1
|
Xu L, Wu Q, Zhao K, Li X, Yao W. Prognostic prediction signature and molecular subtype for liver cancer: A CTC/CTM‑related gene prediction model and independent external validation. Oncol Lett 2024; 28:531. [PMID: 39290961 PMCID: PMC11406422 DOI: 10.3892/ol.2024.14664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
Liver cancer is the second leading cause of tumor-related death worldwide, and a serious threat to lives and health. Circulating tumor cells (CTCs) facilitate the progression of various cancers, including liver cancer. The relationship between CTC/circulating tumor microemboli-related genes (CRGs) and the prognosis of liver cancer is unclear. The aim of the present study was to identify CTC/circulating tumour microemboli-related genes (CRGs) in hepatocellular carcinoma and to investigate their clinical significance. Transcriptomic data from The Cancer Genome Atlas (International Cancer Genome Consortium (ICGC) and GSE117623 databases were combined, and differentially expressed CRGs were identified. These were subsequently analyzed via least absolute shrinkage and selection operator and multivariate Cox analyses, and a five-gene risk signature was constructed. The signature was validated in the ICGC and GSE14520 dataset with survival analysis and receiver operating characteristic curve analysis. Immunocyte infiltration, tumor mutation burden (TMB), tumor immune dysfunction and exclusion (TIDE), and the somatic mutation rate were also compared between high- and low-risk groups, based on the median predictive index, to further evaluate the immunotherapeutic value of the model. Molecular subtypes of liver cancer were characterized by the non-negative matrix factorization method and potential therapeutic compounds were evaluated for different subtypes. Nomograms were utilized to predict the prognosis of patients, and the signature was compared with previous literature models. Additionally, the biological function of one of the CRGs, tumor protein p53 inducible protein 3 (TP53I3), in liver cancer was further explored through in vitro experiments. Analysis of the prognostic characteristics of the five CRGs led to the identification of two liver cancer subtypes. Patients in the low-risk group had a longer survival compared with those in the high-risk group, and patients in the latter group were associated with a higher TMB, immunocyte infiltration and somatic mutation rate, and lower TIDE scores. The prognostic profile was validated in the ICGC and GSE14520 datasets and exhibited a good predictive performance. In vitro analysis showed that the knockdown of TP53I3 suppressed liver cancer cell proliferation. In summary, CRGs were used to develop a new prognostic signature to predict the prognosis of patients with liver cancer. This signature may be used to assess the prognosis of patients and may provide new insights for clinical management strategies. In addition, TP53I3 is potentially a therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Ling Xu
- Department of Nursing, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qiansheng Wu
- Department of Nursing, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiangyu Li
- Department of Thoracic Surgery, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wei Yao
- Department of Oncology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
2
|
Zhang W, Li M, Zhao Z, Xu J, Liu J, Feng P, Zhang B, Huang Z, Kong QQ, Lin Y. Tetrahedral Framework Nucleic Acid-Loaded Retinoic Acid Promotes Osteosarcoma Stem Cell Clearance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58452-58463. [PMID: 39425646 DOI: 10.1021/acsami.4c14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Metastatic osteosarcoma is a commonly seen malignant tumor in adolescents, with a five year survival rate of approximately 20% and a lack of treatment options. Osteosarcoma cancer stem cells are considered to be important drivers of the metastasis of osteosarcoma, and therefore their clearance is considered a promising strategy for treating metastatic osteosarcoma. In the relevant literature, retinoic acid (ATRA) is considered effective for eliminating osteosarcoma stem cells, but it has some inherent disadvantages, including poor solubility, difficulty in entering cells, and structural instability. Tetrahedral framework nucleic acids (tFNAs) are a type of nanoparticles that can carry small-molecule drugs into cells to exert therapeutic effects. Therefore, we designed and synthesized a nanoparticle named T-ATRA by using tFNAs to load ATRA and studied its effect in a nude mouse model. T-ATRA is more effective than ATRA in the clearance of osteosarcoma stem cells and in inhibiting osteosarcoma cell metastasis via the Wnt signaling pathway, thus prolonging the survival time of nude mice with osteosarcoma.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengqing Li
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Zhen Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiangshan Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junlin Liu
- Department of Orthopedics Surgery, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, China
| | - Pin Feng
- Department of Orthopedics Surgery, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, China
| | - Bin Zhang
- Department of Orthopedics Surgery, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, China
| | - Zhangheng Huang
- Department of Orthopaedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qing-Quan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Orthopedics Surgery, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Karaosmanoğlu O. Recurrent hepatocellular carcinoma is associated with the enrichment of MYC targets gene sets, elevated high confidence deleterious mutations and alternative splicing of DDB2 and BRCA1 transcripts. Adv Med Sci 2024; 70:17-26. [PMID: 39486583 DOI: 10.1016/j.advms.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
PURPOSE Recurrence is the main cause of hepatocellular carcinoma (HCC) related deaths. Underlying recurrence biology can be better understood by comparative analysis of the complete set of transcripts between recurrent and non-recurrent HCC. In this study, transcriptomic data (GSE56545) from 21 male patients diagnosed with either recurrent or non-recurrent HCC were reanalyzed to identify deregulated pathways, somatic mutations, fusion transcripts, alternative splicing events, and the immune context in recurrent HCC. MATERIALS AND METHODS DESeq2 was used for differential expression analysis, Mutect2 for somatic mutation analysis, Arriba and STAR-Fusion for fusion transcript analysis, and rMATs for alternative splicing analysis. RESULTS The results revealed that MYC targets gene sets (Hallmark_MYC_targets_V1 and Hallmark_MYC_targets_V2) were significantly enriched in recurrent HCC. Among the MYC targets, CBX3, NOP56, CDK4, NPM1, MCM5, MCM4 and PA2G4 upregulation was significantly associated with poor survival. Somatic mutation analysis demonstrated that the numbers of high confidence deleterious mutations were significantly increased in recurrent HCC. Alternative splicing-mediated production of non-functional DDB2 and oncogenic BRCA1 D11q were discovered in recurrent HCC. Finally, CD8+ T-cells were significantly decreased in recurrent HCC. CONCLUSIONS These results indicated that the enrichment of MYC targets gene sets is one of the most critical factors that leads to the development of recurrent HCC. In addition, elevated deleterious mutation numbers and alternative spliced DDB2 and BRCA1 isoforms have been identified as prominent contributors to increasing genomic instability in male patients with recurrent HCC.
Collapse
Affiliation(s)
- Oğuzhan Karaosmanoğlu
- Department of Biology, Kamil Özdağ Faculty of Science, Karamanoğlu Mehmetbey University, İbrahim Öktem Avenue, No. 124, 70200, Karaman, Turkey.
| |
Collapse
|
4
|
Liu Y, Shi Q, Su Y, Chen Z, He X. Heat shock transcription factor 1 facilitates liver cancer progression by driving super-enhancer-mediated transcription of MYCN. Cancer Med 2024; 13:e70157. [PMID: 39248163 PMCID: PMC11382014 DOI: 10.1002/cam4.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Heat shock transcription factors (HSFs) play crucial roles in the development of malignancies. However, the specific roles of HSFs in hepatocellular carcinoma (HCC) have yet to be fully elucidated. AIMS To explore the involvement of the HSF family, particularly HSF1, in the progression and prognosis of HCC. MATERIALS & METHODS We conducted a thorough analysis of HSF expression and copy number variations across various cancer datasets. Specifically focusing on HSF1, we examined its expression levels and prognostic implications in HCC. In vitro and in vivo experiments were carried out to evaluate the impact of HSF1 on liver cancer cell proliferation. Additionally, we utilized CUT&Tag, H3K27 acetylation enrichment, and RNA sequencing (RNA-seq) to investigate the super-enhancer (SE) regulatory landscapes of HSF1 in liver cancer cell lines. RESULTS HSF1 expression is elevated in HCC and is linked to poor prognosis in several datasets. HSF1 stimulates liver cancer cell proliferation both in vitro and in vivo, partly through modulation of H3K27ac levels, influencing enhancer distribution. Mechanistically, our findings demonstrate that HSF1 transcriptionally activates MYCN expression by binding to its promoter and SE elements, thereby promoting liver cancer cell proliferation. Moreover, increased MYCN expression was detected in HCC tumors and correlated with unfavorable patient outcomes. DISCUSSION Our study sheds light on previously unexplored aspects of HSF1 biology, identifying it as a transcription factor capable of shaping the epigenetic landscape in the context of HCC. Given HSF1's potential as an epigenetic regulator, targeting the HSF1-MYCN axis could open up new therapeutic possibilities for HCC treatment. CONCLUSION The HSF1-MYCN axis constitutes a transcription-dependent regulatory mechanism that may function as both a prognostic indicator and a promising therapeutic target in liver cancer. Further exploration of this axis could yield valuable insights into novel treatment strategies for HCC.
Collapse
Affiliation(s)
- Yizhe Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qili Shi
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Su
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Walczak-Szeffer A, Piastowska-Ciesielska AW. Endoplasmic reticulum stress as a target for retinoids in cancer treatment. Life Sci 2024; 352:122892. [PMID: 38971363 DOI: 10.1016/j.lfs.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Retinoids, natural and synthetic derivatives of vitamin A, have various regulatory activities including controlling cellular proliferation, differentiation, and death. Furthermore, they have been used to treat specific cancers with satisfying results. Nevertheless, retinoids have yet to be converted into effective systemic therapies for the majority of tumor types. Regulation of unfolded protein response signaling, and persistent activation of endoplasmic reticulum stress (ER-stress) are promising treatment methods for cancer. The present article reviews the current understanding of how vitamin A and its derivatives may aid to cause ER-stress-activated apoptosis, as well as therapeutic options for exploiting ER-stress for achieving beneficial goal. The therapeutic use of some retinoids discussed in this article was related to decreased disease recurrence and improved therapeutic outcomes via ER-stress activation and promotion, indicating that retinoids may play an important role in cancer treatment and prevention. More research is needed to expand the use of vitamin A derivatives in cancer therapy, either alone or in combination with unfolded protein response inducers.
Collapse
Affiliation(s)
- Anna Walczak-Szeffer
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Poland.
| | | |
Collapse
|
6
|
Qin XY, Shirakami Y, Honda M, Yeh SH, Numata K, Lai YY, Li CL, Wei F, Xu Y, Imai K, Takai K, Chuma M, Komatsu N, Furutani Y, Gailhouste L, Aikata H, Chayama K, Enomoto M, Tateishi R, Kawaguchi K, Yamashita T, Kaneko S, Nagaoka K, Tanaka M, Sasaki Y, Tanaka Y, Baba H, Miura K, Ochi S, Masaki T, Kojima S, Matsuura T, Shimizu M, Chen PJ, Moriwaki H, Suzuki H. Serum MYCN as a predictive biomarker of prognosis and therapeutic response in the prevention of hepatocellular carcinoma recurrence. Int J Cancer 2024; 155:582-594. [PMID: 38380807 DOI: 10.1002/ijc.34893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The proto-oncogene MYCN expression marked a cancer stem-like cell population in hepatocellular carcinoma (HCC) and served as a therapeutic target of acyclic retinoid (ACR), an orally administered vitamin A derivative that has demonstrated promising efficacy and safety in reducing HCC recurrence. This study investigated the role of MYCN as a predictive biomarker for therapeutic response to ACR and prognosis of HCC. MYCN gene expression in HCC was analyzed in the Cancer Genome Atlas and a Taiwanese cohort (N = 118). Serum MYCN protein levels were assessed in healthy controls (N = 15), patients with HCC (N = 116), pre- and post-surgical patients with HCC (N = 20), and a subset of patients from a phase 3 clinical trial of ACR (N = 68, NCT01640808). The results showed increased MYCN gene expression in HCC tumors, which positively correlated with HCC recurrence in non-cirrhotic or single-tumor patients. Serum MYCN protein levels were higher in patients with HCC, decreased after surgical resection of HCC, and were associated with liver functional reserve and fibrosis markers, as well as long-term HCC prognosis (>4 years). Subgroup analysis of a phase 3 clinical trial of ACR identified serum MYCN as the risk factor most strongly associated with HCC recurrence. Patients with HCC with higher serum MYCN levels after a 4-week treatment of ACR exhibited a significantly higher risk of recurrence (hazard ratio 3.27; p = .022). In conclusion, serum MYCN holds promise for biomarker-based precision medicine for the prevention of HCC, long-term prognosis of early-stage HCC, and identification of high-response subgroups for ACR-based treatment.
Collapse
Affiliation(s)
- Xian-Yang Qin
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Yohei Shirakami
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Masao Honda
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Ya-Yun Lai
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chiao-Ling Li
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feifei Wei
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yali Xu
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kenji Imai
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Koji Takai
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Makoto Chuma
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Nagisa Komatsu
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yutaka Furutani
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Luc Gailhouste
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Laboratory for Brain Development and Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | | | - Kazuaki Chayama
- Collaborative Research Laboratory of Medical Innovation, Hiroshima University, Hiroshima, Japan
- Hiroshima Institute of Life Sciences, Hiroshima, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masaru Enomoto
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Katsuya Nagaoka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motohiko Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Public Health and Welfare Bureau, City of Kumamoto, Kumamoto, Japan
| | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Gastroenterology, Osaka Central Hospital, Osaka, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kouichi Miura
- Division of Gastroenterology, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Sae Ochi
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Masaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Tomokazu Matsuura
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Hisataka Moriwaki
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
7
|
Luo X, He X, Zhang X, Zhao X, Zhang Y, Shi Y, Hua S. Hepatocellular carcinoma: signaling pathways, targeted therapy, and immunotherapy. MedComm (Beijing) 2024; 5:e474. [PMID: 38318160 PMCID: PMC10838672 DOI: 10.1002/mco2.474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with a high mortality rate. It is regarded as a significant public health issue because of its complicated pathophysiology, high metastasis, and recurrence rates. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Traditional treatment methods such as surgical resection, radiotherapy, chemotherapy, and interventional therapies have limited therapeutic effects for HCC patients with recurrence or metastasis. With the development of molecular biology and immunology, molecular signaling pathways and immune checkpoint were identified as the main mechanism of HCC progression. Targeting these molecules has become a new direction for the treatment of HCC. At present, the combination of targeted drugs and immune checkpoint inhibitors is the first choice for advanced HCC patients. In this review, we mainly focus on the cutting-edge research of signaling pathways and corresponding targeted therapy and immunotherapy in HCC. It is of great significance to comprehensively understand the pathogenesis of HCC, search for potential therapeutic targets, and optimize the treatment strategies of HCC.
Collapse
Affiliation(s)
- Xiaoting Luo
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Xin He
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Xingmei Zhang
- Department of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xiaohui Zhao
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Yuzhe Zhang
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Yusheng Shi
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Shengni Hua
- Department of Radiation OncologyZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| |
Collapse
|
8
|
Liu L, Chen J, Ye F, Yan Y, Wang Y, Wu J. A Novel RNA Methylation-Related Prognostic Signature and its Tumor Microenvironment Characterization in Hepatocellular Carcinoma. Technol Cancer Res Treat 2024; 23:15330338241276895. [PMID: 39155614 PMCID: PMC11331574 DOI: 10.1177/15330338241276895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/30/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is one of the most common malignant tumors of the digestive system. RNA methylation plays an important role in tumorigenesis and metastasis, which could alter gene expression and even function at multiple levels, such as RNA splicing, stability, translocation, and translation. In this study, we aimed to conduct a comprehensive analysis of RNA methylation-related genes (RMGs) in HCC and their relationship with survival and clinical features. METHODS A retrospective analysis was performed using publicly available HCC-related datasets. The differentially expressed genes (DEGs) between HCC and controls were identified from TCGA-LlHC and intersected with RMGs to obtain differentially expressed RNA methylation-related genes (DERMGs). Regression analysis was used to screen for prognostic genes and construct risk models. Simultaneously, clinical, immune infiltration and therapeutic efficacy analyses were performed. Finally, multivariate cox regression was used to identify independent risk factors, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the expression levels of the core genes of the model. RESULTS A 21-gene risk model for HCC was established with excellent performance based on ROC curves and survival analysis. Risk scores correlated with tumor grade, pathologic T, and TNM stage. Immune infiltration analysis showed correlations with immune scores, 11 immune cells, and 30 immune checkpoints. Low-risk patients showed a higher susceptibility to immunotherapy. The risk score and TNM stage were independent prognostic factors. qRT-PCR confirmed higher expression of PRDM9, ALPP, and GAD1 in HCC. CONCLUSIONS This study identified RNA methylation-related signature genes in HCC and constructed a risk model that predicts patient outcomes and reflects the immune microenvironment. Prognostic genes are involved in complex regulatory mechanisms, which may be useful for cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Luzheng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Interventional Radiology and Vascular Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiacheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Fei Ye
- Department of Blood Cell Therapy, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yanggang Yan
- Department of Interventional Radiology and Vascular Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
9
|
Bopape M, Tiloke C, Ntsapi C. Moringa oleifera and Autophagy: Evidence from In Vitro Studies on Chaperone-Mediated Autophagy in HepG 2 Cancer Cells. Nutr Cancer 2023; 75:1822-1847. [PMID: 37850743 DOI: 10.1080/01635581.2023.2270215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer in Sub-Saharan African countries, including South Africa (SA). Given the limitations in current HCC therapeutics, there is an increasing need for alternative adjuvant therapeutic options. As such, several cell survival mechanisms, such as autophagy, have been identified as potential adjuvant therapeutic targets in HCC treatment. Of the three most established autophagic pathways, the upregulation of chaperone-mediated autophagy (CMA) has been extensively described in various cancer cells, including HCC cells. CMA promotes tumor growth and chemotherapeutic drug resistance, thus contributing to HCC tumorigenesis. Therefore, the modulation of CMA serves as a promising adjuvant target for current HCC therapeutic strategies. Phytochemical extracts found in the medicinal plant, Moringa oleifera (MO), have been shown to induce apoptosis in numerous cancer cells, including HCC. MO leaves have the greatest abundance of phytochemicals displaying anticancer potential. However, the potential interaction between the pro-apoptotic effects of MO aqueous leaf extract and the survival-promoting role of CMA in an in vitro model of HCC remains unclear. This review aims to summarize the latest findings on the role of CMA, and MO in the progression of HCC.
Collapse
Affiliation(s)
- Matlola Bopape
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Charlette Tiloke
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Claudia Ntsapi
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
10
|
Wu J, Chan YT, Lu Y, Wang N, Feng Y. The tumor microenvironment in the postsurgical liver: Mechanisms and potential targets of postoperative recurrence in human hepatocellular carcinoma. Med Res Rev 2023; 43:1946-1973. [PMID: 37102365 DOI: 10.1002/med.21967] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Surgery remains to be the mainstay of treatment for hepatocellular carcinoma (HCC). Nonetheless, its therapeutic efficacy is significantly impaired by postoperative recurrence, which occurs in more than half of cases as a result of intrahepatic metastasis or de novo tumorigenesis. For decades, most therapeutic strategies on inhibiting postoperative HCC recurrence have been focused on the residual tumor cells but satisfying therapeutic outcomes are barely observed in the clinic. In recent years, a better understanding of tumor biology allows us to shift our focus from tumor cells toward the postoperative tumor microenvironment (TME), which is gradually identified to play a pivotal role in tumor recurrence. In this review, we describe various surgical stress and surgical perturbation on postoperative TME. Besides, we discuss how such alternations in TME give rise to postoperative recurrence of HCC. Based on its clinical significance, we additionally highlight the potential of the postoperative TME as a target for postoperative adjuvant therapeutics.
Collapse
Affiliation(s)
- Junyu Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuanjun Lu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Luo Y, He M, Yang J, Zhang F, Chen J, Wen X, Fan J, Fan X, Chai P, Jia R. A novel MYCN-YTHDF1 cascade contributes to retinoblastoma tumor growth by eliciting m 6A -dependent activation of multiple oncogenes. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2138-2151. [PMID: 36949231 DOI: 10.1007/s11427-022-2288-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/20/2022] [Indexed: 03/24/2023]
Abstract
Retinoblastoma, the most prevalent primary intraocular tumor in children, leads to vision impairment, disability and even death. In addition to RB1 inactivation, MYCN activation has been documented as another common oncogenic alteration in retinoblastoma and represents one of the high-risk molecular subtypes of retinoblastoma. However, how MYCN contributes to the progression of retinoblastoma is still incompletely understood. Here, we report that MYCN upregulates YTHDF1, which encodes one of the reader proteins for N6-methyladenosine (m6A) RNA modification, in retinoblastoma. We further found that this MYCN-upregulated m6A reader functions to promote retinoblastoma cell proliferation and tumor growth in an m6A binding-dependent manner. Mechanistically, YTHDF1 promotes the expression of multiple oncogenes by binding to their mRNAs and enhancing mRNA stability and translation in retinoblastoma cells. Taken together, our findings reveal a novel MYCN-YTHDF1 regulatory cascade in controlling retinoblastoma cell proliferation and tumor growth, pinpointing an unprecedented mechanism for MYCN amplification and/or activation to promote retinoblastoma progression.
Collapse
Affiliation(s)
- Yingxiu Luo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China
| | - Mengjia He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China
| | - Feifei Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China
| | - Jie Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China
| | - Xuyang Wen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China.
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200023, China.
| |
Collapse
|
12
|
Wang Y, Wan X, Du S. Integrated analysis revealing a novel stemness-metabolism-related gene signature for predicting prognosis and immunotherapy response in hepatocellular carcinoma. Front Immunol 2023; 14:1100100. [PMID: 37622118 PMCID: PMC10445950 DOI: 10.3389/fimmu.2023.1100100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant lethal tumor and both cancer stem cells (CSCs) and metabolism reprogramming have been proven to play indispensable roles in HCC. This study aimed to reveal the connection between metabolism reprogramming and the stemness characteristics of HCC, established a new gene signature related to stemness and metabolism and utilized it to assess HCC prognosis and immunotherapy response. The clinical information and gene expression profiles (GEPs) of 478 HCC patients came from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA). The one-class logistic regression (OCLR) algorithm was employed to calculate the messenger ribonucleic acid expression-based stemness index (mRNAsi), a new stemness index quantifying stemness features. Differentially expressed analyses were done between high- and low-mRNAsi groups and 74 differentially expressed metabolism-related genes (DEMRGs) were identified with the help of metabolism-related gene sets from Molecular Signatures Database (MSigDB). After integrated analysis, a risk score model based on the three most efficient prognostic DEMRGs, including Recombinant Phosphofructokinase Platelet (PFKP), phosphodiesterase 2A (PDE2A) and UDP-glucuronosyltransferase 1A5 (UGT1A5) was constructed and HCC patients were divided into high-risk and low-risk groups. Significant differences were found in pathway enrichment, immune cell infiltration patterns, and gene alterations between the two groups. High-risk group patients tended to have worse clinical outcomes and were more likely to respond to immunotherapy. A stemness-metabolism-related model composed of gender, age, the risk score model and tumor-node-metastasis (TNM) staging was generated and showed great discrimination and strong ability in predicting HCC prognosis and immunotherapy response.
Collapse
Affiliation(s)
| | | | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
13
|
Qin XY, Furutani Y, Yonezawa K, Shimizu N, Kato-Murayama M, Shirouzu M, Xu Y, Yamano Y, Wada A, Gailhouste L, Shrestha R, Takahashi M, Keillor JW, Su T, Yu W, Fujii S, Kagechika H, Dohmae N, Shirakami Y, Shimizu M, Masaki T, Matsuura T, Suzuki H, Kojima S. Targeting transglutaminase 2 mediated exostosin glycosyltransferase 1 signaling in liver cancer stem cells with acyclic retinoid. Cell Death Dis 2023; 14:358. [PMID: 37308486 DOI: 10.1038/s41419-023-05847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 06/14/2023]
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein that promotes or suppresses tumorigenesis, depending on intracellular location and conformational structure. Acyclic retinoid (ACR) is an orally administered vitamin A derivative that prevents hepatocellular carcinoma (HCC) recurrence by targeting liver cancer stem cells (CSCs). In this study, we examined the subcellular location-dependent effects of ACR on TG2 activity at a structural level and characterized the functional role of TG2 and its downstream molecular mechanism in the selective depletion of liver CSCs. A binding assay with high-performance magnetic nanobeads and structural dynamic analysis with native gel electrophoresis and size-exclusion chromatography-coupled multi-angle light scattering or small-angle X-ray scattering showed that ACR binds directly to TG2, induces oligomer formation of TG2, and inhibits the transamidase activity of cytoplasmic TG2 in HCC cells. The loss-of-function of TG2 suppressed the expression of stemness-related genes, spheroid proliferation and selectively induced cell death in an EpCAM+ liver CSC subpopulation in HCC cells. Proteome analysis revealed that TG2 inhibition suppressed the gene and protein expression of exostosin glycosyltransferase 1 (EXT1) and heparan sulfate biosynthesis in HCC cells. In contrast, high levels of ACR increased intracellular Ca2+ concentrations along with an increase in apoptotic cells, which probably contributed to the enhanced transamidase activity of nuclear TG2. This study demonstrates that ACR could act as a novel TG2 inhibitor; TG2-mediated EXT1 signaling is a promising therapeutic target in the prevention of HCC by disrupting liver CSCs.
Collapse
Affiliation(s)
- Xian-Yang Qin
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Yutaka Furutani
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kento Yonezawa
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Miyuki Kato-Murayama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Yali Xu
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Luc Gailhouste
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Laboratory for Brain Development and Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Rajan Shrestha
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Pharmacy, Kathmandu University, Dhulikhel, Kavre, Nepal
| | - Masataka Takahashi
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Ting Su
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Wenkui Yu
- School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Shinya Fujii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yohei Shirakami
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Takahiro Masaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomokazu Matsuura
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
14
|
Ebrahimi N, Far NP, Fakhr SS, Faghihkhorasani F, Miraghel SA, Chaleshtori SR, Rezaei-Tazangi F, Beiranvand S, Baziyar P, Manavi MS, Zarrabi A, Nabavi N, Ren J, Aref AR. The endocannabinoid system, a new gatekeeper in the pharmacology of human hepatocellular carcinoma. ENVIRONMENTAL RESEARCH 2023; 228:115914. [PMID: 37062475 DOI: 10.1016/j.envres.2023.115914] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Despite numerous prevention methodologies and treatment options, hepatocellular carcinoma (HCC) still remains as the third leading life-threatening cancer. It is thus pertinent to develop new treatment modality to fight this devastating carcinoma. Ample recent studies have shown the anti-inflammatory and antitumor roles of the endocannabinoid system in various forms of cancers. Preclinical studies have also confirmed that cannabinoid therapy can be an optimal regimen for cancer treatments. The endocannabinoid system is involved in many cancer-related processes, including induction of endoplasmic reticulum (ER) stress-dependent apoptosis, autophagy, PITRK and ERK signaling pathways, cell invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes. Moreover, changes in signaling transduction of the endocannabinoid system can be a potential diagnostic and prognostic biomarker for HCC. Due to its pivotal role in lipid metabolism, the endocannabinoid system affects metabolic reprogramming as well as lipid content of exosomes. In addition, due to the importance of non-coding RNAs (ncRNAs), several studies have examined the relationship between microRNAs and the endocannabinoid system in HCC. However, HCC is a pathological condition with high heterogeneity, and therefore using the endocannabinoid system for treatment has faced many controversies. While some studies favored a role of the endocannabinoid system in carcinogenesis and tumor induction, others exhibited the anticancer potential of endocannabinoids in HCC. In this review, specific studies delineating the relationship between endocannabinoids and HCC are examined. Based on collected findings, detailed studies of the molecular mechanism of endocannabinoids as well as preclinical studies for investigating therapeutic or carcinogenic impacts in HCC cancer are strongly suggested.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology,Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Division of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus, Hamar, Norway
| | | | - Seyed Ali Miraghel
- Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sheida Beiranvand
- Department of Biotechnology, School of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, Uinversity of Mazandaran, Babolsar, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, WA, 98195, USA
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
15
|
Qin XY, Mendoza-Parra MA, Shirakami Y. Editorial: Cancer and nutrients: new chemicals, signals, and biomarker-based therapy. Front Oncol 2023; 13:1190065. [PMID: 37114124 PMCID: PMC10127677 DOI: 10.3389/fonc.2023.1190065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Affiliation(s)
- Xian-Yang Qin
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- *Correspondence: Xian-Yang Qin,
| | - Marco Antonio Mendoza-Parra
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Yohei Shirakami
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
16
|
Sakai N, Kamimura K, Miyamoto H, Ko M, Nagoya T, Setsu T, Sakamaki A, Yokoo T, Kamimura H, Soki H, Tokunaga A, Inamine T, Nakashima M, Enomoto H, Kousaka K, Tachiki H, Ohyama K, Terai S. Letrozole ameliorates liver fibrosis through the inhibition of the CTGF pathway and 17β-hydroxysteroid dehydrogenase 13 expression. J Gastroenterol 2023; 58:53-68. [PMID: 36301364 DOI: 10.1007/s00535-022-01929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 09/21/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND To establish a treatment option for liver fibrosis, the possibility of the drug repurposing theory was investigated, with a focus on the off-target effects of active pharmaceutical ingredients. METHODS First, several active pharmaceutical ingredients were screened for their effects on the gene expression in the hepatocytes using chimeric mice with humanized hepatocytes. As per the gene expression-based screening assay for 36 medications, we assessed the mechanism of the antifibrotic effect of letrozole, a third-generation aromatase inhibitor, in mouse models of liver fibrosis induced by carbon tetrachloride (CCl4) and a methionine choline-deficient (MCD) diet. We assessed liver histology, serum biochemical markers, and fibrosis-related gene and protein expressions in the hepatocytes. RESULTS A gene expression-based screening assay revealed that letrozole had a modifying effect on fibrosis-related gene expression in the hepatocytes, including YAP, CTGF, TGF-β, and CYP26A1. Letrozole was administered to mouse models of CCl4- and MCD-induced liver fibrosis and it ameliorated the liver fibrosis. The mechanisms involved the inhibition of the Yap-Ctgf profibrotic pathway following a decrease in retinoic acid levels in the hepatocytes caused by suppression of the hepatic retinol dehydrogenase, Hsd17b13 and activation of the retinoic acid hydrogenase, Cyp26a1. CONCLUSIONS Letrozole slowed the progression of liver fibrosis by inhibiting the Yap-Ctgf pathway. The mechanisms involved the modification of the Hsd17b13 and Cyp26a1 expressions led to the suppression of retinoic acid in the hepatocytes, which contributed to the activation of Yap-Ctgf pathway. Because of its off-target effect, letrozole could be repurposed for the treatment of liver fibrosis. The third-generation aromatase inhibitor letrozole ameliorated liver fibrosis by suppressing the Yap-Ctgf pathway by partially modifying the Hsd17b13 and Cyp26a1 expressions, which reduced the retinoic acid level in the hepatocytes. The gene expression analysis using chimeric mice with humanized liver revealed that the mechanisms are letrozole specific and, therefore, may be repurposed for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan. .,Department of General Medicine, Niigata University School of Medicine, Niigata, Niigata, 951-8510, Japan.
| | - Hirotaka Miyamoto
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Masayoshi Ko
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Takuro Nagoya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Hiroyuki Soki
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Ayako Tokunaga
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Tatsuo Inamine
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, 852-8588, Japan.,Organization for Research Promotion, University of the Ryukyus, Nishihara-Cho, Okinawa, 903-0213, Japan
| | - Mikiro Nakashima
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Hatsune Enomoto
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd., Kadoma, Osaka, 571-8580, Japan
| | - Kazuki Kousaka
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd., Kadoma, Osaka, 571-8580, Japan
| | - Hidehisa Tachiki
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd., Kadoma, Osaka, 571-8580, Japan
| | - Kaname Ohyama
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan.,Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Nagasaki, 852-8501, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| |
Collapse
|
17
|
Wang T, Rho O, Eguiarte-Solomon F, DiGiovanni J. Twist1 as a target for prevention of cutaneous squamous cell carcinoma. Mol Carcinog 2023; 62:62-76. [PMID: 36373194 PMCID: PMC9772054 DOI: 10.1002/mc.23482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) represents an important clinical problem requiring novel approaches for both prevention and treatment. The transcription factor, Twist-related protein 1 (Twist1), has been identified as having a key mechanistic role in the development and progression of cSCC. Studies in relevant mouse models of cSCC have shown that Twist1 regulates epithelial-mesenchymal transition (EMT) and stemness driving progression and metastasis of cSCC. In addition, further research has shown that Twist1 regulates the balance between keratinocyte proliferation and differentiation and therefore impacts earlier stages of cSCC development. Through use of keratinocyte specific Twist1 knockout models, a role for this gene in keratinocyte stem cell homeostasis has been revealed. As a transcription factor, Twist1 regulates a large number of genes both in a positive, as well as a negative manner across several interdependent pathways. Studies in keratinocyte specific knockout models have shown that Twist1 upregulates the expression of genes involved in proliferation, stemness, and EMT while downregulating the expression of genes associated with differentiation. Furthermore, a number of compounds, including naturally occurring compounds, have been identified that target Twist1 and can block its effects in cancer cells and in keratinocytes in vivo. Collectively, the current understanding of Twist1 function in cSCC development and progression suggests that it represents a potential target for prevention and treatment of cSCC.
Collapse
Affiliation(s)
- Tingzeng Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - Fernando Eguiarte-Solomon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX 78723, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, United States
| |
Collapse
|
18
|
He Y, Wu Y, Song M, Yang Y, Yu Y, Xu S. Establishment and validation of a ferroptosis-related prognostic signature for hepatocellular carcinoma. Front Oncol 2023; 13:1149370. [PMID: 37143953 PMCID: PMC10151679 DOI: 10.3389/fonc.2023.1149370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with high heterogeneity. The prognosis of HCC is quite poor and the prognostic prediction also has challenges. Ferroptosis is recently recognized as a kind of iron-dependent cell death, which is involved in tumor progression. However, further study is needed to validate the influence of drivers of ferroptosis (DOFs) on the prognosis of HCC. Methods The FerrDb database and the Cancer Genome Atlas (TCGA) database were applied to retrieve DOFs and information of HCC patients respectively. HCC patients were randomly divided into training and testing cohorts with a 7:3 ratio. Univariate Cox regression, LASSO and multivariate Cox regression analyses were carried out to identify the optimal prognosis model and calculate the risk score. Then, univariate and multivariate Cox regression analyses were performed to assess the independence of the signature. At last, gene functional, tumor mutation and immune-related analyses were conducted to explore the underlying mechanism. Internal and external databases were used to confirm the results. Finally, the tumor tissue and normal tissue from HCC patients were applied to validate the gene expression in the model. Results Five genes were identified to develop as a prognostic signature in the training cohort relying on the comprehensive analysis. Univariate and multivariate Cox regression analyses confirmed that the risk score was able to be an independent factor for the prognosis of HCC patients. Low-risk patients showed better overall survival than high-risk patients. Receiver operating characteristic (ROC) curve analysis confirmed the signature's predictive capacity. Furthermore, internal and external cohorts were consistent with our results. There was a higher proportion of nTreg cell, Th1 cell, macrophage, exhausted cell and CD8+T cell in the high-risk group. The Tumor Immune Dysfunction and Exclusion (TIDE) score suggested that high-risk patients could respond better to immunotherapy. Besides, the experimental results showed that some genes were differentially expressed between tumor and normal tissues. Conclusion In summary, the five ferroptosis gene signature showed potential in prognosis of patients with HCC and could also be regarded as a value biomarker for immunotherapy response in these patients.
Collapse
Affiliation(s)
- Yixian He
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yunyang Wu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Mengqi Song
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yanlong Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Yizhi Yu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai, China
- *Correspondence: Yizhi Yu, ; Sheng Xu,
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai, China
- *Correspondence: Yizhi Yu, ; Sheng Xu,
| |
Collapse
|
19
|
Gao B, Wang Y, Lu S. Construction and validation of a novel signature based on epithelial-mesenchymal transition-related genes to predict prognosis and immunotherapy response in hepatocellular carcinoma by comprehensive analysis of the tumor microenvironment. Funct Integr Genomics 2022; 23:6. [PMID: 36536232 PMCID: PMC9763151 DOI: 10.1007/s10142-022-00933-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Immunotherapy has yielded encouraging results in the treatment of advanced hepatocellular carcinoma (HCC). However, the relationship between epithelial-mesenchymal transition (EMT) and immunotherapy for HCC has not been adequately explained. In this study, we comprehensively analyzed a bulk RNA sequence dataset of 365 HCC patients in The Cancer Genome Atlas (TCGA) dataset. Subsequently, we constructed a prognostic signature based on 6 EMT-related genes and divided 365 HCC patients into high- and low-risk groups. The predictive efficacy of the signature was well validated in different clinical subgroups and in two independent external datasets. We further explored the relationship between prognostic signature and immunotherapy response in terms of immune cell infiltration, somatic mutations, tumor mutation burden (TMB), microsatellite instability (MSI), immune checkpoint-associated gene expression, single-nucleotide variants (SNV) neoantigens, cancer testicular antigens (CTA) scores, and tumor immune dysfunction and exclusion (TIDE) scores. We validated the predictive efficacy of prognostic signature for immunotherapy response using external independent immunotherapy data. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to validate EMT-related gene overexpression in HCC tissue samples. Prognostic signature was an independent risk factor affecting the prognosis of HCC patients and has shown superiority in predicting patient survival compared to other clinical factors. Compared with the low-risk group, the proportion of Activated_CD4_T_cell, Type_2_T_helper_cel, and macrophages were higher in the tumor microenvironment of HCC patients in the high-risk group, while the Activated_CD8_T_cell and CD56bright_natural_killer_cell proportions were lower. The prognostic signature was positively correlated with TMB scores, MSI scores, SNV neoantigens scores, expression levels of immune checkpoint-related genes, and TIDE scores, and patients in the high-risk group were more suitable for immunotherapy. qRT-PCR confirms overexpression of 6 EMT-related genes in HCC tissues for the construction of prognostic signature. Our novel prognostic signature can effectively predict the prognosis and immunotherapy response of HCC patients. In the future, it will be an effective tool for physicians to screen suitable immunotherapy populations and improve response rates and overall survival (OS).
Collapse
Affiliation(s)
- Biao Gao
- School of Medicine, Nankai University, Tianjin, 300300, China
| | - Yafei Wang
- School of Medicine, Nankai University, Tianjin, 300300, China
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, 10058, China. .,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 10058, China. .,Key Laboratory of Digital Hepetobiliary Surgery PLA, Beijing, 10058, China.
| |
Collapse
|
20
|
AHNAK Contributes to Hepatocellular Carcinoma Growth by Interacting with IGF-1R. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248680. [PMID: 36557813 PMCID: PMC9782793 DOI: 10.3390/molecules27248680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Neuroblast differentiation-associated protein AHNAK, a large structural scaffold protein, remains mysterious in biological processes. AHNAK plays a suppressive or progressive role in different types of cancers. To investigate the role of the AHNAK in hepatocellular carcinoma (HCC), cell viability assays were performed to determine the cell proliferation of the stable AHNAK-knockdown HepG2 cell line; co-immunoprecipitation (Co-IP) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) were performed on HCC and matched paracancerous (MPC) tissues. The Metascape platform was used for enrichment analyses; the "ComplexHeatmap" package was applied for cluster analyses and visualization. Co-IP, Western botting and immunofluorescence double staining were performed to assess the interactions between AHNAK and insulin-like growth factor 1 receptor (IGF-1R). AHNAK silencing reduced the viability of HepG2 cells; the interactome in HCC and MPC tissues enriched 204 pathways and processes, which partially reflected the signature of HCC field cancerization. AHNAK could co-localize and interact with IGF-1R. These results suggested that the AHNAK complex contributes to HCC growth, potentially by interacting with IGF-1R.
Collapse
|
21
|
Zhang L, Li HT, Shereda R, Lu Q, Weisenberger DJ, O'Connell C, Machida K, An W, Lenz HJ, El-Khoueiry A, Jones PA, Liu M, Liang G. DNMT and EZH2 inhibitors synergize to activate therapeutic targets in hepatocellular carcinoma. Cancer Lett 2022; 548:215899. [PMID: 36087682 PMCID: PMC9563073 DOI: 10.1016/j.canlet.2022.215899] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022]
Abstract
The development of more effective targeted therapies for hepatocellular carcinoma (HCC) patients due to its aggressiveness is urgently needed. DNA methyltransferase inhibitors (DNMTis) represented the first clinical breakthrough to target aberrant cancer epigenomes. However, their clinical efficacies are still limited, in part due to an "epigenetic switch" in which a large group of genes that are demethylated by DNMTi treatment remain silenced by polycomb repressive complex 2 (PRC2) occupancy. EZH2 is the member of PRC2 that catalyzes the placement of H3K27me3 marks. EZH2 overexpression is correlated with poor HCC patient survival. We tested the combination of a DNMTi (5-aza-2'-deoxycytidine, DAC) and the EZH2 inhibitor (EZH2i) GSK126 in human HCC cell lines on drug sensitivity, DNA methylation, nucleosome accessibility, and gene expression profiles. Compared with single agent treatments, all HCC cell lines studied showed increased sensitivity after receiving both drugs concomitant with prolonged anti-proliferative changes and sustained reactivation of nascently-silenced genes. The increased number of up-regulated genes after combination treatment correlated with prolonged anti-proliferation effects and increased nucleosome accessibility. Combination treatments also activate demethylated promoters that are repressed by PRC2 occupancy. Furthermore, 13-31% of genes down-regulated by DNA methylation in primary HCC tumors were reactivated through this combination treatment scheme in vitro. Finally, the combination treatment also exacerbates anti-tumor immune responses, while most of these genes were downregulated in over 50% of primary HCC tumors. We have linked the anti-tumor effects of DAC and GSK126 combination treatments to detailed epigenetic alterations in HCC cells, identified potential therapeutic targets and provided a rationale for treatment efficacy for HCC patients.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong-Tao Li
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rachel Shereda
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daniel J Weisenberger
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Casey O'Connell
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Keigo Machida
- Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Woojin An
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Heinz-Josef Lenz
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Anthony El-Khoueiry
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter A Jones
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Minmin Liu
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA.
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
22
|
Zhou S, Li M, Ostrow D, Ruble D, Mascarenhas L, Pawel B, Buckley JD, Triche TJ. Potential methylation-regulated genes and pathways in hepatocellular neoplasm, not otherwise specified. Front Oncol 2022; 12:952325. [PMID: 36212481 PMCID: PMC9532972 DOI: 10.3389/fonc.2022.952325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Aims The molecular basis of hepatocellular neoplasm, not otherwise specified (HCN-NOS) is unknown. We aimed to identify gene expression patterns, potential methylation-regulated genes and pathways that characterize the tumor, and its possible relationship to hepatoblastoma and hepatocellular carcinoma (HCC). Approach & Results Parallel genome-wide profiling of gene expression (RNAseq) and DNA methylation (EPIC850) was performed on 4 pairs of pre-treatment HCN-NOS tumors and adjacent non-tumor controls. 2530 significantly differentially expressed genes (DEGs) were identified between tumors and controls. Many of these DEGs were associated with hepatoblastoma and/or HCC. Analysis Match in Ingenuity Pathway Analysis determined that the gene expression profile of HCN-NOS was unique but significantly similar to that of both hepatoblastoma and HCC. A total of 27,195 CpG sites (CpGs) were significantly differentially methylated (DM) between tumors and controls, with a global hypomethylation pattern and predominant CpG island hypermethylation in promotor regions. Aberrant DNA methylation predominated in Developmental Process and Molecular Function Regulator pathways. Embryonic stem cell pathways were significantly enriched. In total, 1055 aberrantly methylated (at CpGs) and differentially expressed genes were identified, including 25 upstream regulators and sixty-one potential CpG island methylation-regulated genes. Eight methylation-regulated genes (TCF3, MYBL2, SRC, HMGA2, PPARGC1A, SLC22A1, COL2A1 and MYCN) had highly consistent gene expression patterns and prognostic value in patients with HCC, based on comparison to publicly available datasets. Conclusions HCN-NOS has a unique, stem-cell like gene expression and DNA methylation profile related to both hepatoblastoma and HCC but distinct therefrom. Further, 8 methylation-regulated genes associated with prognosis in HCC were identified.
Collapse
Affiliation(s)
- Shengmei Zhou
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Shengmei Zhou,
| | - Meng Li
- USC Libraries Bioinformatics Services, University of Southern California, Los Angeles, CA, United States
| | - Dejerianne Ostrow
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - David Ruble
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Leo Mascarenhas
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Cancer and Blood Disease Institute, Division of Hematology/Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jonathan David Buckley
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Timothy J. Triche
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Xiang Z, Mranda GM, Zhou X, Xue Y, Wang Y, Wei T, Liu J, Ding Y. Identification and validation of the necroptosis-related gene signature related to prognosis and tumor immune in hepatocellular carcinoma. Medicine (Baltimore) 2022; 101:e30219. [PMID: 36086716 PMCID: PMC10980426 DOI: 10.1097/md.0000000000030219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the sixth most common cancer, which is characterized by complicated etiology, excessive heterogeneity, and poor prognosis. Necroptosis is a new kind of programmed cell death, which is intently associated with the occurrence and development of tumors. Although researchers have had a deep understanding of necroptosis in recent years, the expression level of necroptosis-related genes in HCC and its relationship with the survival time of HCC patients are not clear. METHODS According to the expression of necroptosis-related genes and the survival of HCC patients, HCC patients in the TCGA database were divided into 2 groups that were relatively independent of each other. The genes related to the survival time of HCC patients were screened from the 2 groups of differentially expressed genes. By using the Least Absolute Shrinkage and Selection Operator Cox regression analysis, the optimal λ value was obtained, and the 10-gene signature model was established. RESULTS According to the median risk score of the TCGA cohort, HCC patients were averagely divided into high- and low-risk groups. Compared with the low-risk group, the death toll of the high-risk group was relatively higher and the survival time was relatively shorter. Principal component analysis and t-distributed stochastic neighbor embedding analysis showed that there was a significant separation between high- and low-risk groups. Through Kaplan-Meier analysis, it was found that the survival time of HCC patients in the high-risk group was significantly shorter than that in the low-risk group. Through receiver operating characteristic analysis, it was found that the sensitivity and specificity of the model were good. We also make a comprehensive analysis of the international cancer genome consortium database as a verification queue and prove the reliability of the 10-gene signature model. Gene Ontolog, Kyoto Encyclopedia of Genes and Genomes, and single-sample gene set enrichment analysis showed that many biological processes and pathways related to immunity had been enriched, and the antitumor immune function was weakened in the high-risk population. CONCLUSION The risk score can be considered as an independent prognostic factor to predict the prognosis of patients with HCC, and necroptosis-related genes are also closely related to tumor immune function.
Collapse
Affiliation(s)
- Zhiping Xiang
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Geofrey Mahiki Mranda
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xingguo Zhou
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Xue
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Wang
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tian Wei
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Junjian Liu
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yinlu Ding
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
24
|
Zou J, Qin W. Comprehensive analysis of the cancer driver genes constructs a seven-gene signature for prediction of survival and tumor immunity in hepatocellular carcinoma. Front Genet 2022; 13:937948. [PMID: 36017503 PMCID: PMC9395598 DOI: 10.3389/fgene.2022.937948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant and heterogeneous tumor with poor prognosis. Cancer driver genes (CDGs) play an important role in the carcinogenesis and progression of HCC. In this study, we comprehensively investigated the expression, mutation, and prognostic significance of 568 CDGs in HCC. A prognostic risk model was constructed based on seven CDGs (CDKN2C, HRAS, IRAK1, LOX, MYCN, NRAS, and PABPC1) and verified to be an independent prognostic factor in both TCGA and ICGC cohorts. The low-score group, which showed better prognosis, had a high proportion of CD8+ T cells and elevated expression of interferon-related signaling pathways. Additionally, we constructed a nomogram to extend the clinical applicability of the prognostic model, which exhibits excellent predictive accuracy for survival. Our study showed the important role of CDGs in HCC and provides a novel prognostic indicator for HCC.
Collapse
Affiliation(s)
- Jun Zou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Wan Qin,
| |
Collapse
|
25
|
Hwang JH, Lee J, Choi WY, Kim MJ, Lee J, Chu KHB, Kim LK, Kim YJ. ZNF204P is a stemness-associated oncogenic long non-coding RNA in hepatocellular carcinoma. BMB Rep 2022. [PMID: 35168700 PMCID: PMC9252894 DOI: 10.5483/bmbrep.2022.55.6.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Ji-Hyun Hwang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Korea
| | - Jungwoo Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Korea
| | - Won-Young Choi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Korea
| | - Min-Jung Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Korea
| | - Jiyeon Lee
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea
| | - Khanh Hoang Bao Chu
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Lark Kyun Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea
| | - Young-Joon Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
26
|
Identification and Validation of Prognosis-Related Necroptosis Genes for Prognostic Prediction in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3172099. [PMID: 35813858 PMCID: PMC9259286 DOI: 10.1155/2022/3172099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/25/2022]
Abstract
Background The prediction of hepatocellular carcinoma (HCC) survival is challenging because of its rapid progression. In recent years, necroptosis was found to be involved in the progression of multiple cancer types. However, the role of necroptosis in HCC remains unclear. Methods Clinicopathological parameters and transcriptomic data of 370 HCC patients were obtained from TCGA-LIHC dataset. Prognosis-related necroptosis genes (PRNGs) were identified and utilized to construct a LASSO risk model. The GEO cohorts (GSE54236 and GSE14520) were used for external validation. We evaluated the distribution of HCC patients, the difference in prognosis, and the accuracy of the prognostic prediction of the LASSO risk model. The immune microenvironment and functional enrichment of different risk groups were further clarified. Finally, we performed a drug sensitivity analysis on the PRNGs that constructed the LASSO model and verified their mRNA expression levels in vitro. Results: A total of 48 differentially expressed genes were identified, 23 of which were PRNGs. We constructed the LASSO risk model using nine genes: SQSTM1, FLT3, HAT1, PLK1, MYCN, KLF9, HSP90AA1, TARDBP, and TNFRSF21. The outcomes of low-risk patients were considerably better than those of high-risk patients in both the training and validation cohorts. In addition, stronger bile acid metabolism, xenobiotic metabolism, and more active immune cells and immune functions were observed in low-risk patients, and high expressions of TARDBP, PLK1, and FLT3 were associated with greater drug sensitivity. With the exception of FLT3, the mRNA expression of the other eight genes was verified in Huh7 and 97H cells. Conclusions. The PRNG signature provides a novel and effective method for predicting the outcome of HCC as well as potential targets for further research.
Collapse
|
27
|
Wu S, Xu H, Zhang R, Wang X, Yang J, Li X, Chen S, He W, Nan A. Circular RNA circLAMA3 inhibits the proliferation of bladder cancer by directly binding an mRNA. Mol Ther Oncolytics 2022; 24:742-754. [PMID: 35317525 PMCID: PMC8908064 DOI: 10.1016/j.omto.2022.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
The circular RNA (circRNA) circLAMA3 is significantly downregulated in bladder cancer tissues and cell lines. However, its function in bladder cancer has not yet been explored, and further research is needed. In this study, functional experiments demonstrated that circLAMA3 significantly inhibited the proliferation, migration, and invasion of bladder cancer cells and inhibited bladder cancer growth in vivo. Mechanistically, circLAMA3 directly binds to and promotes the degradation of MYCN mRNA, thereby reducing the MYCN protein expression in bladder cancer cells. Decreased expression of the MYCN protein inhibits the promoter activity and expression of CDK6. Ultimately, circLAMA3 affects DNA replication by downregulating CDK6, resulting in G0/G1 phase arrest and inhibition of bladder cancer proliferation. In summary, we report a potential novel regulatory mechanism via which a circRNA directly binds an mRNA and thereby regulates its fate. Moreover, circLAMA3 significantly affects the progression of bladder cancer and has potential as a diagnostic biomarker and therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Shuilian Wu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haotian Xu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Ruirui Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China.,Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xin Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jialei Yang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaofei Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Sixian Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Wanting He
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Aruo Nan
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China.,Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
28
|
Jin Y, Teh SS, Lau HLN, Xiao J, Mah SH. Retinoids as anti-cancer agents and their mechanisms of action. Am J Cancer Res 2022; 12:938-960. [PMID: 35411232 PMCID: PMC8984900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023] Open
Abstract
Retinoids (vitamin A) have been reported extensively for anti-cancer properties due to their high receptor-binding affinities and gene regulation abilities. However, the anti-cancer potential of retinoids has not been reviewed in recent years. Thus, this review focused on the anti-cancer effects of retinoids and their synergistic effects with other drugs, together with their mechanisms of action in different types of cancers reported in the past five years. The retinoids were well studied in breast cancer, melanoma, and colorectal cancer. Synthetic retinoids have shown higher selectivity, stronger effectiveness, and lower toxicity than endogenous retinoids. Interestingly, the combination treatment of endogenous retinoids with chemotherapy drugs showed enhanced anti-cancer effects. The mechanisms of action reported for retinoids mainly involved the RAR/RXR signaling pathway. However, limited clinical studies were conducted in recent years. Thus, retinoids which are highly potential anti-cancer agents are worth further study in clinical, especially as a combination therapy with chemotherapy drugs.
Collapse
Affiliation(s)
- Ying Jin
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
| | - Soek Sin Teh
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil BoardKajang, Selangor, Malaysia
| | - Harrison Lik Nang Lau
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil BoardKajang, Selangor, Malaysia
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense CampusOurense, Spain
| | - Siau Hui Mah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
| |
Collapse
|
29
|
Ercan C, Coto-Llerena M, Gallon J, Fourie L, Marinucci M, Hess GF, Vosbeck J, Taha-Mehlitz S, Boldanova T, Meier MA, Tzankov A, Matter MS, Hoffmann MHK, Di Tommaso L, von Flüe M, Ng CKY, Heim MH, Soysal SD, Terracciano LM, Kollmar O, Piscuoglio S. Genomic analysis of focal nodular hyperplasia with associated hepatocellular carcinoma unveils its malignant potential: a case report. COMMUNICATIONS MEDICINE 2022; 2:11. [PMID: 35603298 PMCID: PMC9053256 DOI: 10.1038/s43856-022-00074-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/21/2022] [Indexed: 01/13/2023] Open
Abstract
Abstract
Background
Focal nodular hyperplasia (FNH) is typically considered a benign tumor of the liver without malignant potential. The co-occurrence of FNH and hepatocellular carcinoma (HCC) has been reported in rare cases. In this study we sought to investigate the clonal relationship between these lesions in a patient with FNH-HCC co-occurrence.
Methods
A 74-year-old female patient underwent liver tumor resection. The resected nodule was subjected to histologic analyses using hematoxylin and eosin stain and immunohistochemistry. DNA extracted from microdissected FNH and HCC regions was subjected to whole exome sequencing. Clonality analysis were performed using PyClone.
Results
Histologic analysis reveals that the nodule consists of an FNH and two adjoining HCC components with distinct histopathological features. Immunophenotypic characterization and genomic analyses suggest that the FNH is clonally related to the HCC components, and is composed of multiple clones at diagnosis, that are likely to have progressed to HCC through clonal selection and/or the acquisition of additional genetic events.
Conclusion
To the best of our knowledge, our work is the first study showing a clonal relationship between FNH and HCC. We show that FNH may possess the capability to undergo malignant transformation and to progress to HCC in very rare cases.
Collapse
|
30
|
Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat Rev Gastroenterol Hepatol 2022; 19:26-44. [PMID: 34504325 DOI: 10.1038/s41575-021-00508-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive disease with a poor clinical outcome. The cancer stem cell (CSC) model states that tumour growth is powered by a subset of tumour stem cells within cancers. This model explains several clinical observations in HCC (as well as in other cancers), including the almost inevitable recurrence of tumours after initial successful chemotherapy and/or radiotherapy, as well as the phenomena of tumour dormancy and treatment resistance. The past two decades have seen a marked increase in research on the identification and characterization of liver CSCs, which has encouraged the design of novel diagnostic and treatment strategies for HCC. These studies revealed novel aspects of liver CSCs, including their heterogeneity and unique immunobiology, which are suggestive of opportunities for new research directions and potential therapies. In this Review, we summarize the present knowledge of liver CSC markers and the regulators of stemness in HCC. We also comprehensively describe developments in the liver CSC field with emphasis on experiments utilizing single-cell transcriptomics to understand liver CSC heterogeneity, lineage-tracing and cell-ablation studies of liver CSCs, and the influence of the CSC niche and tumour microenvironment on liver cancer stemness, including interactions between CSCs and the immune system. We also discuss the potential application of liver CSC-based therapies for treatment of HCC.
Collapse
|
31
|
Fan Z, Kong M, Miao X, Guo Y, Ren H, Wang J, Wang S, Tang N, Shang L, Zhu Z, Liu H, Zhu W, Shi X. An E2F5-TFDP1-BRG1 Complex Mediates Transcriptional Activation of MYCN in Hepatocytes. Front Cell Dev Biol 2021; 9:742319. [PMID: 34746136 PMCID: PMC8569672 DOI: 10.3389/fcell.2021.742319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 12/22/2022] Open
Abstract
Liver regeneration is characterized by cell cycle reentrance of hepatocytes. N-Myc, encoded by MYCN, is a member of the Myc family of transcription factors. Elevation of MYCN expression has been noted in the course of liver regeneration whereas the underlying mechanism remains unclear. Here we describe that up-regulation of MYCN expression, as measured by quantitative PCR, Western blotting, and immunohistochemical staining, paralleled liver regeneration in animal and cell models. MYCN expression was up-regulated as a result of transcriptional activation. Ingenuity pathway analysis (IPA) revealed several up-stream transcriptional regulators for MYCN and RNA interference validated E2F5 and TFDP1 as essential for hepatocyte growth factor (HGF)-induced MYCN trans-activation. Further examination showed that deficiency of BRG1, a chromatin remodeling protein, attenuated MYCN induction during liver regeneration. BRG1 interacted with and was recruited by E2F5/TFDP1 to the MYCN promoter. Mechanistically, BRG1 might play a role regulating histone H3 acetylation and H3K4 trimethylation and facilitating/stabilizing the binding of RNA polymerase II surrounding the MYCN promoter. Over-expression of ectopic MYCN in BRG1-null hepatocytes overcame deficiency of proliferation. Importantly, a positive correlation between MYCN expression and BRG1/E2F5/TFDP1 expression was observed in human liver specimens. In conclusion, our data identify a novel epigenetic pathway where an E2F5-TFDP1-BRG1 complex regulates MYCN transcription to promote liver regeneration.
Collapse
Affiliation(s)
- Zhiwen Fan
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Shuai Wang
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Ning Tang
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Longcheng Shang
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengyi Zhu
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hanyi Liu
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Zhu
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| |
Collapse
|
32
|
Valle-Millares D, Brochado-Kith Ó, Martín-Carbonero L, Domínguez-Domínguez L, Ryan P, De los Santos I, De la Fuente S, Castro JM, Lagarde M, Cuevas G, Mayoral-Muñoz M, Matarranz M, Díez V, Gómez-Sanz A, Martínez-Román P, Crespo-Bermejo C, Palladino C, Muñoz-Muñoz M, Jiménez-Sousa MA, Resino S, Briz V, Fernández-Rodríguez A, (COVIHEP) OBOMGOVCHIV. Different HCV Exposure Drives Specific miRNA Profile in PBMCs of HIV Patients. Biomedicines 2021; 9:biomedicines9111627. [PMID: 34829855 PMCID: PMC8615810 DOI: 10.3390/biomedicines9111627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Micro RNAs (miRNAs) are essential players in HIV and HCV infections, as both viruses modulate cellular miRNAs and interact with the miRNA-mediated host response. We aim to analyze the miRNA profile of HIV patients with different exposure to HCV to explore specific signatures in the miRNA profile of PBMCs for each type of infection. We massively sequenced small RNAs of PBMCs from 117 HIV+ infected patients: 45 HIV+ patients chronically infected with HCV (HIV/HCV+), 36 HIV+ that spontaneously clarified HCV after acute infection (HIV/HCV-) and 36 HIV+ patients without previous HCV infection (HIV). Thirty-two healthy patients were used as healthy controls (HC). Differential expression analysis showed significantly differentially expressed (SDE) miRNAs in HIV/HCV+ (n = 153), HIV/HCV- (n = 169) and HIV (n = 153) patients. We found putative dysregulated pathways, such as infectious-related and PI3K signaling pathways, common in all contrasts. Specifically, putatively targeted genes involved in antifolate resistance (HIV/HV+), cancer-related pathways (HIV/HCV-) and HIF-signaling (HIV) were identified, among others. Our findings revealed that HCV strongly influences the expression profile of PBMCs from HIV patients through the disruption of its miRNome. Thus, different HCV exposure can be identified by specific miRNA signatures in PBMCs.
Collapse
Affiliation(s)
- Daniel Valle-Millares
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (D.V.-M.); (Ó.B.-K.); (A.G.-S.); (P.M.-R.); (M.A.J.-S.); (S.R.)
| | - Óscar Brochado-Kith
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (D.V.-M.); (Ó.B.-K.); (A.G.-S.); (P.M.-R.); (M.A.J.-S.); (S.R.)
| | - Luz Martín-Carbonero
- Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; (L.M.-C.); (J.M.C.); (M.M.-M.)
| | - Lourdes Domínguez-Domínguez
- VIH Servicio de Medicina Interna Research Institute Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (L.D.-D.); (M.L.); (M.M.)
| | - Pablo Ryan
- Department of Infectious Diseases, Infanta Leonor Teaching Hospital, 28031 Madrid, Spain; (P.R.); (G.C.); (V.D.)
| | - Ignacio De los Santos
- Internal Medicine Servicie Hospital Universitario de La Princesa, 28006 Madrid, Spain;
| | - Sara De la Fuente
- Internal Medicine Service Hospital Puerta de Hierro, 28222 Madrid, Spain;
| | - Juan M. Castro
- Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; (L.M.-C.); (J.M.C.); (M.M.-M.)
| | - María Lagarde
- VIH Servicio de Medicina Interna Research Institute Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (L.D.-D.); (M.L.); (M.M.)
| | - Guillermo Cuevas
- Department of Infectious Diseases, Infanta Leonor Teaching Hospital, 28031 Madrid, Spain; (P.R.); (G.C.); (V.D.)
| | - Mario Mayoral-Muñoz
- Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; (L.M.-C.); (J.M.C.); (M.M.-M.)
| | - Mariano Matarranz
- VIH Servicio de Medicina Interna Research Institute Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (L.D.-D.); (M.L.); (M.M.)
| | - Victorino Díez
- Department of Infectious Diseases, Infanta Leonor Teaching Hospital, 28031 Madrid, Spain; (P.R.); (G.C.); (V.D.)
| | - Alicia Gómez-Sanz
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (D.V.-M.); (Ó.B.-K.); (A.G.-S.); (P.M.-R.); (M.A.J.-S.); (S.R.)
| | - Paula Martínez-Román
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (D.V.-M.); (Ó.B.-K.); (A.G.-S.); (P.M.-R.); (M.A.J.-S.); (S.R.)
| | - Celia Crespo-Bermejo
- Laboratory of Reference and Research on Viral Hepatitis, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (C.C.-B.); (V.B.)
| | - Claudia Palladino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - María Muñoz-Muñoz
- Department of Animal Genetics, Instituto Nacional de Investigación y Alimentación Agraria y Alimentaria (INIA), 28040 Madrid, Spain;
| | - María A. Jiménez-Sousa
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (D.V.-M.); (Ó.B.-K.); (A.G.-S.); (P.M.-R.); (M.A.J.-S.); (S.R.)
| | - Salvador Resino
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (D.V.-M.); (Ó.B.-K.); (A.G.-S.); (P.M.-R.); (M.A.J.-S.); (S.R.)
| | - Verónica Briz
- Laboratory of Reference and Research on Viral Hepatitis, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (C.C.-B.); (V.B.)
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain; (D.V.-M.); (Ó.B.-K.); (A.G.-S.); (P.M.-R.); (M.A.J.-S.); (S.R.)
- Faculty of Medicine, Universidad Alfonso X el Sabio, Avenida Universidad 1, 28691 Villanueva de la Cañada, Madrid, Spain
- Correspondence: ; Tel.: +34-918-223-892
| | | |
Collapse
|
33
|
Wang H, Yu S, Cai Q, Ma D, Yang L, Zhao J, Jiang L, Zhang X, Yu Z. The Prognostic Model Based on Tumor Cell Evolution Trajectory Reveals a Different Risk Group of Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:737723. [PMID: 34660596 PMCID: PMC8511531 DOI: 10.3389/fcell.2021.737723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, and heterogeneity of HCC is the major barrier in improving patient outcome. To stratify HCC patients with different degrees of malignancy and provide precise treatment strategies, we reconstructed the tumor evolution trajectory with the help of scRNA-seq data and established a 30-gene prognostic model to identify the malignant state in HCC. Patients were divided into high-risk and low-risk groups. C-index and receiver operating characteristic (ROC) curve confirmed the excellent predictive value of this model. Downstream analysis revealed the underlying molecular and functional characteristics of this model, including significantly higher genomic instability and stronger proliferation/progression potential in the high-risk group. In summary, we established a novel prognostic model to overcome the barriers caused by HCC heterogeneity and provide the possibility of better clinical management for HCC patients to improve their survival outcomes.
Collapse
Affiliation(s)
- Haoren Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shizhe Yu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Cai
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Duo Ma
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Lingpeng Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Jian Zhao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Long Jiang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Xinyi Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Zhiyong Yu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| |
Collapse
|
34
|
Oxygen as a Master Regulator of Human Pluripotent Stem Cell Function and Metabolism. J Pers Med 2021; 11:jpm11090905. [PMID: 34575682 PMCID: PMC8466012 DOI: 10.3390/jpm11090905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) offer numerous possibilities in science and medicine, particularly when combined with precise genome editing methods. hiPSCs are artificially generated equivalents of human embryonic stem cells (hESCs), which possess an unlimited ability to self-renew and the potential to differentiate into any cell type of the human body. Importantly, generating patient-specific hiPSCs enables personalized drug testing or autologous cell therapy upon differentiation into a desired cell line. However, to ensure the highest standard of hiPSC-based biomedical products, their safety and reliability need to be proved. One of the key factors influencing human pluripotent stem cell (hPSC) characteristics and function is oxygen concentration in their microenvironment. In recent years, emerging data have pointed toward the beneficial effect of low oxygen pressure (hypoxia) on both hiPSCs and hESCs. In this review, we examine the state-of-the-art research on the oxygen impact on hiPSC functions and activity with an emphasis on their niche, metabolic state, reprogramming efficiency, and differentiation potential. We also discuss the similarities and differences between PSCs and cancer stem cells (CSCs) with respect to the role of oxygen in both cell types.
Collapse
|
35
|
Matsuo T, Nakatani K, Setoguchi T, Matsuo K, Tamada T, Suenaga Y. Secondary Structure of Human De Novo Evolved Gene Product NCYM Analyzed by Vacuum-Ultraviolet Circular Dichroism. Front Oncol 2021; 11:688852. [PMID: 34497756 PMCID: PMC8420857 DOI: 10.3389/fonc.2021.688852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/31/2021] [Indexed: 11/29/2022] Open
Abstract
NCYM, a cis-antisense gene of MYCN, encodes a Homininae-specific protein that promotes the aggressiveness of human tumors. Newly evolved genes from non-genic regions are known as de novo genes, and NCYM was the first de novo gene whose oncogenic functions were validated in vivo. Targeting NCYM using drugs is a potential strategy for cancer therapy; however, the NCYM structure must be determined before drug design. In this study, we employed vacuum-ultraviolet circular dichroism to evaluate the secondary structure of NCYM. The SUMO-tagged NCYM and the isolated SUMO tag in both hydrogenated and perdeuterated forms were synthesized and purified in a cell-free in vitro system, and vacuum-ultraviolet circular dichroism spectra were measured. Significant differences between the tagged NCYM and the isolated tag were evident in the wavelength range of 190–240 nm. The circular dichroism spectral data combined with a neural network system enabled to predict the secondary structure of NCYM at the amino acid level. The 129-residue tag consists of α-helices (approximately 14%) and β-strands (approximately 29%), which corresponded to the values calculated from the atomic structure of the tag. The 238-residue tagged NCYM contained approximately 17% α-helices and 27% β-strands. The location of the secondary structure predicted using the neural network revealed that these secondary structures were enriched in the Homininae-specific region of NCYM. Deuteration of NCYM altered the secondary structure at D90 from an α-helix to another structure other than α-helix and β-strand although this change was within the experimental error range. All four nonsynonymous single-nucleotide polymorphisms (SNPs) in human populations were in this region, and the amino acid alteration in SNP N52S enhanced Myc-nick production. The D90N mutation in NCYM promoted NCYM-mediated MYCN stabilization. Our results reveal the secondary structure of NCYM and demonstrated that the Homininae-specific domain of NCYM is responsible for MYCN stabilization.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Ibaraki, Japan
| | - Kazuma Nakatani
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan.,Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Innovative Medicine CHIBA Doctoral World-leading Innovative & Smart Education (WISE) Program, Chiba University, Chiba, Japan
| | - Taiki Setoguchi
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Neurosurgery, Chiba Cancer Center, Chiba, Japan
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
| | - Taro Tamada
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Ibaraki, Japan
| | - Yusuke Suenaga
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
36
|
Qi F, Qin W, Zhang Y, Luo Y, Niu B, An Q, Yang B, Shi K, Yu Z, Chen J, Cao X, Xia J. Sulfarotene, a synthetic retinoid, overcomes stemness and sorafenib resistance of hepatocellular carcinoma via suppressing SOS2-RAS pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:280. [PMID: 34479623 PMCID: PMC8418008 DOI: 10.1186/s13046-021-02085-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recurrent hepatocellular carcinoma (HCC) shows strong resistance to sorafenib, and the tumor-repopulating cells (TRCs) with cancer stem cell-like properties are considered a driver for its high recurrent rate and drug resistance. METHODS Suppression of TRCs may thus be an effective therapeutic strategy for treating this fatal disease. We evaluated the pharmacology and mechanism of sulfarotene, a new type of synthetic retinoid, on the cancer stem cell-like properties of HCC TRCs, and assessed its preclinical efficacy in models of HCC patient-derived xenografts (PDXs). RESULTS Sulfarotene selectively inhibited the growth of HCC TRCs in vitro and significantly deterred TRC-mediated tumor formation and lung metastasis in vivo without apparent toxicity, with an IC50 superior to that of acyclic retinoid and sorafenib, to which the recurrent HCC exhibits significant resistance at advanced stage. Sulfarotene promoted the expression and activation of RARα, which down-regulated SOS2, a key signal mediator associated with RAS activation and signal transduction involved in multiple downstream pathways. Moreover, sulfarotene selectively inhibited tumorigenesis of HCC PDXs with high expression for SOS2. CONCLUSIONS Our study identified sulfarotene as a selective inhibitor for the TRCs of HCC, which targets a novel RARα-SOS2-RAS signal nexus, shedding light on a new, promising strategy of target therapy for advanced liver cancer.
Collapse
Affiliation(s)
- Feng Qi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
| | - Wenxing Qin
- Department of Oncology, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Yao Zhang
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Wuhan, Hubei, China
| | - Yongde Luo
- The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Quanlin An
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
| | - Biwei Yang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
| | - Keqing Shi
- The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Zhijie Yu
- The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Junwei Chen
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Wuhan, Hubei, China.
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.
| | - Jinglin Xia
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China. .,Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China. .,The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.
| |
Collapse
|
37
|
Chen S, Zhao E. Development and validation of a robust epithelial-mesenchymal transition (EMT)-related prognostic signature for hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2021; 45:101587. [PMID: 33662631 DOI: 10.1016/j.clinre.2020.101587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/14/2020] [Accepted: 11/24/2020] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Epithelial-to-mesenchymal transition (EMT) is an essential biological process of cancer progression associated with increased metastatic potential and initiation. Herein, we aimed to develop and validate a robust EMT-related prognostic signature that could predict the prognosis of patients with hepatocellular carcinoma (HCC). METHODS Messenger RNA expression matrix and clinicopathological data were retrieved from The Cancer Genome Atlas (TCGA) and identified differentially expressed genes (DEGs) between HCC tissues and adjacent non-tumor samples. Univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression analysis were performed to establish a prognosis signature. Kaplan-Meier survival curve, time-dependent receiver operating characteristic (ROC), multivariate Cox regression analysis, nomogram, C-index, and decision curve analysis (DCA) were performed to investigate the prognostic performance of the signature. The prognostic performance of the new signature was further validated in an independent external cohort. A support vector machine (SVM) approach was performed to evaluate the diagnostic value of the identified genes. RESULTS A seven-gene signature was formulated to classify patients into high-risk and low-risk groups with discrepant overall survival (OS) in two cohorts (all P < 0.0001), and the former illustrated shorter survival time than the latter even stratified by various groups. The new signature has presented an excellent performance for predicting survival prognosis. Multivariate analysis showed that the signature was an independent risk factor for HCC. The SVM classifier based on the seven genes presented an excellent diagnostic power in differentiating early HCC and normal tissues. Gene Set Enrichment Analyses (GSEA) demonstrated multiple biological processes and pathways to provide novel insights into the development of HCC. CONCLUSION We established and validated a prognostic signature based on EMT-related genes with good predictive value for HCC survival. The diagnostic performance of the signature had been demonstrated to accurately distinguish early HCC from control individuals.
Collapse
Affiliation(s)
- Shimin Chen
- Department of Gastroenterology, Traditional Chinese Medical Hospital of Taihe Country, Taihe, 236600, China.
| | - Enfa Zhao
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
38
|
Luo Y, Liu F, Han S, Qi Y, Hu X, Zhou C, Liang H, Zhang Z. Autophagy-Related Gene Pairs Signature for the Prognosis of Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:670241. [PMID: 34095224 PMCID: PMC8173133 DOI: 10.3389/fmolb.2021.670241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has been recognized as the third leading cause of cancer-related deaths worldwide. There is increasing evidence that the abnormal expression of autophagy-related genes plays an important role in the occurrence and development of HCC. Therefore, the study of autophagy-related genes can further elucidate the genetic drivers of cancer and provide valuable therapeutic targets for clinical treatment. In this study, we used 232 autophagy-related genes extracted from the Human Autophagy Database (HADb) and Molecular Signatures Database (MSigDB) to construct 1884 autophagy-related gene pairs. On this basis, we developed a prognostic model based on autophagy-related gene pairs using least absolute shrinkage and selection operator (LASSO) Cox regression to evaluate the prognosis of patients after liver cancer resection. We then used 845 liver cancer samples from three different databases to test the reliability of the risk signature through survival analysis, receiver operating characteristic (ROC) curve analysis, univariate and multivariate analysis. To further explore the underlying biological mechanisms, we conducted an enrichment analysis of autophagy-related genes. Finally, we combined the signature with independent prognostic factors to construct a nomogram. Based on the autophagy-related gene pair (ARGP) signature, we can divide patients into high- or low-risk groups. Survival analysis and ROC curve analysis verified the validity of the signature (AUC: 0.786—0.828). Multivariate Cox regression showed that the risk score can be used as an independent predictor of the clinical outcomes of liver cancer patients. Notably, this model has a more accurate predictive effect than most prognostic models for hepatocellular carcinoma. Moreover, our model is a powerful supplement to the HCC staging indicator, and a nomogram comprising both indicators can provide a better prognostic effect. Based on pairs of multiple autophagy-related genes, we proposed a prognostic model for predicting the overall survival rate of HCC patients after surgery, which is a promising prognostic indicator. This study confirms the importance of autophagy in the occurrence and development of HCC, and also provides potential biomarkers for targeted treatments.
Collapse
Affiliation(s)
- Yiming Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Yongqiang Qi
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Xinsheng Hu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Chenyang Zhou
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Zhiwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
39
|
Development and validation of epithelial mesenchymal transition-related prognostic model for hepatocellular carcinoma. Aging (Albany NY) 2021; 13:13822-13845. [PMID: 33929972 PMCID: PMC8202896 DOI: 10.18632/aging.202976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/27/2021] [Indexed: 12/24/2022]
Abstract
Epithelial cell transformation (EMT) plays an important role in the pathogenesis and metastasis of hepatocellular carcinoma (HCC). We aimed to establish a genetic risk model to evaluate HCC prognosis based on the expression levels of EMT-related genes. The data of HCC patients were collected from TCGA and ICGC databases. Gene expression differential analysis, univariate analysis, and lasso combined with stepwise Cox regression were used to construct the prognostic model. Kaplan–Meier curve, receiver operating characteristic (ROC) curve, calibration analysis, Harrell’s concordance index (C-index), and decision curve analysis (DCA) were used to evaluate the predictive ability of the risk model or nomogram. GO and KEGG were used to analyze differently expressed EMT genes, or genes that directly or indirectly interact with the risk-associated genes. A 10-gene signature, including TSC2, ACTA2, SLC2A1, PGF, MYCN, PIK3R1, EOMES, BDNF, ZNF746, and TFDP3, was identified. Kaplan–Meier survival analysis showed a significant prognostic difference between high- and low-risk groups of patients. ROC curve analysis showed that the risk score model could effectively predict the 1-, 3-, and 5-year overall survival rates of patients with HCC. The nomogram showed a stronger predictive effect than clinical indicators. C-index, DCA, and calibration analysis demonstrated that the risk score and nomogram had high accuracy. The single sample gene set enrichment analysis results confirmed significant differences in the types of infiltrating immune cells between patients in the high- and low-risk groups. This study established a new prediction model of risk gene signature for predicting prognosis in patients with HCC, and provides a new molecular tool for the clinical evaluation of HCC prognosis.
Collapse
|
40
|
Qin XY, Gailhouste L. Non-Genomic Control of Dynamic MYCN Gene Expression in Liver Cancer. Front Oncol 2021; 10:618515. [PMID: 33937011 PMCID: PMC8085327 DOI: 10.3389/fonc.2020.618515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Upregulated MYCN gene expression is restricted to specialized cell populations such as EpCAM+ cancer stem cells in liver cancer, regardless of DNA amplification and mutation. Here, we reviewed the role of MYCN gene expression in liver homeostasis, regeneration, and tumorigenesis, and discussed the potential non-genomic mechanisms involved in controlling MYCN gene expression in liver cancer, with a focus on inflammation-mediated signal transduction and microRNA-associated post-transcriptional regulation. We concluded that dynamic MYCN gene expression is an integrated consequence of multiple signals in the tumor microenvironment, including tumor growth-promoting signals, lipid desaturation-mediated endoplasmic reticulum stress adaptation signals, and tumor suppressive miRNAs, making it a potential predictive biomarker of tumor stemness and plasticity. Therefore, understanding and tracing the dynamic changes and functions of MYCN gene expression will shed light on the origin of liver tumorigenesis at the cellular level and the development of novel therapeutic and diagnostic strategies for liver cancer treatment.
Collapse
Affiliation(s)
- Xian-Yang Qin
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Luc Gailhouste
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Japan
| |
Collapse
|
41
|
Su T, Qin XY, Dohmae N, Wei F, Furutani Y, Kojima S, Yu W. Inhibition of Ganglioside Synthesis Suppressed Liver Cancer Cell Proliferation through Targeting Kinetochore Metaphase Signaling. Metabolites 2021; 11:metabo11030167. [PMID: 33803928 PMCID: PMC7998610 DOI: 10.3390/metabo11030167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/27/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023] Open
Abstract
The incidence and mortality of liver cancer, mostly hepatocellular carcinoma (HCC), have increased during the last two decades, partly due to persistent inflammation in the lipid-rich microenvironment associated with lifestyle diseases, such as obesity. Gangliosides are sialic acid-containing glycosphingolipids known to be important in the organization of the membrane and membrane protein-mediated signal transduction. Ganglioside synthesis is increased in several types of cancers and has been proposed as a promising target for cancer therapy. Here, we provide evidence that ganglioside synthesis was increased in the livers of an animal model recapitulating the features of activation and expansion of liver progenitor-like cells and liver cancer (stem) cells. Chemical inhibition of ganglioside synthesis functionally suppressed proliferation and sphere growth of liver cancer cells, but had no impact on apoptotic and necrotic cell death. Proteome-based mechanistic analysis revealed that inhibition of ganglioside synthesis downregulated the expression of AURKA, AURKB, TTK, and NDC80 involved in the regulation of kinetochore metaphase signaling, which is essential for chromosome segregation and mitotic progression and probably under the control of activation of TP53-dependent cell cycle arrest. These data suggest that targeting ganglioside synthesis holds promise for the development of novel preventive/therapeutic strategies for HCC treatment.
Collapse
Affiliation(s)
- Ting Su
- Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China;
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; (Y.F.); (S.K.)
| | - Xian-Yang Qin
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; (Y.F.); (S.K.)
- Correspondence: (X.-Y.Q.); (W.Y.); Tel.: +81-(48)-467-7938 (X.-Y.Q.); +86-(25)-6818-2222 (W.Y.)
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan;
| | - Feifei Wei
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Kanagawa, Yokohama 230-0045, Japan;
| | - Yutaka Furutani
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; (Y.F.); (S.K.)
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; (Y.F.); (S.K.)
| | - Wenkui Yu
- Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China;
- Correspondence: (X.-Y.Q.); (W.Y.); Tel.: +81-(48)-467-7938 (X.-Y.Q.); +86-(25)-6818-2222 (W.Y.)
| |
Collapse
|
42
|
Cerapio JP, Marchio A, Cano L, López I, Fournié JJ, Régnault B, Casavilca-Zambrano S, Ruiz E, Dejean A, Bertani S, Pineau P. Global DNA hypermethylation pattern and unique gene expression signature in liver cancer from patients with Indigenous American ancestry. Oncotarget 2021; 12:475-492. [PMID: 33747361 PMCID: PMC7939527 DOI: 10.18632/oncotarget.27890] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/26/2021] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) usually afflicts individuals in their maturity after a protracted liver disease. Contrasting with this pattern, the age structure of HCC in Andean people displays a bimodal distribution with half of the patients developing HCC in adolescence and early adulthood. To deepen our understanding of the molecular determinants of the disease in this population, we conducted an integrative analysis of gene expression and DNA methylation in HCC developed by 74 Peruvian patients, including 39 adolescents and young adults. While genome-wide hypomethylation is considered as a paradigm in human HCCs, our analysis revealed that Peruvian tumors are associated with a global DNA hypermethylation. Moreover, pathway enrichment analysis of transcriptome data characterized an original combination of signatures. Peruvian HCC forgoes canonical activations of IGF2, Notch, Ras/MAPK, and TGF-β signals to depend instead on Hippo/YAP1, MYC, and Wnt/β-catenin pathways. These signatures delineate a homogeneous subtype of liver tumors at the interface of the proliferative and non-proliferative classes of HCCs. Remarkably, the development of this HCC subtype occurs in patients with one of the four Native American mitochondrial haplogroups A-D. Finally, integrative characterization revealed that Peruvian HCC is apparently controlled by the PRC2 complex that mediates cell reprogramming with massive DNA methylation modulating gene expression and pinpointed retinoid signaling as a potential target for epigenetic therapy.
Collapse
Affiliation(s)
- Juan Pablo Cerapio
- Sorbonne Université, Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM, U 993, Paris, France.,Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, INSERM, UPS, UMR 1037, CNRS, ERL 5294, Toulouse, France
| | - Agnès Marchio
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM, U 993, Paris, France
| | - Luis Cano
- Université de Rennes 1, INSERM, CNRS, U 1241 NUMECAN, Rennes, France
| | - Ignacio López
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM, U 993, Paris, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, INSERM, UPS, UMR 1037, CNRS, ERL 5294, Toulouse, France
| | - Béatrice Régnault
- Institut Pasteur, Centre d'Innovation et Recherche Technologique, Plateforme de Génotypage des Eucaryotes, Paris, France
| | - Sandro Casavilca-Zambrano
- Instituto Nacional de Enfermedades Neoplásicas, Departamento de Patología, Banco de Tejidos Tumorales, Lima, Peru
| | - Eloy Ruiz
- Instituto Nacional de Enfermedades Neoplásicas, Departamento de Cirugía en Abdomen, Lima, Peru
| | - Anne Dejean
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM, U 993, Paris, France
| | - Stéphane Bertani
- Université de Toulouse, IRD, UPS, UMR 152 PHARMADEV, Toulouse, France.,These authors contributed equally to this work
| | - Pascal Pineau
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM, U 993, Paris, France.,These authors contributed equally to this work
| |
Collapse
|
43
|
Liu R, Shi P, Wang Z, Yuan C, Cui H. Molecular Mechanisms of MYCN Dysregulation in Cancers. Front Oncol 2021; 10:625332. [PMID: 33614505 PMCID: PMC7886978 DOI: 10.3389/fonc.2020.625332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
MYCN, a member of MYC proto-oncogene family, encodes a basic helix-loop-helix transcription factor N-MYC. Abnormal expression of N-MYC is correlated with high-risk cancers and poor prognosis. Initially identified as an amplified oncogene in neuroblastoma in 1983, the oncogenic effect of N-MYC is expanded to multiple neuronal and nonneuronal tumors. Direct targeting N-MYC remains challenge due to its "undruggable" features. Therefore, alternative therapeutic approaches for targeting MYCN-driven tumors have been focused on the disruption of transcription, translation, protein stability as well as synthetic lethality of MYCN. In this review, we summarize the latest advances in understanding the molecular mechanisms of MYCN dysregulation in cancers.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Zhongze Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chaoyu Yuan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| |
Collapse
|
44
|
A microfluidic platform for dissociating clinical scale tissue samples into single cells. Biomed Microdevices 2021; 23:10. [PMID: 33528700 DOI: 10.1007/s10544-021-00544-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The advancement of sample preparation techniques is essential for the field of cell-based therapeutics. To obtain cells suited for clinical applications, the entire process starting from acquiring donor tissue biopsy, all through cell transplantation into the recipient, should occur in an integrated, safe, and efficient system. The current laboratory approach for solid tissue-to-cell isolation is invasive and involves multiple incoherent manual procedures running in an open operator-dependent system. Such an approach provides a chain of events for systematic cell loss that would be unfavorable for rare cell populations such as adult and cancer stem cells. A few lab-on-chip platforms were proposed to process biological tissues, however, they were limited to partial tissue dissociation and required additional processing off-chip. Here, we report the first microfluidic platform that can dissociate native biological tissue into ready-to-use single cells. The platform can merge the successive steps of tissue dissociation, debris filtration, cell sieving, washing, and staining in one streamlined process. Performance of the platform was tested with diverse biological tissues and it could yield viable cells that were ready for on or off-chip cell culture without further processing. Microfluidic tissue dissociation using this platform produced a higher number of viable single cells (an average of 2262 cells/ml per milligram of tissue compared to 1233.25 cells/ml/mg with conventional dissociation).
Collapse
|
45
|
Abstract
Knowledge of the role of HOX proteins in cancer has been steadily accumulating in the last 25 years. They are encoded by 39 HOX genes arranged in 4 distinct clusters, and have unique and redundant function in all types of cancers. Many HOX genes behave as oncogenic transcriptional factors regulating multiple pathways that are critical to malignant progression in a variety of tumors. Some HOX proteins have dual roles that are tumor-site specific, displaying both oncogenic and tumor suppressor function. The focus of this review is on how HOX proteins contribute to growth or suppression of metastasis. The review will cover HOX protein function in the critical aspects of epithelial-mesenchymal transition, in cancer stem cell sustenance and in therapy resistance, manifested as distant metastasis. The emerging role of adiposity in both initiation and progression of metastasis is described. Defining the role of HOX genes in the metastatic process has identified candidates for targeted cancer therapies that may combat the metastatic process. We will discuss potential therapeutic opportunities, particularly in pathways influenced by HOX proteins.
Collapse
|
46
|
Liu L, Borlak J. Advances in Liver Cancer Stem Cell Isolation and their Characterization. Stem Cell Rev Rep 2021; 17:1215-1238. [PMID: 33432485 DOI: 10.1007/s12015-020-10114-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Over the last decade research on cancer stem cells (CSC) significantly contributed to a better understanding of tumor biology. Given their similarity to normal stem cells, i.e. self-renewal and pluripotency the need arises to develop robust protocols for the isolation and characterization of CSCs. As with other malignancies, hepatic tumors are composed of a heterogeneous population of cells including liver cancer stem cells (LCSC). Yet, a precise understanding of why stem cells become cancerous is still lacking. There is unmet need to develop robust protocols for the successful isolation of LCSCs from human tissue resection material as to assist in the development of molecular targeted therapies. Here we review the research progress made in the isolation and characterization of LCSCs by considering a wide range of cell surface markers and sorting methods, as applied to side populations, microsphere cultures and the gradient centrifugation method. We emphasize the different fluorescence activated cell sorting methods and the possibility to enrich LCSCs by immunomagnetic beads. We review the specificity of functional assays by considering ABCG transporter and ALDH1 enzyme activities and evaluate the in vivo tumorigenicity of LCSCs in highly sensitive bioassays. Finally, we evaluate different LCSC markers in association with viral and non-viral liver disease and explore the potential of novel drug delivery systems targeting CD133, EpCAM, CD13 and CD90 for the development of molecular targeted therapies. Graphical Abstract.
Collapse
Affiliation(s)
- Lu Liu
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
47
|
Angireddy R, Chowdhury AR, Zielonka J, Ruthel G, Kalyanaraman B, Avadhani NG. Alcohol-induced CYP2E1, mitochondrial dynamics and retrograde signaling in human hepatic 3D organoids. Free Radic Biol Med 2020; 159:1-14. [PMID: 32738395 DOI: 10.1016/j.freeradbiomed.2020.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/20/2022]
Abstract
Alcohol toxicity is a significant health problem with ~3 million estimated deaths per year globally. Alcohol is metabolized to the toxic metabolite, acetaldehyde by alcohol dehydrogenase or CYP2E1 in the hepatic tissue, and also induces reactive oxygen species (ROS), which together play a pivotal role in cell and tissue damage. Our previous studies with COS-7 cells transduced with unique human CYP2E1 variants that mostly localize to either microsomes or mitochondria revealed that mitochondrially-localized CYP2E1 drives alcohol toxicity through the generation of higher levels of ROS, which has a consequent effect on cytochrome c oxidase (CcO) and mitochondrial oxidative function. Alcohol treatment of human hepatocyte cell line, HepaRG, in monolayer cultures increased ROS, affected CcO activity/stability, and induced mitophagy. Alcohol treatment of 3D organoids of HepaRG cells induced higher levels of CYP2E1 mRNA and activated mitochondrial stress-induced retrograde signaling, and also induced markers of hepatic steatosis. Knock down of CYP2E1 mRNA using specific shRNA, FK506, a Calcineurin inhibitor, and Mdivi-1, a DRP1 inhibitor, ameliorated alcohol-induced mitochondrial retrograde signaling, and hepatic steatosis. These results for the first time present a mechanistic link between CYP2E1 function and alcohol mediated mitochondrial dysfunction, retrograde signaling, and activation of hepatic steatosis in a 3D organoid system that closely recapitulates the in vivo liver response.
Collapse
Affiliation(s)
- Rajesh Angireddy
- Department of Biomedical Sciences, School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anindya Roy Chowdhury
- Department of Biomedical Sciences, School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacek Zielonka
- Department of Biophysics and, Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gordon Ruthel
- Department of Pathobiology, Veterinary Center for Imaging, Hill Pavilion, School of Veterinary Medicine, University of Pennsylvania, PA, 19104, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics and, Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Narayan G Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
48
|
He S, Tang S. WNT/β-catenin signaling in the development of liver cancers. Biomed Pharmacother 2020; 132:110851. [PMID: 33080466 DOI: 10.1016/j.biopha.2020.110851] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
The WNT/β-catenin signaling pathway is a highly conserved and tightly controlled molecular mechanism that regulates embryonic development, cellular proliferation and differentiation. Of note, accumulating evidence has shown that the aberrant of WNT/β-catenin signaling promotes the development and/or progression of liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumours in adults. There are two different WNT signaling pathways have been identified, which were termed non-canonical and canonical pathways, the latter involving the activation of β-catenin. β-catenin, acting as an intracellular signal transducer in the WNT signaling pathway, is encoded by CTNNB1 and plays a critical role in tumorigenesis. In the past research, most liver tumors have mutations in genes encoding key components of the WNT/β-catenin signaling pathway. In addition, several of other signaling pathways also can crosswalk with β-catenin. In this review, we discuss the most relevant molecular mechanisms of action and regulation of WNT/β-catenin signaling in the development and pathophysiology of liver cancers, as well as in the development of therapeutics.
Collapse
Affiliation(s)
- Shuai He
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Shilei Tang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China.
| |
Collapse
|
49
|
Li J, Zhu Y. Recent Advances in Liver Cancer Stem Cells: Non-coding RNAs, Oncogenes and Oncoproteins. Front Cell Dev Biol 2020; 8:548335. [PMID: 33117795 PMCID: PMC7575754 DOI: 10.3389/fcell.2020.548335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, with high morbidity, relapse, metastasis and mortality rates. Although liver surgical resection, transplantation, chemotherapy, radiotherapy and some molecular targeted therapeutics may prolong the survival of HCC patients to a certain degree, the curative effect is still poor, primarily because of tumor recurrence and the drug resistance of HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells, represent one small subset of cancer cells that are responsible for disease recurrence, drug resistance and death. Therefore, understanding the regulatory mechanism of LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation strategies to control LCSC differentiation and replication are under development. In this review, we provide an update on the latest advances in experimental studies on non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their upstream and downstream products targeting LCSCs. In this review, we summarize three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and Nanog are two important functional genes that play a pivotal role in LCSC regulation and HCC prognosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liver Disease Center of Integrated Traditional and Western Medicine, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
50
|
Li J, Jiang X, Li Z, Huang L, Ji D, Yu L, Zhou Y, Cui Y. SP1-induced HOXD-AS1 promotes malignant progression of cholangiocarcinoma by regulating miR-520c-3p/MYCN. Aging (Albany NY) 2020; 12:16304-16325. [PMID: 32857725 PMCID: PMC7485728 DOI: 10.18632/aging.103660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
The purpose of this article is to explore the function and mechanism of HOXD-AS1 in cholangiocarcinoma. TCGA, StarBase and JASPAR were applied to predict the differential expression and molecular mechanism. The qRT-PCR was conducted to detect molecular expression. The effect of HOXD-AS1 on tumor proliferation, metastasis and stemness was measured through corresponding experiments. ChIP, luciferase reporter and RIP assays were implemented to explore the regulatory mechanism of HOXD-AS1 in CCA. In this study, HOXD-AS1 expression was significantly upregulated in CCA tissues and cells compared with control groups, respectively. Increased HOXD-AS1 was markedly correlated with lymph node invasion, advanced TNM stage and poor survival of CCA patients. Moreover, HOXD-AS1 was confirmed to be an unfavorable independent prognostic factor for CCA patients. Functionally, gain- and loss-of-function experiments demonstrated that HOXD-AS1 facilitated tumor proliferation, migration, invasion, EMT, stemness and drug resistance in vitro and in vivo. For the mechanism, transcription factor SP1-induced HOXD-AS1 upregulated oncogene MYCN through competitively binding to miR-520c-3p. Furthermore, HOXD-AS1-induced malignant phenotypes were rescued by interfering miR-520c-3p and MYCN, respectively. SP1/HOXD-AS1/miR-520c-3p/MYCN plays a vital role in initiation and progression of CCA, and HOXD-AS1 is expected to be an efficient biomarker and therapeutic target.
Collapse
Affiliation(s)
- Jinglin Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Xingming Jiang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Zhenglong Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Lining Huang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Daolin Ji
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Liang Yu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Yongxu Zhou
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Yunfu Cui
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| |
Collapse
|