1
|
Liu T, Bao L, Wang Y. The Thermodynamic and Kinetic Properties of the dA-rU DNA-RNA Hybrid Base Pair Investigated via Molecular Dynamics Simulations. Molecules 2024; 29:4920. [PMID: 39459288 PMCID: PMC11510705 DOI: 10.3390/molecules29204920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
DNA-RNA hybrid duplexes play essential roles during the reverse transcription of RNA viruses and DNA replication. The opening and conformation changes of individual base pairs are critical to their biological functions. However, the microscopic mechanisms governing base pair closing and opening at the atomic level remain poorly understood. In this study, we investigated the thermodynamic and kinetic parameters of the dA-rU base pair in a DNA-RNA hybrid duplex using 4 μs all-atom molecular dynamics (MD) simulations at different temperatures. Our results showed that the thermodynamic parameters of the dA-rU base pair aligned with the predictions of the nearest-neighbor model and were close to those of the AU base pair in RNA. The temperature dependence of the average lifetimes of both the open and the closed states, as well as the transition path times, were obtained. The free-energy barrier for a single base pair opening and closing arises from an increase in enthalpy due to the disruption of the base-stacking interactions and hydrogen bonding, along with an entropy loss attributed to the accompanying restrictions, such as torsional angle constraints and solvent viscosity.
Collapse
Affiliation(s)
- Taigang Liu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China;
| | - Lei Bao
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China;
| | - Yujie Wang
- Department of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466000, China
| |
Collapse
|
2
|
Alam P, Clovis NS, Chand AK, Khan MF, Sen S. Effect of molecular crowders on ligand binding kinetics with G-quadruplex DNA probed by fluorescence correlation spectroscopy. Methods Appl Fluoresc 2024; 12:045002. [PMID: 39013401 DOI: 10.1088/2050-6120/ad63f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
Guanine-rich single-stranded DNA folds into G-quadruplex DNA (GqDNA) structures, which play crucial roles in various biological processes. These structures are also promising targets for ligands, potentially inducing antitumor effects. While thermodynamic parameters of ligand/DNA interactions are well-studied, the kinetics of ligand interaction with GqDNA, particularly in cell-like crowded environments, remain less explored. In this study, we investigate the impact of molecular crowding agents (glucose, sucrose, and ficoll 70) at physiologically relevant concentrations (20% w/v) on the association and dissociation rates of the benzophenoxazine-core based ligand, cresyl violet (CV), with human telomeric antiparallel-GqDNA. We utilized fluorescence correlation spectroscopy (FCS) along with other techniques. Our findings reveal that crowding agents decrease the binding affinity of CV to GqDNA, with the most significant effect-a nearly three-fold decrease-observed with ficoll 70. FCS measurements indicate that this decrease is primarily due to a viscosity-induced slowdown of ligand association in the crowded environment. Interestingly, dissociation rates remain largely unaffected by smaller crowders, with only small effect observed in presence of ficoll 70 due to direct but weak interaction between the ligand and ficoll. These results along with previously reported data provide valuable insights into ligand/GqDNA interactions in cellular contexts, suggesting a conserved mechanism of saccharide crowder influence, regardless of variations in GqDNA structure and ligand binding mode. This underscores the importance of considering crowding effects in the design and development of GqDNA-targeted drugs for potential cancer treatment.
Collapse
Affiliation(s)
- Parvez Alam
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ndege Simisi Clovis
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar Chand
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohammad Firoz Khan
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Mishra SK, Sangeeta, Heermann DW, Bhattacherjee A. The role of nucleotide opening dynamics in facilitated target search by DNA-repair proteins. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195026. [PMID: 38641240 DOI: 10.1016/j.bbagrm.2024.195026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
Preserving the genomic integrity stands a fundamental necessity, primarily achieved by the DNA repair proteins through their continuous patrolling on the DNA in search of lesions. However, comprehending how even a single base-pair lesion can be swiftly and specifically recognized amidst millions of base-pair sites remains a formidable challenge. In this study, we employ extensive molecular dynamics simulations using an appropriately tuned model of both protein and DNA to probe the underlying molecular principles. Our findings reveal that the dynamics of a non-canonical base generate an entropic signal that guides the one-dimensional search of a repair protein, thereby facilitating the recognition of the lesion site. The width of the funnel perfectly aligns with the one-dimensional diffusion length of DNA-binding proteins. The generic mechanism provides a physical basis for rapid recognition and specificity of DNA damage sensing and recognition.
Collapse
Affiliation(s)
- Sujeet Kumar Mishra
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sangeeta
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dieter W Heermann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Arnab Bhattacherjee
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
4
|
Westwood MN, Pilarski A, Johnson C, Mamoud S, Meints GA. Backbone Conformational Equilibrium in Mismatched DNA Correlates with Enzyme Activity. Biochemistry 2023; 62:2816-2827. [PMID: 37699121 PMCID: PMC10552547 DOI: 10.1021/acs.biochem.3c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/25/2023] [Indexed: 09/14/2023]
Abstract
T:G mismatches in mammals arise primarily from the deamination of methylated CpG sites or the incorporation of improper nucleotides. The process by which repair enzymes such as thymine DNA glycosylase (TDG) identify a canonical DNA base in the incorrect pairing context remains a mystery. However, the abundant contacts of the repair enzymes with the DNA backbone suggest a role for protein-phosphate interaction in the recognition and repair processes, where conformational properties may facilitate the proper interactions. We have previously used 31P NMR to investigate the energetics of DNA backbone BI-BII interconversion and the effect of a mismatch or lesion compared to canonical DNA and found stepwise differences in ΔG of 1-2 kcal/mol greater than equivalent steps in unmodified DNA. We have currently compared our results to substrate dependence for TDG, MBD4, M. HhaI, and CEBPβ, testing for correlations to sequence and base-pair dependence. We found strong correlations of our DNA phosphate backbone equilibrium (Keq) to different enzyme kinetics or binding parameters of these varied enzymes, suggesting that the backbone equilibrium may play an important role in mismatch recognition and/or conformational rearrangement and energetics during nucleotide flipping or other aspects of enzyme interrogation of the DNA substrate.
Collapse
Affiliation(s)
- M. N. Westwood
- Biophysics
Program, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - A. Pilarski
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Ave., Springfield, Missouri 65897, United States
| | - C. Johnson
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Ave., Springfield, Missouri 65897, United States
| | - S. Mamoud
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Ave., Springfield, Missouri 65897, United States
| | - G. A. Meints
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Ave., Springfield, Missouri 65897, United States
| |
Collapse
|
5
|
Orndorff PB, van der Vaart A. Register-Shifted Structures in Base-Flipped Uracil-Damaged DNA. J Am Chem Soc 2023. [PMID: 37478299 DOI: 10.1021/jacs.3c05890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
We report the occurrence of register-shifted structures in simulations of uracil-containing dsDNA. These occur when the 3' base vicinal to uracil is thymine in U:A base-paired DNA. Upon base flipping of uracil, this 3' thymine hydrogen bonds with the adenine across the uracil instead of its complementary base. The register-shifted structure is persistent and sterically blocks re-entry of uracil into the helix stack. Register shifting might be important for DNA repair since the longer exposure of the lesion in register-shifted structures could facilitate enzymatic recognition and repair.
Collapse
Affiliation(s)
- Paul B Orndorff
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| |
Collapse
|
6
|
Ovcherenko SS, Shernyukov AV, Nasonov DM, Endutkin AV, Zharkov DO, Bagryanskaya EG. Dynamics of 8-Oxoguanine in DNA: Decisive Effects of Base Pairing and Nucleotide Context. J Am Chem Soc 2023; 145:5613-5617. [PMID: 36867834 DOI: 10.1021/jacs.2c11230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
8-Oxo-7,8-dihydroguanine (oxoG), an abundant DNA lesion, can mispair with adenine and induce mutations. To prevent this, cells possess DNA repair glycosylases that excise either oxoG from oxoG:C pairs (bacterial Fpg, human OGG1) or A from oxoG:A mispairs (bacterial MutY, human MUTYH). Early lesion recognition steps remain murky and may include enforced base pair opening or capture of a spontaneously opened pair. We adapted the CLEANEX-PM NMR protocol to detect DNA imino proton exchange and analyzed the dynamics of oxoG:C, oxoG:A, and their undamaged counterparts in nucleotide contexts with different stacking energy. Even in a poorly stacking context, the oxoG:C pair did not open easier than G:C, arguing against extrahelical base capture by Fpg/OGG1. On the contrary, oxoG opposite A significantly populated the extrahelical state, which may assist recognition by MutY/MUTYH.
Collapse
Affiliation(s)
- Sergey S Ovcherenko
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Andrey V Shernyukov
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Dmitry M Nasonov
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anton V Endutkin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Yu T, Liu T, Wang Y, Zhang S, Zhang W. Thermodynamics and kinetics of an A-U RNA base pair under force studied by molecular dynamics simulations. Phys Rev E 2023; 107:024404. [PMID: 36932572 DOI: 10.1103/physreve.107.024404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Mechanical force has been widely used to study RNA folding and unfolding. Understanding how the force affects the opening and closing of a single base pair, which is a basic step for RNA folding and unfolding and a fundamental behavior in some important biological activities, is crucial to understanding the mechanism of RNA folding and unfolding under mechanical force. In this work, we investigated the opening and closing process of an RNA base pair under mechanical force with constant-force stretching molecular dynamics simulations. It was found that high mechanical force results in overstretching, and the open state is a high-energy state. The enthalpy and entropy change of the base-pair opening-closing transition were obtained and the results at low forces were in good agreement with the nearest-neighbor model. The temperature and force dependence of the opening and closing rates were also obtained. The position of the transition state for the base-pair opening-closing transition under mechanical force was determined. The free energy barrier of opening a base pair without force is the enthalpy increase, and the work done by the force from the closed state to the transition state decreases the barrier and increases the opening rate. The free energy barrier of closing the base pair without force results from the entropy loss, and the work done by the force from the open state to the transition state increases the barrier and decreases the closing rate. The transition rates are strongly dependent on the temperature and force, while the transition path times are weakly dependent on force and temperature.
Collapse
Affiliation(s)
- Ting Yu
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Taigang Liu
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Yujie Wang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
- Department of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, Henan 466000, People's Republic of China
| | - Shuhao Zhang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Wenbing Zhang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| |
Collapse
|
8
|
Chen LQ, Zhang Z, Chen HX, Xi JF, Liu XH, Ma DZ, Zhong YH, Ng WH, Chen T, Mak DW, Chen Q, Chen YQ, Luo GZ. High-precision mapping reveals rare N 6-deoxyadenosine methylation in the mammalian genome. Cell Discov 2022; 8:138. [PMID: 36575183 PMCID: PMC9794812 DOI: 10.1038/s41421-022-00484-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/16/2022] [Indexed: 12/28/2022] Open
Abstract
N6-deoxyadenosine methylation (6mA) is the most widespread type of DNA modification in prokaryotes and is also abundantly distributed in some unicellular eukaryotes. However, 6mA levels are remarkably low in mammals. The lack of a precise and comprehensive mapping method has hindered more advanced investigations of 6mA. Here, we report a new method MM-seq (modification-induced mismatch sequencing) for genome-wide 6mA mapping based on a novel detection principle. We found that modified DNA bases are prone to form a local open region that allows capture by antibody, for example, via a DNA breathing or base-flipping mechanism. Specified endonuclease or exonuclease can recognize the antibody-stabilized mismatch-like structure and mark the exact modified sites for sequencing readout. Using this method, we examined the genomic positions of 6mA in bacteria (E. coli), green algae (C. reinhardtii), and mammalian cells (HEK239T, Huh7, and HeLa cells). In contrast to bacteria and green algae, human cells possess a very limited number of 6mA sites which are sporadically distributed across the genome of different cell types. After knocking out the RNA m6A methyltransferase METTL3 in mouse ES cells, 6mA becomes mostly diminished. Our results imply that rare 6mA in the mammalian genome is introduced by RNA m6A machinery via a non-targeted mechanism.
Collapse
Affiliation(s)
- Li-Qian Chen
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China ,grid.410643.4Guangdong Cardiovascular Institute, Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong China
| | - Zhang Zhang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Hong-Xuan Chen
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Jian-Fei Xi
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xue-Hong Liu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Dong-Zhao Ma
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Yu-Hao Zhong
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Wen Hui Ng
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Tao Chen
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Daniel W. Mak
- grid.194645.b0000000121742757School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qi Chen
- grid.12981.330000 0001 2360 039XSchool of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong China
| | - Yao-Qing Chen
- grid.12981.330000 0001 2360 039XSchool of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong China
| | - Guan-Zheng Luo
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| |
Collapse
|
9
|
Simisi Clovis N, Alam P, Kumar Chand A, Sardana D, Firoz Khan M, Sen S. Molecular Crowders Modulate Ligand Binding Affinity to G-Quadruplex DNA by Decelerating Ligand Association. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Ten TB, Zvoda V, Sarangi MK, Kuznetsov SV, Ansari A. "Flexible hinge" dynamics in mismatched DNA revealed by fluorescence correlation spectroscopy. J Biol Phys 2022; 48:253-272. [PMID: 35451661 PMCID: PMC9411374 DOI: 10.1007/s10867-022-09607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/22/2022] [Indexed: 10/18/2022] Open
Abstract
Altered unwinding/bending fluctuations at DNA lesion sites are implicated as plausible mechanisms for damage sensing by DNA-repair proteins. These dynamics are expected to occur on similar timescales as one-dimensional (1D) diffusion of proteins on DNA if effective in stalling these proteins as they scan DNA. We examined the flexibility and dynamics of DNA oligomers containing 3 base pair (bp) mismatched sites specifically recognized in vitro by nucleotide excision repair protein Rad4 (yeast ortholog of mammalian XPC). A previous Forster resonance energy transfer (FRET) study mapped DNA conformational distributions with cytosine analog FRET pair primarily sensitive to DNA twisting/unwinding deformations (Chakraborty et al. Nucleic Acids Res. 46: 1240-1255 (2018)). These studies revealed B-DNA conformations for nonspecific (matched) constructs but significant unwinding for mismatched constructs specifically recognized by Rad4, even in the absence of Rad4. The timescales of these unwinding fluctuations, however, remained elusive. Here, we labeled DNA with Atto550/Atto647N FRET dyes suitable for fluorescence correlation spectroscopy (FCS). With these probes, we detected higher FRET in specific, mismatched DNA compared with matched DNA, reaffirming unwinding/bending deformations in mismatched DNA. FCS unveiled the dynamics of these spontaneous deformations at ~ 300 µs with no fluctuations detected for matched DNA within the ~ 600 ns-10 ms FCS time window. These studies are the first to visualize anomalous unwinding/bending fluctuations in mismatched DNA on timescales that overlap with the < 500 µs "stepping" times of repair proteins on DNA. Such "flexible hinge" dynamics at lesion sites could arrest a diffusing protein to facilitate damage interrogation and recognition.
Collapse
Affiliation(s)
- Timour B Ten
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Viktoriya Zvoda
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Manas K Sarangi
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
- Present Address: Department of Physics, Indian Institute of Technology, Patna, 801103, India
| | - Serguei V Kuznetsov
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Anjum Ansari
- Department of Physics (M/C 273), University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
11
|
Wang SD, Zhang RB, Eriksson LA. Markov state models elucidate the stability of DNA influenced by the chiral 5S-Tg base. Nucleic Acids Res 2022; 50:9072-9082. [PMID: 35979954 PMCID: PMC9458442 DOI: 10.1093/nar/gkac691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 12/24/2022] Open
Abstract
The static and dynamic structures of DNA duplexes affected by 5S-Tg (Tg, Thymine glycol) epimers were studied using MD simulations and Markov State Models (MSMs) analysis. The results show that the 5S,6S-Tg base caused little perturbation to the helix, and the base-flipping barrier was determined to be 4.4 kcal mol-1 through the use of enhanced sampling meta-eABF calculations, comparable to 5.4 kcal mol-1 of the corresponding thymine flipping. Two conformations with the different hydrogen bond structures between 5S,6R-Tg and A19 were identified in several independent MD trajectories. The 5S,6R-Tg:O6HO6•••N1:A19 hydrogen bond is present in the high-energy conformation displaying a clear helical distortion, and near barrier-free Tg base flipping. The low-energy conformation always maintains Watson-Crick base pairing between 5S,6R-Tg and A19, and 5S-Tg base flipping is accompanied by a small barrier of ca. 2.0 KBT (T = 298 K). The same conformations are observed in the MSMs analysis. Moreover, the transition path and metastable structures of the damaged base flipping are for the first time verified through MSMs analysis. The data clearly show that the epimers have completely different influence on the stability of the DNA duplex, thus implying different enzymatic mechanisms for DNA repair.
Collapse
Affiliation(s)
- Shu-dong Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidan District, 100081 Beijing, China
| | - Ru-bo Zhang
- Correspondence may also be addressed to Ru-bo Zhang.
| | - Leif A Eriksson
- To whom correspondence should be addressed. Tel: +46 31 786 9117;
| |
Collapse
|
12
|
Clovis NS, Sen S. G-Tetrad-Selective Ligand Binding Kinetics in G-Quadruplex DNA Probed with Fluorescence Correlation Spectroscopy. J Phys Chem B 2022; 126:6007-6015. [PMID: 35939531 DOI: 10.1021/acs.jpcb.2c04181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Probing the kinetics of ligand binding to biomolecules is of paramount interest in biology and pharmacology. Measurements of such kinetic processes provide information on the rate-determining steps that control the binding affinity of ligands to biomolecules, thereby predicting the mechanism of the molecular interaction. In this context, ligand binding to G-quadruplex DNA (GqDNA) structures has attracted tremendous attention primarily because of their use in possible anticancer therapy. Although a large number of G-quadruplex-specific ligands have been proposed, probing the kinetics of G-tetrad-selective binding of (multiple) ligands within a G-quadruplex DNA (GqDNA) structure remains challenging. Most of the earlier studies focused on the thermodynamics of ligand binding; however, the kinetics of ligand association and dissociation with GqDNA, particularly binding of multiple ligands within a GqDNA structure, have not been explored. Here, we propose a simple fluorescence correlation spectroscopy-based method that measures the G-tetrad-selective association and dissociation rates of ligands within a GqDNA structure by correlating the fluorescence fluctuations of a site-specific (5' or 3' end-labeled) fluorophore (Cy3) in GqDNA due to quenching of Cy3 fluorescence, induced by the ligand binding to the G-tetrads. We show that well-known GqDNA ligands, BRACO19, TMPyP4, Hoechst 33258, and Hoechst 33342, have G-tetrad-selective association and dissociation rates, which suggest site-dependent variation of free energy barriers for binding/unbinding of the ligands with GqDNA. We also show that the measured kinetic rates depend not only on the G-tetrad site (5' vs 3' end) but also on the ligand and GqDNA structures.
Collapse
Affiliation(s)
- Ndege Simisi Clovis
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
13
|
Liu X, Gaubitz C, Pajak J, Kelch BA. A second DNA binding site on RFC facilitates clamp loading at gapped or nicked DNA. eLife 2022; 11:77483. [PMID: 35731107 PMCID: PMC9293009 DOI: 10.7554/elife.77483] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Clamp loaders place circular sliding clamp proteins onto DNA so that clamp-binding partner proteins can synthesize, scan, and repair the genome. DNA with nicks or small single-stranded gaps are common clamp-loading targets in DNA repair, yet these substrates would be sterically blocked given the known mechanism for binding of primer-template DNA. Here, we report the discovery of a second DNA binding site in the yeast clamp loader replication factor C (RFC) that aids in binding to nicked or gapped DNA. This DNA binding site is on the external surface and is only accessible in the open conformation of RFC. Initial DNA binding at this site thus provides access to the primary DNA binding site in the central chamber. Furthermore, we identify that this site can partially unwind DNA to create an extended single-stranded gap for DNA binding in RFC’s central chamber and subsequent ATPase activation. Finally, we show that deletion of the BRCT domain, a major component of the external DNA binding site, results in defective yeast growth in the presence of DNA damage where nicked or gapped DNA intermediates occur. We propose that RFC’s external DNA binding site acts to enhance DNA binding and clamp loading, particularly at DNA architectures typically found in DNA repair.
Collapse
Affiliation(s)
- Xingchen Liu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, United States
| | - Christl Gaubitz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, United States
| | - Joshua Pajak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, United States
| | - Brian A Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
14
|
Nicy, Chakraborty D, Wales DJ. Energy Landscapes for Base-Flipping in a Model DNA Duplex. J Phys Chem B 2022; 126:3012-3028. [PMID: 35427136 PMCID: PMC9098180 DOI: 10.1021/acs.jpcb.2c00340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/24/2022] [Indexed: 12/31/2022]
Abstract
We explore the process of base-flipping for four central bases, adenine, guanine, cytosine, and thymine, in a deoxyribonucleic acid (DNA) duplex using the energy landscape perspective. NMR imino-proton exchange and fluorescence correlation spectroscopy studies have been used in previous experiments to obtain lifetimes for bases in paired and extrahelical states. However, the difference of almost 4 orders of magnitude in the base-flipping rates obtained by the two methods implies that they are exploring different pathways and possibly different open states. Our results support the previous suggestion that minor groove opening may be favored by distortions in the DNA backbone and reveal links between sequence effects and the direction of opening, i.e., whether the base flips toward the major or the minor groove side. In particular, base flipping along the minor groove pathway was found to align toward the 5' side of the backbone. We find that bases align toward the 3' side of the backbone when flipping along the major groove pathway. However, in some cases for cytosine and thymine, the base flipping along the major groove pathway also aligns toward the 5' side. The sequence effect may be caused by the polar interactions between the flipping-base and its neighboring bases on either of the strands. For guanine flipping toward the minor groove side, we find that the equilibrium constant for opening is large compared to flipping via the major groove. We find that the estimated rates of base opening, and hence the lifetimes of the closed state, obtained for thymine flipping through small and large angles along the major groove differ by 6 orders of magnitude, whereas for thymine flipping through small angles along the minor groove and large angles along the major groove, the rates differ by 3 orders of magnitude.
Collapse
Affiliation(s)
- Nicy
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
| | - Debayan Chakraborty
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United States
| | - David J. Wales
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
| |
Collapse
|
15
|
Gaubitz C, Liu X, Pajak J, Stone NP, Hayes JA, Demo G, Kelch BA. Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader. eLife 2022; 11:e74175. [PMID: 35179493 PMCID: PMC8893722 DOI: 10.7554/elife.74175] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Sliding clamps are ring-shaped protein complexes that are integral to the DNA replication machinery of all life. Sliding clamps are opened and installed onto DNA by clamp loader AAA+ ATPase complexes. However, how a clamp loader opens and closes the sliding clamp around DNA is still unknown. Here, we describe structures of the Saccharomyces cerevisiae clamp loader Replication Factor C (RFC) bound to its cognate sliding clamp Proliferating Cell Nuclear Antigen (PCNA) en route to successful loading. RFC first binds to PCNA in a dynamic, closed conformation that blocks both ATPase activity and DNA binding. RFC then opens the PCNA ring through a large-scale 'crab-claw' expansion of both RFC and PCNA that explains how RFC prefers initial binding of PCNA over DNA. Next, the open RFC:PCNA complex binds DNA and interrogates the primer-template junction using a surprising base-flipping mechanism. Our structures indicate that initial PCNA opening and subsequent closure around DNA do not require ATP hydrolysis, but are driven by binding energy. ATP hydrolysis, which is necessary for RFC release, is triggered by interactions with both PCNA and DNA, explaining RFC's switch-like ATPase activity. Our work reveals how a AAA+ machine undergoes dramatic conformational changes for achieving binding preference and substrate remodeling.
Collapse
Affiliation(s)
- Christl Gaubitz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Xingchen Liu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Joshua Pajak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Nicholas P Stone
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Janelle A Hayes
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Gabriel Demo
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester MA & Central European Institute of Technology, Masaryk UniversityBrnoCzech Republic
| | - Brian A Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
16
|
Heo W, Hasegawa K, Okamoto K, Sako Y, Ishii K, Tahara T. Scanning Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy: Conformational Dynamics of DNA Holliday Junction from Microsecond to Subsecond. J Phys Chem Lett 2022; 13:1249-1257. [PMID: 35089049 DOI: 10.1021/acs.jpclett.1c03787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is widely utilized to investigate the structural heterogeneity and dynamics of biomolecules. However, it has been difficult to simultaneously achieve a wide observation time window, a high structure resolution, and a high time resolution with the current smFRET methods. Herein, we introduce a new method utilizing two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS) and surface immobilization techniques. This method, scanning 2D FLCS, enables us to examine the structural heterogeneity and dynamics of immobilized biomolecules on a time scale from microsecond to subsecond by slowly scanning the sample stage at the rate of ∼1 μm/s. Application to the DNA Holliday junction (HJ) complex under various [Mg2+] conditions demonstrates that scanning 2D FLCS enables tracking reaction kinetics from 25 μs to 30 ms with a time resolution as high as 1 μs. Furthermore, the high structure resolution of scanning 2D FLCS allows us to unveil the ensemble nature of each isomer state and the heterogeneity of the dynamics of the HJ.
Collapse
Affiliation(s)
- Wooseok Heo
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kazuto Hasegawa
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kenji Okamoto
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kunihiko Ishii
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
17
|
Mardt A, Gorriz RF, Ferraro F, Ulrich P, Zahran M, Imhof P. Effect of a U:G mispair on the water around DNA. Biophys Chem 2022; 283:106779. [DOI: 10.1016/j.bpc.2022.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
|
18
|
Sepúlveda-Yáñez JH, Alvarez Saravia D, Pilzecker B, van Schouwenburg PA, van den Burg M, Veelken H, Navarrete MA, Jacobs H, Koning MT. Tandem Substitutions in Somatic Hypermutation. Front Immunol 2022; 12:807015. [PMID: 35069591 PMCID: PMC8781386 DOI: 10.3389/fimmu.2021.807015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Upon antigen recognition, activation-induced cytosine deaminase initiates affinity maturation of the B-cell receptor by somatic hypermutation (SHM) through error-prone DNA repair pathways. SHM typically creates single nucleotide substitutions, but tandem substitutions may also occur. We investigated incidence and sequence context of tandem substitutions by massive parallel sequencing of V(D)J repertoires in healthy human donors. Mutation patterns were congruent with SHM-derived single nucleotide mutations, delineating initiation of the tandem substitution by AID. Tandem substitutions comprised 5,7% of AID-induced mutations. The majority of tandem substitutions represents single nucleotide juxtalocations of directly adjacent sequences. These observations were confirmed in an independent cohort of healthy donors. We propose a model where tandem substitutions are predominantly generated by translesion synthesis across an apyramidinic site that is typically created by UNG. During replication, apyrimidinic sites transiently adapt an extruded configuration, causing skipping of the extruded base. Consequent strand decontraction leads to the juxtalocation, after which exonucleases repair the apyramidinic site and any directly adjacent mismatched base pairs. The mismatch repair pathway appears to account for the remainder of tandem substitutions. Tandem substitutions may enhance affinity maturation and expedite the adaptive immune response by overcoming amino acid codon degeneracies or mutating two adjacent amino acid residues simultaneously.
Collapse
Affiliation(s)
- Julieta H Sepúlveda-Yáñez
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
- School of Medicine, University of Magallanes, Punta Arenas, Chile
| | | | - Bas Pilzecker
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Mirjam van den Burg
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Marvyn T Koning
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
19
|
Wang SD, Eriksson LA, Zhang RB. Dynamics of 5R-Tg Base Flipping in DNA Duplexes Based on Simulations─Agreement with Experiments and Beyond. J Chem Inf Model 2022; 62:386-398. [PMID: 34994562 PMCID: PMC8790752 DOI: 10.1021/acs.jcim.1c01169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Damaged or mismatched
DNA bases are normally thought to be able
to flip out of the helical stack, providing enzymes with access to
the faulty genetic information otherwise hidden inside the helix.
Thymine glycol (Tg) is one of the most common products of nucleic
acid damage. However, the static and dynamic structures of DNA duplexes
affected by 5R-Tg epimers are still not clearly understood, including
the ability of these to undergo spontaneous base flipping. Structural
effects of the 5R-Tg epimers on the duplex DNA are herein studied
using molecular dynamics together with reliable DFT based calculations.
In comparison with the corresponding intact DNA, the cis-5R,6S-Tg epimer base causes little perturbation to the duplex DNA,
and a barrier of 4.9 kcal mol–1 is obtained by meta-eABF
for cis-5R,6S-Tg base flipping out of the duplex
DNA, comparable to the 5.4 kcal mol–1 obtained for
the corresponding thymine flipping in intact DNA. For the trans-5R,6R-Tg epimer, three stable local structures were
identified, of which the most stable disrupts the Watson–Crick
hydrogen-bonded G5/C20 base pair, leading to conformational distortion
of the duplex. Interestingly, the relative barrier height of the 5R-Tg
flipping is only 1.0 kcal mol–1 for one of these trans-5R,6R-Tg epimers. Water bridge interactions were identified
to be essential for 5R-Tg flipping. The study clearly demonstrates
the occurrence of partial trans-5R,6R-Tg epimer flipping
in solution.
Collapse
Affiliation(s)
- Shu Dong Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street no 5, Zhongguancun, Haidian District, 100081 Beijing, China
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9c, 405 30 Göteborg, Sweden
| | - Ru Bo Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street no 5, Zhongguancun, Haidian District, 100081 Beijing, China
| |
Collapse
|
20
|
Huang Y, Xia Y, Yang L, Wei J, Yang YI, Gao YQ. SPONGE
: A
GPU‐Accelerated
Molecular Dynamics Package with Enhanced Sampling and
AI‐Driven
Algorithms. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yu‐Peng Huang
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
- Biomedical Pioneering Innovation Center Peking University Beijing 100871 China
| | - Yijie Xia
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
- Biomedical Pioneering Innovation Center Peking University Beijing 100871 China
| | - Lijiang Yang
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
- Biomedical Pioneering Innovation Center Peking University Beijing 100871 China
- Beijing Advanced Innovation Center for Genomics Peking University Beijing 100871 China
| | - Jiachen Wei
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics Chinese Academy of Sciences Beijing 100190 China
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District Shenzhen Guangdong 518132 China
| | - Yi Isaac Yang
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District Shenzhen Guangdong 518132 China
| | - Yi Qin Gao
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
- Biomedical Pioneering Innovation Center Peking University Beijing 100871 China
- Beijing Advanced Innovation Center for Genomics Peking University Beijing 100871 China
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District Shenzhen Guangdong 518132 China
| |
Collapse
|
21
|
Chakkarapani SK, Lee S, Kang SH. Ultrasensitive Capsaicin Sensor Based on Endogenous Single‐Molecule Fluorophore Enhancement and Quenching Interface on Gold Nanoislands. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Suresh Kumar Chakkarapani
- Department of Applied Chemistry and Institute of Natural Sciences Kyung Hee University Yongin‐si 17104 South Korea
| | - Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences Kyung Hee University Yongin‐si 17104 South Korea
| | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences Kyung Hee University Yongin‐si 17104 South Korea
| |
Collapse
|
22
|
Auboeuf D. The Physics-Biology continuum challenges darwinism: Evolution is directed by the homeostasis-dependent bidirectional relation between genome and phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:121-139. [PMID: 34097984 DOI: 10.1016/j.pbiomolbio.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The physics-biology continuum relies on the fact that life emerged from prebiotic molecules. Here, I argue that life emerged from the coupling between nucleic acid and protein synthesis during which proteins (or proto-phenotypes) maintained the physicochemical parameter equilibria (or proto-homeostasis) in the proximity of their encoding nucleic acids (or proto-genomes). This protected the proto-genome physicochemical integrity (i.e., atomic composition) from environmental physicochemical constraints, and therefore increased the probability of reproducing the proto-genome without variation. From there, genomes evolved depending on the biological activities they generated in response to environmental fluctuations. Thus, a genome maintaining homeostasis (i.e., internal physicochemical parameter equilibria), despite and in response to environmental fluctuations, maintains its physicochemical integrity and has therefore a higher probability to be reproduced without variation. Consequently, descendants have a higher probability to share the same phenotype than their parents. Otherwise, the genome is modified during replication as a consequence of the imbalance of the internal physicochemical parameters it generates, until new mutation-deriving biological activities maintain homeostasis in offspring. In summary, evolution depends on feedforward and feedback loops between genome and phenotype, as the internal physicochemical conditions that a genome generates ─ through its derived phenotype in response to environmental fluctuations ─ in turn either guarantee its stability or direct its variation. Evolution may not be explained by the Darwinism-derived, unidirectional principle (random mutations-phenotypes-natural selection) but rather by the bidirectional relationship between genome and phenotype, in which the phenotype in interaction with the environment directs the evolution of the genome it derives from.
Collapse
Affiliation(s)
- Didier Auboeuf
- ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée D'Italie, Site Jacques Monod, F-69007, Lyon, France.
| |
Collapse
|
23
|
Gillet N, Bartocci A, Dumont E. Assessing the sequence dependence of pyrimidine-pyrimidone (6-4) photoproduct in a duplex double-stranded DNA: A pitfall for microsecond range simulation. J Chem Phys 2021; 154:135103. [PMID: 33832258 DOI: 10.1063/5.0041332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sequence dependence of the (6-4) photoproduct conformational landscape when embedded in six 25-bp duplexes is evaluated along extensive unbiased and enhanced (replica exchange with solute tempering, REST2) molecular dynamics simulations. The structural reorganization as the central pyrimidines become covalently tethered is traced back in terms of non-covalent interactions, DNA bending, and extrusion of adenines of the opposite strands. The close sequence pattern impacts the conformational landscape around the lesion, inducing different upstream and downstream flexibilities. Moreover, REST2 simulations allow us to probe structures possibly important for damaged DNA recognition.
Collapse
Affiliation(s)
- Natacha Gillet
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France
| | - Alessio Bartocci
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France
| | - Elise Dumont
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France
| |
Collapse
|
24
|
Liu T, Yu T, Zhang S, Wang Y, Zhang W. Thermodynamic and kinetic properties of a single base pair in A-DNA and B-DNA. Phys Rev E 2021; 103:042409. [PMID: 34005973 DOI: 10.1103/physreve.103.042409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/27/2021] [Indexed: 11/07/2022]
Abstract
Double stranded DNA can adopt different forms, the so-called A-, B-, and Z-DNA, which play different biological roles. In this work, the thermodynamic and the kinetic parameters for the base-pair closing and opening in A-DNA and B-DNA were calculated by all-atom molecular dynamics simulations at different temperatures. The thermodynamic parameters of the base pair in B-DNA were in good agreement with the experimental results. The free energy barrier of breaking a single base stack results from the enthalpy increase ΔH caused by the disruption of hydrogen bonding and base-stacking interactions, as well as water and base interactions. The free energy barrier of base pair closing comes from the unfavorable entropy loss ΔS caused by the restriction of torsional angles and hydration. It was found that the enthalpy change ΔH and the entropy change ΔS for the base pair in A-DNA are much larger than those in B-DNA, and the transition rates between the opening and the closing state for the base pair in A-DNA are much slower than those in B-DNA. The large difference of the enthalpy and entropy change for forming the base pair in A-DNA and B-DNA results from different hydration in A-DNA and B-DNA. The hydration pattern observed around DNA is an accompanying process for forming the base pair, rather than a follow-up of the conformation.
Collapse
Affiliation(s)
- Taigang Liu
- Department of Physics Wuhan University, Wuhan 430072, China
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Ting Yu
- Department of Physics Wuhan University, Wuhan 430072, China
| | - Shuhao Zhang
- Department of Physics Wuhan University, Wuhan 430072, China
| | - Yujie Wang
- Department of Physics Wuhan University, Wuhan 430072, China
- Department of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466000, China
| | - Wenbing Zhang
- Department of Physics Wuhan University, Wuhan 430072, China
| |
Collapse
|
25
|
Pramanik S, Khamari L, Mukherjee S. Differentiating a Least-Stable Single Nucleotide Mismatch in DNA Via Metal Ion-Mediated Base Pairing and Using Thioflavin T as an Extrinsic Fluorophore. J Phys Chem Lett 2021; 12:2547-2554. [PMID: 33683888 DOI: 10.1021/acs.jpclett.1c00146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monitoring the DNA dynamics in solution has great potential to develop new nucleic acid-based sensors and devices. With spectroscopic approaches, both at the ensemble average and single-molecule resolution, this study is directed to differentiate a single nucleotide mismatch (SNM) via a metal ion-stabilized mismatched base-pairing (C-Ag+-C/C-Cu2+-T) (C = cytosine, T = thymine) and site-selective extrinsic fluorophore, specifically, Thioflavin T (ThT). This is the first approach of its kind where dynamic quantities like molecular diffusion coefficients and diffusion times have been utilized to distinguish the least-stable SNM (CC & CT) formed by the most discriminating nucleobase, specifically, cytosine in a 20-mer duplex DNA. Additionally, this work also quantifies metal ions (Ag+ and Cu2+) at lower concentrations using fluorescence correlation spectroscopy. Our results can provide greater molecular-level insights into the mismatch-dependent metal-DNA interactions and also illuminate ThT as a new fluorophore to monitor the dynamics involved in DNA-metal composites.
Collapse
Affiliation(s)
- Srikrishna Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Laxmikanta Khamari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
26
|
Mondal M, Yang L, Cai Z, Patra P, Gao YQ. A perspective on the molecular simulation of DNA from structural and functional aspects. Chem Sci 2021; 12:5390-5409. [PMID: 34168783 PMCID: PMC8179617 DOI: 10.1039/d0sc05329e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
As genetic material, DNA not only carries genetic information by sequence, but also affects biological functions ranging from base modification to replication, transcription and gene regulation through its structural and dynamic properties and variations. The motion and structural properties of DNA involved in related biological processes are also multi-scale, ranging from single base flipping to local DNA deformation, TF binding, G-quadruplex and i-motif formation, TAD establishment, compartmentalization and even chromosome territory formation, just to name a few. The sequence-dependent physical properties of DNA play vital role in all these events, and thus it is interesting to examine how simple sequence information affects DNA and the formation of the chromatin structure in these different hierarchical orders. Accordingly, molecular simulations can provide atomistic details of interactions and conformational dynamics involved in different biological processes of DNA, including those inaccessible by current experimental methods. In this perspective, which is mainly based on our recent studies, we provide a brief overview of the atomistic simulations on how the hierarchical structure and dynamics of DNA can be influenced by its sequences, base modifications, environmental factors and protein binding in the context of the protein-DNA interactions, gene regulation and structural organization of chromatin. We try to connect the DNA sequence, the hierarchical structures of DNA and gene regulation.
Collapse
Affiliation(s)
- Manas Mondal
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory 518055 Shenzhen China
| | - Lijiang Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China
| | - Zhicheng Cai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China.,Biomedical Pioneering Innovation Center, Peking University 100871 Beijing China
| | - Piya Patra
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory 518055 Shenzhen China .,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China
| | - Yi Qin Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory 518055 Shenzhen China .,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China.,Biomedical Pioneering Innovation Center, Peking University 100871 Beijing China.,Beijing Advanced Innovation Center for Genomics, Peking University 100871 Beijing China
| |
Collapse
|
27
|
Levintov L, Paul S, Vashisth H. Reaction Coordinate and Thermodynamics of Base Flipping in RNA. J Chem Theory Comput 2021; 17:1914-1921. [PMID: 33594886 DOI: 10.1021/acs.jctc.0c01199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Base flipping is a key biophysical event involved in recognition of various ligands by ribonucleic acid (RNA) molecules. However, the mechanism of base flipping in RNA remains poorly understood, in part due to the lack of atomistic details on complex rearrangements in neighboring bases. In this work, we applied transition path sampling (TPS) methods to study base flipping in a double-stranded RNA (dsRNA) molecule that is known to interact with RNA-editing enzymes through this mechanism. We obtained an ensemble of 1000 transition trajectories to describe the base-flipping process. We used the likelihood maximization method to determine the refined reaction coordinate (RC) consisting of two collective variables (CVs), a distance and a dihedral angle between nucleotides that form stacking interactions with the flipping base. The free energy profile projected along the refined RC revealed three minima, two corresponding to the initial and final states and one for a metastable state. We suggest that the metastable state likely represents a wobbled conformation of nucleobases observed in NMR studies that is often characterized as the flipped state. The analyses of reactive trajectories further revealed that the base flipping is coupled to a global conformational change in a stem-loop of dsRNA.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, United States
| | - Sanjib Paul
- Department of Chemistry, New York University, New York 10003, New York, United States
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, United States
| |
Collapse
|
28
|
Molecular mechanism of networking among DegP, Skp and SurA in periplasm for biogenesis of outer membrane proteins. Biochem J 2021; 477:2949-2965. [PMID: 32729902 DOI: 10.1042/bcj20200483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
The biogenesis of outer membrane proteins (OMPs) is an extremely challenging process. In the periplasm of Escherichia coli, a group of quality control factors work together to exercise the safe-guard and quality control of OMPs. DegP, Skp and SurA are the three most prominent ones. Although extensive investigations have been carried out, the molecular mechanism regarding the networking among these proteins remains mostly mysterious. Our group has previously studied the molecular interactions of OMPs with SurA and Skp, using single-molecule detection (SMD). In this work, again using SMD, we studied how OmpC, a representative of OMPs, interacts with DegP, Skp and SurA collectively. Several important discoveries were made. The self-oligomerization of DegP to form hexamer occurs over hundred micromolars. When OmpC is in a monomer state at a low concentration, the OmpC·DegP6 and OmpC·DegP24 complexes form when the DegP concentration is around sub-micromolars and a hundred micromolars, respectively. High OmpC concentration promotes the binding affinity of DegP to OmpC by ∼100 folds. Skp and SurA behave differently when they interact synergistically with DegP in the presence of substrate. DegP can degrade SurA-protected OmpC, but Skp-protected OmpC forms the ternary complex OmpC·(Skp3)n·DegP6 (n = 1,2) to resist the DegP-mediated degradation. Combined with previous results, we were able to depict a comprehensive picture regarding the molecular mechanism of the networking among DegP, Skp and SurA in the periplasm for the OMPs biogenesis under physiological and stressed conditions.
Collapse
|
29
|
Bangalore DM, Heil HS, Mehringer CF, Hirsch L, Hemmen K, Heinze KG, Tessmer I. Automated AFM analysis of DNA bending reveals initial lesion sensing strategies of DNA glycosylases. Sci Rep 2020; 10:15484. [PMID: 32968112 PMCID: PMC7511397 DOI: 10.1038/s41598-020-72102-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
Base excision repair is the dominant DNA repair pathway of chemical modifications such as deamination, oxidation, or alkylation of DNA bases, which endanger genome integrity due to their high mutagenic potential. Detection and excision of these base lesions is achieved by DNA glycosylases. To investigate the remarkably high efficiency in target site search and recognition by these enzymes, we applied single molecule atomic force microscopy (AFM) imaging to a range of glycosylases with structurally different target lesions. Using a novel, automated, unbiased, high-throughput analysis approach, we were able to resolve subtly different conformational states of these glycosylases during DNA lesion search. Our results lend support to a model of enhanced lesion search efficiency through initial lesion detection based on altered mechanical properties at lesions. Furthermore, its enhanced sensitivity and easy applicability also to other systems recommend our novel analysis tool for investigations of diverse, fundamental biological interactions.
Collapse
Affiliation(s)
- Disha M Bangalore
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Hannah S Heil
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Christian F Mehringer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Lisa Hirsch
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Katherina Hemmen
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany.
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany.
| |
Collapse
|
30
|
Levintov L, Vashisth H. Ligand Recognition in Viral RNA Necessitates Rare Conformational Transitions. J Phys Chem Lett 2020; 11:5426-5432. [PMID: 32551654 DOI: 10.1021/acs.jpclett.0c01390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ribonucleic acids (RNAs) are conformationally flexible molecules that fold into three-dimensional structures and play an important role in different cellular processes as well as in the development of many diseases. RNA has therefore become an important target for developing novel therapeutic approaches. The biophysical processes underlying RNA function are often associated with rare structural transitions that play a key role in ligand recognition. In this work, we probe these rarely occurring transitions using nonequilibrium simulations by characterizing the dissociation of a ligand molecule from an HIV-1 viral RNA element. Specifically, we observed base-flipping rare events that are coupled with ligand binding/unbinding and also provided mechanistic details underlying these transitions.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, United States
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, United States
| |
Collapse
|
31
|
Kawai K, Maruyama A. Kinetics of Photoinduced Reactions at the Single‐Molecule Level: The KACB Method. Chemistry 2020; 26:7740-7746. [DOI: 10.1002/chem.202000439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/20/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Atsushi Maruyama
- Department of Life Science and TechnologyTokyo Institute of Technology 4259 B-57 Nagatsuta Midori-ku, Yokohama, Kanagawa 226-8501 Japan
| |
Collapse
|
32
|
Integrating Non-NMR Distance Restraints to Augment NMR Depiction of Protein Structure and Dynamics. J Mol Biol 2020; 432:2913-2929. [DOI: 10.1016/j.jmb.2020.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/24/2022]
|
33
|
Li Y, Yang C, Guo X. Single-Molecule Electrical Detection: A Promising Route toward the Fundamental Limits of Chemistry and Life Science. Acc Chem Res 2020; 53:159-169. [PMID: 31545589 DOI: 10.1021/acs.accounts.9b00347] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ultimate limit of analytical chemistry is single-molecule detection, which allows one to visualize the dynamic processes of chemical/biological interactions with single-molecule or single-event sensitivity and hence enables the study of stochastic fluctuations under equilibrium conditions and the observation of time trajectories and reaction pathways of individual species in nonequilibrated systems. In addition, such studies may also allow the direct observation of novel microscopic quantum effects and fundamental discoveries of underlying molecular mechanisms in organic reactions and biological processes that are not accessible in ensemble experiments, thus providing unique opportunities to solve the key problems of physical, chemical, and life sciences. Consequently, the field of single-molecule detection has received considerable attention and has witnessed tremendous advances in different directions in combination with other disciplines. This Account describes our ongoing work on the development of groundbreaking methods (termed "single-molecule electrical approaches") of translating the detailed processes of chemical reactions or biological functions into detectable electrical signals at the single-event level on the platform of single-molecule electronic devices, with a particular focus on graphene-molecule-graphene single-molecule junctions (GMG-SMJs) and silicon-nanowire-based single-molecule electrical nanocircuits. These nanocircuit-based architectures are complementary to conventional optical or mechanical techniques but exhibit obvious advantages such as the absence of problems associated with bleaching and fluorescent labeling. Dash-line lithography (DLL) is an efficient lithographic method of cutting graphene and forming carboxylic-acid-functionalized nanogapped graphene point contact arrays developed to address the formidable challenges of molecular device fabrication difficulty and poor stability. Molecules of interest terminated by amines on both ends can be covalently sandwiched between graphene point contacts to create high-throughput robust GMG-SMJs containing only one molecule as the conductive element. In conjunction with the ease of device fabrication and device stability, this feature distinguishes GMG-SMJs as a new testbed platform for single-molecule analysis characterized by high temporal resolution and superior signal-to-noise ratios. By exploiting the DLL method, we have fabricated molecular devices that are sensitive to external stimuli and are capable of transducing chemical/biochemical events into electrical signals at the single-molecule level, with notable examples including host-guest interaction, hydrogen bond dynamics, DNA intercalation, photoinduced conformational transition, carbocation formation, nucleophilic addition, and stereoelectronic effect. In addition to GMG-SMJs and considering compatibility with the silicon-based industry, we have also developed a reliable method of point-functionalizing silicon-nanowire-based nanotransistors to afford single-molecule electrical nanocircuits. This approach proved to be a robust platform for single-molecule electrical analysis capable of probing fast dynamic processes such as single-protein detection, DNA hybridization/polymorphism, and motor rotation dynamics. The above systematic investigations emphasize the importance and unique advantages of universal single-molecule electrical approaches for realizing direct, label-free, real-time electrical measurements of reaction dynamics with single-event sensitivity. These approaches promise a fascinating mainstream platform to explore the dynamics of stochastic processes in chemical/biological systems as well as gain information in fields ranging from reaction chemistry for elucidating the intrinsic mechanisms to genomics or proteomics for accurate molecular and even point-of-care clinical diagnoses.
Collapse
Affiliation(s)
- Yu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Chen Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
34
|
Auboeuf D. Physicochemical Foundations of Life that Direct Evolution: Chance and Natural Selection are not Evolutionary Driving Forces. Life (Basel) 2020; 10:life10020007. [PMID: 31973071 PMCID: PMC7175370 DOI: 10.3390/life10020007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
The current framework of evolutionary theory postulates that evolution relies on random mutations generating a diversity of phenotypes on which natural selection acts. This framework was established using a top-down approach as it originated from Darwinism, which is based on observations made of complex multicellular organisms and, then, modified to fit a DNA-centric view. In this article, it is argued that based on a bottom-up approach starting from the physicochemical properties of nucleic and amino acid polymers, we should reject the facts that (i) natural selection plays a dominant role in evolution and (ii) the probability of mutations is independent of the generated phenotype. It is shown that the adaptation of a phenotype to an environment does not correspond to organism fitness, but rather corresponds to maintaining the genome stability and integrity. In a stable environment, the phenotype maintains the stability of its originating genome and both (genome and phenotype) are reproduced identically. In an unstable environment (i.e., corresponding to variations in physicochemical parameters above a physiological range), the phenotype no longer maintains the stability of its originating genome, but instead influences its variations. Indeed, environment- and cellular-dependent physicochemical parameters define the probability of mutations in terms of frequency, nature, and location in a genome. Evolution is non-deterministic because it relies on probabilistic physicochemical rules, and evolution is driven by a bidirectional interplay between genome and phenotype in which the phenotype ensures the stability of its originating genome in a cellular and environmental physicochemical parameter-depending manner.
Collapse
Affiliation(s)
- Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| |
Collapse
|
35
|
Molecular Basis of Substrate Recognition of Endonuclease Q from the Euryarchaeon Pyrococcus furiosus. J Bacteriol 2020; 202:JB.00542-19. [PMID: 31685534 DOI: 10.1128/jb.00542-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Endonuclease Q (EndoQ), a DNA repair endonuclease, was originally identified in the hyperthermophilic euryarchaeon Pyrococcus furiosus in 2015. EndoQ initiates DNA repair by generating a nick on DNA strands containing deaminated bases and an abasic site. Although EndoQ is thought to be important for maintaining genome integrity in certain bacteria and archaea, the underlying mechanism catalyzed by EndoQ remains unclear. Here, we provide insights into the molecular basis of substrate recognition by EndoQ from P. furiosus (PfuEndoQ) using biochemical approaches. Our results of the substrate specificity range and the kinetic properties of PfuEndoQ demonstrate that PfuEndoQ prefers the imide structure in nucleobases along with the discovery of its cleavage activity toward 5,6-dihydrouracil, 5-hydroxyuracil, 5-hydroxycytosine, and uridine in DNA. The combined results for EndoQ substrate binding and cleavage activity analyses indicated that PfuEndoQ flips the target base from the DNA duplex, and the cleavage activity is highly dependent on spontaneous base flipping of the target base. Furthermore, we find that PfuEndoQ has a relatively relaxed substrate specificity; therefore, the role of EndoQ in restriction modification systems was explored. The activity of the EndoQ homolog from Bacillus subtilis was found not to be inhibited by the uracil glycosylase inhibitor from B. subtilis bacteriophage PBS1, whose genome is completely replaced by uracil instead of thymine. Our findings suggest that EndoQ not only has additional functions in DNA repair but also could act as an antiviral enzyme in organisms with EndoQ.IMPORTANCE Endonuclease Q (EndoQ) is a lesion-specific DNA repair enzyme present in certain bacteria and archaea. To date, it remains unclear how EndoQ recognizes damaged bases. Understanding the mechanism of substrate recognition by EndoQ is important to grasp genome maintenance systems in organisms with EndoQ. Here, we find that EndoQ from the euryarchaeon Pyrococcus furiosus recognizes the imide structure in nucleobases by base flipping, and the cleavage activity is enhanced by the base pair instability of the target base, along with the discovery of its cleavage activity toward 5,6-dihydrouracil, 5-hydroxyuracil, 5-hydroxycytosine, and uridine in DNA. Furthermore, a potential role of EndoQ in Bacillus subtilis as an antiviral enzyme by digesting viral genome is demonstrated.
Collapse
|
36
|
Li Y, Zhao L, Yao Y, Guo X. Single-Molecule Nanotechnologies: An Evolution in Biological Dynamics Detection. ACS APPLIED BIO MATERIALS 2019; 3:68-85. [DOI: 10.1021/acsabm.9b00840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Lihua Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yuan Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
37
|
Satange R, Chuang CY, Neidle S, Hou MH. Polymorphic G:G mismatches act as hotspots for inducing right-handed Z DNA by DNA intercalation. Nucleic Acids Res 2019; 47:8899-8912. [PMID: 31361900 PMCID: PMC6895262 DOI: 10.1093/nar/gkz653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/06/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
DNA mismatches are highly polymorphic and dynamic in nature, albeit poorly characterized structurally. We utilized the antitumour antibiotic CoII(Chro)2 (Chro = chromomycin A3) to stabilize the palindromic duplex d(TTGGCGAA) DNA with two G:G mismatches, allowing X-ray crystallography-based monitoring of mismatch polymorphism. For the first time, the unusual geometry of several G:G mismatches including syn–syn, water mediated anti–syn and syn–syn-like conformations can be simultaneously observed in the crystal structure. The G:G mismatch sites of the d(TTGGCGAA) duplex can also act as a hotspot for the formation of alternative DNA structures with a GC/GA-5′ intercalation site for binding by the GC-selective intercalator actinomycin D (ActiD). Direct intercalation of two ActiD molecules to G:G mismatch sites causes DNA rearrangements, resulting in backbone distortion to form right-handed Z-DNA structures with a single-step sharp kink. Our study provides insights on intercalators-mismatch DNA interactions and a rationale for mismatch interrogation and detection via DNA intercalation.
Collapse
Affiliation(s)
- Roshan Satange
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan.,Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chien-Ying Chuang
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan
| | - Stephen Neidle
- The School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan.,Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
38
|
Yang YI, Shao Q, Zhang J, Yang L, Gao YQ. Enhanced sampling in molecular dynamics. J Chem Phys 2019; 151:070902. [PMID: 31438687 DOI: 10.1063/1.5109531] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although molecular dynamics simulations have become a useful tool in essentially all fields of chemistry, condensed matter physics, materials science, and biology, there is still a large gap between the time scale which can be reached in molecular dynamics simulations and that observed in experiments. To address the problem, many enhanced sampling methods were introduced, which effectively extend the time scale being approached in simulations. In this perspective, we review a variety of enhanced sampling methods. We first discuss collective-variables-based methods including metadynamics and variationally enhanced sampling. Then, collective variable free methods such as parallel tempering and integrated tempering methods are presented. At last, we conclude with a brief introduction of some newly developed combinatory methods. We summarize in this perspective not only the theoretical background and numerical implementation of these methods but also the new challenges and prospects in the field of the enhanced sampling.
Collapse
Affiliation(s)
- Yi Isaac Yang
- Institute of Systems Biology, Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, China
| | - Qiang Shao
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jun Zhang
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, Berlin 14195, Germany
| | - Lijiang Yang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Institute of Systems Biology, Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, China
| |
Collapse
|
39
|
Da LT, Yu J. Base-flipping dynamics from an intrahelical to an extrahelical state exerted by thymine DNA glycosylase during DNA repair process. Nucleic Acids Res 2019; 46:5410-5425. [PMID: 29762710 PMCID: PMC6009601 DOI: 10.1093/nar/gky386] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Thymine DNA glycosylase (TDG) is a DNA repair enzyme that excises a variety of mismatched or damaged nucleotides (nts), e.g. dU, dT, 5fC and 5caC. TDG is shown to play essential roles in maintaining genome integrity and correctly programming epigenetic modifications through DNA demethylation. After locating the lesions, TDG employs a base-flipping strategy to recognize the damaged nucleobases, whereby the interrogated nt is extruded from the DNA helical stack and binds into the TDG active site. The dynamic mechanism of the base-flipping process at an atomistic resolution, however, remains elusive. Here, we employ the Markov State Model (MSM) constructed from extensive all-atom molecular dynamics (MD) simulations to reveal the complete base-flipping process for a G.T mispair at a tens of microsecond timescale. Our studies identify critical intermediates of the mispaired dT during its extrusion process and reveal the key TDG residues involved in the inter-state transitions. Notably, we find an active role of TDG in promoting the intrahelical nt eversion, sculpturing the DNA backbone, and penetrating into the DNA minor groove. Three additional TDG substrates, namely dU, 5fC, and 5caC, are further tested to evaluate the substituent effects of various chemical modifications of the pyrimidine ring on base-flipping dynamics.
Collapse
Affiliation(s)
- Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jin Yu
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
40
|
Wang X, Sun Z. Determination of Base-Flipping Free-Energy Landscapes from Nonequilibrium Stratification. J Chem Inf Model 2019; 59:2980-2994. [PMID: 31124677 DOI: 10.1021/acs.jcim.9b00263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Correct calculation of the variation of free energy upon base flipping is crucial in understanding the dynamics of DNA systems. The free-energy landscape along the flipping pathway gives the thermodynamic stability and the flexibility of base-paired states. Although numerous free-energy simulations are performed in the base flipping cases, no theoretically rigorous nonequilibrium techniques are devised and employed to investigate the thermodynamics of base flipping. In the current work, we report a general nonequilibrium stratification scheme for the efficient calculation of the free-energy landscape of base flipping in DNA duplex. We carefully monitor the convergence behavior of the equilibrium sampling based free-energy simulation and the nonequilibrium stratification and determine the empirical length of time blocks required for converged sampling. Comparison between the performances of the equilibrium umbrella sampling and the nonequilibrium stratification is given. The results show that nonequilibrium free-energy simulation achieves similar accuracy and efficiency compared with the equilibrium enhanced sampling technique in the base flipping cases. We further test a convergence criterion we previously proposed and it comes out that the convergence determined by this criterion agrees with those given by the time-invariant behavior of PMF and the nonlinear dependence of standard deviation on the sample size.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China.,Institute of Computational Science , Università della Svizzera Italiana (USI) , Via Giuseppe Buffi 13 , CH-6900 , Lugano , Ticino , Switzerland
| | - Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China.,Computational Biomedicine (IAS-5/INM-9) , Forschungszentrum Jülich , Jülich 52425 , Germany
| |
Collapse
|
41
|
Maffeo C, Chou HY, Aksimentiev A. Molecular Mechanisms of DNA Replication and Repair Machinery: Insights from Microscopic Simulations. ADVANCED THEORY AND SIMULATIONS 2019; 2:1800191. [PMID: 31728433 PMCID: PMC6855400 DOI: 10.1002/adts.201800191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Reproduction, the hallmark of biological activity, requires making an accurate copy of the genetic material to allow the progeny to inherit parental traits. In all living cells, the process of DNA replication is carried out by a concerted action of multiple protein species forming a loose protein-nucleic acid complex, the replisome. Proofreading and error correction generally accompany replication but also occur independently, safeguarding genetic information through all phases of the cell cycle. Advances in biochemical characterization of intracellular processes, proteomics and the advent of single-molecule biophysics have brought about a treasure trove of information awaiting to be assembled into an accurate mechanistic model of the DNA replication process. In this review, we describe recent efforts to model elements of DNA replication and repair processes using computer simulations, an approach that has gained immense popularity in many areas of molecular biophysics but has yet to become mainstream in the DNA metabolism community. We highlight the use of diverse computational methods to address specific problems of the fields and discuss unexplored possibilities that lie ahead for the computational approaches in these areas.
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Han-Yi Chou
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| |
Collapse
|
42
|
Shao Q, Zhu W. Assessing AMBER force fields for protein folding in an implicit solvent. Phys Chem Chem Phys 2018; 20:7206-7216. [PMID: 29480910 DOI: 10.1039/c7cp08010g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Molecular dynamics (MD) simulation implemented with a state-of-the-art protein force field and implicit solvent model is an attractive approach to investigate protein folding, one of the most perplexing problems in molecular biology. But how well can force fields developed independently of implicit solvent models work together in reproducing diverse protein native structures and measuring the corresponding folding thermodynamics is not always clear. In this work, we performed enhanced sampling MD simulations to assess the ability of six AMBER force fields (FF99SBildn, FF99SBnmr, FF12SB, FF14ipq, FF14SB, and FF14SBonlysc) as coupled with a recently improved pair-wise GB-Neck2 model in modeling the folding of two helical and two β-sheet peptides. Whilst most of the tested force fields can yield roughly similar features for equilibrium conformational ensembles and detailed folding free-energy profiles for short α-helical TC10b in an implicit solvent, the measured counterparts are significantly discrepant in the cases of larger or β-structured peptides (HP35, 1E0Q, and GTT). Additionally, the calculated folding/unfolding thermodynamic quantities can only partially match the experimental data. Although a combination of the force fields and GB-Neck2 implicit model able to describe all aspects of the folding transitions towards the native structures of all the considered peptides was not identified, we found that FF14SBonlysc coupled with the GB-Neck2 model seems to be a reasonably balanced combination to predict peptide folding preferences.
Collapse
Affiliation(s)
- Qiang Shao
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | | |
Collapse
|
43
|
Kingsland A, Maibaum L. DNA Base Pair Mismatches Induce Structural Changes and Alter the Free-Energy Landscape of Base Flip. J Phys Chem B 2018; 122:12251-12259. [DOI: 10.1021/acs.jpcb.8b06007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Addie Kingsland
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lutz Maibaum
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
44
|
Mondal M, Yang Y, Yang L, Yang W, Gao YQ. Role of Conformational Fluctuations of Protein toward Methylation in DNA by Cytosine-5-methyltransferase. J Chem Theory Comput 2018; 14:6679-6689. [PMID: 30403861 DOI: 10.1021/acs.jctc.8b00732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylation of cytosine is the common epigenetic modification in genomes ranging from bacteria to mammals, and aberrant methylation leads to human diseases including cancer. Recognition of a cognate DNA sequence by DNA methyltransferases and flipping of a target base into the enzyme active site pocket are the key steps in DNA methylation. Using molecular dynamics simulations and enhanced sampling techniques here we elucidate the role of conformational fluctuations of protein and active or passive involvement of protein elements that mediate base flipping and formation of the closed catalytic complex. The free energy profiles for the flipping of target cytosine into the enzyme active site support the major groove base eversion pathway; and the results show that the closed state of enzyme increases the free energy barrier, whereas the open state reduces it. We found that the interactions of the key loop residues of protein with cognate DNA altered the protein motions, and modulation of protein fluctuations relates to the closed catalytic complex formation. Methylation of cytosine in the active site of the closed complex destabilizes the interactions of catalytic loop residues with cognate DNA and reduces the stability of the closed state. Our study provides microscopic insights on the base flipping mechanism coupled with enzyme's loop motions and provides evidence for the role of conformational fluctuations of protein in the enzyme-catalyzed DNA processing mechanism.
Collapse
Affiliation(s)
- Manas Mondal
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences , Peking University , Beijing 100871 , China.,BIOPIC , Peking University , Beijing 100871 , China
| | - Ying Yang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences , Peking University , Beijing 100871 , China.,BIOPIC , Peking University , Beijing 100871 , China
| | - Lijiang Yang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences , Peking University , Beijing 100871 , China.,BIOPIC , Peking University , Beijing 100871 , China
| | - Weitao Yang
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Yi Qin Gao
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences , Peking University , Beijing 100871 , China.,BIOPIC , Peking University , Beijing 100871 , China
| |
Collapse
|
45
|
Kanaan N, Imhof P. Interactions of the DNA Repair Enzyme Human Thymine DNA Glycosylase with Cognate and Noncognate DNA. Biochemistry 2018; 57:5654-5665. [PMID: 30067350 DOI: 10.1021/acs.biochem.8b00409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycosylases specifically recognize and flip their target base out of the DNA helix into the enzyme's active site. Our simulations show that a partially flipped state, already present in free DNA carrying a T:G mispair, becomes the more probable state compared to the closed state after binding of thymine DNA glycosylase (TDG). Paired thymine (T:A) or methyl-cytosine (mC:G) does not exhibit a partially flipped state in free or complexed DNA. Important enzyme-DNA interactions exhibit significant strength in the intrahelical and extrahelical TDG-DNA complexes. The computed binding free energy differences suggest these interactions account for the stabilization of the partially flipped state, thereby driving the T:G mispair toward base flip. In the fully flipped state, the cognate base thymine is significantly better accommodated in the enzyme's active site than noncognate bases are, suggesting the hydrolysis step as the last of several stages at which base recognition can be achieved.
Collapse
Affiliation(s)
- Natalia Kanaan
- Institute of Theoretical Physics , Freie Universität Berlin , Arnimallee 14 , D-14195 Berlin , Germany
| | - Petra Imhof
- Institute of Theoretical Physics , Freie Universität Berlin , Arnimallee 14 , D-14195 Berlin , Germany
| |
Collapse
|
46
|
Johnson RP, Perera RT, Fleming AM, Burrows CJ, White HS. Energetics of base flipping at a DNA mismatch site confined at the latch constriction of α-hemolysin. Faraday Discuss 2018; 193:471-485. [PMID: 27711888 DOI: 10.1039/c6fd00058d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Unique, two-state modulating current signatures are observed when a cytosine-cytosine mismatch pair is confined at the 2.4 nm latch constriction of the α-hemolysin (αHL) nanopore. We have previously speculated that the modulation is due to base flipping at the mismatch site. Base flipping is a biologically significant mechanism in which a single base is rotated out of the DNA helical stack by 180°. It is the mechanism by which enzymes are able to access bases for repair operations without disturbing the global structure of the helix. Here, temperature dependent ion channel recordings of individual double-stranded DNA duplexes inside αHL are used to derive thermodynamic (ΔH, ΔS) and kinetic (EA) parameters for base flipping of a cytosine at an unstable cytosine-cytosine mismatch site. The measured activation energy for flipping a cytosine located at the latch of αHL out of the helix (18 ± 1 kcal mol-1) is comparable to that previously reported for base flipping at mismatch sites from NMR measurements and potential mean force calculations. We propose that the αHL nanopore is a useful tool for measuring conformational changes in dsDNA at the single molecule level.
Collapse
Affiliation(s)
- Robert P Johnson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, USA.
| | - Rukshan T Perera
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, USA.
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, USA.
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, USA.
| | - Henry S White
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, USA.
| |
Collapse
|
47
|
Shao Q, Zhu W. The effects of implicit modeling of nonpolar solvation on protein folding simulations. Phys Chem Chem Phys 2018; 20:18410-18419. [PMID: 29946610 DOI: 10.1039/c8cp03156h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Implicit solvent models, in which the polar and nonpolar solvation free-energies of solute molecules are treated separately, have been widely adopted for molecular dynamics simulation of protein folding. While the development of the implicit models is mainly focused on the methodological improvement and key parameter optimization for polar solvation, nonpolar solvation has been either ignored or described by a simplistic surface area (SA) model. In this work, we performed the folding simulations of multiple β-hairpin and α-helical proteins with varied surface tension coefficients embedded in the SA model to clearly demonstrate the effects of nonpolar solvation treated by a popular SA model on protein folding. The results indicate that the change in the surface tension coefficient does not alter the ability of implicit solvent simulations to reproduce a protein native structure but indeed controls the components of the equilibrium conformational ensemble and modifies the energetic characterization of the folding transition pathway. The suitably set surface tension coefficient can yield explicit solvent simulations and/or experimentally suggested folding mechanism of protein. In addition, the implicit treatment of both polar and nonpolar components of solvation free-energy contributes to the overestimation of the secondary structure in implicit solvent simulations.
Collapse
Affiliation(s)
- Qiang Shao
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | | |
Collapse
|
48
|
Peng S, Wang W, Chen C. Surface Transient Binding-Based Fluorescence Correlation Spectroscopy (STB-FCS), a Simple and Easy-to-Implement Method to Extend the Upper Limit of the Time Window to Seconds. J Phys Chem B 2018; 122:4844-4850. [PMID: 29668282 DOI: 10.1021/acs.jpcb.8b03476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence correlation spectroscopy is a powerful single-molecule tool that is able to capture kinetic processes occurring at the nanosecond time scale. However, the upper limit of its time window is restricted by the dwell time of the molecule of interest in the confocal detection volume, which is usually around submilliseconds for a freely diffusing biomolecule. Here, we present a simple and easy-to-implement method, named surface transient binding-based fluorescence correlation spectroscopy (STB-FCS), which extends the upper limit of the time window to seconds. We further demonstrated that STB-FCS enables capture of both intramolecular and intermolecular kinetic processes whose time scales cross several orders of magnitude.
Collapse
Affiliation(s)
- Sijia Peng
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, and Beijing Advanced Innovation Center for Structural Biology , Tsinghua University , Beijing , China
| | - Wenjuan Wang
- School of Life Sciences and Technology Center for Protein Sciences , Tsinghua University , Beijing , China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, and Beijing Advanced Innovation Center for Structural Biology , Tsinghua University , Beijing , China
| |
Collapse
|
49
|
Ren H, Cheyne CG, Fleming AM, Burrows CJ, White HS. Single-Molecule Titration in a Protein Nanoreactor Reveals the Protonation/Deprotonation Mechanism of a C:C Mismatch in DNA. J Am Chem Soc 2018; 140:5153-5160. [PMID: 29562130 DOI: 10.1021/jacs.8b00593] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Measurement of single-molecule reactions can elucidate microscopic mechanisms that are often hidden from ensemble analysis. Herein, we report the acid-base titration of a single DNA duplex confined within the wild-type α-hemolysin (α-HL) nanopore for up to 3 h, while monitoring the ionic current through the nanopore. Modulation between two states in the current-time trace for duplexes containing the C:C mismatch in proximity to the latch constriction of α-HL is attributed to the base flipping of the C:C mismatch. As the pH is lowered, the rate for the C:C mismatch to flip from the intra-helical state to the extra-helical state ( kintra-extra) decreases, while the rate for base flipping from the extra-helical state to the intra-helical state ( kextra-intra) remains unchanged. Both kintra-extra and kextra-intra are on the order of 1 × 10-2 s-1 to 1 × 10-1 s-1 and remain stable over the time scale of the measurement (several hours). Analysis of the pH-dependent kinetics of base flipping using a hidden Markov kinetic model demonstrates that protonation/deprotonation occurs while the base pair is in the intra-helical state. We also demonstrate that the rate of protonation is limited by transport of H+ into the α-HL nanopore. Single-molecule kinetic isotope experiments exhibit a large kinetic isotope effect (KIE) for kintra-extra ( kH/ kD ≈ 5) but a limited KIE for kextra-intra ( kH/ kD ≈ 1.3), supporting our model. Our experiments correspond to the longest single-molecule measurements performed using a nanopore, and demonstrate its application in interrogating mechanisms of single-molecule reactions in confined geometries.
Collapse
Affiliation(s)
- Hang Ren
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Cameron G Cheyne
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Aaron M Fleming
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Henry S White
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
50
|
Guan J, Jia C, Li Y, Liu Z, Wang J, Yang Z, Gu C, Su D, Houk KN, Zhang D, Guo X. Direct single-molecule dynamic detection of chemical reactions. SCIENCE ADVANCES 2018; 4:eaar2177. [PMID: 29487914 PMCID: PMC5817934 DOI: 10.1126/sciadv.aar2177] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/16/2018] [Indexed: 05/03/2023]
Abstract
Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.
Collapse
Affiliation(s)
- Jianxin Guan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Chuancheng Jia
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanwei Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Environment Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jinying Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhongyue Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Chunhui Gu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Dingkai Su
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|