1
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
Xie Q, Zhang Y, Janzen E, Edgar JH, Xu XG. Atomic-force-microscopy-based time-domain two-dimensional infrared nanospectroscopy. NATURE NANOTECHNOLOGY 2024; 19:1108-1115. [PMID: 38750165 DOI: 10.1038/s41565-024-01670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/02/2024] [Indexed: 05/23/2024]
Abstract
For decades, infrared (IR) spectroscopy has advanced on two distinct frontiers: enhancing spatial resolution and broadening spectroscopic information. Although atomic force microscopy (AFM)-based IR microscopy overcomes Abbe's diffraction limit and reaches sub-10 nm spatial resolutions, time-domain two-dimensional IR spectroscopy (2DIR) provides insights into molecular structures, mode coupling and energy transfers. Here we bridge the boundary between these two techniques and develop AFM-2DIR nanospectroscopy. Our method offers the spatial precision of AFM in combination with the rich spectroscopic information provided by 2DIR. This approach mechanically detects the sample's photothermal responses to a tip-enhanced femtosecond IR pulse sequence and extracts spatially resolved spectroscopic information via FFTs. In a proof-of-principle experiment, we elucidate the anharmonicity of a carbonyl vibrational mode. Further, leveraging the near-field photons' high momenta from the tip enhancement for phase matching, we photothermally probe hyperbolic phonon polaritons in isotope-enriched h10BN. Our measurements unveil an energy transfer between phonon polaritons and phonons, as well as among different polariton modes, possibly aided by scattering at interfaces. The AFM-2DIR nanospectroscopy enables the in situ investigations of vibrational anharmonicity, coupling and energy transfers in heterogeneous materials and nanostructures, especially suitable for unravelling the relaxation process in two-dimensional materials at IR frequencies.
Collapse
Affiliation(s)
- Qing Xie
- Department of Chemistry, Lehigh University, Bethlehem, PA, US
| | - Yu Zhang
- Ames National Laboratory, Iowa State University, Ames, IA, US
| | - Eli Janzen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, US
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, US
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, PA, US.
| |
Collapse
|
3
|
Cai MR, Zhang X, Cheng ZQ, Yan TF, Dong H. Extracting double-quantum coherence in two-dimensional electronic spectroscopy under pump-probe geometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:033006. [PMID: 38497835 DOI: 10.1063/5.0198255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Two-dimensional electronic spectroscopy (2DES) can be implemented with different geometries, e.g., BOXCARS, collinear, and pump-probe geometries. The pump-probe geometry has the advantage of overlapping only two beams and reducing phase cycling steps. However, its applications are typically limited to observing the dynamics with single-quantum coherence and population, leaving the challenge to measure the dynamics of the double-quantum (2Q) coherence, which reflects the many-body interactions. We demonstrate an experimental technique in 2DES under pump-probe geometry with a designed pulse sequence and the signal processing method to extract 2Q coherence. In the designed pulse sequence, with the probe pulse arriving earlier than the pump pulses, our measured signal includes the 2Q signal as well as the zero-quantum signal. With phase cycling and data processing using causality enforcement, we extract the 2Q signal. The proposal is demonstrated with rubidium atoms. We observe the collective resonances of two-body dipole-dipole interactions in both the D1 and D2 lines.
Collapse
Affiliation(s)
- Mao-Rui Cai
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Xue Zhang
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Zi-Qian Cheng
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Teng-Fei Yan
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| |
Collapse
|
4
|
Zhu H, Chen B, Yakovlev VV, Zhang D. Time-resolved vibrational dynamics: Novel opportunities for sensing and imaging. Talanta 2024; 266:125046. [PMID: 37595525 DOI: 10.1016/j.talanta.2023.125046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023]
Abstract
The evolution of time-resolved spectroscopies has resulted in significant advancements across numerous scientific disciplines, particularly those concerned with molecular electronic states. However, the intricacy of molecular vibrational spectroscopies, which provide comprehensive molecular-level information within complex structures, has presented considerable challenges due to the ultrashort dephasing time. Over recent decades, an increasing focus has been placed on exploring the temporal progression of bond vibrations, thereby facilitating an improved understanding of energy redistribution within and between molecules. This review article focuses on an array of time-resolved detection methodologies, each distinguished by unique technological attributes that offer exclusive capabilities for investigating the physical phenomena propelled by molecular vibrational dynamics. In summary, time-resolved vibrational spectroscopy emerges as a potent instrument for deciphering the dynamic behavior of molecules. Its potential for driving future progress across fields as diverse as biology and materials science is substantial, marking a promising future for this innovative tool.
Collapse
Affiliation(s)
- Hanlin Zhu
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310028, China.
| | - Bo Chen
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310028, China.
| | - Vladislav V Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Delong Zhang
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310028, China.
| |
Collapse
|
5
|
Hassani M, Mallon CJ, Monzy JN, Schmitz AJ, Brewer SH, Fenlon EE, Tucker MJ. Inhibition of vibrational energy flow within an aromatic scaffold via heavy atom effect. J Chem Phys 2023; 158:224201. [PMID: 37309893 PMCID: PMC10275622 DOI: 10.1063/5.0153760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
The regulation of intramolecular vibrational energy redistribution (IVR) to influence energy flow within molecular scaffolds provides a way to steer fundamental processes of chemistry, such as chemical reactivity in proteins and design of molecular diodes. Using two-dimensional infrared (2D IR) spectroscopy, changes in the intensity of vibrational cross-peaks are often used to evaluate different energy transfer pathways present in small molecules. Previous 2D IR studies of para-azidobenzonitrile (PAB) demonstrated that several possible energy pathways from the N3 to the cyano-vibrational reporters were modulated by Fermi resonance, followed by energy relaxation into the solvent [Schmitz et al., J. Phys. Chem. A 123, 10571 (2019)]. In this work, the mechanisms of IVR were hindered via the introduction of a heavy atom, selenium, into the molecular scaffold. This effectively eliminated the energy transfer pathway and resulted in the dissipation of the energy into the bath and direct dipole-dipole coupling between the two vibrational reporters. Several structural variations of the aforementioned molecular scaffold were employed to assess how each interrupted the energy transfer pathways, and the evolution of 2D IR cross-peaks was measured to assess the changes in the energy flow. By eliminating the energy transfer pathways through isolation of specific vibrational transitions, through-space vibrational coupling between an azido (N3) and a selenocyanato (SeCN) probe is facilitated and observed for the first time. Thus, the rectification of this molecular circuitry is accomplished through the inhibition of energy flow using heavy atoms to suppress the anharmonic coupling and, instead, favor a vibrational coupling pathway.
Collapse
Affiliation(s)
- Majid Hassani
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | | | - Judith N. Monzy
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Andrew J. Schmitz
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Scott H. Brewer
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Edward E. Fenlon
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Matthew J. Tucker
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
6
|
Rushing JC, Gurung A, Kuroda DG. Relation between microscopic structure and macroscopic properties in polyacrylonitrile-based lithium-ion polymer gel electrolytes. J Chem Phys 2023; 158:144705. [PMID: 37061496 DOI: 10.1063/5.0135631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Polymer gel electrolytes (PGE) have seen a renewed interest in their development because they have high ionic conductivities but low electrochemical degradation and flammability. PGEs are formed by mixing a liquid lithium-ion electrolyte with a polymer at a sufficiently large concentration to form a gel. PGEs have been extensively studied, but the direct connection between their microscopic structure and macroscopic properties remains controversial. For example, it is still unknown whether the polymer in the PGE acts as an inert, stabilizing scaffold for the electrolyte or it interacts with the ionic components. Here, a PGE composed of a prototypical lithium-carbonate electrolyte and polyacrylonitrile (PAN) is pursued at both microscopic and macroscopic levels. Specifically, this study focused on describing the microscopic and macroscopic changes in the PGE at different polymer concentrations. The results indicated that the polymer-ion and polymer-polymer interactions are strongly dependent on the concentration of the polymer and the lithium salt. In particular, the polymer interacts with itself at very high PAN concentrations (10% weight) resulting in a viscous gel. However, the conductivity and dynamics of the electrolyte liquid components are significantly less affected by the addition of the polymer. The observations are explained in terms of the PGE structure, which transitions from a polymer solution to a gel, containing a polymer matrix and disperse electrolyte, at low and high PAN concentrations, respectively. The results highlight the critical role that the polymer concentration plays in determining both the macroscopic properties of the system and the molecular structure of the PGE.
Collapse
Affiliation(s)
- Jeramie C Rushing
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Anit Gurung
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
7
|
Rutherford SH, Baker MJ, Hunt NT. 2D-IR spectroscopy of proteins in H 2O-A Perspective. J Chem Phys 2023; 158:030901. [PMID: 36681646 DOI: 10.1063/5.0129480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The form of the amide I infrared absorption band provides a sensitive probe of the secondary structure and dynamics of proteins in the solution phase. However, the frequency coincidence of the amide I band with the bending vibrational mode of H2O has necessitated the widespread use of deuterated solvents. Recently, it has been demonstrated that ultrafast 2D-IR spectroscopy allows the detection of the protein amide I band in H2O-based fluids, meaning that IR methods can now be applied to study proteins in physiologically relevant solvents. In this perspective, we describe the basis of the 2D-IR method for observing the protein amide I band in H2O and show how this development has the potential to impact areas ranging from our fundamental appreciation of protein structural dynamics to new applications for 2D-IR spectroscopy in the analytical and biomedical sciences. In addition, we discuss how the spectral response of water, rather than being a hindrance, now provides a basis for new approaches to data pre-processing, standardization of 2D-IR data collection, and signal quantification. Ultimately, we visualize a direction of travel toward the creation of 2D-IR spectral libraries that can be linked to advanced computational methods for use in high-throughput protein screening and disease diagnosis.
Collapse
Affiliation(s)
- Samantha H Rutherford
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Matthew J Baker
- School of Medicine, Faculty of Clinical Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
8
|
Askelson PG, Meloni SL, Hoffnagle AM, Anna JM. Resolving the Impact of Hydrogen Bonding on the Phylloquinone Cofactor through Two-Dimensional Infrared Spectroscopy. J Phys Chem B 2022; 126:10120-10135. [PMID: 36444999 DOI: 10.1021/acs.jpcb.2c03556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional infrared spectroscopy (2DIR) was applied to phylloquinone (PhQ), an important biological cofactor, to elucidate the impact of hydrogen bonding on the ultrafast dynamics and energetics of the carbonyl stretching modes. 2DIR measurements were performed on PhQ dissolved in hexanol, which served as the hydrogen bonding solvent, and hexane, which served as a non-hydrogen bonding control. Molecular dynamics simulations and quantum chemical calculations were performed to aid in spectral assignment and interpretation. From the position of the peaks in the 2DIR spectra, we extracted the transition frequencies for the fundamental, overtone, and combination bands of hydrogen bonded and non-hydrogen bonded carbonyl groups of PhQ in the 1635-1680 cm-1 region. We find that hydrogen bonding to a single carbonyl group acts to decouple the two carbonyl units of PhQ. Through analysis of the time-resolved 2DIR data, we find that hydrogen bonding leads to faster vibrational relaxation as well as an increase in the inhomogeneous broadening of the carbonyl groups. Overall, this work demonstrates how hydrogen bonding to the carbonyl groups of PhQ presents in the 2DIR spectra, laying the groundwork to use PhQ as a 2DIR probe to characterize the ultrafast fluctuations in the local environment of natural photosynthetic complexes.
Collapse
Affiliation(s)
- Phoebe G Askelson
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania19104, United States
| | - Stephen L Meloni
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania19104, United States
| | - Alexander M Hoffnagle
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania19104, United States
| | - Jessica M Anna
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
9
|
Zhu H, Xu C, Wang DW, Yakovlev VV, Zhang D. Enhanced Chemical Sensing with Multiorder Coherent Raman Scattering Spectroscopic Dephasing. Anal Chem 2022; 94:8409-8415. [PMID: 35623094 PMCID: PMC10308852 DOI: 10.1021/acs.analchem.2c01060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular vibrational spectroscopy is widely used in various sensing and imaging applications, providing intrinsic information at the molecular level. Nonlinear optical interactions using ultrashort laser pulses facilitate the selective coherent excitation of molecular vibrational modes by focusing energy into specific molecular bonds, boosting the signal level for multiple orders of magnitude. The dephasing of such coherence, which is susceptible to the local molecular environment, however, is often neglected. The unique capability of vibrational dephasing dynamics to serve as a unique probe for complex molecular interactions and the effect of local nano- and microenvironments are beyond the reach of conventional, intensity-based spectroscopy. Here, we developed a novel multiorder coherent Raman spectroscopy platform with a special focus on the temporal evolution of molecular vibrational dephasing, termed as time-resolved coherent Raman scattering (T-CRS) spectroscopy. By utilizing a high dynamic range detection, molecular vibrational dynamics and the environmental effects are demonstrated with multidimensional spectroscopic sensing, which promises a new range of applications in biology, materials, and chemical sciences.
Collapse
Affiliation(s)
- Hanlin Zhu
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310028 China
| | - Chenran Xu
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310028 China
| | - Da-Wei Wang
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310028 China
| | - Vladislav V Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843 United States
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843 United States
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843 United States
| | - Delong Zhang
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310028 China
| |
Collapse
|
10
|
Koll LM, Maikowski L, Drescher L, Vrakking MJJ, Witting T. Phase-locking of time-delayed attosecond XUV pulse pairs. OPTICS EXPRESS 2022; 30:7082-7095. [PMID: 35299479 DOI: 10.1364/oe.452018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
We present a setup for the generation of phase-locked attosecond extreme ultraviolet (XUV) pulse pairs. The attosecond pulse pairs are generated by high harmonic generation (HHG) driven by two phase-locked near-infrared (NIR) pulses that are produced using an actively stabilized Mach-Zehnder interferometer compatible with near-single cycle pulses. The attosecond XUV pulses can be delayed over a range of 400 fs with a sub-10-as delay jitter. We validate the precision and the accuracy of the setup by XUV optical interferometry and by retrieving the energies of Rydberg states of helium in an XUV pump-NIR probe photoelectron spectroscopy experiment.
Collapse
|
11
|
A polarization scheme that resolves cross-peaks with transient absorption and eliminates diagonal peaks in 2D spectroscopy. Proc Natl Acad Sci U S A 2022; 119:2117398119. [PMID: 35115405 PMCID: PMC8833161 DOI: 10.1073/pnas.2117398119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Two-dimensional (2D) optical spectroscopy contains cross-peaks that are helpful features for determining molecular structure and monitoring energy transfer, but they can be difficult to resolve from the much more intense diagonal peaks. Transient absorption (TA) spectra contain transitions similar to cross-peaks in 2D spectroscopy, but in most cases they are obscured by the bleach and stimulated emission peaks. We report a polarization scheme, <0°,0°,+θ2(t2),-θ2(t2)>, that can be easily implemented in the pump-probe beam geometry, used most frequently in 2D and TA spectroscopy. This scheme removes the diagonal peaks in 2D spectroscopies and the intense bleach/stimulated emission peaks in TA spectroscopies, thereby resolving the cross-peak features. At zero pump-probe delay, θ2 = 60° destructively interferes two Feynman paths, eliminating all signals generated by field interactions with four parallel transition dipoles, and the intense diagonal and bleach/stimulated emission peaks. At later delay times, θ2(t2) is adjusted to compensate for anisotropy caused by rotational diffusion. When implemented with TA spectroscopy or microscopy, the pump-probe spectrum is dominated by the cross-peak features. The local oscillator is also attenuated, which enhances the signal two times. This overlooked polarization scheme reduces spectral congestion by eliminating diagonal peaks in 2D spectra and enables TA spectroscopy to measure similar information given by cross-peaks in 2D spectroscopy.
Collapse
|
12
|
Koll LM, Maikowski L, Drescher L, Witting T, Vrakking MJJ. Experimental Control of Quantum-Mechanical Entanglement in an Attosecond Pump-Probe Experiment. PHYSICAL REVIEW LETTERS 2022; 128:043201. [PMID: 35148151 DOI: 10.1103/physrevlett.128.043201] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Entanglement is one of the most intriguing aspects of quantum mechanics and lies at the heart of the ongoing second quantum revolution, where it is a resource that is used in quantum key distribution, quantum computing, and quantum teleportation. We report experiments demonstrating the crucial role that entanglement plays in pump-probe experiments involving ionization, which are a hallmark of the novel research field of attosecond science. We demonstrate that the degree of entanglement in a bipartite ion + photoelectron system, and, as a consequence, the degree of vibrational coherence in the ion, can be controlled by tailoring the spectral properties of the attosecond extreme ultraviolet laser pulses that are used to create them.
Collapse
Affiliation(s)
- Lisa-Marie Koll
- Max-Born-Institut, Max-Born-Strasse 2A, 12x489 Berlin, Germany
| | - Laura Maikowski
- Max-Born-Institut, Max-Born-Strasse 2A, 12x489 Berlin, Germany
| | - Lorenz Drescher
- Max-Born-Institut, Max-Born-Strasse 2A, 12x489 Berlin, Germany
| | - Tobias Witting
- Max-Born-Institut, Max-Born-Strasse 2A, 12x489 Berlin, Germany
| | | |
Collapse
|
13
|
Maiti KS. Two-dimensional Infrared Spectroscopy Reveals Better Insights of Structure and Dynamics of Protein. Molecules 2021; 26:molecules26226893. [PMID: 34833985 PMCID: PMC8618531 DOI: 10.3390/molecules26226893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
Proteins play an important role in biological and biochemical processes taking place in the living system. To uncover these fundamental processes of the living system, it is an absolutely necessary task to understand the structure and dynamics of the protein. Vibrational spectroscopy is an established tool to explore protein structure and dynamics. In particular, two-dimensional infrared (2DIR) spectroscopy has already proven its versatility to explore the protein structure and its ultrafast dynamics, and it has essentially unprecedented time resolutions to observe the vibrational dynamics of the protein. Providing several examples from our theoretical and experimental efforts, it is established here that two-dimensional vibrational spectroscopy provides exceptionally more information than one-dimensional vibrational spectroscopy. The structural information of the protein is encoded in the position, shape, and strength of the peak in 2DIR spectra. The time evolution of the 2DIR spectra allows for the visualisation of molecular motions.
Collapse
Affiliation(s)
- Kiran Sankar Maiti
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany; ; Tel.: +49-89-289-54056
- Lehrstuhl für Experimental Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| |
Collapse
|
14
|
Cui Y, Rushing JC, Seifert S, Bedford NM, Kuroda DG. Structural and dynamical changes observed when transitioning from an ionic liquid to a deep eutectic solvent. J Chem Phys 2021; 155:054507. [PMID: 34364351 DOI: 10.1063/5.0053448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The microscopic molecular structure and dynamics of a new deep eutectic solvent (DES) composed of an ionic liquid (1-hexyl-3-methylimidazolium chloride) and an amide (trifluoroacetamide) at various molar ratios were investigated using linear and non-linear infrared spectroscopy with a vibrational probe. The use of the ionic liquid allows us to investigate the changes that the system undergoes with the addition of the amide or, equivalently, the changes from an ionic liquid to a DES. Our studies revealed that the vibrational probe in the DES senses a very similar local environment irrespective of the cation chemical structure. In addition, the amide also appears to perceive the same molecular environment. The concentration dependence studies also showed that the amide changes from being isolated from other amides in the ionic liquid environment to an environment where the amide-amide interactions are favored. In the case of the vibrational probe, the addition of the amide produced significant changes in the slow dynamics associated with the making and breaking of the ionic cages but did not affect the rattling-in-cage motions perceived by it. Furthermore, the concentration dependence of slow dynamics showed two regimes which are linked to the changes in the overall structure of the solution. These observations are interpreted in the context of a nanoscopic heterogeneous environment in the DES which, according to the observed dynamical regimes, appears at very large concentrations of the amide (molar ratio of greater than 1:1) since for lower amide molar ratios, the amide appears to be not segregated from the ionic liquid. This proposed molecular picture is supported by small angle x-ray scattering experiments.
Collapse
Affiliation(s)
- Yaowen Cui
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Jeramie C Rushing
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Soenke Seifert
- X-Ray Sciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Nicholas M Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
15
|
Fulfer KD, Galle Kankanamge SR, Chen X, Woodard KT, Kuroda DG. Elucidating the mechanism behind the infrared spectral features and dynamics observed in the carbonyl stretch region of organic carbonates interacting with lithium ions. J Chem Phys 2021; 154:234504. [PMID: 34241245 DOI: 10.1063/5.0049742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ultrafast infrared spectroscopy has become a very important tool for studying the structure and ultrafast dynamics in solution. In particular, it has been recently applied to investigate the molecular interactions and motions of lithium salts in organic carbonates. However, there has been a discrepancy in the molecular interpretation of the spectral features and dynamics derived from these spectroscopies. Hence, the mechanism behind spectral features appearing in the carbonyl stretching region was further investigated using linear and nonlinear spectroscopic tools and the co-solvent dilution strategy. Lithium perchlorate in a binary mixture of dimethyl carbonate (DMC) and tetrahydrofuran was used as part of the dilution strategy to identify the changes of the spectral features with the number of carbonates in the first solvation shell since both solvents have similar interaction energetics with the lithium ion. Experiments showed that more than one carbonate is always participating in the lithium ion solvation structures, even at the low concentration of DMC. Moreover, temperature-dependent study revealed that the exchange of the solvent molecules coordinating the lithium ion is not thermally accessible at room temperature. Furthermore, time-resolved IR experiments confirmed the presence of vibrationally coupled carbonyl stretches among coordinated DMC molecules and demonstrated that this process is significantly altered by limiting the number of carbonate molecules in the lithium ion solvation shell. Overall, the presented experimental findings strongly support the vibrational energy transfer as the mechanism behind the off-diagonal features appearing on the 2DIR spectra of solutions of lithium salt in organic carbonates.
Collapse
Affiliation(s)
- Kristen D Fulfer
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | - Xiaobing Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kaylee T Woodard
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
16
|
Hou YJ, Zheng X, Zhong HM, Chen F, Yan GY, Cai KC. Structural dynamics of amyloid β peptide binding to acetylcholine receptor and virtual screening for effective inhibitors. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2008150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Yan-jun Hou
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Xuan Zheng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-mei Zhong
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Feng Chen
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, China
| | - Gui-yang Yan
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, China
| | - Kai-cong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| |
Collapse
|
17
|
Zhang X, Chen X, Kuroda DG. Computing the frequency fluctuation dynamics of highly coupled vibrational transitions using neural networks. J Chem Phys 2021; 154:164514. [PMID: 33940799 DOI: 10.1063/5.0044911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The description of frequency fluctuations for highly coupled vibrational transitions has been a challenging problem in physical chemistry. In particular, the complexity of their vibrational Hamiltonian does not allow us to directly derive the time evolution of vibrational frequencies for these systems. In this paper, we present a new approach to this problem by exploiting the artificial neural network to describe the vibrational frequencies without relying on the deconstruction of the vibrational Hamiltonian. To this end, we first explored the use of the methodology to predict the frequency fluctuations of the amide I mode of N-methylacetamide in water. The results show good performance compared with the previous experimental and theoretical results. In the second part, the neural network approach is used to investigate the frequency fluctuations of the highly coupled carbonyl stretch modes for the organic carbonates in the solvation shell of the lithium ion. In this case, the frequency fluctuation predicted by the neural networks shows a good agreement with the experimental results, which suggests that this model can be used to describe the dynamics of the frequency in highly coupled transitions.
Collapse
Affiliation(s)
- Xiaoliu Zhang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Xiaobing Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
18
|
Vrakking MJJ. Control of Attosecond Entanglement and Coherence. PHYSICAL REVIEW LETTERS 2021; 126:113203. [PMID: 33798339 DOI: 10.1103/physrevlett.126.113203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Calculations are presented of vibrational wave packet dynamics in H_{2}^{+} ions formed by ionization of neutral H_{2} by a pair of attosecond extreme ultraviolet laser pulses, using time-delayed dissociation of the cation by an ultraviolet probe pulse. The strength of experimentally observable two-level quantum beats as a function of the attosecond two-pulse delay can be related to ion+photoelectron entanglement resulting from the ionization process. This conclusion is supported by an evaluation of the purity of the reduced ion and photoelectron density matrices.
Collapse
|
19
|
Cai K, Zheng X, Hou Y, Chen F, Yan G, Zhuang D. Deciphering the structural preference encoded in amide-I vibrations of lysine dipeptide in gas phase and in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119066. [PMID: 33091736 DOI: 10.1016/j.saa.2020.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Protein's biological function is critically associated with its structural feature, which is encoded in its amino acid sequence. For evaluation of conformational fluctuation and folding mechanism, DFT calculations were performed on the model compound - lysine dipeptide (LYSD) in gas phase to demonstrate the correlation between amide-I vibrations and secondary structure. Molecular dynamics simulations were carried out for the structural dynamics of LYSD in aqueous solution. The results show that LYSD tends form C7eq, C5, β, PPII and α conformations in the gas phase and primarily presented PPII and α conformations in aqueous solution. The obtained amide-I vibrational frequencies of LYSD conformers were assigned, thus build the correlations between amide-I probes and secondary structure of LYSD. These results provide theoretical insights into the structural feature of LYSD through amide-I vibrations, and would shed light on site specific structural prediction of polypeptides.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Fujian Province University, Ningde 352100, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China.
| | - Xuan Zheng
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Yanjun Hou
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Feng Chen
- Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Fujian Province University, Ningde 352100, China
| | - Guiyang Yan
- Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Fujian Province University, Ningde 352100, China
| | - Danling Zhuang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| |
Collapse
|
20
|
Rubtsova NI, Lin Z, Mackin RT, Rubtsov IV. How Intramolecular Vibrational Energy Transport Changes with Rigidity and Polarity of the Environment? HIGH ENERGY CHEMISTRY 2020. [DOI: 10.1134/s0018143920060120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Chen X, Kuroda DG. Molecular motions of acetonitrile molecules in the solvation shell of lithium ions. J Chem Phys 2020; 153:164502. [DOI: 10.1063/5.0024486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiaobing Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Daniel G. Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
22
|
Chuntonov L, Rubtsov IV. Surface-enhanced ultrafast two-dimensional vibrational spectroscopy with engineered plasmonic nano-antennas. J Chem Phys 2020; 153:050902. [DOI: 10.1063/5.0013956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lev Chuntonov
- Schulich Faculty of Chemistry and Solid State Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Igor V. Rubtsov
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
23
|
Donaldson PM. Photon echoes and two dimensional spectra of the amide I band of proteins measured by femtosecond IR - Raman spectroscopy. Chem Sci 2020; 11:8862-8874. [PMID: 34123140 PMCID: PMC8163424 DOI: 10.1039/d0sc02978e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Infrared (IR) and Raman spectroscopy are fundamental techniques in chemistry, allowing the convenient determination of bond specific chemical composition and structure. Over the last decades, ultrafast multidimensional IR approaches using sequences of femtosecond IR pulses have begun to provide a new means of gaining additional information on molecular vibrational couplings, distributions of molecular structures and ultrafast molecular structural dynamics. In this contribution, new approaches to measuring multidimensional spectra involving IR and Raman processes are presented and applied to the study of the amide I band of proteins. Rephasing of the amide I band is observed using dispersed IR-Raman photon echoes and frequency domain 2D-IR-Raman spectra are measured by use of a mid-IR pulse shaper or over a broader spectral range using a tuneable picosecond laser. A simple pulse shaping approach to performing heterodyned time-domain Fourier Transform 2D-IR-Raman spectroscopy is introduced, revealing that the 2D-IR-Raman spectra distinguish homogeneous and inhomogeneous broadening in the same way as the well-established methods of 2D-IR spectroscopy. Across all datasets, the unique dependence of the amide I data on the IR and Raman strengths, vibrational anharmonicities and inhomogeneous broadening provides a fascinating spectroscopic view of the amide I band. New ultrafast 2D-IR-Raman photon echo spectroscopy techniques are introduced and applied to the structural analysis of proteins.![]()
Collapse
Affiliation(s)
- Paul M Donaldson
- Central Laser Facility, RCaH, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus Didcot OX11 0QX UK
| |
Collapse
|
24
|
Chen X, Cui Y, Gobeze HB, Kuroda DG. Assessing the Location of Ionic and Molecular Solutes in a Molecularly Heterogeneous and Nonionic Deep Eutectic Solvent. J Phys Chem B 2020; 124:4762-4773. [PMID: 32421342 PMCID: PMC7304071 DOI: 10.1021/acs.jpcb.0c02482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Deep
eutectic solvents (DES) are emerging sustainable designer
solvents viewed as greener and better alternatives to ionic liquids.
Nonionic DESs possess unique properties such as viscosity and hydrophobicity
that make them desirable in microextraction applications such as oil-spill
remediation. This work builds upon a nonionic DES, NMA–LA DES,
previously designed by our group. The NMA–LA DES presents a
rich nanoscopic morphology that could be used to allocate solutes
of different polarities. In this work, the possibility of solvating
different solutes within the nanoscopically heterogeneous molecular
structure of the NMA–LA DES is investigated using ionic and
molecular solutes. In particular, the localized vibrational transitions
in these solutes are used as reporters of the DES molecular structure
via vibrational spectroscopy. The FTIR and 2DIR data suggest that
the ionic solute is confined in a polar and continuous domain formed
by NMA, clearly sensing the direct effect of the change in NMA concentration.
In the case of the molecular nonionic and polar solute, the data indicates
that the solute resides in the interface between the polar and nonpolar
domains. Finally, the results for the nonpolar and nonionic solute
(W(CO)6) are unexpected and less conclusive. Contrary to
its polarity, the data suggest that the W(CO)6 resides
within the NMA polar domain of the DES, probably by inducing a domain
restructuring in the solvent. However, the data are not conclusive
enough to discard the possibility that the restructuring comprises
not only the polar domain but also the interface. Overall, our results
demonstrate that the NMA–LA DES has nanoscopic domains with
affinity to particular molecular properties, such as polarity. Thus,
the presented results have a direct implication to separation science.
Collapse
Affiliation(s)
- Xiaobing Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yaowen Cui
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Habtom B Gobeze
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
25
|
Seol JG, Kwon H, Jin GY, Moon J, Yi C, Kim YS. Scattering Elimination of Heterodyne-Detected Two-Dimensional Infrared Spectra Using Choppers and Shutters. J Phys Chem A 2019; 123:10837-10843. [DOI: 10.1021/acs.jpca.9b09219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin Gyu Seol
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyejin Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Geun Young Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Juran Moon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chairyoung Yi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yung Sam Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
26
|
Schmitz AJ, Pandey HD, Chalyavi F, Shi T, Fenlon EE, Brewer SH, Leitner DM, Tucker MJ. Tuning Molecular Vibrational Energy Flow within an Aromatic Scaffold via Anharmonic Coupling. J Phys Chem A 2019; 123:10571-10581. [PMID: 31735035 DOI: 10.1021/acs.jpca.9b08010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
From guiding chemical reactivity in synthesis or protein folding to the design of energy diodes, intramolecular vibrational energy redistribution harnesses the power to influence the underlying fundamental principles of chemistry. To evaluate the ability to steer these processes, the mechanism and time scales of intramolecular vibrational energy redistribution through aromatic molecular scaffolds have been assessed by utilizing two-dimensional infrared (2D IR) spectroscopy. 2D IR cross peaks reveal energy relaxation through an aromatic scaffold from the azido- to the cyano-vibrational reporters in para-azidobenzonitrile (PAB) and para-(azidomethyl)benzonitrile (PAMB) prior to energy relaxation into the solvent. The rates of energy transfer are modulated by Fermi resonances, which are apparent by the coupling cross peaks identified within the 2D IR spectrum. Theoretical vibrational mode analysis allowed the determination of the origins of the energy flow, the transfer pathway, and a direct comparison of the associated transfer rates, which were in good agreement with the experimental results. Large variations in energy-transfer rates, approximately 1.9 ps for PAB and 23 ps for PAMB, illustrate the importance of strong anharmonic coupling, i.e., Fermi resonance, on the transfer pathways. In particular, vibrational energy rectification is altered by Fermi resonances of the cyano- and azido-modes allowing control of the propensity for energy flow.
Collapse
Affiliation(s)
- Andrew J Schmitz
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| | - Hari Datt Pandey
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Farzaneh Chalyavi
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| | - Tianjiao Shi
- Department of Chemistry , Franklin & Marshall College , Lancaster , Pennsylvania 17604-3003 , United States
| | - Edward E Fenlon
- Department of Chemistry , Franklin & Marshall College , Lancaster , Pennsylvania 17604-3003 , United States
| | - Scott H Brewer
- Department of Chemistry , Franklin & Marshall College , Lancaster , Pennsylvania 17604-3003 , United States
| | - David M Leitner
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| | - Matthew J Tucker
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| |
Collapse
|
27
|
Chen X, Fulfer KD, Woodard KT, Kuroda DG. Structure and Dynamics of the Lithium-Ion Solvation Shell in Ureas. J Phys Chem B 2019; 123:9889-9898. [DOI: 10.1021/acs.jpcb.9b07623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaobing Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kristen D. Fulfer
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Chemistry Program, Centre College, Danville, Kentucky 40422, United States
| | - Kaylee T. Woodard
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Daniel G. Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
28
|
Desmond JL, Koner D, Meuwly M. Probing the Differential Dynamics of the Monomeric and Dimeric Insulin from Amide-I IR Spectroscopy. J Phys Chem B 2019; 123:6588-6598. [PMID: 31318551 DOI: 10.1021/acs.jpcb.9b04628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The monomer-dimer equilibrium for insulin is one of the essential steps in forming the receptor-binding competent monomeric form of the hormone. Despite this importance, the thermodynamic stability, in particular for modified insulins, is quite poorly understood, in part, due to experimental difficulties. This work explores one- and two-dimensional infrared spectroscopy in the range of the amide-I band for the hydrated monomeric and dimeric wild-type hormone. It is found that for the monomer the frequency fluctuation correlation function (FFCF) and the one-dimensional infrared spectra are position sensitive. The spectra of the -CO probes at the dimerization interface (residues Phe24, Phe25, and Tyr26) split and indicate an asymmetry despite the overall (formal) point symmetry of the dimer structure. Also, the decay times of the FFCF for the same -CO probe in the monomer and the dimer can differ by up to 1 order of magnitude, for example, for residue PheB24, which is solvent exposed for the monomer but at the interface for the dimer. The spectroscopic shifts correlate approximately with the average number of hydration waters and the magnitude of the FFCF at time zero. However, this correlation is only qualitative due to the heterogeneous and highly dynamical environment. Based on density functional theory calculations, the dominant contribution for solvent-exposed -CO is found to arise from the surrounding water (∼75%), whereas the protein environment contributes considerably less. The results suggest that infrared spectroscopy is a positionally sensitive probe of insulin dimerization, in particular in conjunction with isotopic labeling of the probe.
Collapse
Affiliation(s)
- Jasmine L Desmond
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4056 Basel , Switzerland
| | - Debasish Koner
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4056 Basel , Switzerland
| | - Markus Meuwly
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4056 Basel , Switzerland
| |
Collapse
|
29
|
Paul J, Stevens CE, Smith RP, Dey P, Mapara V, Semenov D, McGill SA, Kaindl RA, Hilton DJ, Karaiskaj D. Coherent two-dimensional Fourier transform spectroscopy using a 25 Tesla resistive magnet. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:063901. [PMID: 31255018 DOI: 10.1063/1.5055891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
We performed nonlinear optical two-dimensional Fourier transform spectroscopy measurements using an optical resistive high-field magnet on GaAs quantum wells. Magnetic fields up to 25 T can be achieved using the split helix resistive magnet. Two-dimensional spectroscopy measurements based on the coherent four-wave mixing signal require phase stability. Therefore, these measurements are difficult to perform in environments prone to mechanical vibrations. Large resistive magnets use extensive quantities of cooling water, which causes mechanical vibrations, making two-dimensional Fourier transform spectroscopy very challenging. Here, we report on the strategies we used to overcome these challenges and maintain the required phase-stability throughout the measurement. A self-contained portable platform was used to set up the experiments within the time frame provided by a user facility. Furthermore, this platform was floated above the optical table in order to isolate it from vibrations originating from the resistive magnet. Finally, we present two-dimensional Fourier transform spectra obtained from GaAs quantum wells at magnetic fields up to 25 T and demonstrate the utility of this technique in providing important details, which are obscured in one dimensional spectroscopy.
Collapse
Affiliation(s)
- Jagannath Paul
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | | | - Ryan P Smith
- Department of Physics, California State University-East Bay, Hayward, California 94542, USA
| | - Prasenjit Dey
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Varun Mapara
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Dimitry Semenov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 30201, USA
| | - Steven A McGill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 30201, USA
| | - Robert A Kaindl
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David J Hilton
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Denis Karaiskaj
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
30
|
Cui Y, Rushing JC, Seifert S, Bedford NM, Kuroda DG. Molecularly Heterogeneous Structure of a Nonionic Deep Eutectic Solvent Composed of N-Methylacetamide and Lauric Acid. J Phys Chem B 2019; 123:3984-3993. [DOI: 10.1021/acs.jpcb.8b11732] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yaowen Cui
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jeramie C. Rushing
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Soenke Seifert
- X-ray Sciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Nicholas M. Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daniel G. Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
31
|
Porter TM, Wang J, Li Y, Xiang B, Salsman C, Miller JS, Xiong W, Kubiak CP. Direct observation of the intermediate in an ultrafast isomerization. Chem Sci 2019; 10:113-117. [PMID: 30713623 PMCID: PMC6333165 DOI: 10.1039/c8sc03258k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022] Open
Abstract
Using a combination of two-dimensional infrared (2D IR) and variable temperature Fourier transform infrared (FTIR) spectroscopies the rapid structural isomerization of a five-coordinate ruthenium complex is investigated. In methylene chloride, three exchanging isomers were observed: (1) square pyramidal equatorial, (1); (2) trigonal bipyramidal, (0); and (3) square pyramidal apical, (2). Exchange between 1 and 0 was found to be an endergonic process (ΔH = 0.84 (0.08) kcal mol-1, ΔS = 0.6 (0.4) eu) with an isomerization time constant of 4.3 (1.5) picoseconds (ps, 10-12 s). Exchange between 0 and 2 however was found to be exergonic (ΔH = -2.18 (0.06) kcal mol-1, ΔS = -5.3 (0.3) eu) and rate limiting with an isomerization time constant of 6.3 (1.6) ps. The trigonal bipyramidal complex was found to be an intermediate, with an activation barrier of 2.2 (0.2) kcal mol-1 and 2.4 (0.2) kcal mol-1 relative to the equatorial and apical square pyramidal isomers respectively. This study provides direct validation of the mechanism of Berry pseudorotation - the pairwise exchange of ligands in a five-coordinate complex - a process that was first described over fifty years ago. This study also clearly demonstrates that the rate of pseudorotation approaches the frequency of molecular vibrations.
Collapse
Affiliation(s)
- Tyler M Porter
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive, La Jolla , California 92093-0358 , USA . ;
| | - Jiaxi Wang
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive, La Jolla , California 92093-0358 , USA . ;
| | - Yingmin Li
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive, La Jolla , California 92093-0358 , USA . ;
| | - Bo Xiang
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive, La Jolla , California 92093-0358 , USA . ;
| | - Catherine Salsman
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive, La Jolla , California 92093-0358 , USA . ;
| | - Joel S Miller
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2124 , Salt Lake City , Utah 84112-0850 , USA
| | - Wei Xiong
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive, La Jolla , California 92093-0358 , USA . ;
| | - Clifford P Kubiak
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive, La Jolla , California 92093-0358 , USA . ;
| |
Collapse
|
32
|
Fox ZW, Blair TJ, Weakly RB, Courtney TL, Khalil M. Implementation of continuous fast scanning detection in femtosecond Fourier-transform two-dimensional vibrational-electronic spectroscopy to decrease data acquisition time. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:113104. [PMID: 30501350 DOI: 10.1063/1.5048523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/17/2018] [Indexed: 06/09/2023]
Abstract
Femtosecond Fourier transform two-dimensional vibrational-electronic (2D VE) spectroscopy is a recently developed third-order nonlinear spectroscopic technique to measure coupled electronic and vibrational motions in the condensed phase. The viability of femtosecond multidimensional spectroscopy as an analytical tool requires improvements in data collection and processing to enhance the signal-to-noise ratio and increase the amount of data collected in these experiments. Here a continuous fast scanning technique for the efficient collection of 2D VE spectroscopy is described. The resulting 2D VE spectroscopic method gains sensitivity by reducing the effect of laser drift, as well as decreasing the data collection time by a factor of 10 for acquiring spectra with a high signal-to-noise ratio within 3 dB of the more time intensive step scanning methods. This work opens the door to more comprehensive studies where 2D VE spectra can be collected as a function of external parameters such as temperature, pH, and polarization of the input electric fields.
Collapse
Affiliation(s)
- Zachary W Fox
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Tyler J Blair
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Robert B Weakly
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Trevor L Courtney
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
33
|
Grechko M, Schleeger M, Bonn M. Resolution along both infrared and visible frequency axes in second-order Fourier-transform vibrational sum-frequency generation spectroscopy. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Grechko M, Hasegawa T, D'Angelo F, Ito H, Turchinovich D, Nagata Y, Bonn M. Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy. Nat Commun 2018; 9:885. [PMID: 29491413 PMCID: PMC5830436 DOI: 10.1038/s41467-018-03303-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/01/2018] [Indexed: 11/09/2022] Open
Abstract
The interaction between intramolecular and intermolecular degrees of freedom in liquid water underlies fundamental chemical and physical phenomena such as energy dissipation and proton transfer. Yet, it has been challenging to elucidate the coupling between these different types of modes. Here, we report on the direct observation and quantification of the coupling between intermolecular and intramolecular coordinates using two-dimensional, ultra-broadband, terahertz-infrared-visible (2D TIRV) spectroscopy and molecular dynamics calculations. Our study reveals strong coupling of the O-H stretch vibration, independent of the degree of delocalization of this high-frequency mode, to low-frequency intermolecular motions over a wide frequency range from 50 to 250 cm-1, corresponding to both the intermolecular hydrogen bond bending (≈ 60 cm-1) and stretching (≈ 180 cm-1) modes. Our results provide mechanistic insights into the coupling of the O-H stretch vibration to collective, delocalized intermolecular modes.
Collapse
Affiliation(s)
- Maksim Grechko
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany.
| | - Taisuke Hasegawa
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Francesco D'Angelo
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Hironobu Ito
- Department of Chemistry, Faculty of Education, Shizuoka University, 836 Ohya, 422-8529, Shizuoka, Japan
| | - Dmitry Turchinovich
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
- Fakultät für Physik, Universität Duisburg-Essen, Lotharstr. 1, 47057, Duisburg, Germany
| | - Yuki Nagata
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| |
Collapse
|
35
|
Fulfer KD, Kuroda DG. Ion speciation of lithium hexafluorophosphate in dimethyl carbonate solutions: an infrared spectroscopy study. Phys Chem Chem Phys 2018; 20:22710-22718. [DOI: 10.1039/c8cp03315c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The speciation of lithium hexafluorophosphate (LiPF6) in dimethyl carbonate as function of the concentration is studied via IR spectroscopy and DFT computations.
Collapse
|
36
|
Frostig H, Bayer T, Eldar YC, Silberberg Y. Revealing true coupling strengths in two-dimensional spectroscopy with sparsity-based signal recovery. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e17115. [PMID: 30167224 PMCID: PMC6062022 DOI: 10.1038/lsa.2017.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 07/28/2017] [Accepted: 08/04/2017] [Indexed: 06/08/2023]
Abstract
Two-dimensional (2D) spectroscopy is used to study the interactions between energy levels in both the field of optics and nuclear magnetic resonance (NMR). Conventionally, the strength of interaction between two levels is inferred from the value of their common off-diagonal peak in the 2D spectrum, which is termed the cross peak. However, stronger diagonal peaks often have long tails that extend into the locations of the cross peaks and alter their values. Here, we introduce a method for retrieving the true interaction strengths by using sparse signal recovery techniques and apply our method in 2D Raman spectroscopy experiments.
Collapse
Affiliation(s)
- Hadas Frostig
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tim Bayer
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| | - Yonina C Eldar
- Department of Electrical Engineering, Technion, Haifa 32000, Israel
| | - Yaron Silberberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
37
|
Kohler DD, Thompson BJ, Wright JC. Frequency-domain coherent multidimensional spectroscopy when dephasing rivals pulsewidth: Disentangling material and instrument response. J Chem Phys 2017; 147:084202. [PMID: 28863536 DOI: 10.1063/1.4986069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ultrafast spectroscopy is often collected in the mixed frequency/time domain, where pulse durations are similar to system dephasing times. In these experiments, expectations derived from the familiar driven and impulsive limits are not valid. This work simulates the mixed-domain four-wave mixing response of a model system to develop expectations for this more complex field-matter interaction. We explore frequency and delay axes. We show that these line shapes are exquisitely sensitive to excitation pulse widths and delays. Near pulse overlap, the excitation pulses induce correlations that resemble signatures of dynamic inhomogeneity. We describe these line shapes using an intuitive picture that connects to familiar field-matter expressions. We develop strategies for distinguishing pulse-induced correlations from true system inhomogeneity. These simulations provide a foundation for interpretation of ultrafast experiments in the mixed domain.
Collapse
Affiliation(s)
- Daniel D Kohler
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Blaise J Thompson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - John C Wright
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| |
Collapse
|
38
|
Ghosh A, Ostrander JS, Zanni MT. Watching Proteins Wiggle: Mapping Structures with Two-Dimensional Infrared Spectroscopy. Chem Rev 2017; 117:10726-10759. [PMID: 28060489 PMCID: PMC5500453 DOI: 10.1021/acs.chemrev.6b00582] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins exhibit structural fluctuations over decades of time scales. From the picosecond side chain motions to aggregates that form over the course of minutes, characterizing protein structure over these vast lengths of time is important to understanding their function. In the past 15 years, two-dimensional infrared spectroscopy (2D IR) has been established as a versatile tool that can uniquely probe proteins structures on many time scales. In this review, we present some of the basic principles behind 2D IR and show how they have, and can, impact the field of protein biophysics. We highlight experiments in which 2D IR spectroscopy has provided structural and dynamical data that would be difficult to obtain with more standard structural biology techniques. We also highlight technological developments in 2D IR that continue to expand the scope of scientific problems that can be accessed in the biomedical sciences.
Collapse
Affiliation(s)
| | - Joshua S. Ostrander
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
39
|
Cai K, Zheng X, Du F. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:150-157. [PMID: 28448953 DOI: 10.1016/j.saa.2017.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/09/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China.
| | - Xuan Zheng
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Fenfen Du
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| |
Collapse
|
40
|
Simulation of the T-jump triggered unfolding and thermal unfolding vibrational spectroscopy related to polypeptides conformation fluctuation. Sci China Chem 2017. [DOI: 10.1007/s11426-016-9055-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Fullagar WK, Uhlig J, Mandal U, Kurunthu D, El Nahhas A, Tatsuno H, Honarfar A, Parnefjord Gustafsson F, Sundström V, Palosaari MRJ, Kinnunen KM, Maasilta IJ, Miaja-Avila L, O'Neil GC, Joe YI, Swetz DS, Ullom JN. Beating Darwin-Bragg losses in lab-based ultrafast x-ray experiments. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044011. [PMID: 28396880 PMCID: PMC5367090 DOI: 10.1063/1.4978742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/06/2017] [Indexed: 06/07/2023]
Abstract
The use of low temperature thermal detectors for avoiding Darwin-Bragg losses in lab-based ultrafast experiments has begun. An outline of the background of this new development is offered, showing the relevant history and initiative taken by this work.
Collapse
Affiliation(s)
| | - Jens Uhlig
- Department of Chemical Physics, Lund University , Box 124, Lund SE-22100, Sweden
| | | | | | - Amal El Nahhas
- Department of Chemical Physics, Lund University , Box 124, Lund SE-22100, Sweden
| | - Hideyuki Tatsuno
- Department of Chemical Physics, Lund University , Box 124, Lund SE-22100, Sweden
| | - Alireza Honarfar
- Department of Chemical Physics, Lund University , Box 124, Lund SE-22100, Sweden
| | | | - Villy Sundström
- Department of Chemical Physics, Lund University , Box 124, Lund SE-22100, Sweden
| | - Mikko R J Palosaari
- Nanoscience Center, Department of Physics, University of Jyväskylä , P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Kimmo M Kinnunen
- Nanoscience Center, Department of Physics, University of Jyväskylä , P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Ilari J Maasilta
- Nanoscience Center, Department of Physics, University of Jyväskylä , P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Luis Miaja-Avila
- National Institute of Standards and Technology , Boulder, Colorado 80305, USA
| | - Galen C O'Neil
- National Institute of Standards and Technology , Boulder, Colorado 80305, USA
| | - Young Il Joe
- National Institute of Standards and Technology , Boulder, Colorado 80305, USA
| | - Daniel S Swetz
- National Institute of Standards and Technology , Boulder, Colorado 80305, USA
| | - Joel N Ullom
- National Institute of Standards and Technology , Boulder, Colorado 80305, USA
| |
Collapse
|
42
|
Husseini FS, Robinson D, Hunt NT, Parker AW, Hirst JD. Computing infrared spectra of proteins using the exciton model. J Comput Chem 2017; 38:1362-1375. [PMID: 27868210 PMCID: PMC5434914 DOI: 10.1002/jcc.24674] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/22/2016] [Accepted: 10/29/2016] [Indexed: 02/02/2023]
Abstract
The ability to compute from first principles the infrared spectrum of a protein in solution phase representing a biological system would provide a useful connection to atomistic models of protein structure and dynamics. Indeed, such calculations are a vital complement to 2DIR experimental measurements, allowing the observed signals to be interpreted in terms of detailed structural and dynamical information. In this article, we have studied nine structurally and spectroscopically well-characterized proteins, representing a range of structural types. We have simulated the equilibrium conformational dynamics in an explicit point charge water model. Using the resulting trajectories based on MD simulations, we have computed the one and two dimensional infrared spectra in the Amide I region, using an exciton approach, in which a local mode basis of carbonyl stretches is considered. The role of solvent in shifting the Amide I band (by 30 to 50 cm-1 ) is clearly evident. Similarly, the conformational dynamics contribute to the broadening of peaks in the spectrum. The inhomogeneous broadening in both the 1D and 2D spectra reflects the significant conformational diversity observed in the simulations. Through the computed 2D cross-peak spectra, we show how different pulse schemes can provide additional information on the coupled vibrations. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fouad S Husseini
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - David Robinson
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Neil T Hunt
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow, G4 0NG, Scotland, United Kingdom
| | - Anthony W Parker
- STFC Rutherford Appleton Laboratory, Central Laser Facility, Harwell Campus, Didcot, OX11 0QX, United Kingdom
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
43
|
Wright JC. Applications of the New Family of Coherent Multidimensional Spectroscopies for Analytical Chemistry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:45-70. [PMID: 28375700 DOI: 10.1146/annurev-anchem-061516-045349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new family of vibrational and electronic spectroscopies has emerged, comprising the coherent analogs of traditional analytical methods. These methods are also analogs of coherent multidimensional nuclear magnetic resonance (NMR) spectroscopy. This new family is based on creating the same quantum mechanical superposition states called multiple quantum coherences (MQCs). NMR MQCs are mixtures of nuclear spin states that retain their quantum mechanical phase information for milliseconds. The MQCs in this new family are mixtures of vibrational and electronic states that retain their phases for picoseconds or shorter times. Ultrafast, high-intensity coherent beams rapidly excite multiple states. The excited MQCs then emit bright beams while they retain their phases. Time-domain methods measure the frequencies of the MQCs by resolving their phase oscillations, whereas frequency-domain methods measure the resonance enhancements of the output beam while scanning the excitation frequencies. The resulting spectra provide multidimensional spectral signatures that increase the spectroscopic selectivity required for analyzing complex samples.
Collapse
Affiliation(s)
- John C Wright
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706;
| |
Collapse
|
44
|
Wang J. Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1321856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, P.R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
45
|
Somma C, Folpini G, Reimann K, Woerner M, Elsaesser T. Phase-resolved two-dimensional terahertz spectroscopy including off-resonant interactions beyond the χ((3)) limit. J Chem Phys 2017; 144:184202. [PMID: 27179477 DOI: 10.1063/1.4948639] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We present the first two-dimensional (2D) terahertz (THz) experiment with three phase-locked THz pulses and a fully phase-resolved detection of the nonlinearly emitted field by electrooptic sampling. In a prototype experiment we study the ultrafast dynamics of nonlinear two-phonon and two-photon interband coherences in the narrow-gap semiconductor InSb. Due to the extraordinarily large optical interband dipole of InSb the experiments were performed in the strongly nonperturbative regime of light-matter interaction allowing for impulsive off-resonant excitation of both two-phonon coherences and two-photon interband coherences, the ultrafast dynamics of which is experimentally observed as a function of the waiting time in the three-pulse 2D experiment. Our novel three-pulse 2D THz spectroscopy paves the way for the detailed investigation of nonlinear quantum coherences in solids and holds potential for an extension to other systems.
Collapse
Affiliation(s)
- Carmine Somma
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Giulia Folpini
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Klaus Reimann
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Michael Woerner
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| |
Collapse
|
46
|
Jin GY, Kim YS. Phase-Resolved Heterodyne-Detected Transient Grating Enhances the Capabilities of 2D IR Echo Spectroscopy. J Phys Chem A 2017; 121:1007-1011. [DOI: 10.1021/acs.jpca.6b12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Geun Young Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea
| | - Yung Sam Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Korea
| |
Collapse
|
47
|
Fulfer KD, Kuroda DG. A comparison of the solvation structure and dynamics of the lithium ion in linear organic carbonates with different alkyl chain lengths. Phys Chem Chem Phys 2017; 19:25140-25150. [DOI: 10.1039/c7cp05096h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The structure and dynamics of electrolytes composed of lithium hexafluorophosphate (LiPF6) in dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate were investigated using a combination of linear and two-dimensional infrared spectroscopies.
Collapse
Affiliation(s)
- K. D. Fulfer
- Department of Chemistry
- Louisiana State University
- Baton Rouge
- USA
| | - D. G. Kuroda
- Department of Chemistry
- Louisiana State University
- Baton Rouge
- USA
| |
Collapse
|
48
|
Kottke T, Lórenz-Fonfría VA, Heberle J. The Grateful Infrared: Sequential Protein Structural Changes Resolved by Infrared Difference Spectroscopy. J Phys Chem B 2016; 121:335-350. [PMID: 28100053 DOI: 10.1021/acs.jpcb.6b09222] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The catalytic activity of proteins is a function of structural changes. Very often these are as minute as protonation changes, hydrogen bonding changes, and amino acid side chain reorientations. To resolve these, a methodology is afforded that not only provides the molecular sensitivity but allows for tracing the sequence of these hierarchical reactions at the same time. This feature article showcases results from time-resolved IR spectroscopy on channelrhodopsin (ChR), light-oxygen-voltage (LOV) domain protein, and cryptochrome (CRY). All three proteins are activated by blue light, but their biological role is drastically different. Channelrhodopsin is a transmembrane retinylidene protein which represents the first light-activated ion channel of its kind and which is involved in primitive vision (phototaxis) of algae. LOV and CRY are flavin-binding proteins acting as photoreceptors in a variety of signal transduction mechanisms in all kingdoms of life. Beyond their biological relevance, these proteins are employed in exciting optogenetic applications. We show here how IR difference absorption resolves crucial structural changes of the protein after photonic activation of the chromophore. Time-resolved techniques are introduced that cover the time range from nanoseconds to minutes along with some technical considerations. Finally, we provide an outlook toward novel experimental approaches that are currently developed in our laboratories or are just in our minds ("Gedankenexperimente"). We believe that some of them have the potential to provide new science.
Collapse
Affiliation(s)
- Tilman Kottke
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University , Universitätsstraße 25, 33615 Bielefeld, Germany
| | | | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin , Arnimalle 14, 14195 Berlin, Germany
| |
Collapse
|
49
|
Molesky BP, Guo Z, Cheshire TP, Moran AM. Perspective: Two-dimensional resonance Raman spectroscopy. J Chem Phys 2016; 145:180901. [DOI: 10.1063/1.4966194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Brian P. Molesky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhenkun Guo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Thomas P. Cheshire
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
50
|
Leger JD, Varner C, Rubtsov IV. Multi-mode heterodyned 5th-order infrared spectroscopy. J Chem Phys 2016; 145:154201. [DOI: 10.1063/1.4963815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joel D. Leger
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA
| | - Clyde Varner
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA
| | - Igor V. Rubtsov
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|