mobile elements emerge, that is to say, the creation of diversity. In this review, we discuss the unique sequence and life-cycle characteristics of Teratorn, followed by the evolutionary process of piggyBac-herpesvirus fusion based on the distribution of Teratorn-like herpesviruses (relatives) among teleosts. Finally, we provide other examples of evolutionary associations between different classes of elements and propose that recombination could be a driving force generating novel mobile elements.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Li C, Cong C, Liu F, Yu Q, Zhan Y, Zhu L, Li Y. Abundance of Transgene Transcript Variants Associated with Somatically Active Transgenic Helitrons from Multiple T-DNA Integration Sites in Maize. Int J Mol Sci 2023; 24:ijms24076574. [PMID: 37047545 PMCID: PMC10095026 DOI: 10.3390/ijms24076574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Helitrons, a novel type of mysterious DNA transposons discovered computationally prior to bench work confirmation, are components ubiquitous in most sequenced genomes of various eukaryotes, including plants, animals, and fungi. There is a paucity of empirical evidence to elucidate the mechanism of Helitrons transposition in plants. Here, by constructing several artificial defective Helitron (dHel) reporter systems, we aim to identify the autonomous Helitrons (aHel) in maize genetically and to demonstrate the transposition and repair mechanisms of Helitrons upon the dHel-GFP excision in maize. When crossing with various inbred lines, several transgenic lines produced progeny of segregated, purple-blotched kernels, resulting from a leaky expression of the C1 gene driven by the dHel-interrupted promoter. Transcription analysis indicated that the insertion of different dHels into the C1 promoter or exon would lead to multiple distinct mRNA transcripts corresponding to transgenes in the host genome. Simple excision products and circular intermediates of dHel-GFP transposition have been detected from the leaf tissue of the seedlings in F1 hybrids of transgenic lines with corresponding c1 tester, although they failed to be detected in all primary transgenic lines. These results revealed the transposition and repair mechanism of Helitrons in maize. It is strongly suggested that this reporter system can detect the genetic activity of autonomic Helitron at the molecular level. Sequence features of dHel itself, together with the flanking regions, impact the excision activity of dHel and the regulation of the dHel on the transcription level of the host gene.
Collapse
Affiliation(s)
- Chuxi Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunsheng Cong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fangyuan Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuan Zhan
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yubin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
6
|
Pegler JL, Oultram JMJ, Mann CWG, Carroll BJ, Grof CPL, Eamens AL. Miniature Inverted-Repeat Transposable Elements: Small DNA Transposons That Have Contributed to Plant MICRORNA Gene Evolution. PLANTS (BASEL, SWITZERLAND) 2023; 12:1101. [PMID: 36903960 PMCID: PMC10004981 DOI: 10.3390/plants12051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Angiosperms form the largest phylum within the Plantae kingdom and show remarkable genetic variation due to the considerable difference in the nuclear genome size of each species. Transposable elements (TEs), mobile DNA sequences that can amplify and change their chromosome position, account for much of the difference in nuclear genome size between individual angiosperm species. Considering the dramatic consequences of TE movement, including the complete loss of gene function, it is unsurprising that the angiosperms have developed elegant molecular strategies to control TE amplification and movement. Specifically, the RNA-directed DNA methylation (RdDM) pathway, directed by the repeat-associated small-interfering RNA (rasiRNA) class of small regulatory RNA, forms the primary line of defense to control TE activity in the angiosperms. However, the miniature inverted-repeat transposable element (MITE) species of TE has at times avoided the repressive effects imposed by the rasiRNA-directed RdDM pathway. MITE proliferation in angiosperm nuclear genomes is due to their preference to transpose within gene-rich regions, a pattern of transposition that has enabled MITEs to gain further transcriptional activity. The sequence-based properties of a MITE results in the synthesis of a noncoding RNA (ncRNA), which, after transcription, folds to form a structure that closely resembles those of the precursor transcripts of the microRNA (miRNA) class of small regulatory RNA. This shared folding structure results in a MITE-derived miRNA being processed from the MITE-transcribed ncRNA, and post-maturation, the MITE-derived miRNA can be used by the core protein machinery of the miRNA pathway to regulate the expression of protein-coding genes that harbor homologous MITE insertions. Here, we outline the considerable contribution that the MITE species of TE have made to expanding the miRNA repertoire of the angiosperms.
Collapse
Affiliation(s)
- Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jackson M. J. Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
7
|
Construction and characterization of a de novo draft genome of garden cress (Lepidium sativum L.). Funct Integr Genomics 2022; 22:879-889. [PMID: 35596045 DOI: 10.1007/s10142-022-00866-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/04/2022]
Abstract
Garden cress (Lepidium sativum L.) is a Brassicaceae crop recognized as a healthy vegetable and a medicinal plant. Lepidium is one of the largest genera in Brassicaceae, yet, the genus has not been a focus of extensive genomic research. In the present work, garden cress genome was sequenced using the long read high-fidelity sequencing technology. A de novo, draft genome assembly that spans 336.5 Mb was produced, corresponding to 88.6% of the estimated genome size and representing 90% of the evolutionarily expected orthologous gene content. Protein coding gene content was structurally predicted and functionally annotated, resulting in the identification of 25,668 putative genes. A total of 599 candidate disease resistance genes were identified by predicting resistance gene domains in gene structures, and 37 genes were detected as orthologs of heavy metal associated protein coding genes. In addition, 4289 genes were assigned as "transcription factor coding." Six different machine learning algorithms were trained and tested for their performance in classifying miRNA coding genomic sequences. Logistic regression proved the best performing trained algorithm, thus utilized for pre-miRNA coding loci identification in the assembly. Repetitive DNA analysis involved the characterization of transposable element and microsatellite contents. L. sativum chloroplast genome was also assembled and functionally annotated. Data produced in the present work is expected to constitute a foundation for genomic research in garden cress and contribute to genomics-assisted crop improvement and genome evolution studies in the Brassicaceae family.
Collapse
|
8
|
Gisby JS, Catoni M. The widespread nature of Pack-TYPE transposons reveals their importance for plant genome evolution. PLoS Genet 2022; 18:e1010078. [PMID: 35202390 PMCID: PMC8903248 DOI: 10.1371/journal.pgen.1010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/08/2022] [Accepted: 02/06/2022] [Indexed: 11/29/2022] Open
Abstract
Pack-TYPE transposable elements (TEs) are a group of non-autonomous DNA transposons found in plants. These elements can efficiently capture and shuffle coding DNA across the host genome, accelerating the evolution of genes. Despite their relevance for plant genome plasticity, the detection and study of Pack-TYPE TEs are challenging due to the high similarity these elements have with genes. Here, we produced an automated annotation pipeline designed to study Pack-TYPE elements and used it to successfully annotate and analyse more than 10,000 new Pack-TYPE TEs in the rice and maize genomes. Our analysis indicates that Pack-TYPE TEs are an abundant and heterogeneous group of elements. We found that these elements are associated with all main superfamilies of Class II DNA transposons in plants and likely share a similar mechanism to capture new chromosomal DNA sequences. Furthermore, we report examples of the direct contribution of these TEs to coding genes, suggesting a generalised and extensive role of Pack-TYPE TEs in plant genome evolution. Transposable Elements (TEs) are genetic DNA sequences able to move across the genome, and their transposition activity is associated with genome plasticity and gene evolution. However, most of these elements exhibit “selfish” behaviour, meaning that they mainly transpose their own DNA sequence and only exceptionally might rearrange the DNA of coding genes. Pack-TYPE TEs, found in plants, represent an important exception, and they can efficiently capture and shuffle DNA sequences captured from the genome, accelerating the evolution of genes. We provide here the first automatic pipeline designed explicitly for the annotation of Pack-TYPE TEs. We used our approach to systematically investigate Pack-TYPE TEs in the rice and maize reference genomes, and annotated thousands of new elements in these species. We demonstrate that Pack-TYPE elements are abundant in plants and we report several examples of coding genes originated as a consequence of the mobilization of these elements.
Collapse
Affiliation(s)
- Jack S. Gisby
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail: (JSG); (MC)
| | - Marco Catoni
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, Italy
- * E-mail: (JSG); (MC)
| |
Collapse
|
9
|
Zhang L, Zhu X, Zhao Y, Guo J, Zhang T, Huang W, Huang J, Hu Y, Huang CH, Ma H. Phylotranscriptomics Resolves the Phylogeny of Pooideae and Uncovers Factors for Their Adaptive Evolution. Mol Biol Evol 2022; 39:6521033. [PMID: 35134207 PMCID: PMC8844509 DOI: 10.1093/molbev/msac026] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adaptation to cool climates has occurred several times in different angiosperm groups. Among them, Pooideae, the largest grass subfamily with ∼3,900 species including wheat and barley, have successfully occupied many temperate regions and play a prominent role in temperate ecosystems. To investigate possible factors contributing to Pooideae adaptive evolution to cooling climates, we performed phylogenetic reconstruction using five gene sets (with 1,234 nuclear genes and their subsets) from 157 transcriptomes/genomes representing all 15 tribes and 24 of 26 subtribes. Our phylogeny supports the monophyly of all tribes (except Diarrheneae) and all subtribes with at least two species, with strongly supported resolution of their relationships. Molecular dating suggests that Pooideae originated in the late Cretaceous, with subsequent divergences under cooling conditions first among many tribes from the early middle to late Eocene and again among genera in the middle Miocene and later periods. We identified a cluster of gene duplications (CGD5) shared by the core Pooideae (with 80% Pooideae species) near the Eocene–Oligocene transition, coinciding with the transition from closed to open habitat and an upshift of diversification rate. Molecular evolutionary analyses homologs of CBF for cold resistance uncovered tandem duplications during the core Pooideae history, dramatically increasing their copy number and possibly promoting adaptation to cold habitats. Moreover, duplication of AP1/FUL-like genes before the Pooideae origin might have facilitated the regulation of the vernalization pathway under cold environments. These and other results provide new insights into factors that likely have contributed to the successful adaptation of Pooideae members to temperate regions.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xinxin Zhu
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Weichen Huang
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Jie Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
10
|
Wang Z, Zhao G, Yang Q, Gao L, Liu C, Ru Z, Wang D, Jia J, Cui D. Helitron and CACTA DNA transposons actively reshape the common bread wheat - AK58 genome. Genomics 2022; 114:110288. [DOI: 10.1016/j.ygeno.2022.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
|
11
|
Muyle A, Seymour D, Darzentas N, Primetis E, Gaut BS, Bousios A. Gene capture by transposable elements leads to epigenetic conflict in maize. MOLECULAR PLANT 2021; 14:237-252. [PMID: 33171302 DOI: 10.1016/j.molp.2020.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Transposable elements (TEs) regularly capture fragments of genes. When the host silences these TEs, siRNAs homologous to the captured regions may also target the genes. This epigenetic crosstalk establishes an intragenomic conflict: silencing the TEs has the cost of silencing the genes. If genes are important, however, natural selection may maintain function by moderating the silencing response, which may also advantage the TEs. In this study, we examined this model by focusing on Helitrons, Pack-MULEs, and Sirevirus LTR retrotransposons in the maize genome. We documented 1263 TEs containing exon fragments from 1629 donor genes. Consistent with epigenetic conflict, donor genes mapped more siRNAs and were more methylated than genes with no evidence of capture. However, these patterns differed between syntelog versus translocated donor genes. Syntelogs appeared to maintain function, as measured by gene expression, consistent with moderation of silencing for functionally important genes. Epigenetic marks did not spread beyond their captured regions and 24nt crosstalk siRNAs were linked with CHH methylation. Translocated genes, in contrast, bore the signature of silencing. They were highly methylated and less expressed, but also overrepresented among donor genes and located away from chromosomal arms, which suggests a link between capture and gene movement. Splitting genes into potential functional categories based on evolutionary constraint supported the synteny-based findings. TE families captured genes in different ways, but the evidence for their advantage was generally less obvious; nevertheless, TEs with captured fragments were older, mapped fewer siRNAs, and were slightly less methylated than TEs without captured fragments. Collectively, our results argue that TE capture triggers an intragenomic conflict that may not affect the function of important genes but may lead to the pseudogenization of less-constrained genes.
Collapse
Affiliation(s)
- Aline Muyle
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA 92697, USA
| | - Danelle Seymour
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA 92697, USA; Department of Botany and Plant Sciences, UC Riverside, Riverside, CA 92521, USA
| | - Nikos Darzentas
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Elias Primetis
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA 92697, USA.
| | | |
Collapse
|
12
|
Borredá C, Pérez-Román E, Ibanez V, Terol J, Talon M. Reprogramming of Retrotransposon Activity during Speciation of the Genus Citrus. Genome Biol Evol 2020; 11:3478-3495. [PMID: 31710678 PMCID: PMC7145672 DOI: 10.1093/gbe/evz246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Speciation of the genus Citrus from a common ancestor has recently been established to begin ∼8 Ma during the late Miocene, a period of major climatic alterations. Here, we report the changes in activity of Citrus LTR retrotransposons during the process of diversification that gave rise to the current Citrus species. To reach this goal, we analyzed four pure species that diverged early during Citrus speciation, three recent admixtures derived from those species and an outgroup of the Citrus clade. More than 30,000 retrotransposons were grouped in ten linages. Estimations of LTR insertion times revealed that retrotransposon activity followed a species-specific pattern of change that could be ascribed to one of three different models. In some genomes, the expected pattern of gradual transposon accumulation was suddenly arrested during the radiation of the ancestor that gave birth to the current Citrus species. The individualized analyses of retrotransposon lineages showed that in each and every species studied, not all lineages follow the general pattern of the species itself. For instance, in most of the genomes, the retrotransposon activity of elements from the SIRE lineage reached its highest level just before Citrus speciation, while for Retrofit elements, it has been steadily growing. Based on these observations, we propose that Citrus retrotransposons may respond to stressful conditions driving speciation as a part of the genetic response involved in adaptation. This proposal implies that the evolving conditions of each species interact with the internal regulatory mechanisms of the genome controlling the proliferation of mobile elements.
Collapse
Affiliation(s)
- Carles Borredá
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Estela Pérez-Román
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Victoria Ibanez
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| |
Collapse
|
13
|
Ramekar RV, Sa KJ, Park KC, Park JY, Park KJ, Lee JK. Genetic differentiation of Mutator insertion polymorphisms and association with agronomic traits in waxy and common maize. Genes Genomics 2020; 42:631-638. [PMID: 32277363 DOI: 10.1007/s13258-020-00928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND As waxy maize is considered a key economic crop in Korea, an understanding of its genetic variation and differentiation is fundamental for the selective plant breeding. The maize genome is primarily composed of transposable elements, for which large and stable insertions generate variations that reflect selection during evolution. OBJECTIVES This study was to elucidate the genetic diversity based on the contribution of TEs and to investigate the effect of Mu transposition on the genetic divergence of waxy and common maize. We also performed an association analysis on these inbred lines to determine the Mu insertions associated with agronomic traits. METHODS In this study, we utilized a Mutator-based transposon display method to study the genetic diversity and population structure of 40 waxy and 40 common inbred lines of maize in the Gangwon Agricultural Research and Extension Services collection at the Maize Research Institute. RESULTS We detected polymorphisms in 86.33% of 278 Mutator (Mu) anchored loci, reflecting the activity of the Mu element and its contribution to genetic variation. Common maize showed a substantial amount of genetic diversity, which was greater than that observed in waxy maize. Principal-coordinate and neighbor-joining cluster analyzes consistently supported the presence of two genetically distinct groups. However, the distribution of genetic variation within the populations was much higher than the genetic differentiation among the populations. To explore the contribution of the Mu element to phenotypic variation, we analyzed the associations with ten important agronomical traits. On the basis of the combined results from two models (QGLM and Q + KLM), we found significant associations between seven Mu loci and four different traits. CONCLUSIONS These results will assist waxy maize breeders in choosing parental lines and be useful for marker-assisted selection.
Collapse
Affiliation(s)
- Rahul Vasudeo Ramekar
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Jong Yeol Park
- Maize Research Institute, Gangwon Agricultural Research and Extension Services, Hongcheon, 250-823, South Korea
| | - Ki Jin Park
- Maize Research Institute, Gangwon Agricultural Research and Extension Services, Hongcheon, 250-823, South Korea
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea.
| |
Collapse
|
14
|
Anderson SN, Stitzer MC, Brohammer AB, Zhou P, Noshay JM, O'Connor CH, Hirsch CD, Ross-Ibarra J, Hirsch CN, Springer NM. Transposable elements contribute to dynamic genome content in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1052-1065. [PMID: 31381222 DOI: 10.1111/tpj.14489] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 05/05/2023]
Abstract
Transposable elements (TEs) are ubiquitous components of eukaryotic genomes and can create variation in genome organization and content. Most maize genomes are composed of TEs. We developed an approach to define shared and variable TE insertions across genome assemblies and applied this method to four maize genomes (B73, W22, Mo17 and PH207) with uniform structural annotations of TEs. Among these genomes we identified approximately 400 000 TEs that are polymorphic, encompassing 1.6 Gb of variable TE sequence. These polymorphic TEs include a combination of recent transposition events as well as deletions of older TEs. There are examples of polymorphic TEs within each of the superfamilies of TEs and they are found distributed across the genome, including in regions of recent shared ancestry among individuals. There are many examples of polymorphic TEs within or near maize genes. In addition, there are 2380 gene annotations in the B73 genome that are located within variable TEs, providing evidence for the role of TEs in contributing to the substantial differences in annotated gene content among these genotypes. TEs are highly variable in our survey of four temperate maize genomes, highlighting the major contribution of TEs in driving variation in genome organization and gene content. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://github.com/SNAnderson/maizeTE_variation; https://mcstitzer.github.io/maize_TEs.
Collapse
Affiliation(s)
- Sarah N Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Michelle C Stitzer
- Department of Plant Sciences and Center for Population Biology, University of California, Davis, CA, 95616, USA
| | - Alex B Brohammer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Christine H O'Connor
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences and Center for Population Biology, University of California, Davis, CA, 95616, USA
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
15
|
Molecular mapping and candidate gene analysis of the semi-dominant gene Vestigial glume1 in maize. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
da Costa ZP, Cauz-Santos LA, Ragagnin GT, Van Sluys MA, Dornelas MC, Berges H, de Mello Varani A, Vieira MLC. Transposable element discovery and characterization of LTR-retrotransposon evolutionary lineages in the tropical fruit species Passiflora edulis. Mol Biol Rep 2019; 46:6117-6133. [DOI: 10.1007/s11033-019-05047-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022]
|
17
|
Touati R, Oueslati AE, Messaoudi I, Lachiri Z. The Helitron family classification using SVM based on Fourier transform features applied on an unbalanced dataset. Med Biol Eng Comput 2019; 57:2289-2304. [PMID: 31422557 DOI: 10.1007/s11517-019-02027-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
Abstract
Helitrons are mobile sequences which belong to the class 2 of eukaryotic transposons. Their specificity resides in their mechanism of transposition: the rolling circle mechanism. They play an important role in remodeling proteomes due to their ability to modify existing genes and introducing new ones. A major difficulty in identifying and classifying Helitron families comes from the complex structure, the unspecified length, and the unbalanced appearance number of each Helitron type. The Helitron's recognition is still not solved in literature. The purpose of this paper is to characterize and classify Helitron types using spectral features and support vector machine (SVM) classification technique. Thus, the helitronic DNA is transformed into a numerical form using the FCGS2 coding technique. Then, a set of spectral features is extracted from the smoothed Fourier transform applied on the FCGS2 signals. Based on the spectral signature and the classification's confusion matrix, we demonstrated that some specific classes which do not show similarities, such as HelitronY2 and NDNAX3, are easily discriminated with important accuracy rates exceeding 90%. However, some Helitron types have great similarities such as the following: Helitron1, HelitronY1, HelitronY1A, and HelitronY4. Our system is also able to predict them with promising values reaching 70%. Graphical abstract The Helitron recognizer based on features extracted from smoothed Fourier transform.
Collapse
Affiliation(s)
- Rabeb Touati
- LR99ES10 Human Genetics Laboratory, Faculty of Medicine of Tunis (FMT), University of Tunis El Manar, Tunis, Tunisia.
- SITI Laboratory, National School of Engineers of Tunis (ENIT), University Tunis El Manar, BP 37, le Belvédère, 1002, Tunis, Tunisia.
| | - Afef Elloumi Oueslati
- SITI Laboratory, National School of Engineers of Tunis (ENIT), University Tunis El Manar, BP 37, le Belvédère, 1002, Tunis, Tunisia
- Electrical Engineering Department, National School of Engineers of Carthage (ENICarthage), University of Carthage, Carthage, Tunisia
| | - Imen Messaoudi
- SITI Laboratory, National School of Engineers of Tunis (ENIT), University Tunis El Manar, BP 37, le Belvédère, 1002, Tunis, Tunisia
- Industrial Computing Department, Higher Institute of Information Technologies and Communications (ISTIC), University of Carthage, Carthage, Tunisia
| | - Zied Lachiri
- SITI Laboratory, National School of Engineers of Tunis (ENIT), University Tunis El Manar, BP 37, le Belvédère, 1002, Tunis, Tunisia
| |
Collapse
|
18
|
Ma B, Xin Y, Kuang L, He N. Distribution and Characteristics of Transposable Elements in the Mulberry Genome. THE PLANT GENOME 2019; 12:180094. [PMID: 31290922 DOI: 10.3835/plantgenome2018.12.0094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mulberry ( C. K. Schneid) leaves have been used as the food for the domesticated silkworm, , for more than 5000 yr, and the mulberry-silkworm relationship is one of the best-known and oldest models of plant defense-insect adaptation. The availability of a genome assembly of mulberry provides us with an opportunity to mine the characteristics and distribution of transposable elements (TEs) in this species and to examine their relationship to genes and gene expression. In this study, a significantly correlated inverse relationship between the percentage coverage of genes and TEs was observed. The TE-rich regions appeared to have a lower percentage of putatively expressed genes. Distribution patterns between different TE superfamilies were detected in the mulberry genome. The elements (the TE making up the greatest proportion of the mulberry genome) were significantly overrepresented within genes in the mulberry genome, and they may have a dominant influence on evolution of the mulberry genome. Approximately 96.93% (330/344) of the TE-containing genes assigned to pathways were assigned to metabolism-related pathways. The TE-related alternative splicing events accounted for 7.58% (402/5,302) of all alternative splicing types in the mulberry genome, suggesting that TEs are one of the driving forces in the formation of the alternatively spliced genes. The results will be valuable in improving our understanding of the important roles of TEs in mulberry genome evolution.
Collapse
|
19
|
Han G, Zhang N, Xu J, Jiang H, Ji C, Zhang Z, Song Q, Stanley D, Fang J, Wang J. Characterization of a novel Helitron family in insect genomes: insights into classification, evolution and horizontal transfer. Mob DNA 2019; 10:25. [PMID: 31164927 PMCID: PMC6544945 DOI: 10.1186/s13100-019-0165-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/30/2019] [Indexed: 01/09/2023] Open
Abstract
Background Helitrons play an important role in shaping eukaryotic genomes due to their ability to transfer horizontally between distantly related species and capture gene fragments during the transposition. However, the mechanisms of horizontal transfer (HT) and the process of gene fragment capturing of Helitrons still remain to be further clarified. Results Here, we characterized a novel Helitron family discontinuously distributed in 27 out of 256 insect genomes. The most prominent characteristic of Hel1 family is its high sequence similarity among species of different insect orders. Related elements were also identified in two spiders, representing the first report of spider Helitrons. All these elements were classified into 2 families, 9 subfamilies and 35 exemplars based on our new classification criteria. Autonomous partners of Helitron were reconstructed in the genomes of three insects and one spider. Integration pattern analysis showed that majority of Hel1A elements in Papilio xuthus and Pieris rapae inserted into introns. Consistent with filler DNA model, stepwise sequence acquisition was observed in Sfru_Hel1Aa, Sfru_Hel1Ab and Sfru_Hel1Ac in Spodoptera frugiperda. Remarkably, the evidence that Prap_Hel1Aa in a Lepdidoptera insect, Pieris rapae, was derived from Cves_Hel1Aa in a parasitoid wasp, Cotesia vestalis, suggested the role of nonregular host-parasite interactions in HT of Helitrons. Conclusions We proposed a modified classification criteria of Helitrons based on the important role of the 5′-end of Helitrons in transposition, and provided evidence for stepwise sequence acquisition and recurrent HT of a novel Helitron family. Our findings of the nonregular host-parasite interactions may be more conducive to the HT of transposons. Electronic supplementary material The online version of this article (10.1186/s13100-019-0165-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangjie Han
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China.,Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, 225007 China
| | - Nan Zhang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Jian Xu
- Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, 225007 China
| | - Heng Jiang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Caihong Ji
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Ze Zhang
- 3School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Qisheng Song
- 4Division of Plant Sciences, University of Missouri, Columbia, MO USA
| | - David Stanley
- 5USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO USA
| | - Jichao Fang
- 6Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Jianjun Wang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
20
|
Abstract
Transposable elements (TEs) are ubiquitous in both prokaryotes and eukaryotes, and the dynamic character of their interaction with host genomes brings about numerous evolutionary innovations and shapes genome structure and function in a multitude of ways. In traditional classification systems, TEs are often being depicted in simplistic ways, based primarily on the key enzymes required for transposition, such as transposases/recombinases and reverse transcriptases. Recent progress in whole-genome sequencing and long-read assembly, combined with expansion of the familiar range of model organisms, resulted in identification of unprecedentedly long transposable units spanning dozens or even hundreds of kilobases, initially in prokaryotic and more recently in eukaryotic systems. Here, we focus on such oversized eukaryotic TEs, including retrotransposons and DNA transposons, outline their complex and often combinatorial nature and closely intertwined relationship with viruses, and discuss their potential for participating in transfer of long stretches of DNA in eukaryotes.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts
- Corresponding author: E-mail:
| | - Irina A Yushenova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
21
|
Chromosome conformation capture resolved near complete genome assembly of broomcorn millet. Nat Commun 2019; 10:464. [PMID: 30683940 PMCID: PMC6347627 DOI: 10.1038/s41467-018-07876-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/04/2018] [Indexed: 01/27/2023] Open
Abstract
Broomcorn millet (Panicum miliaceum L.) has strong tolerance to abiotic stresses, and is probably one of the oldest crops, with its earliest cultivation that dated back to ca. ~10,000 years. We report here its genome assembly through a combination of PacBio sequencing, BioNano, and Hi-C (in vivo) mapping. The 18 super scaffolds cover ~95.6% of the estimated genome (~887.8 Mb). There are 63,671 protein-coding genes annotated in this tetraploid genome. About ~86.2% of the syntenic genes in foxtail millet have two homologous copies in broomcorn millet, indicating rare gene loss after tetraploidization in broomcorn millet. Phylogenetic analysis reveals that broomcorn millet and foxtail millet diverged around ~13.1 Million years ago (Mya), while the lineage specific tetraploidization of broomcorn millet may be happened within ~5.91 million years. The genome is not only beneficial for the genome assisted breeding of broomcorn millet, but also an important resource for other Panicum species. Broomcorn millet is one of the oldest crops cultivated by human that has strong abiotic stress tolerance. To facilitate genome assisted breeding of this and related species, the authors report its genome assembly and conduct comparative genome structure and evolution analyses with foxtail millet.
Collapse
|
22
|
Ramekar RV, Sa KJ, Park KC, Roy N, Kim NS, Lee JK. Construction of genetic linkage map and identification of QTLs related to agronomic traits in maize using DNA transposon-based markers. BREEDING SCIENCE 2018; 68:465-473. [PMID: 30369821 PMCID: PMC6198908 DOI: 10.1270/jsbbs.18017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Transposable elements (TEs), are a rich source for molecular marker development as they constitute a significant fraction of the eukaryotic genome and impact the overall genome structure. Here, we utilize Mutator-based transposon display (Mu-TD), and CACTA-derived sequence-characterized amplified regions (SCAR) anchored by simple sequence repeats and single nucleotide polymorphisms to locate quantitative trait loci (QTLs) linked to agriculturally important traits on a genetic map. Specifically, we studied recombinant inbred line populations derived from a cross between dent corn and waxy corn. The resulting linkage map included 259 Mu-anchored fragments, 34 SCARs, and 614 SSR markers distributed throughout the ten maize chromosomes. Linkage analysis revealed three SNP loci associated with kernel starch synthesis genes (sh2, su1, wx1) linked to either Mu-TD loci or SSR markers, which may be useful for maize breeding programs. In addition, we used QTL analysis to determine the chromosomal location of traits related to grain yield and kernel quality. We identified 24 QTLs associated with nine traits located on nine out of ten maize chromosomes. Among these, 13 QTLs involved Mu loci and two involved SCARs. This study demonstrates the potential use of DNA transposon-based markers to construct linkage maps and identify QTLs linked to agronomic traits.
Collapse
Affiliation(s)
- Rahul Vasudeo Ramekar
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Neha Roy
- Department of Molecular Bioscience, Institute of Bioscience and Biotechnology, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Nam-Soo Kim
- Department of Molecular Bioscience, Institute of Bioscience and Biotechnology, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University,
Chuncheon, 24341,
Korea
| |
Collapse
|
23
|
Sahebi M, Hanafi MM, van Wijnen AJ, Rice D, Rafii MY, Azizi P, Osman M, Taheri S, Bakar MFA, Isa MNM, Noor YM. Contribution of transposable elements in the plant's genome. Gene 2018; 665:155-166. [PMID: 29684486 DOI: 10.1016/j.gene.2018.04.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamed M Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | | - David Rice
- Department of Molecular Biology & Biotecnology, University of Sheffield, United Kingdom
| | - M Y Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parisa Azizi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamad Osman
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
24
|
The Functional Impact of Transposable Elements on the Diversity of Plant Genomes. DIVERSITY 2018. [DOI: 10.3390/d10020018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Cerbin S, Jiang N. Duplication of host genes by transposable elements. Curr Opin Genet Dev 2018; 49:63-69. [PMID: 29571044 DOI: 10.1016/j.gde.2018.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/07/2018] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Abstract
The availability of large amounts of genomic and transcriptome sequences have allowed systematic surveys about the host gene sequences that have been duplicated by transposable elements. It is now clear that all super-families of transposons are capable of duplicating genes or gene fragments, and such incidents have been detected in a wide spectrum of organisms. Emerging evidence suggests that a considerable portion of them function as coding or non-coding sequences, driving innovations at molecular and phenotypic levels. Interestingly, the duplication events not only have to occur in the reproductive tissues to become heritable, but the duplicated copies are also preferentially expressed in those tissues. As a result, reproductive tissues may serve as the 'incubator' for genes generated by transposable elements.
Collapse
Affiliation(s)
- Stefan Cerbin
- Department of Horticulture, 1066 Bogue Street, Michigan State University, East Lansing, MI 48824, USA
| | - Ning Jiang
- Department of Horticulture, 1066 Bogue Street, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
26
|
|
27
|
Xiong W, Dooner HK, Du C. Rolling-circle amplification of centromeric Helitrons in plant genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:1038-1045. [PMID: 27553634 DOI: 10.1111/tpj.13314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
The unusual eukaryotic Helitron transposons can readily capture host sequences and are, thus, evolutionarily important. They are presumed to amplify by rolling-circle replication (RCR) because some elements encode predicted proteins homologous to RCR prokaryotic transposases. In support of this replication mechanism, it was recently shown that transposition of a bat Helitron generates covalently closed circular intermediates. Another strong prediction is that RCR should generate tandem Helitron concatemers, yet almost all Helitrons identified to date occur as solo elements in the genome. To investigate alternative modes of Helitron organization in present-day genomes, we have applied the novel computational tool HelitronScanner to 27 plant genomes and have uncovered numerous tandem arrays of partially decayed, truncated Helitrons in all of them. Strikingly, most of these Helitron tandem arrays are interspersed with other repeats in centromeres. Many of these arrays have multiple Helitron 5' ends, but a single 3' end. The number of repeats in any one array can range from a handful to several hundreds. We propose here an RCR model that conforms to the present Helitron landscape of plant genomes. Our study provides strong evidence that plant Helitrons amplify by RCR and that the tandemly arrayed replication products accumulate mostly in centromeres.
Collapse
Affiliation(s)
- Wenwei Xiong
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| | - Hugo K Dooner
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08801, USA
| | - Chunguang Du
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| |
Collapse
|
28
|
Zhang HH, Li GY, Xiong XM, Han MJ, Dai FY. Horizontal transfer of a novel Helentron in insects. Mol Genet Genomics 2016; 292:243-250. [DOI: 10.1007/s00438-016-1270-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/02/2016] [Indexed: 11/24/2022]
|
29
|
Negi P, Rai AN, Suprasanna P. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:1448. [PMID: 27777577 PMCID: PMC5056178 DOI: 10.3389/fpls.2016.01448] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/12/2016] [Indexed: 05/02/2023]
Abstract
The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original 'Controlling Element' hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as "distributed genomic control modules." According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement.
Collapse
Affiliation(s)
| | | | - Penna Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research CentreTrombay, India
| |
Collapse
|
30
|
Lehti-Shiu MD, Panchy N, Wang P, Uygun S, Shiu SH. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:3-20. [PMID: 27522016 DOI: 10.1016/j.bbagrm.2016.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Nicholas Panchy
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Peipei Wang
- Department of Plant Biology, East Lansing, MI 48824, USA
| | - Sahra Uygun
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, East Lansing, MI 48824, USA; The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
31
|
Panchy N, Lehti-Shiu M, Shiu SH. Evolution of Gene Duplication in Plants. PLANT PHYSIOLOGY 2016; 171:2294-316. [PMID: 27288366 PMCID: PMC4972278 DOI: 10.1104/pp.16.00523] [Citation(s) in RCA: 784] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication.
Collapse
Affiliation(s)
- Nicholas Panchy
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| | - Melissa Lehti-Shiu
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| | - Shin-Han Shiu
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
32
|
Abstract
Helitrons, the eukaryotic rolling-circle transposable elements, are widespread but most prevalent among plant and animal genomes. Recent studies have identified three additional coding and structural variants of Helitrons called Helentrons, Proto-Helentron, and Helitron2. Helitrons and Helentrons make up a substantial fraction of many genomes where nonautonomous elements frequently outnumber the putative autonomous partner. This includes the previously ambiguously classified DINE-1-like repeats, which are highly abundant in Drosophila and many other animal genomes. The purpose of this review is to summarize what we have learned about Helitrons in the decade since their discovery. First, we describe the history of autonomous Helitrons, and their variants. Second, we explain the common coding features and difference in structure of canonical Helitrons versus the endonuclease-encoding Helentrons. Third, we review how Helitrons and Helentrons are classified and discuss why the system used for other transposable element families is not applicable. We also touch upon how genome-wide identification of candidate Helitrons is carried out and how to validate candidate Helitrons. We then shift our focus to a model of transposition and the report of an excision event. We discuss the different proposed models for the mechanism of gene capture. Finally, we will talk about where Helitrons are found, including discussions of vertical versus horizontal transfer, the propensity of Helitrons and Helentrons to capture and shuffle genes and how they impact the genome. We will end the review with a summary of open questions concerning the biology of this intriguing group of transposable elements.
Collapse
|
33
|
Bousios A, Gaut BS. Mechanistic and evolutionary questions about epigenetic conflicts between transposable elements and their plant hosts. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:123-33. [PMID: 26950253 DOI: 10.1016/j.pbi.2016.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 05/02/2023]
Abstract
Transposable elements (TEs) constitute the majority of plant genomes, but most are epigenetically inactivated by their host. Research over the last decade has elucidated many of the molecular components that are required for TE silencing. In contrast, the evolutionary dynamics between TEs and silencing pathways are less clear. Here, we discuss current information about these dynamics from both mechanistic and evolutionary perspectives. We highlight new evidence that palindromic sequences within TEs may act as signals for host recognition and that cis-regulatory regions of TEs may be sites of ongoing arms races with host defenses. We also discuss patterns of TE aging after they are silenced; while there is not yet a consensus, it appears that TEs are removed more rapidly near genes, such that older TE insertions tend to be farther from genes. We conclude by discussing the energetic costs for maintaining silencing pathways, which appear to be substantive. The maintenance of silencing pathways across many species suggests that epigenetic emergencies are frequent.
Collapse
Affiliation(s)
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
34
|
A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nat Commun 2016; 7:10716. [PMID: 26931494 PMCID: PMC4778049 DOI: 10.1038/ncomms10716] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/14/2016] [Indexed: 02/08/2023] Open
Abstract
Helitron transposons capture and mobilize gene fragments in eukaryotes, but experimental evidence for their transposition is lacking in the absence of an isolated active element. Here we reconstruct Helraiser, an ancient element from the bat genome, and use this transposon as an experimental tool to unravel the mechanism of Helitron transposition. A hairpin close to the 3′-end of the transposon functions as a transposition terminator. However, the 3′-end can be bypassed by the transposase, resulting in transduction of flanking sequences to new genomic locations. Helraiser transposition generates covalently closed circular intermediates, suggestive of a replicative transposition mechanism, which provides a powerful means to disseminate captured transcriptional regulatory signals across the genome. Indeed, we document the generation of novel transcripts by Helitron promoter capture both experimentally and by transcriptome analysis in bats. Our results provide mechanistic insight into Helitron transposition, and its impact on diversification of gene function by genome shuffling. Helitron elements are proposed rolling-circle transposons in eukaryotic genomes, but experimental evidence for their transposition has been lacking. Here, Grabundzija et al. reconstruct an active Helitron from bats which they name Helraiser, and characterize its mechanism of transposition in cell-free reactions and in human cell cultures in vitro.
Collapse
|
35
|
Zhao D, Ferguson AA, Jiang N. What makes up plant genomes: The vanishing line between transposable elements and genes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:366-80. [PMID: 26709091 DOI: 10.1016/j.bbagrm.2015.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023]
Abstract
The ultimate source of evolution is mutation. As the largest component in plant genomes, transposable elements (TEs) create numerous types of mutations that cannot be mimicked by other genetic mechanisms. When TEs insert into genomic sequences, they influence the expression of nearby genes as well as genes unlinked to the insertion. TEs can duplicate, mobilize, and recombine normal genes or gene fragments, with the potential to generate new genes or modify the structure of existing genes. TEs also donate their transposase coding regions for cellular functions in a process called TE domestication. Despite the host defense against TE activity, a subset of TEs survived and thrived through discreet selection of transposition activity, target site, element size, and the internal sequence. Finally, TEs have established strategies to reduce the efficacy of host defense system by increasing the cost of silencing TEs. This review discusses the recent progress in the area of plant TEs with a focus on the interaction between TEs and genes.
Collapse
Affiliation(s)
- Dongyan Zhao
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA
| | - Ann A Ferguson
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA
| | - Ning Jiang
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA.
| |
Collapse
|
36
|
Xiong W, Du C. Mining hidden polymorphic sequence motifs from divergent plant helitrons. Mob Genet Elements 2015; 4:1-5. [PMID: 26442169 PMCID: PMC4588551 DOI: 10.4161/21592543.2014.971635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 12/02/2022] Open
Abstract
As a major driving force of genome evolution, transposons have been deviating from their original connotation as “junk” DNA ever since their important roles were revealed. The recently discovered Helitron transposons have been investigated in diverse eukaryotic genomes because of their remarkable gene-capture ability and other features that are crucial to our current understanding of genome dynamics. Helitrons are not canonical transposons in that they do not end in inverted repeats or create target site duplications, which makes them difficult to identify. Previous methods mainly rely on sequence alignment of conserved Helitron termini or manual curation. The abundance of Helitrons in genomes is still underestimated. We developed an automated and generalized tool, HelitronScanner, that identified a plethora of divergent Helitrons in many plant genomes. A local combinational variable approach as the key component of HelitronScanner offers a more granular representation of conserved nucleotide combinations and therefore is more sensitive in finding divergent Helitrons. This commentary provides an in-depth view of the local combinational variable approach and its association with Helitron sequence patterns. Analysis of Helitron terminal sequences shows that the local combinational variable approach is an efficacious representation of nucleotide patterns imperceptible at a full-sequence level.
Collapse
Affiliation(s)
- Wenwei Xiong
- Department of Biology and Molecular Biology; Montclair State University ; Montclair, NJ USA
| | - Chunguang Du
- Department of Biology and Molecular Biology; Montclair State University ; Montclair, NJ USA
| |
Collapse
|
37
|
Differential pre-mRNA Splicing Alters the Transcript Diversity of Helitrons Between the Maize Inbred Lines. G3-GENES GENOMES GENETICS 2015; 5:1703-11. [PMID: 26070844 PMCID: PMC4528327 DOI: 10.1534/g3.115.018630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The propensity to capture and mobilize gene fragments by the highly abundant Helitron family of transposable elements likely impacts the evolution of genes in Zea mays. These elements provide a substrate for natural selection by giving birth to chimeric transcripts by intertwining exons of disparate genes. They also capture flanking exons by read-through transcription. Here, we describe the expression of selected Helitrons in different maize inbred lines. We recently reported that these Helitrons produce multiple isoforms of transcripts in inbred B73 via alternative splicing. Despite sharing high degrees of sequence similarity, the splicing profile of Helitrons differed among various maize inbred lines. The comparison of Helitron sequences identified unique polymorphisms in inbred B73, which potentially give rise to the alternatively spliced sites utilized by transcript isoforms. Some alterations in splicing, however, do not have obvious explanations. These observations not only add another level to the creation of transcript diversity by Helitrons among inbred lines but also provide novel insights into the cis-acting elements governing splice-site selection during pre-mRNA processing.
Collapse
|
38
|
Abstract
DNA transposases use a limited repertoire of structurally and mechanistically distinct nuclease domains to catalyze the DNA strand breaking and rejoining reactions that comprise DNA transposition. Here, we review the mechanisms of the four known types of transposition reactions catalyzed by (1) RNase H-like transposases (also known as DD(E/D) enzymes); (2) HUH single-stranded DNA transposases; (3) serine transposases; and (4) tyrosine transposases. The large body of accumulated biochemical and structural data, particularly for the RNase H-like transposases, has revealed not only the distinguishing features of each transposon family, but also some emerging themes that appear conserved across all families. The more-recently characterized single-stranded DNA transposases provide insight into how an ancient HUH domain fold has been adapted for transposition to accomplish excision and then site-specific integration. The serine and tyrosine transposases are structurally and mechanistically related to their cousins, the serine and tyrosine site-specific recombinases, but have to date been less intensively studied. These types of enzymes are particularly intriguing as in the context of site-specific recombination they require strict homology between recombining sites, yet for transposition can catalyze the joining of transposon ends to form an excised circle and then integration into a genomic site with much relaxed sequence specificity.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Law M, Childs KL, Campbell MS, Stein JC, Olson AJ, Holt C, Panchy N, Lei J, Jiao D, Andorf CM, Lawrence CJ, Ware D, Shiu SH, Sun Y, Jiang N, Yandell M. Automated update, revision, and quality control of the maize genome annotations using MAKER-P improves the B73 RefGen_v3 gene models and identifies new genes. PLANT PHYSIOLOGY 2015; 167:25-39. [PMID: 25384563 PMCID: PMC4280997 DOI: 10.1104/pp.114.245027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/02/2014] [Indexed: 05/18/2023]
Abstract
The large size and relative complexity of many plant genomes make creation, quality control, and dissemination of high-quality gene structure annotations challenging. In response, we have developed MAKER-P, a fast and easy-to-use genome annotation engine for plants. Here, we report the use of MAKER-P to update and revise the maize (Zea mays) B73 RefGen_v3 annotation build (5b+) in less than 3 h using the iPlant Cyberinfrastructure. MAKER-P identified and annotated 4,466 additional, well-supported protein-coding genes not present in the 5b+ annotation build, added additional untranslated regions to 1,393 5b+ gene models, identified 2,647 5b+ gene models that lack any supporting evidence (despite the use of large and diverse evidence data sets), identified 104,215 pseudogene fragments, and created an additional 2,522 noncoding gene annotations. We also describe a method for de novo training of MAKER-P for the annotation of newly sequenced grass genomes. Collectively, these results lead to the 6a maize genome annotation and demonstrate the utility of MAKER-P for rapid annotation, management, and quality control of grasses and other difficult-to-annotate plant genomes.
Collapse
Affiliation(s)
- MeiYee Law
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| | - Kevin L Childs
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| | - Michael S Campbell
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| | - Joshua C Stein
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| | - Andrew J Olson
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| | - Carson Holt
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| | - Nicholas Panchy
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| | - Jikai Lei
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| | - Dian Jiao
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| | - Carson M Andorf
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| | - Carolyn J Lawrence
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| | - Doreen Ware
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| | - Shin-Han Shiu
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| | - Yanni Sun
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| | - Ning Jiang
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| | - Mark Yandell
- The Jackson Laboratory, Bar Harbor, Maine 04609 (M.L.);Eccles Institute of Human Genetics (M.L., M.S.C., M.Y.), Department of Biomedical Informatics (M.L.), and USTAR Center for Genetic Discovery (C.H., M.Y.), University of Utah, Salt Lake City, Utah 84112;Genetics Program (N.P., S.-H.S., N.J.), Department of Plant Biology (K.L.C., S.-H.S.), Department of Computer Science and Engineering (J.L., Y.S.), and Department of Horticulture (N.J.), Michigan State University, East Lansing, Michigan 48824;iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (J.C.S., A.J.O., D.W.);Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 1L7 (C.H.);Texas Advanced Computing Center, University of Texas, Austin, Texas 78758 (D.J.);Department of Genetics, Development, and Cell Biology and Department of Agronomy (C.J.L.), and United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research (C.M.A.), Iowa State University, Ames, Iowa 50011; andUnited States Department of Agriculture-Agricultural Research Service Northeast Area, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (D.W.)
| |
Collapse
|
40
|
Castanera R, Pérez G, López L, Sancho R, Santoyo F, Alfaro M, Gabaldón T, Pisabarro AG, Oguiza JA, Ramírez L. Highly expressed captured genes and cross-kingdom domains present in Helitrons create novel diversity in Pleurotus ostreatus and other fungi. BMC Genomics 2014; 15:1071. [PMID: 25480150 PMCID: PMC4289320 DOI: 10.1186/1471-2164-15-1071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helitrons are class-II eukaryotic transposons that transpose via a rolling circle mechanism. Due to their ability to capture and mobilize gene fragments, they play an important role in the evolution of their host genomes. We have used a bioinformatics approach for the identification of helitrons in two Pleurotus ostreatus genomes using de novo detection and homology-based searching. We have analyzed the presence of helitron-captured genes as well as the expansion of helitron-specific helicases in fungi and performed a phylogenetic analysis of their conserved domains with other representative eukaryotic species. RESULTS Our results show the presence of two helitron families in P. ostreatus that disrupt gene colinearity and cause a lack of synteny between their genomes. Both putative autonomous and non-autonomous helitrons were transcriptionally active, and some of them carried highly expressed captured genes of unknown origin and function. In addition, both families contained eukaryotic, bacterial and viral domains within the helitron's boundaries. A phylogenetic reconstruction of RepHel helicases using the Helitron-like and PIF1-like helicase conserved domains revealed a polyphyletic origin for eukaryotic helitrons. CONCLUSION P. ostreatus helitrons display features similar to other eukaryotic helitrons and do not tend to capture host genes or gene fragments. The occurrence of genes probably captured from other hosts inside the helitrons boundaries pose the hypothesis that an ancient horizontal transfer mechanism could have taken place. The viral domains found in some of these genes and the polyphyletic origin of RepHel helicases in the eukaryotic kingdom suggests that virus could have played a role in a putative lateral transfer of helitrons within the eukaryotic kingdom. The high similarity of some helitrons, along with the transcriptional activity of its RepHel helicases indicates that these elements are still active in the genome of P. ostreatus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lucía Ramírez
- Department of Agrarian Production, Genetics and Microbiology Research Group, Public University of Navarre, 31006 Pamplona, Navarre, Spain.
| |
Collapse
|
41
|
Lee SI, Kim NS. Transposable elements and genome size variations in plants. Genomics Inform 2014; 12:87-97. [PMID: 25317107 PMCID: PMC4196380 DOI: 10.5808/gi.2014.12.3.87] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/18/2014] [Accepted: 08/22/2014] [Indexed: 02/01/2023] Open
Abstract
Although the number of protein-coding genes is not highly variable between plant taxa, the DNA content in their genomes is highly variable, by as much as 2,056-fold from a 1C amount of 0.0648 pg to 132.5 pg. The mean 1C-value in plants is 2.4 pg, and genome size expansion/contraction is lineage-specific in plant taxonomy. Transposable element fractions in plant genomes are also variable, as low as ~3% in small genomes and as high as ~85% in large genomes, indicating that genome size is a linear function of transposable element content. Of the 2 classes of transposable elements, the dynamics of class 1 long terminal repeat (LTR) retrotransposons is a major contributor to the 1C value differences among plants. The activity of LTR retrotransposons is under the control of epigenetic suppressing mechanisms. Also, genome-purging mechanisms have been adopted to counter-balance the genome size amplification. With a wealth of information on whole-genome sequences in plant genomes, it was revealed that several genome-purging mechanisms have been employed, depending on plant taxa. Two genera, Lilium and Fritillaria, are known to have large genomes in angiosperms. There were twice times of concerted genome size evolutions in the family Liliaceae during the divergence of the current genera in Liliaceae. In addition to the LTR retrotransposons, non-LTR retrotransposons and satellite DNAs contributed to the huge genomes in the two genera by possible failure of genome counter-balancing mechanisms.
Collapse
Affiliation(s)
- Sung-Il Lee
- Department of Molecular Bioscience, Kangwon National University, Chuncheon 200-701, Korea
| | - Nam-Soo Kim
- Department of Molecular Bioscience, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
42
|
Thomas J, Phillips CD, Baker RJ, Pritham EJ. Rolling-circle transposons catalyze genomic innovation in a mammalian lineage. Genome Biol Evol 2014; 6:2595-610. [PMID: 25223768 PMCID: PMC4224331 DOI: 10.1093/gbe/evu204] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rolling-circle transposons (Helitrons) are a newly discovered group of mobile DNA widespread in plant and invertebrate genomes but limited to the bat family Vespertilionidae among mammals. Little is known about the long-term impact of Helitron activity because the genomes where Helitron activity has been extensively studied are predominated by young families. Here, we report a comprehensive catalog of vetted Helitrons from the 7× Myotis lucifugus genome assembly. To estimate the timing of transposition, we scored presence/absence across related vespertilionid genome sequences with estimated divergence times. This analysis revealed that the Helibat family has been a persistent source of genomic innovation throughout the vespertilionid diversification from approximately 30–36 Ma to as recently as approximately 1.8–6 Ma. This is the first report of persistent Helitron transposition over an extended evolutionary timeframe. These findings illustrate that the pattern of Helitron activity is akin to the vertical persistence of LINE retrotransposons in primates and other mammalian lineages. Like retrotransposition in primates, rolling-circle transposition has generated lineage-specific variation and accounts for approximately 110 Mb, approximately 6% of the genome of M. lucifugus. The Helitrons carry a heterogeneous assortment of host sequence including retroposed messenger RNAs, retrotransposons, DNA transposons, as well as introns, exons and regulatory regions (promoters, 5′-untranslated regions [UTRs], and 3′-UTRs) of which some are evolving in a pattern suggestive of purifying selection. Evidence that Helitrons have contributed putative promoters, exons, splice sites, polyadenylation sites, and microRNA-binding sites to transcripts otherwise conserved across mammals is presented, and the implication of Helitron activity to innovation in these unique mammals is discussed.
Collapse
Affiliation(s)
- Jainy Thomas
- Department of Human Genetics, University of Utah
| | - Caleb D Phillips
- Department of Biological Sciences and Museum, Texas Tech University
| | - Robert J Baker
- Department of Biological Sciences and Museum, Texas Tech University
| | | |
Collapse
|
43
|
Helinoto, a Helitron2 transposon from the icefish Chionodraco hamatus, contains a region with three deubiquitinase-like domains that exhibit transcriptional activity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 11:49-58. [PMID: 25178533 DOI: 10.1016/j.cbd.2014.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/24/2022]
Abstract
Transposable elements have accompanied the evolution of the eukaryotic genome for millions of years. The recently discovered Helitron order (class II, subclass 2 single-strand DNA transposons) is common in eukaryotes and seems to play a highly active role in genome reshuffling. This study provides novel insights into the characteristics of Helinoto, a helitron isolated in the genome of the Antarctic fish Chionodraco hamatus. In particular, investigation of the structure of its 5' and 3' ends, which are involved in the transposition process, enabled identification of the characteristic motifs of the Helitron2 group. Moreover, identification of a deubiquitinating protease domain in the region upstream two consecutive OTU domains extended and strengthened the "deubiquitinase" character of the N-terminal portion of Helinoto. Finally, Helinoto transcriptional activity was detected in several C. hamatus tissues. Taken together, these data are particularly intriguing because they document high transcription levels for genes involved in ubiquitination, which ensures protein homeostasis in the extreme Antarctic environment.
Collapse
|
44
|
HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. Proc Natl Acad Sci U S A 2014; 111:10263-8. [PMID: 24982153 DOI: 10.1073/pnas.1410068111] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transposons make up the bulk of eukaryotic genomes, but are difficult to annotate because they evolve rapidly. Most of the unannotated portion of sequenced genomes is probably made up of various divergent transposons that have yet to be categorized. Helitrons are unusual rolling circle eukaryotic transposons that often capture gene sequences, making them of considerable evolutionary importance. Unlike other DNA transposons, Helitrons do not end in inverted repeats or create target site duplications, so they are particularly challenging to identify. Here we present HelitronScanner, a two-layered local combinational variable (LCV) tool for generalized Helitron identification that represents a major improvement over previous identification programs based on DNA sequence or structure. HelitronScanner identified 64,654 Helitrons from a wide range of plant genomes in a highly automated way. We tested HelitronScanner's predictive ability in maize, a species with highly heterogeneous Helitron elements. LCV scores for the 5' and 3' termini of the predicted Helitrons provide a primary confidence level and element copy number provides a secondary one. Newly identified Helitrons were validated by PCR assays or by in silico comparative analysis of insertion site polymorphism among multiple accessions. Many new Helitrons were identified in model species, such as maize, rice, and Arabidopsis, and in a variety of organisms where Helitrons had not been reported previously to our knowledge, leading to a major upward reassessment of their abundance in plant genomes. HelitronScanner promises to be a valuable tool in future comparative and evolutionary studies of this major transposon superfamily.
Collapse
|
45
|
Liu Y, Yang G. Tc1-like transposable elements in plant genomes. Mob DNA 2014; 5:17. [PMID: 24926322 PMCID: PMC4054914 DOI: 10.1186/1759-8753-5-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Tc1/mariner superfamily of transposable elements (TEs) is widespread in animal genomes. Mariner-like elements, which bear a DDD triad catalytic motif, have been identified in a wide range of flowering plant species. However, as the founding member of the superfamily, Tc1-like elements that bear a DD34E triad catalytic motif are only known to unikonts (animals, fungi, and Entamoeba). RESULTS Here we report the identification of Tc1-like elements (TLEs) in plant genomes. These elements bear the four terminal nucleotides and the characteristic DD34E triad motif of Tc1 element. The two TLE families (PpTc1, PpTc2) identified in the moss (Physcomitrella patens) genome contain highly similar copies. Multiple copies of PpTc1 are actively transcribed and the transcripts encode intact full length transposase coding sequences. TLEs are also found in angiosperm genome sequence databases of rice (Oryza sativa), dwarf birch (Betula nana), cabbage (Brassica rapa), hemp (Cannabis sativa), barley (Hordium valgare), lettuce (Lactuta sativa), poplar (Populus trichocarpa), pear (Pyrus x bretschneideri), and wheat (Triticum urartu). CONCLUSIONS This study extends the occurrence of TLEs to the plant phylum. The elements in the moss genome have amplified recently and may still be capable of transposition. The TLEs are also present in angiosperm genomes, but apparently much less abundant than in moss.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, L5L 1C6 Mississauga, ON, Canada ; Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Guojun Yang
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, L5L 1C6 Mississauga, ON, Canada ; Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
46
|
Evidence of horizontal transfer of non-autonomous Lep1 Helitrons facilitated by host-parasite interactions. Sci Rep 2014; 4:5119. [PMID: 24874102 PMCID: PMC4038834 DOI: 10.1038/srep05119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/09/2014] [Indexed: 11/09/2022] Open
Abstract
Horizontal transfer (HT) of transposable elements has been recognized to be a major force driving genomic variation and biological innovation of eukaryotic organisms. However, the mechanisms of HT in eukaryotes remain poorly appreciated. The non-autonomous Helitron family, Lep1, has been found to be widespread in lepidopteran species, and showed little interspecific sequence similarity of acquired sequences at 3' end, which makes Lep1 a good candidate for the study of HT. In this study, we describe the Lep1-like elements in multiple non-lepidopteran species, including two aphids, Acyrthosiphon pisum and Aphis gossypii, two parasitoid wasps, Cotesia vestalis, and Copidosoma floridanum, one beetle, Anoplophora glabripennis, as well as two bracoviruses in parasitoid wasps, and one intracellular microsporidia parasite, Nosema bombycis. The patchy distribution and high sequence similarity of Lep1-like elements among distantly related lineages as well as incongruence of Lep1-like elements and host phylogeny suggest the occurrence of HT. Remarkably, the acquired sequences of both NbLep1 from N. bombycis and CfLep1 from C. floridanum showed over 90% identity with their lepidopteran host Lep1. Thus, our study provides evidence of HT facilitated by host-parasite interactions. Furthermore, in the context of these data, we discuss the putative directions and vectors of HT of Lep1 Helitrons.
Collapse
|
47
|
Oliver KR, McComb JA, Greene WK. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 2014; 5:1886-901. [PMID: 24065734 PMCID: PMC3814199 DOI: 10.1093/gbe/evt141] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are a dominant feature of most flowering plant genomes. Together with other accepted facilitators of evolution, accumulating data indicate that TEs can explain much about their rapid evolution and diversification. Genome size in angiosperms is highly correlated with TE content and the overwhelming bulk (>80%) of large genomes can be composed of TEs. Among retro-TEs, long terminal repeats (LTRs) are abundant, whereas DNA-TEs, which are often less abundant than retro-TEs, are more active. Much adaptive or evolutionary potential in angiosperms is due to the activity of TEs (active TE-Thrust), resulting in an extraordinary array of genetic changes, including gene modifications, duplications, altered expression patterns, and exaptation to create novel genes, with occasional gene disruption. TEs implicated in the earliest origins of the angiosperms include the exapted Mustang, Sleeper, and Fhy3/Far1 gene families. Passive TE-Thrust can create a high degree of adaptive or evolutionary potential by engendering ectopic recombination events resulting in deletions, duplications, and karyotypic changes. TE activity can also alter epigenetic patterning, including that governing endosperm development, thus promoting reproductive isolation. Continuing evolution of long-lived resprouter angiosperms, together with genetic variation in their multiple meristems, indicates that TEs can facilitate somatic evolution in addition to germ line evolution. Critical to their success, angiosperms have a high frequency of polyploidy and hybridization, with resultant increased TE activity and introgression, and beneficial gene duplication. Together with traditional explanations, the enhanced genomic plasticity facilitated by TE-Thrust, suggests a more complete and satisfactory explanation for Darwin's "abominable mystery": the spectacular success of the angiosperms.
Collapse
Affiliation(s)
- Keith R Oliver
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | | |
Collapse
|
48
|
New insights into helitron transposable elements in the mesopolyploid species Brassica rapa. Gene 2013; 532:236-45. [DOI: 10.1016/j.gene.2013.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022]
|
49
|
Li Y, Harris L, Dooner HK. TED, an autonomous and rare maize transposon of the mutator superfamily with a high gametophytic excision frequency. THE PLANT CELL 2013; 25:3251-65. [PMID: 24038653 PMCID: PMC3809530 DOI: 10.1105/tpc.113.116517] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mutator (Mu) elements, one of the most diverse superfamilies of DNA transposons, are found in all eukaryotic kingdoms, but are particularly numerous in plants. Most of the present knowledge on the transposition behavior of this superfamily comes from studies of the maize (Zea mays) Mu elements, whose transposition is mediated by the autonomous Mutator-Don Robertson (MuDR) element. Here, we describe the maize element TED (for Transposon Ellen Dempsey), an autonomous cousin that differs significantly from MuDR. Element excision and reinsertion appear to require both proteins encoded by MuDR, but only the single protein encoded by TED. Germinal excisions, rare with MuDR, are common with TED, but arise in one of the mitotic divisions of the gametophyte, rather than at meiosis. Instead, transposition-deficient elements arise at meiosis, suggesting that the double-strand breaks produced by element excision are repaired differently in mitosis and meiosis. Unlike MuDR, TED is a very low-copy transposon whose number and activity do not undergo dramatic changes upon inbreeding or outcrossing. Like MuDR, TED transposes mostly to unlinked sites and can form circular transposition products. Sequences closer to TED than to MuDR were detected only in the grasses, suggesting a rather recent evolutionary split from a common ancestor.
Collapse
Affiliation(s)
- Yubin Li
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Linda Harris
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada K1A 0C6
| | - Hugo K. Dooner
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901
- Address correspondence to
| |
Collapse
|
50
|
Han MJ, Shen YH, Xu MS, Liang HY, Zhang HH, Zhang Z. Identification and evolution of the silkworm helitrons and their contribution to transcripts. DNA Res 2013; 20:471-84. [PMID: 23771679 PMCID: PMC3789558 DOI: 10.1093/dnares/dst024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this study, we developed a structure-based approach to identify Helitrons in four lepidopterans and systematically analysed Helitrons in the silkworm genome. We found that the content of Helitrons varied greatly among genomes. The silkworm genome harboured 67,555 Helitron-related sequences that could be classified into 21 families and accounted for ≈ 4.23% of the genome. Thirteen of the families were new. Three families were putatively autonomous and included the replication initiator motif and helicase domain. The silkworm Helitrons were widely and randomly distributed in the genome. Most Helitron families radiated within the past 2 million years and experienced a single burst of expansion. These Helitron families captured 3724 gene fragments and contributed to at least 1.4% of the silkworm full-length cDNAs, suggesting important roles of Helitrons in the evolution of the silkworm genes. In addition, we found that some new Helitrons were generated by combinations of other Helitrons. Overall, the results presented in this study provided insights into the generation and evolution of Helitron transposons and their contribution to transcripts.
Collapse
Affiliation(s)
- Min-Jin Han
- 1State Key Laboratory of Silkworm Genome Biology, The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | | | | | | | | | | |
Collapse
|