1
|
Liang C, Malik S, He M, Groom L, Ture SK, O'Connor TN, Morrell CN, Dirksen RT. Compound heterozygous RYR1-RM mouse model reveals disease pathomechanisms and muscle adaptations to promote postnatal survival. FASEB J 2024; 38:e70120. [PMID: 39466056 DOI: 10.1096/fj.202401189r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Pathogenic variants in the type I ryanodine receptor (RYR1) result in a wide range of muscle disorders referred to as RYR1-related myopathies (RYR1-RM). We developed the first RYR1-RM mouse model resulting from co-inheritance of two different RYR1 missense alleles (Ryr1TM/SC-ΔL mice). Ryr1TM/SC-ΔL mice exhibit a severe, early onset myopathy characterized by decreased body/muscle mass, muscle weakness, hypotrophy, reduced RYR1 expression, and unexpectedly, incomplete postnatal lethality with a plateau survival of ~50% at 12 weeks of age. Ryr1TM/SC-ΔL mice display reduced respiratory function, locomotor activity, and in vivo muscle strength. Extensor digitorum longus muscles from Ryr1TM/SC-ΔL mice exhibit decreased cross-sectional area of type IIb and type IIx fibers, as well as a reduction in number of type IIb fibers. Ex vivo functional analyses revealed reduced Ca2+ release and specific force production during electrically-evoked twitch stimulation. In spite of a ~threefold reduction in RYR1 expression in single muscle fibers from Ryr1TM/SC-ΔL mice at 4 weeks and 12 weeks of age, RYR1 Ca2+ leak was not different from that of fibers from control mice at either age. Proteomic analyses revealed alterations in protein synthesis, folding, and degradation pathways in the muscle of 4- and 12-week-old Ryr1TM/SC-ΔL mice, while proteins involved in the extracellular matrix, dystrophin-associated glycoprotein complex, and fatty acid metabolism were upregulated in Ryr1TM/SC-ΔL mice that survive to 12 weeks of age. These findings suggest that adaptations that optimize RYR1 expression/Ca2+ leak balance, sarcolemmal stability, and fatty acid biosynthesis provide Ryr1TM/SC-ΔL mice with an increased survival advantage during postnatal development.
Collapse
Affiliation(s)
- Chen Liang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Miao He
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Sara K Ture
- Department of Medicine, Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Thomas N O'Connor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Craig N Morrell
- Department of Medicine, Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Dixon RE, Trimmer JS. Endoplasmic Reticulum-Plasma Membrane Junctions as Sites of Depolarization-Induced Ca 2+ Signaling in Excitable Cells. Annu Rev Physiol 2023; 85:217-243. [PMID: 36202100 PMCID: PMC9918718 DOI: 10.1146/annurev-physiol-032122-104610] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane contact sites between endoplasmic reticulum (ER) and plasma membrane (PM), or ER-PM junctions, are found in all eukaryotic cells. In excitable cells they play unique roles in organizing diverse forms of Ca2+ signaling as triggered by membrane depolarization. ER-PM junctions underlie crucial physiological processes such as excitation-contraction coupling, smooth muscle contraction and relaxation, and various forms of activity-dependent signaling and plasticity in neurons. In many cases the structure and molecular composition of ER-PM junctions in excitable cells comprise important regulatory feedback loops linking depolarization-induced Ca2+ signaling at these sites to the regulation of membrane potential. Here, we describe recent findings on physiological roles and molecular composition of native ER-PM junctions in excitable cells. We focus on recent studies that provide new insights into canonical forms of depolarization-induced Ca2+ signaling occurring at junctional triads and dyads of striated muscle, as well as the diversity of ER-PM junctions in these cells and in smooth muscle and neurons.
Collapse
Affiliation(s)
- Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California, USA;
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California, USA;
| |
Collapse
|
3
|
Protasi F, Girolami B, Serano M, Pietrangelo L, Paolini C. Ablation of Calsequestrin-1, Ca 2+ unbalance, and susceptibility to heat stroke. Front Physiol 2022; 13:1033300. [PMID: 36311237 PMCID: PMC9598425 DOI: 10.3389/fphys.2022.1033300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction: Ca2+ levels in adult skeletal muscle fibers are mainly controlled by excitation-contraction (EC) coupling, a mechanism that translates action potentials in release of Ca2+ from the sarcoplasmic reticulum (SR) release channels, i.e. the ryanodine receptors type-1 (RyR1). Calsequestrin (Casq) is a protein that binds large amounts of Ca2+ in the lumen of the SR terminal cisternae, near sites of Ca2+ release. There is general agreement that Casq is not only important for the SR ability to store Ca2+, but also for modulating the opening probability of the RyR Ca2+ release channels. The initial studies: About 20 years ago we generated a mouse model lacking Casq1 (Casq1-null mice), the isoform predominantly expressed in adult fast twitch skeletal muscle. While the knockout was not lethal as expected, lack of Casq1 caused a striking remodeling of membranes of SR and of transverse tubules (TTs), and mitochondrial damage. Functionally, CASQ1-knockout resulted in reduced SR Ca2+ content, smaller Ca2+ transients, and severe SR depletion during repetitive stimulation. The myopathic phenotype of Casq1-null mice: After the initial studies, we discovered that Casq1-null mice were prone to sudden death when exposed to halogenated anaesthetics, heat and even strenuous exercise. These syndromes are similar to human malignant hyperthermia susceptibility (MHS) and environmental-exertional heat stroke (HS). We learned that mechanisms underlying these syndromes involved excessive SR Ca2+ leak and excessive production of oxidative species: indeed, mortality and mitochondrial damage were significantly prevented by administration of antioxidants and reduction of oxidative stress. Though, how Casq1-null mice could survive without the most important SR Ca2+ binding protein was a puzzling issue that was not solved. Unravelling the mystery: The mystery was finally solved in 2020, when we discovered that in Casq1-null mice the SR undergoes adaptations that result in constitutively active store-operated Ca2+ entry (SOCE). SOCE is a mechanism that allows skeletal fibers to use external Ca2+ when SR stores are depleted. The post-natal compensatory mechanism that allows Casq1-null mice to survive involves the assembly of new SR-TT junctions (named Ca2+ entry units) containing Stim1 and Orai1, the two proteins that mediate SOCE.
Collapse
Affiliation(s)
- Feliciano Protasi
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Barbara Girolami
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Matteo Serano
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Cecilia Paolini
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
The distal C terminus of the dihydropyridine receptor β 1a subunit is essential for tetrad formation in skeletal muscle. Proc Natl Acad Sci U S A 2022; 119:e2201136119. [PMID: 35507876 PMCID: PMC9171810 DOI: 10.1073/pnas.2201136119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceVertebrate skeletal muscle excitation-contraction coupling (ECC) is based on Ca2+-influx-independent interchannel cross-talk between DHPR and RyR1. The skeletal muscle DHPR complex consists of the main, voltage-sensing, and pore-forming α1S subunit, the auxiliary β1a, α2δ-1, γ1 subunits, and Stac3. The DHPRβ1a subunit plays an essential role in full triad targeting of DHPRα1S, voltage sensing, and tetrad formation (grouping of four DHPRs)-the three prerequisites for skeletal muscle ECC. Hence, a lack of DHPRβ1a results in a lethal phenotype in both β1-null mice and zebrafish. Here, we identified the nonconserved, distal C terminus of DHPRβ1a as playing a pivotal role in the formation of DHPR tetrads, and thus allosteric DHPR-RyR1 coupling, essential for proper skeletal muscle ECC.
Collapse
|
5
|
Gómez-Oca R, Cowling BS, Laporte J. Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances. Int J Mol Sci 2021; 22:11377. [PMID: 34768808 PMCID: PMC8583656 DOI: 10.3390/ijms222111377] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding the mechanoenzyme dynamin 2, the BIN1 gene encoding the membrane curvature sensing amphiphysin 2, and the RYR1 gene encoding the skeletal muscle calcium release channel/ryanodine receptor. MTM1, BIN1, and DNM2 proteins are involved in membrane remodeling and trafficking, while RyR1 directly regulates excitation-contraction coupling (ECC). Several CNM animal models have been generated or identified, which confirm shared pathological anomalies in T-tubule remodeling, ECC, organelle mispositioning, protein homeostasis, neuromuscular junction, and muscle regeneration. Dynamin 2 plays a crucial role in CNM physiopathology and has been validated as a common therapeutic target for three CNM forms. Indeed, the promising results in preclinical models set up the basis for ongoing clinical trials. Another two clinical trials to treat myotubular myopathy by MTM1 gene therapy or tamoxifen repurposing are also ongoing. Here, we review the contribution of the different CNM models to understanding physiopathology and therapy development with a focus on the commonly dysregulated pathways and current therapeutic targets.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
- Dynacure, 67400 Illkirch, France;
| | | | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
6
|
Perni S, Beam K. Neuronal junctophilins recruit specific Ca V and RyR isoforms to ER-PM junctions and functionally alter Ca V2.1 and Ca V2.2. eLife 2021; 10:64249. [PMID: 33769283 PMCID: PMC8046434 DOI: 10.7554/elife.64249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Junctions between the endoplasmic reticulum and plasma membrane that are induced by the neuronal junctophilins are of demonstrated importance, but their molecular architecture is still poorly understood and challenging to address in neurons. This is due to the small size of the junctions and the multiple isoforms of candidate junctional proteins in different brain areas. Using colocalization of tagged proteins expressed in tsA201 cells, and electrophysiology, we compared the interactions of JPH3 and JPH4 with different calcium channels. We found that JPH3 and JPH4 caused junctional accumulation of all the tested high-voltage-activated CaV isoforms, but not a low-voltage-activated CaV. Also, JPH3 and JPH4 noticeably modify CaV2.1 and CaV2.2 inactivation rate. RyR3 moderately colocalized at junctions with JPH4, whereas RyR1 and RyR2 did not. By contrast, RyR1 and RyR3 strongly colocalized with JPH3, and RyR2 moderately. Likely contributing to this difference, JPH3 binds to cytoplasmic domain constructs of RyR1 and RyR3, but not of RyR2.
Collapse
Affiliation(s)
- Stefano Perni
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, United States
| | - Kurt Beam
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, United States
| |
Collapse
|
7
|
Balderas-Villalobos J, Steele TWE, Eltit JM. Physiological and Pathological Relevance of Selective and Nonselective Ca 2+ Channels in Skeletal and Cardiac Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:225-247. [PMID: 35138617 PMCID: PMC10683374 DOI: 10.1007/978-981-16-4254-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Contraction of the striated muscle is fundamental for human existence. The action of voluntary skeletal muscle enables activities such as breathing, establishing body posture, and diverse body movements. Additionally, highly precise motion empowers communication, artistic expression, and other activities that define everyday human life. The involuntary contraction of striated muscle is the core function of the heart and is essential for blood flow. Several ion channels are important in the transduction of action potentials to cytosolic Ca2+ signals that enable muscle contraction; however, other ion channels are involved in the progression of muscle pathologies that can impair normal life or threaten it. This chapter describes types of selective and nonselective Ca2+ permeable ion channels expressed in the striated muscle, their participation in different aspects of muscle excitation and contraction, and their relevance to the progression of some pathological states.
Collapse
Affiliation(s)
- Jaime Balderas-Villalobos
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tyler W E Steele
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jose M Eltit
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
8
|
Gong D, Yan N, Ledford HA. Structural Basis for the Modulation of Ryanodine Receptors. Trends Biochem Sci 2020; 46:489-501. [PMID: 33353849 DOI: 10.1016/j.tibs.2020.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Historically, ryanodine receptors (RyRs) have presented unique challenges for high-resolution structural determination despite long-standing interest in their role in excitation-contraction coupling. Owing to their large size (nearly 2.2 MDa), high-resolution structures remained elusive until the advent of cryogenic electron microscopy (cryo-EM) techniques. In recent years, structures for both RyR1 and RyR2 have been solved at near-atomic resolution. Furthermore, recent reports have delved into their more complex structural associations with key modulators - proteins such as the dihydropyridine receptor (DHPR), FKBP12/12.6, and calmodulin (CaM), as well as ions and small molecules including Ca2+, ATP, caffeine, and PCB95. This review addresses the modulation of RyR1 and RyR2, in addition to the impact of such discoveries on intracellular Ca2+ dynamics and biophysical properties.
Collapse
Affiliation(s)
- Deshun Gong
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province/Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China.
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Hannah A Ledford
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
9
|
Sztretye M, Szabó L, Dobrosi N, Fodor J, Szentesi P, Almássy J, Magyar ZÉ, Dienes B, Csernoch L. From Mice to Humans: An Overview of the Potentials and Limitations of Current Transgenic Mouse Models of Major Muscular Dystrophies and Congenital Myopathies. Int J Mol Sci 2020; 21:ijms21238935. [PMID: 33255644 PMCID: PMC7728138 DOI: 10.3390/ijms21238935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Muscular dystrophies are a group of more than 160 different human neuromuscular disorders characterized by a progressive deterioration of muscle mass and strength. The causes, symptoms, age of onset, severity, and progression vary depending on the exact time point of diagnosis and the entity. Congenital myopathies are rare muscle diseases mostly present at birth that result from genetic defects. There are no known cures for congenital myopathies; however, recent advances in gene therapy are promising tools in providing treatment. This review gives an overview of the mouse models used to investigate the most common muscular dystrophies and congenital myopathies with emphasis on their potentials and limitations in respect to human applications.
Collapse
|
10
|
Helbling DC, Mendoza D, McCarrier J, Vanden Avond MA, Harmelink MM, Barkhaus PE, Basel D, Lawlor MW. Severe Neonatal RYR1 Myopathy With Pathological Features of Congenital Muscular Dystrophy. J Neuropathol Exp Neurol 2020; 78:283-287. [PMID: 30715496 DOI: 10.1093/jnen/nlz004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The phenotypes associated with pathogenic variants in the ryanodine receptor 1 gene (RYR1, OMIM# 180901) have greatly expanded over the last few decades as genetic testing for RYR1 variants has become more common. Initially described in association with malignant hyperthermia, pathogenic variants in RYR1 are typically associated with core pathology in muscle biopsies (central core disease or multiminicore disease) and symptomatic myopathies with symptoms ranging from mild weakness to perinatal lethality. We describe a 2-week-old male patient with multiple congenital dysmorphisms, severe perinatal weakness, and subsequent demise, whose histopathology on autopsy was consistent with congenital muscular dystrophy. Immunohistochemical analysis of dystrophy-associated proteins was normal. Rapid exome sequencing revealed a novel heterozygous nonsense variant (p.Trp661Ter) in RYR1, as well as a previously described RYR1 pathogenic variant associated with congenital myopathy (p.Phe4976Leu). This highlights the potential for RYR1 pathogenic variants to produce pathological findings most consistent with congenital muscular dystrophy.
Collapse
Affiliation(s)
- Daniel C Helbling
- Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David Mendoza
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Julie McCarrier
- Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark A Vanden Avond
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Paul E Barkhaus
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Donald Basel
- Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
11
|
Brennan S, Garcia-Castañeda M, Michelucci A, Sabha N, Malik S, Groom L, Wei LaPierre L, Dowling JJ, Dirksen RT. Mouse model of severe recessive RYR1-related myopathy. Hum Mol Genet 2020; 28:3024-3036. [PMID: 31107960 DOI: 10.1093/hmg/ddz105] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
Ryanodine receptor type I (RYR1)-related myopathies (RYR1 RM) are a clinically and histopathologically heterogeneous group of conditions that represent the most common subtype of childhood onset non-dystrophic muscle disorders. There are no treatments for this severe group of diseases. A major barrier to therapy development is the lack of an animal model that mirrors the clinical severity of pediatric cases of the disease. To address this, we used CRISPR/Cas9 gene editing to generate a novel recessive mouse model of RYR1 RM. This mouse (Ryr1TM/Indel) possesses a patient-relevant point mutation (T4706M) engineered into 1 allele and a 16 base pair frameshift deletion engineered into the second allele. Ryr1TM/Indel mice exhibit an overt phenotype beginning at 14 days of age that consists of reduced body/muscle mass and myofibre hypotrophy. Ryr1TM/Indel mice become progressively inactive from that point onward and die at a median age of 42 days. Histopathological assessment shows myofibre hypotrophy, increased central nuclei and decreased triad number but no clear evidence of metabolic cores. Biochemical analysis reveals a marked decrease in RYR1 protein levels (20% of normal) as compared to only a 50% decrease in transcript. Functional studies at end stage show significantly reduced electrically evoked Ca2+ release and force production. In summary, Ryr1TM/Indel mice exhibit a post-natal lethal recessive form of RYR1 RM that pheno-copies the severe congenital clinical presentation seen in a subgroup of RYR1 RM children. Thus, Ryr1TM/Indel mice represent a powerful model for both establishing the pathomechanisms of recessive RYR1 RM and pre-clinical testing of therapies for efficacy.
Collapse
Affiliation(s)
- Stephanie Brennan
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay St, Toronto, Ontario, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, 686 Bay St, Toronto, Ontario, M5G 0A4, Canada
| | - Maricela Garcia-Castañeda
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Antonio Michelucci
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Nesrin Sabha
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay St, Toronto, Ontario, M5G 0A4, Canada
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Lan Wei LaPierre
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay St, Toronto, Ontario, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, 686 Bay St, Toronto, Ontario, M5G 0A4, Canada.,Division of Neurology, Hospital for Sick Children, 686 Bay St, Toronto, Ontario, M5G 0A4, Canada
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 USA
| |
Collapse
|
12
|
Ca 2+ Channels Mediate Bidirectional Signaling between Sarcolemma and Sarcoplasmic Reticulum in Muscle Cells. Cells 2019; 9:cells9010055. [PMID: 31878335 PMCID: PMC7016941 DOI: 10.3390/cells9010055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
The skeletal muscle and myocardial cells present highly specialized structures; for example, the close interaction between the sarcoplasmic reticulum (SR) and mitochondria—responsible for excitation-metabolism coupling—and the junction that connects the SR with T-tubules, critical for excitation-contraction (EC) coupling. The mechanisms that underlie EC coupling in these two cell types, however, are fundamentally distinct. They involve the differential expression of Ca2+ channel subtypes: CaV1.1 and RyR1 (skeletal), vs. CaV1.2 and RyR2 (cardiac). The CaV channels transform action potentials into elevations of cytosolic Ca2+, by activating RyRs and thus promoting SR Ca2+ release. The high levels of Ca2+, in turn, stimulate not only the contractile machinery but also the generation of mitochondrial reactive oxygen species (ROS). This forward signaling is reciprocally regulated by the following feedback mechanisms: Ca2+-dependent inactivation (of Ca2+ channels), the recruitment of Na+/Ca2+ exchanger activity, and oxidative changes in ion channels and transporters. Here, we summarize both well-established concepts and recent advances that have contributed to a better understanding of the molecular mechanisms involved in this bidirectional signaling.
Collapse
|
13
|
Fusto A, Moyle LA, Gilbert PM, Pegoraro E. Cored in the act: the use of models to understand core myopathies. Dis Model Mech 2019; 12:dmm041368. [PMID: 31874912 PMCID: PMC6955215 DOI: 10.1242/dmm.041368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The core myopathies are a group of congenital myopathies with variable clinical expression - ranging from early-onset skeletal-muscle weakness to later-onset disease of variable severity - that are identified by characteristic 'core-like' lesions in myofibers and the presence of hypothonia and slowly or rather non-progressive muscle weakness. The genetic causes are diverse; central core disease is most often caused by mutations in ryanodine receptor 1 (RYR1), whereas multi-minicore disease is linked to pathogenic variants of several genes, including selenoprotein N (SELENON), RYR1 and titin (TTN). Understanding the mechanisms that drive core development and muscle weakness remains challenging due to the diversity of the excitation-contraction coupling (ECC) proteins involved and the differential effects of mutations across proteins. Because of this, the use of representative models expressing a mature ECC apparatus is crucial. Animal models have facilitated the identification of disease progression mechanisms for some mutations and have provided evidence to help explain genotype-phenotype correlations. However, many unanswered questions remain about the common and divergent pathological mechanisms that drive disease progression, and these mechanisms need to be understood in order to identify therapeutic targets. Several new transgenic animals have been described recently, expanding the spectrum of core myopathy models, including mice with patient-specific mutations. Furthermore, recent developments in 3D tissue engineering are expected to enable the study of core myopathy disease progression and the effects of potential therapeutic interventions in the context of human cells. In this Review, we summarize the current landscape of core myopathy models, and assess the hurdles and opportunities of future modeling strategies.
Collapse
Affiliation(s)
- Aurora Fusto
- Department of Neuroscience, University of Padua, Padua 35128, Italy
| | - Louise A Moyle
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
- Institute of Biomaterials and Biochemical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Penney M Gilbert
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
- Institute of Biomaterials and Biochemical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Elena Pegoraro
- Department of Neuroscience, University of Padua, Padua 35128, Italy
| |
Collapse
|
14
|
Flucher BE, Campiglio M. STAC proteins: The missing link in skeletal muscle EC coupling and new regulators of calcium channel function. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1101-1110. [PMID: 30543836 DOI: 10.1016/j.bbamcr.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/19/2023]
Abstract
Excitation-contraction coupling is the signaling process by which action potentials control calcium release and consequently the force of muscle contraction. Until recently, three triad proteins were known to be essential for skeletal muscle EC coupling: the voltage-gated calcium channel CaV1.1 acting as voltage sensor, the SR calcium release channel RyR1 representing the only relevant calcium source, and the auxiliary CaV β1a subunit. Whether CaV1.1 and RyR1 are directly coupled or whether their interaction is mediated by another triad protein is still unknown. The recent identification of the adaptor protein STAC3 as fourth essential component of skeletal muscle EC coupling prompted vigorous research to reveal its role in this signaling process. Accumulating evidence supports its possible involvement in linking CaV1.1 and RyR1 in skeletal muscle EC coupling, but also indicates a second, much broader role of STAC proteins in the regulation of calcium/calmodulin-dependent feedback regulation of L-type calcium channels.
Collapse
Affiliation(s)
- Bernhard E Flucher
- Department of Physiology and Medical Physics, Medical University Innsbruck, Schöpfstraße 41, A6020 Innsbruck, Austria.
| | - Marta Campiglio
- Department of Physiology and Medical Physics, Medical University Innsbruck, Schöpfstraße 41, A6020 Innsbruck, Austria
| |
Collapse
|
15
|
Abstract
Ryanodine-sensitive intracellular Ca2+ channels (RyRs) open upon binding Ca2+ at cytosolic-facing sites. This results in concerted, self-reinforcing opening of RyRs clustered in specialized regions on the membranes of Ca2+ storage organelles (endoplasmic reticulum and sarcoplasmic reticulum), a process that produces Ca2+-induced Ca2+ release (CICR). The process is optimized to achieve large but brief and localized increases in cytosolic Ca2+ concentration, a feature now believed to be critical for encoding the multiplicity of signals conveyed by this ion. In this paper, I trace the path of research that led to a consensus on the physiological significance of CICR in skeletal muscle, beginning with its discovery. I focus on the approaches that were developed to quantify the contribution of CICR to the Ca2+ increase that results in contraction, as opposed to the flux activated directly by membrane depolarization (depolarization-induced Ca2+ release [DICR]). Although the emerging consensus is that CICR plays an important role alongside DICR in most taxa, its contribution in most mammalian muscles appears to be limited to embryogenesis. Finally, I survey the relevance of CICR, confirmed or plausible, to pathogenesis as well as the multiple questions about activation of release channels that remain unanswered after 50 years.
Collapse
Affiliation(s)
- Eduardo Ríos
- Section of Cellular Signaling, Department of Physiology and Biophysics, Rush University School of Medicine, Chicago, IL
| |
Collapse
|
16
|
Franzini-Armstrong C. The relationship between form and function throughout the history of excitation-contraction coupling. J Gen Physiol 2018; 150:189-210. [PMID: 29317466 PMCID: PMC5806676 DOI: 10.1085/jgp.201711889] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Franzini-Armstrong reviews the development of the excitation–contraction coupling field over time. The concept of excitation–contraction coupling is almost as old as Journal of General Physiology. It was understood as early as the 1940s that a series of stereotyped events is responsible for the rapid contraction response of muscle fibers to an initial electrical event at the surface. These early developments, now lost in what seems to be the far past for most young investigators, have provided an endless source of experimental approaches. In this Milestone in Physiology, I describe in detail the experiments and concepts that introduced and established the field of excitation–contraction coupling in skeletal muscle. More recent advances are presented in an abbreviated form, as readers are likely to be familiar with recent work in the field.
Collapse
Affiliation(s)
- Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
17
|
Disturbed Ca 2+ Homeostasis in Muscle-Wasting Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:307-326. [PMID: 30390258 DOI: 10.1007/978-981-13-1435-3_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ca2+ is essential for proper structure and function of skeletal muscle. It not only activates contraction and force development but also participates in multiple signaling pathways. Low levels of Ca2+ restrain muscle regeneration by limiting the fusion of satellite cells. Ironically, sustained elevations of Ca2+ also result in muscle degeneration as this ion promotes high rates of protein breakdown. Moreover, transforming growth factors (TGFs) which are well known for controlling muscle growth also regulate Ca2+ channels. Thus, therapies focused on changing levels of Ca2+ and TGFs are promising for treating muscle-wasting disorders. Three principal systems govern the homeostasis of Ca2+, namely, excitation-contraction (EC) coupling, excitation-coupled Ca2+ entry (ECCE), and store-operated Ca2+ entry (SOCE). Accordingly, alterations in these systems can lead to weakness and atrophy in many hereditary diseases, such as Brody disease, central core disease (CCD), tubular aggregate myopathy (TAM), myotonic dystrophy type 1 (MD1), oculopharyngeal muscular dystrophy (OPMD), and Duchenne muscular dystrophy (DMD). Here, the interrelationship between all these molecules and processes is reviewed.
Collapse
|
18
|
Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol 2017; 149:1065-1089. [PMID: 29122978 PMCID: PMC5715910 DOI: 10.1085/jgp.201711878] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/12/2017] [Indexed: 01/25/2023] Open
Abstract
Large-conductance Ca2+ release channels known as ryanodine receptors (RyRs) mediate the release of Ca2+ from an intracellular membrane compartment, the endo/sarcoplasmic reticulum. There are three mammalian RyR isoforms: RyR1 is present in skeletal muscle; RyR2 is in heart muscle; and RyR3 is expressed at low levels in many tissues including brain, smooth muscle, and slow-twitch skeletal muscle. RyRs form large protein complexes comprising four 560-kD RyR subunits, four ∼12-kD FK506-binding proteins, and various accessory proteins including calmodulin, protein kinases, and protein phosphatases. RyRs share ∼70% sequence identity, with the greatest sequence similarity in the C-terminal region that forms the transmembrane, ion-conducting domain comprising ∼500 amino acids. The remaining ∼4,500 amino acids form the large regulatory cytoplasmic "foot" structure. Experimental evidence for Ca2+, ATP, phosphorylation, and redox-sensitive sites in the cytoplasmic structure have been described. Exogenous effectors include the two Ca2+ releasing agents caffeine and ryanodine. Recent work describing the near atomic structures of mammalian skeletal and cardiac muscle RyRs provides a structural basis for the regulation of the RyRs by their multiple effectors.
Collapse
Affiliation(s)
- Gerhard Meissner
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
19
|
Chang CL, Chen YJ, Liou J. ER-plasma membrane junctions: Why and how do we study them? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1494-1506. [PMID: 28554772 DOI: 10.1016/j.bbamcr.2017.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are membrane microdomains important for communication between the ER and the PM. ER-PM junctions were first reported in muscle cells in 1957, but mostly ignored in non-excitable cells due to their scarcity and lack of functional significance. In 2005, the discovery of stromal interaction molecule 1 (STIM1) mediating a universal Ca2+ feedback mechanism at ER-PM junctions in mammalian cells led to a resurgence of research interests toward ER-PM junctions. In the past decade, several major advancements have been made in this emerging topic in cell biology, including the generation of tools for labeling ER-PM junctions and the unraveling of mechanisms underlying regulation and functions of ER-PM junctions. This review summarizes early studies, recently developed tools, and current advances in the characterization and understanding of ER-PM junctions. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
Affiliation(s)
- Chi-Lun Chang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-Ju Chen
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jen Liou
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Santulli G, Lewis DR, Marks AR. Physiology and pathophysiology of excitation-contraction coupling: the functional role of ryanodine receptor. J Muscle Res Cell Motil 2017; 38:37-45. [PMID: 28653141 PMCID: PMC5813681 DOI: 10.1007/s10974-017-9470-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022]
Abstract
Calcium (Ca2+) release from intracellular stores plays a key role in the regulation of skeletal muscle contraction. The type 1 ryanodine receptors (RyR1) is the major Ca2+ release channel on the sarcoplasmic reticulum (SR) of myocytes in skeletal muscle and is required for excitation-contraction (E-C) coupling. This article explores the role of RyR1 in skeletal muscle physiology and pathophysiology.
Collapse
Affiliation(s)
- Gaetano Santulli
- The Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Daniel R Lewis
- The Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Andrew R Marks
- The Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA.
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY, USA.
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
21
|
Perni S, Marsden KC, Escobar M, Hollingworth S, Baylor SM, Franzini-Armstrong C. Structural and functional properties of ryanodine receptor type 3 in zebrafish tail muscle. ACTA ACUST UNITED AC 2015; 145:173-84. [PMID: 25667412 PMCID: PMC4338155 DOI: 10.1085/jgp.201411303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ryanodine receptor (RyR)1 isoform of the sarcoplasmic reticulum (SR) Ca(2+) release channel is an essential component of all skeletal muscle fibers. RyR1s are detectable as "junctional feet" (JF) in the gap between the SR and the plasmalemma or T-tubules, and they are required for excitation-contraction (EC) coupling and differentiation. A second isoform, RyR3, does not sustain EC coupling and differentiation in the absence of RyR1 and is expressed at highly variable levels. Anatomically, RyR3 expression correlates with the presence of parajunctional feet (PJF), which are located on the sides of the SR junctional cisternae in an arrangement found only in fibers expressing RyR3. In frog muscle fibers, the presence of RyR3 and PJF correlates with the occurrence of Ca(2+) sparks, which are elementary SR Ca(2+) release events of the EC coupling machinery. Here, we explored the structural and functional roles of RyR3 by injecting zebrafish (Danio rerio) one-cell stage embryos with a morpholino designed to specifically silence RyR3 expression. In zebrafish larvae at 72 h postfertilization, fast-twitch fibers from wild-type (WT) tail muscles had abundant PJF. Silencing resulted in a drop of the PJF/JF ratio, from 0.79 in WT fibers to 0.03 in the morphants. The frequency with which Ca(2+) sparks were detected dropped correspondingly, from 0.083 to 0.001 sarcomere(-1) s(-1). The few Ca(2+) sparks detected in morphant fibers were smaller in amplitude, duration, and spatial extent compared with those in WT fibers. Despite the almost complete disappearance of PJF and Ca(2+) sparks in morphant fibers, these fibers looked structurally normal and the swimming behavior of the larvae was not affected. This paper provides important evidence that RyR3 is the main constituent of the PJF and is the main contributor to the SR Ca(2+) flux underlying Ca(2+) sparks detected in fully differentiated frog and fish fibers.
Collapse
Affiliation(s)
- Stefano Perni
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Kurt C Marsden
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Matias Escobar
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Stephen Hollingworth
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Stephen M Baylor
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
22
|
The disorders of the calcium release unit of skeletal muscles: what have we learned from mouse models? J Muscle Res Cell Motil 2014; 36:61-9. [PMID: 25424378 DOI: 10.1007/s10974-014-9396-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/29/2014] [Indexed: 01/01/2023]
Abstract
Calcium storage, release, and reuptake are essential for normal physiological function of muscle. Several human skeletal muscle disorders can arise from dysfunction in the control and coordination of these three critical processes. The release from the Sarcoplasmic Reticulum stores (SR) is handled by a multiprotein complex called Calcium Release Unit and composed of DiHydroPyridine Receptor or DHPR, Ryanodine Receptor or RYR, Calsequestrin or CASQ, junctin, Triadin, Junctophilin and Mitsugumin 29. Malignant hyperthermia (MH), Central Core Disease (CCD), Exertional/environmental Heat Stroke (EHS) and Multiminicore disease (MmD) are inherited disorders of calcium homeostasis in skeletal muscles directly related to mutations of genes coding for proteins of the CRU, primarily ryanodine receptor (RYR1). To understand the pathophysiology of MH and CCD, four murine lines carrying point mutations of human RYR1 have been developed: Y524S, R163C, I4898T and T4826I. Mice carrying those mutations show a phenotype with the traits of MH and/or CCD. Interestingly, also ablation of skeletal muscle calsequestrin (CASQ1) leads to a phenotype with MH-like lethal episodes in response to halothane and heat stress and development of central cores. In this review, we aim to describe the murine lines with RYR mutations or CASQ ablation, which show a phenotype similar to human MH or CCD, to underline their specific phenotypes and their differences and to discuss their contribution to the understanding of the pathophysiology of the disorders and the development of therapeutic strategies.
Collapse
|
23
|
Eltit JM, Franzini-Armstrong C, Perez CF. Amino acid residues 489-503 of dihydropyridine receptor (DHPR) β1a subunit are critical for structural communication between the skeletal muscle DHPR complex and type 1 ryanodine receptor. J Biol Chem 2014; 289:36116-24. [PMID: 25384984 DOI: 10.1074/jbc.m114.615526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The β1a subunit is a cytoplasmic component of the dihydropyridine receptor (DHPR) complex that plays an essential role in skeletal muscle excitation-contraction (EC) coupling. Here we investigate the role of the C-terminal end of this auxiliary subunit in the functional and structural communication between the DHPR and the Ca(2+) release channel (RyR1). Progressive truncation of the β1a C terminus showed that deletion of amino acid residues Gln(489) to Trp(503) resulted in a loss of depolarization-induced Ca(2+) release, a severe reduction of L-type Ca(2+) currents, and a lack of tetrad formation as evaluated by freeze-fracture analysis. However, deletion of this domain did not affect expression/targeting or density (Qmax) of the DHPR-α1S subunit to the plasma membrane. Within this motif, triple alanine substitution of residues Leu(496), Leu(500), and Trp(503), which are thought to mediate direct β1a-RyR1 interactions, weakened EC coupling but did not replicate the truncated phenotype. Therefore, these data demonstrate that an amino acid segment encompassing sequence (489)QVQVLTSLRRNLSFW(503) of β1a contains critical determinant(s) for the physical link of DHPR and RyR1, further confirming a direct correspondence between DHPR positioning and DHPR/RyR functional interactions. In addition, our data strongly suggest that the motif Leu(496)-Leu(500)-Trp(503) within the β1a C-terminal tail plays a nonessential role in the bidirectional DHPR/RyR1 signaling that supports skeletal-type EC coupling.
Collapse
Affiliation(s)
- Jose M Eltit
- the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virgina 23298, and
| | - Clara Franzini-Armstrong
- the Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Claudio F Perez
- From the Department of Anesthesiology Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
24
|
Abstract
The triad is a skeletal muscle substructure responsible for the regulation of excitation-contraction coupling. It is formed by the close apposition of the T-tubule and the terminal sarcoplasmic reticulum. A rapidly growing list of skeletal myopathies, here referred to as triadopathies, are caused by gene mutations in components of the triad. These disorders, at their root, are caused by defects in excitation contraction coupling and intracellular calcium homeostasis. Secondary abnormalities in triad structure and/or function are also reported in several muscle diseases, most notably certain muscular dystrophies. This review highlights the current understanding of both primary and secondary triadopathies, and identifies important concepts yet to be fully addressed in the field. The emphasis of the review is both on the pathogenesis of triadopathies and their potential treatment.
Collapse
Affiliation(s)
- James J Dowling
- Division of Neurology and Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada,
| | | | | |
Collapse
|
25
|
Yarotskyy V, Dirksen RT. Temperature and RyR1 regulate the activation rate of store-operated Ca²+ entry current in myotubes. Biophys J 2012; 103:202-11. [PMID: 22853897 DOI: 10.1016/j.bpj.2012.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 05/29/2012] [Accepted: 06/04/2012] [Indexed: 01/22/2023] Open
Abstract
Store-operated calcium entry (SOCE) is an important Ca(2+) entry pathway in skeletal muscle. However, direct electrophysiological recording and full characterization of the underlying SOCE current in skeletal muscle cells (I(SkCRAC)) has not been reported. Here, we characterized the biophysical properties, pharmacological profile, and molecular identity of I(SkCRAC) in skeletal myotubes, as well as the regulation of its rate of activation by temperature and the type I ryanodine receptor (RyR1). I(SkCRAC) exhibited many hallmarks of Ca(2+) release activated Ca(2+) currents (I(CRAC)): store dependence, strong inward rectification, positive reversal potential, limited cesium permeability, and sensitivity to SOCE channel blockers. I(SkCRAC) was reduced by siRNA knockdown of stromal interaction molecule 1 and expression of dominant negative Orai1. Average I(SkCRAC) current density at -80mV was 1.00 ± 0.05 pA/pF. In the presence of 20 mM intracellular EGTA, I(SkCRAC) activation occurred over tens of seconds during repetitive depolarization at 0.5Hz and was inhibited by treatment with 100 μM ryanodine. The rate of SOCE activation was reduced threefold in myotubes from RyR1-null mice and increased 4.6-fold at physiological temperatures (35-37°C). These results show that I(SkCRAC) exhibits similar biophysical, pharmacological, and molecular properties as I(CRAC) in nonexcitable cells and its rate of activation during repetitive depolarization is strongly regulated by temperature and RyR1 activity.
Collapse
Affiliation(s)
- Viktor Yarotskyy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | | |
Collapse
|
26
|
Boncompagni S, Thomas M, Lopez JR, Allen PD, Yuan Q, Kranias EG, Franzini-Armstrong C, Perez CF. Triadin/Junctin double null mouse reveals a differential role for Triadin and Junctin in anchoring CASQ to the jSR and regulating Ca(2+) homeostasis. PLoS One 2012; 7:e39962. [PMID: 22768324 PMCID: PMC3388061 DOI: 10.1371/journal.pone.0039962] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/31/2012] [Indexed: 11/17/2022] Open
Abstract
Triadin (Tdn) and Junctin (Jct) are structurally related transmembrane proteins thought to be key mediators of structural and functional interactions between calsequestrin (CASQ) and ryanodine receptor (RyRs) at the junctional sarcoplasmic reticulum (jSR). However, the specific contribution of each protein to the jSR architecture and to excitation-contraction (e-c) coupling has not been fully established. Here, using mouse models lacking either Tdn (Tdn-null), Jct (Jct-null) or both (Tdn/Jct-null), we identify Tdn as the main component of periodically located anchors connecting CASQ to the RyR-bearing jSR membrane. Both proteins proved to be important for the structural organization of jSR cisternae and retention of CASQ within them, but with different degrees of impact. Our results also suggest that the presence of CASQ is responsible for the wide lumen of the jSR cisternae. Using Ca(2+) imaging and Ca(2+) selective microelectrodes we found that changes in e-c coupling, SR Ca(2+)content and resting [Ca(2+)] in Jct, Tdn and Tdn/Jct-null muscles are directly correlated to the effect of each deletion on CASQ content and its organization within the jSR. These data suggest that in skeletal muscle the disruption of Tdn/CASQ link has a more profound effect on jSR architecture and myoplasmic Ca(2+) regulation than Jct/CASQ association.
Collapse
Affiliation(s)
- Simona Boncompagni
- DNI-Department of Neuroscience and Imaging, CeSI-Center for Research on Ageing, University of G. D'Annunzio, Chieti, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Schiaffino S. Tubular aggregates in skeletal muscle: just a special type of protein aggregates? Neuromuscul Disord 2011; 22:199-207. [PMID: 22154366 DOI: 10.1016/j.nmd.2011.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/14/2011] [Accepted: 10/10/2011] [Indexed: 01/28/2023]
Abstract
Tubular aggregates are inclusions, usually found in type II muscle fibers and in males, consisting of regular arrays of tubules derived from the sarcoplasmic reticulum. Tubular aggregates are associated with a wide variety of muscle disorders, including poorly defined "tubular aggregate myopathies" characterized by weakness and/or myalgia and/or cramps, and are also present in different mouse models, including normal aging muscles. The mechanism(s) responsible for inducing the formation of these structures have not been identified, because of the slow time course of their development in vivo, several months in mice. However, identical structures are formed in a few hours in rat muscles kept in vitro in hypoxic medium. Here I suggest that tubular aggregates result from reshaping of sarcoplasmic reticulum caused by misfolding and aggregation of membrane proteins and thus represent a special type of "protein aggregates" due to altered proteostasis.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy; Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padova, Italy.
| |
Collapse
|
28
|
Franzini-Armstrong C. RyRs: Their Disposition, Frequency, and Relationships with Other Proteins of Calcium Release Units. CURRENT TOPICS IN MEMBRANES 2010; 66:3-26. [PMID: 22353474 DOI: 10.1016/s1063-5823(10)66001-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
29
|
Ryanodine receptor studies using genetically engineered mice. FEBS Lett 2010; 584:1956-65. [PMID: 20214899 DOI: 10.1016/j.febslet.2010.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 02/24/2010] [Accepted: 03/03/2010] [Indexed: 11/20/2022]
Abstract
Ryanodine receptors (RyR) regulate intracellular Ca(2+) release in many cell types and have been implicated in a number of inherited human diseases. Over the past 15 years genetically engineered mouse models have been developed to elucidate the role that RyRs play in physiology and pathophysiology. To date these models have implicated RyRs in fundamental biological processes including excitation-contraction coupling and long term plasticity as well as diseases including malignant hyperthermia, cardiac arrhythmias, heart failure, and seizures. In this review we summarize the RyR mouse models and how they have enhanced our understanding of the RyR channels and their roles in cellular physiology and disease.
Collapse
|
30
|
Corona BT, Balog EM, Doyle JA, Rupp JC, Luke RC, Ingalls CP. Junctophilin damage contributes to early strength deficits and EC coupling failure after eccentric contractions. Am J Physiol Cell Physiol 2009; 298:C365-76. [PMID: 19940065 DOI: 10.1152/ajpcell.00365.2009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Junctophilins (JP1 and JP2) are expressed in skeletal muscle and are the primary proteins involved in transverse (T)-tubule and sarcoplasmic reticulum (SR) membrane apposition. During the performance of eccentric contractions, the apposition of T-tubule and SR membranes may be disrupted, resulting in excitation-contraction (EC) coupling failure and thus reduced force-producing capacity. In this study, we made three primary observations: 1) through the first 3 days after the performance of 50 eccentric contractions in vivo by the left hindlimb anterior crural muscles of female mice, both JP1 and JP2 were significantly reduced by approximately 50% and 35%, respectively, while no reductions were observed after the performance of nonfatiguing concentric contractions; 2) following the performance of a repeated bout of 50 eccentric contractions in vivo, only JP1 was immediately reduced ( approximately 30%) but recovered by 3-day postinjury in tandem with the recovery of strength and EC coupling; and 3) following the performance of 10 eccentric contractions at either 15 degrees or 35 degrees C by isolated mouse extensor digitorum longus (EDL) muscle, isometric force, EC coupling, and JP1 and JP2 were only reduced after the eccentric contractions performed at 35 degrees C. Regression analysis of JP1 and JP2 content in tibialis anterior and EDL muscles from each set of experiments indicated that JP damage is significantly associated with early (0-3 days) strength deficits after performance of eccentric contractions (R = 0.49; P < 0.001). As a whole, the results of this study indicate that JP damage plays a role in early force deficits due to EC coupling failure following the performance of eccentric contractions.
Collapse
Affiliation(s)
- B T Corona
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
31
|
Kato K, Kiyonaka S, Sawaguchi Y, Tohnishi M, Masaki T, Yasokawa N, Mizuno Y, Mori E, Inoue K, Hamachi I, Takeshima H, Mori Y. Molecular characterization of flubendiamide sensitivity in the lepidopterous ryanodine receptor Ca(2+) release channel. Biochemistry 2009; 48:10342-52. [PMID: 19807072 DOI: 10.1021/bi900866s] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flubendiamide is a benzenedicarboxamide derivative that shows selective insecticidal activity against lepidopterous insects. The specific modulatory effects of flubendiamide on ryanodine binding in insect muscle microsomal membranes suggest that the ryanodine receptor (RyR) Ca(2+) release channel is a primary target of flubendiamide. However, the molecular mechanisms underlying the species-specific action of flubendiamide are unclear. We have cloned cDNA encoding a novel RyR from the lepidopterous silkworm RyR (sRyR) and tested the sensitivity to flubendiamide of the recombinant sRyR in HEK293 cells. Confocal localization studies and Ca(2+) imaging techniques revealed that sRyRs form Ca(2+) release channels in the endoplasmic reticulum. Importantly, flubendiamide induced release of Ca(2+) through the sRyR, but not through the rabbit RyR isoforms. Photoaffinity labeling of sRyR deletion mutants using a photoreactive derivative revealed that flubendiamide is mainly incorporated into the transmembrane domain (amino acids 4111-5084) of the sRyR. The rabbit cardiac muscle isoform RyR2 (rRyR2) and the RyR mutant carrying a replacement of the transmembrane domain (residues 4084-5084) with its counterpart sequence from rRyR2 (residues 3936-4968) were not labeled by the photoreactive compound. This replacement in the sRyR significantly impaired the responses to flubendiamide but only marginally reduced the sensitivity to caffeine, a general RyR activator. Furthermore, deletion of the N-terminal sequence (residues 183-290) abolished the responses of the sRyR to flubendiamide but not the sensitivity to caffeine. Our results suggest that the transmembrane domain plays an important role in the formation of an action site for flubendiamide, while the N-terminus is a structural requirement for flubendiamide-induced activation of the sRyR.
Collapse
Affiliation(s)
- Kenta Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Calcium-induced calcium release (CICR) was first discovered in skeletal muscle. CICR is defined as Ca2+ release by the action of Ca2+ alone without the simultaneous action of other activating processes. CICR is biphasically dependent on Ca2+ concentration; is inhibited by Mg2+, procaine, and tetracaine; and is potentiated by ATP, other adenine compounds, and caffeine. With depolarization of the sarcoplasmic reticulum (SR), a potential change of the SR membrane in which the luminal side becomes more negative, CICR is activated for several seconds and is then inactivated. All three types of ryanodine receptors (RyRs) show CICR activity. At least one RyR, RyR1, also shows non-CICR Ca2+ release, such as that triggered by the t-tubule voltage sensor, by clofibric acid, and by SR depolarization. Maximum rates of CICR, at the optimal Ca2+ concentration in the presence of physiological levels of ATP and Mg2+ determined in skinned fibers and fragmented SR, are much lower than the rate of physiological Ca2+ release. The primary event of physiological Ca2+ release, the Ca2+ spark, is the simultaneous opening of multiple channels, the coordinating mechanism of which does not appear to be CICR because of the low probability of CICR opening under physiological conditions. The coordination may require Ca2+, but in that case, some other stimulus or stimuli must be provided simultaneously, which is not CICR by definition. Thus CICR does not appear to contribute significantly to physiological Ca2+ release. On the other hand, CICR appears to play a key role in caffeine contracture and malignant hyperthermia. The potentiation of voltage-activated Ca2+ release by caffeine, however, does not seem to occur through secondary CICR, although the site where caffeine potentiates voltage-activated Ca2+ release might be the same site where caffeine potentiates CICR.
Collapse
|
33
|
Yamazaki D, Yamazaki T, Takeshima H. New molecular components supporting ryanodine receptor-mediated Ca2+ release: Roles of junctophilin and TRIC channel in embryonic cardiomyocytes. Pharmacol Ther 2009; 121:265-72. [DOI: 10.1016/j.pharmthera.2008.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 01/01/2023]
|
34
|
Rigoard P, Buffenoir K, Wager M, Bauche S, Giot JP, Lapierre F. [Molecular architecture of the sarcoplasmic reticulum and its role in the ECC]. Neurochirurgie 2009; 55 Suppl 1:S83-91. [PMID: 19233437 DOI: 10.1016/j.neuchi.2008.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 05/09/2008] [Indexed: 11/16/2022]
Abstract
The sarcoplasmic reticulum (SR) plays a fundamental role in excitation-contraction coupling, which propagates the electric signal conversion along the muscle fiber's plasmic membrane to a mechanical event manifested as a muscle contraction. It plays a crucial role in calcium homeostasis and intracellular calcium storage control (storage, liberation and uptake) necessary for fiber muscle contraction and then relaxation. These functions take place at the triad, made up of individualized SR subdomains where the protein-specific organization provides efficient and fast coupling. Ryanodine receptors (RyR) and dihydropyridine receptors (DHPR) mainly act in calcium exchanges in the SR. This particular structural and molecular architecture must be correlated to its functional specificity.
Collapse
Affiliation(s)
- P Rigoard
- Service de neurochirurgie, CHU La Milétrie, 2, rue de la Milétrie, BP 577, 86021 Poitiers cedex, France.
| | | | | | | | | | | |
Collapse
|
35
|
Structural differentiation of skeletal muscle fibers in the absence of innervation in humans. Proc Natl Acad Sci U S A 2007; 104:19339-44. [PMID: 18042706 DOI: 10.1073/pnas.0709061104] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The relative importance of muscle activity versus neurotrophic factors in the maintenance of muscle differentiation has been greatly debated. Muscle biopsies from spinal cord injury patients, who were trained with an innovative protocol of functional electrical stimulation (FES) for prolonged periods (2.4-9.3 years), offered the unique opportunity of studying the structural recovery of denervated fibers from severe atrophy under the sole influence of muscle activity. FES stimulation induced surprising recovery of muscle structure, mass, and force even in patients whose muscles had been denervated for prolonged periods before the beginning of FES training (up to 2 years) and had almost completely lost muscle-specific internal organization. Ninety percent (or more) of the fibers analyzed by electron microscopy showed a striking recovery of the ultrastructural organization of myofibrils and Ca(2+)-handling membrane systems. This functional/structural restoration follows a pattern that mimics some aspects of normal muscle differentiation. Most importantly, the recovery occurs in the complete absence of motor and sensory innervation and of nerve-derived trophic factors, that is, solely under the influence of muscle activity induced by electrical stimulation.
Collapse
|
36
|
An Ryr1I4895T mutation abolishes Ca2+ release channel function and delays development in homozygous offspring of a mutant mouse line. Proc Natl Acad Sci U S A 2007; 104:18537-42. [PMID: 18003898 DOI: 10.1073/pnas.0709312104] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A heterozygous Ile4898 to Thr (I4898T) mutation in the human type 1 ryanodine receptor/Ca(2+) release channel (RyR1) leads to a severe form of central core disease. We created a mouse line in which the corresponding Ryr1(I4895T) mutation was introduced by using a "knockin" protocol. The heterozygote does not exhibit an overt disease phenotype, but homozygous (IT/IT) mice are paralyzed and die perinatally, apparently because of asphyxia. Histological analysis shows that IT/IT mice have greatly reduced and amorphous skeletal muscle. Myotubes are small, nuclei remain central, myofibrils are disarranged, and no cross striation is obvious. Many areas indicate probable degeneration, with shortened myotubes containing central stacks of pyknotic nuclei. Other manifestations of a delay in completion of late stages of embryogenesis include growth retardation and marked delay in ossification, dermatogenesis, and cardiovascular development. Electron microscopy of IT/IT muscle demonstrates appropriate targeting and positioning of RyR1 at triad junctions and a normal organization of dihydropyridine receptor (DHPR) complexes into RyR1-associated tetrads. Functional studies carried out in cultured IT/IT myotubes show that ligand-induced and DHPR-activated RyR1 Ca(2+) release is absent, although retrograde enhancement of DHPR Ca(2+) conductance is retained. IT/IT mice, in which RyR1-mediated Ca(2+) release is abolished without altering the formation of the junctional DHPR-RyR1 macromolecular complex, provide a valuable model for elucidation of the role of RyR1-mediated Ca(2+) signaling in mammalian embryogenesis.
Collapse
|
37
|
Hirata H, Watanabe T, Hatakeyama J, Sprague SM, Saint-Amant L, Nagashima A, Cui WW, Zhou W, Kuwada JY. Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease. Development 2007; 134:2771-81. [PMID: 17596281 DOI: 10.1242/dev.004531] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Wild-type zebrafish embryos swim away in response to tactile stimulation. By contrast, relatively relaxed mutants swim slowly due to weak contractions of trunk muscles. Electrophysiological recordings from muscle showed that output from the CNS was normal in mutants, suggesting a defect in the muscle. Calcium imaging revealed that Ca2+ transients were reduced in mutant fast muscle. Immunostaining demonstrated that ryanodine and dihydropyridine receptors, which are responsible for Ca2+ release following membrane depolarization, were severely reduced at transverse-tubule/sarcoplasmic reticulum junctions in mutant fast muscle. Thus, slow swimming is caused by weak muscle contractions due to impaired excitation-contraction coupling. Indeed, most of the ryanodine receptor 1b(ryr1b) mRNA in mutants carried a nonsense mutation that was generated by aberrant splicing due to a DNA insertion in an intron of the ryr1b gene, leading to a hypomorphic condition in relatively relaxed mutants. RYR1 mutations in humans lead to a congenital myopathy,multi-minicore disease (MmD), which is defined by amorphous cores in muscle. Electron micrographs showed minicore structures in mutant fast muscles. Furthermore, following the introduction of antisense morpholino oligonucleotides that restored the normal splicing of ryr1b, swimming was recovered in mutants. These findings suggest that zebrafish relatively relaxed mutants may be useful for understanding the development and physiology of MmD.
Collapse
Affiliation(s)
- Hiromi Hirata
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yamashita S, McGrath KF, Yuki A, Tamaki H, Kasuga N, Takekura H. Assembly of transverse tubule architecture in the middle and myotendinous junctional regions in developing rat skeletal muscle fibers. J Muscle Res Cell Motil 2007; 28:141-51. [PMID: 17610135 DOI: 10.1007/s10974-007-9111-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 06/03/2007] [Indexed: 11/26/2022]
Abstract
The transverse (t)-tubule is responsible for the rapid inward spread of excitation from the sarcolemma to the inside of the muscle fiber, and the compartments of the t-tubule become highly and regularly organized during development. Although it is known that skeletal muscle fibers lengthen by adding sarcomeres at the myotendinous junction (MTJ) during development, no specific model exists for the assembly of new t-tubule architecture at the MTJ. We performed an electron-microscopic examination of the assembly of t-tubule architecture at the MTJ in developing rat skeletal muscle fibers. Although the longitudinally oriented t-tubule elements represent only a small fraction of the total t-tubule system in adult muscle fibers, they were observed at both A-band and I-band regions of middle and MTJ regions in early developmental stages, and gradually disappeared in the middle regions of muscle fibers during development; however, they remained in the MTJ even in adult muscle fibers. The frequency of pentads and heptads (two or three t-tubule elements with three or four elements of terminal cisternae, closely aligned with terminal cisternae of the sarcoplasmic reticulum) decreased during development, with sudden decrease between 7 and 10 weeks of age in the middle regions. Interestingly, although the frequency of decrease appeared to be higher in the middle region than in the MTJ regions in early (3- to 7-week) development, this pattern reversed, and the frequency of decrease was higher in the MTJ in later development (after 10 weeks of age). The MTJ maintained the features of immature membrane systems involved in e-c coupling much longer than the middle region of the fiber during development. The assembly of t-tubule architecture during postnatal development thus follows different processes in the middle and MTJ regions of skeletal muscle fibers.
Collapse
Affiliation(s)
- Susumu Yamashita
- Department of Physiological Sciences, National Institute of Fitness and Sports, 1, Shiromizu, Kanoya 891-2393 Kagoshima, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Sheridan DC, Takekura H, Franzini-Armstrong C, Beam KG, Allen PD, Perez CF. Bidirectional signaling between calcium channels of skeletal muscle requires multiple direct and indirect interactions. Proc Natl Acad Sci U S A 2006; 103:19760-5. [PMID: 17172444 PMCID: PMC1750873 DOI: 10.1073/pnas.0609473103] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have defined regions of the skeletal muscle ryanodine receptor (RyR1) essential for bidirectional signaling with dihydropyridine receptors (DHPRs) and for the organization of DHPR into tetrad arrays by expressing RyR1-RyR3 chimerae in dyspedic myotubes. RyR1-RyR3 constructs bearing RyR1 residues 1-1681 restored wild-type DHPR tetrad arrays and, in part, skeletal-type excitation-contraction (EC) coupling (orthograde signaling) but failed to enhance DHPR Ca(2+) currents (retrograde signaling) to WT RyR1 levels. Within this region, the D2 domain (amino acids 1272-1455), although ineffective on its own, dramatically enhanced the formation of tetrads and EC coupling rescue by constructs that otherwise are only partially effective. These findings suggest that the orthograde signal and DHPR tetrad formation require the contributions of numerous RyR regions. Surprisingly, we found that RyR3, although incapable of supporting EC coupling or tetrad formation, restored a significant level of Ca(2+) current, revealing a functional interaction with the skeletal muscle DHPR. Thus, our data support the hypotheses that (i) the structural/functional link between RyR1 and the skeletal muscle DHPR requires multiple interacting regions, (ii) the D2 domain of RyR1 plays a key role in stabilizing this interaction, and (iii) a form of retrograde signaling from RyR3 to the DHPR occurs in the absence of direct protein-protein interactions.
Collapse
Affiliation(s)
- David C. Sheridan
- *University of Colorado Health and Sciences Center, Aurora, CO 80045
| | - Hiroaki Takekura
- National Institute of Fitness and Sports, Kanoya, Kagoshima 891-2393, Japan
| | - Clara Franzini-Armstrong
- University of Pennsylvania, Philadelphia, PA 19104; and
- To whom correspondence may be addressed. E-mail:
or
| | - Kurt G. Beam
- *University of Colorado Health and Sciences Center, Aurora, CO 80045
| | - Paul D. Allen
- Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115
| | - Claudio F. Perez
- Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
40
|
Campbell NR, Podugu SP, Ferrari MB. Spatiotemporal characterization of short versus long duration calcium transients in embryonic muscle and their role in myofibrillogenesis. Dev Biol 2006; 292:253-64. [PMID: 16460724 DOI: 10.1016/j.ydbio.2005.11.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 11/10/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Intracellular calcium (Ca(2+)) signals are essential for several aspects of muscle development, including myofibrillogenesis-the terminal differentiation of the sarcomeric lattice. Ryanodine receptor (RyR) Ca(2+) stores must be operative during this period and contribute to the production of spontaneous global Ca(2+) transients of long duration (LDTs; mean duration approximately 80 s). In this study, high-speed confocal imaging of intracellular Ca(2+) in embryonic myocytes reveals a novel class of spontaneous Ca(2+) transient. These short duration transients (SDTs; mean duration approximately 2 s) are blocked by ryanodine, independent of extracellular Ca(2+), insensitive to changes in membrane potential, and propagate in the subsarcolemmal space. SDTs arise from RyR stores localized to the subsarcolemmal space during myofibrillogenesis. While both LDTs and SDTs occur prior to myofibrillogenesis, LDT production ceases and only SDTs persist during a period of rapid sarcomere assembly. However, eliminating SDTs during this period results in only minor myofibril disruption. On the other hand, artificial extension of LDT production completely inhibits sarcomere assembly. In conjunction with earlier work, these results suggest that LDTs have at least two roles during myofibrillogenesis-activation of sarcoplasmic regulatory cascades and regulation of gene expression. The distinct spatiotemporal patterns of LDTs versus SDTs may be utilized for differential regulation of cytosolic cascades, control of nuclear gene expression, and localized activation of assembly events at the sarcolemma.
Collapse
Affiliation(s)
- Nolan R Campbell
- School of Biological Sciences, University of Missouri, 5100 Rockhill Road, Kansas City, MO 64110-2499, USA.
| | | | | |
Collapse
|
41
|
Goonasekera SA, Chen SRW, Dirksen RT. Reconstitution of local Ca2+ signaling between cardiac L-type Ca2+ channels and ryanodine receptors: insights into regulation by FKBP12.6. Am J Physiol Cell Physiol 2005; 289:C1476-84. [PMID: 16049053 DOI: 10.1152/ajpcell.00250.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca+-induced Ca2+ release (CICR) in the heart involves local Ca2+ signaling between sarcolemmal L-type Ca2+ channels (dihydropyridine receptors, DHPRs) and type 2 ryanodine receptors (RyR2s) in the sarcoplasmic reticulum (SR). We reconstituted cardiac-like CICR by expressing a cardiac dihydropyridine-insensitive (T1066Y/Q1070M) α1-subunit (α1CYM) and RyR2 in myotubes derived from RyR1-knockout (dyspedic) mice. Myotubes expressing α1CYM and RyR2 were vesiculated and exhibited spontaneous Ca2+ oscillations that resulted in chaotic and uncontrolled contractions. Coexpression of FKBP12.6 (but not FKBP12.0) with α1CYM and RyR2 eliminated vesiculations and reduced the percentage of myotubes exhibiting uncontrolled global Ca2+ oscillations (63% and 13% of cells exhibited oscillations in the absence and presence of FKBP12.6, respectively). α1CYM/RyR2/FKBP12.6-expressing myotubes exhibited robust and rapid electrically evoked Ca2+ transients that required extracellular Ca2+. Depolarization-induced Ca2+ release in α1CYM/RyR2/FKBP12.6-expressing myotubes exhibited a bell-shaped voltage dependence that was fourfold larger than that of myotubes expressing α1CYM alone (maximal fluorescence change was 2.10 ± 0.39 and 0.54 ± 0.07, respectively), despite similar Ca2+ current densities. In addition, the gain of CICR in α1CYM/RyR2/FKBP12.6-expressing myotubes exhibited a nonlinear voltage dependence, being considerably larger at threshold potentials. We used this molecular model of local α1C-RyR2 signaling to assess the ability of FKBP12.6 to inhibit spontaneous Ca2+ release via a phosphomimetic mutation in RyR2 (S2808D). Electrically evoked Ca2+ release and the incidence of spontaneous Ca2+ oscillations did not differ in wild-type RyR2- and S2808D-expressing myotubes over a wide range of FKBP12.6 expression. Thus a negative charge at S2808 does not alter in situ regulation of RyR2 by FKBP12.6.
Collapse
Affiliation(s)
- Sanjeewa A Goonasekera
- Dept. of Pharmacology and Physiology, Univ. of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | |
Collapse
|
42
|
Takekura H, Paolini C, Franzini-Armstrong C, Kugler G, Grabner M, Flucher BE. Differential contribution of skeletal and cardiac II-III loop sequences to the assembly of dihydropyridine-receptor arrays in skeletal muscle. Mol Biol Cell 2004; 15:5408-19. [PMID: 15385628 PMCID: PMC532020 DOI: 10.1091/mbc.e04-05-0414] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 09/08/2004] [Indexed: 11/11/2022] Open
Abstract
The plasmalemmal dihydropyridine receptor (DHPR) is the voltage sensor in skeletal muscle excitation-contraction (e-c) coupling. It activates calcium release from the sarcoplasmic reticulum via protein-protein interactions with the ryanodine receptor (RyR). To enable this interaction, DHPRs are arranged in arrays of tetrads opposite RyRs. In the DHPR alpha(1S) subunit, the cytoplasmic loop connecting repeats II and III is a major determinant of skeletal-type e-c coupling. Whether the essential II-III loop sequence (L720-L764) also determines the skeletal-specific arrangement of DHPRs was examined in dysgenic (alpha(1S)-null) myotubes reconstituted with distinct alpha(1) subunit isoforms and II-III loop chimeras. Parallel immunofluorescence and freeze-fracture analysis showed that alpha(1S) and chimeras containing L720-L764, all of which restored skeletal-type e-c coupling, displayed the skeletal arrangement of DHPRs in arrays of tetrads. Conversely, alpha(1C) and those chimeras with a cardiac II-III loop and cardiac e-c coupling properties were targeted into junctional membranes but failed to form tetrads. However, an alpha(1S)-based chimera with the heterologous Musca II-III loop produced tetrads but did not reconstitute skeletal muscle e-c coupling. These findings suggest an inhibitory role in tetrad formation of the cardiac II-III loop and that the organization of DHPRs in tetrads vis-a-vis the RyR is necessary but not sufficient for skeletal-type e-c coupling.
Collapse
Affiliation(s)
- Hiroaki Takekura
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
43
|
Kern H, Boncompagni S, Rossini K, Mayr W, Fanò G, Zanin ME, Podhorska-Okolow M, Protasi F, Carraro U. Long-term denervation in humans causes degeneration of both contractile and excitation-contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration? J Neuropathol Exp Neurol 2004; 63:919-31. [PMID: 15453091 DOI: 10.1093/jnen/63.9.919] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the last 30 years there has been considerable interest in the use of functional electrical stimulation (FES) to restore movement to the limbs of paralyzed patients. Spinal cord injury causes a rapid loss in both muscle mass and contractile force. The atrophy is especially severe when the injury involves lower motoneurons because many months after spinal cord injury, atrophy is complicated by fibrosis and fat substitution. In this study we describe the effects of long-term lower motoneuron denervation of human muscle and present the structural results of muscle trained using FES. By means of an antibody for embryonic myosin, we demonstrate that many regenerative events continue to spontaneously occur in human long-term denervated and degenerated muscle (DDM). In addition, using electron microscopy, we describe i) the overall structure of fibers and myofibrils in long-term denervated and degenerated muscle, including the effects of FES, and ii) the structure and localization of calcium release units, or triads; the structures reputed to activate muscle contraction during excitation-contraction coupling (ECC). Both apparatus undergo disarrangement and re-organization following long-term denervation and FES, respectively. The poor excitability of human long-term DDM fibers, which extends to the first periods of FES training, may be explained in terms of the spatial disorder of the ECC apparatus. Its disorganization and re-organization following long-term denervation and FES, respectively, may play a key role in the parallel disarrangement and re-organization of the myofibrils that characterize denervation and FES training. The present structural studies demonstrate that the protocol used during FES training is effective in reverting long-term denervation atrophy and dystrophy. The mean fiber diameter in FES biopsies is 42.2 +/- 14.8 SD (p < 0.0001 vs DDM 14.9 +/- 6.0 SD); the mean percentile of myofiber area of the biopsy is 94.3 +/- 5.7 SD (p < 0.0001 vs DDM 25.7 +/- 23.7 SD); the mean percentile fat area is 2.1 +/- 2.4 SD (p < 0.001 vs DDM 12.8 +/- 12.1 SD); and the mean percentile connective tissue area is 3.6 +/- 4.6 SD (p < 0.001 vs DDM 61.6 +/- 20.1 SD). In DDM biopsies more than 50% of myofibers have diameter smaller than 10 microm, while the FES-trained subjects have more that 50% of myofibers larger than 30 microm. The recovery of muscle mass seems to be the result of both a size increase of the surviving fibers and the regeneration of new myofibers.
Collapse
Affiliation(s)
- Helmut Kern
- From Ludwig Boltzmann Institute of Electrostimulation and Physical Rehabilitation, Department of Physical Medicine, Wilhelminenspital, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Paolini C, Protasi F, Franzini-Armstrong C. The relative position of RyR feet and DHPR tetrads in skeletal muscle. J Mol Biol 2004; 342:145-53. [PMID: 15313613 DOI: 10.1016/j.jmb.2004.07.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 07/02/2004] [Accepted: 07/05/2004] [Indexed: 10/26/2022]
Abstract
In skeletal muscle, L-type calcium channels (or dihydropyridine receptors, DHPRs) are coupled functionally to the calcium release channels of the sarcoplasmic reticulum (or ryanodine receptors, RyRs) within specialized structures called calcium release units (CRUs). The functional linkage requires a specific positioning of four DHPRs in correspondence of the four identical subunits of a single RyR type 1. Four DHPRs linked to the four binding sites of the RyR1 cytoplasmic domain (or foot), define the corners of a square, constituting a tetrad. RyRs self-assemble into ordered arrays and by associating with them, DHPRs also assemble into ordered arrays. The approximate location of the four DHPRs relative to the four identical subunits of a RyR-foot can be predicted on the basis of the relative position of tetrads and feet within the arrays. However, until recently one vital piece of information has been lacking: the orientation of the two arrays relative to one another. In this work we have defined the relative orientation of the RyR and DHPR arrays by directly superimposing replicas of rotary shadowed images of rows of feet, obtained from isolated SR vesicles, and replicas of tetrad arrays obtained by freeze-fracture. If the orientation for the two sets of images is carefully maintained, the superimposition provides specific constraints on the DHPR-RyR relative position.
Collapse
Affiliation(s)
- Cecilia Paolini
- University of Pennsylvania, Department of Cell & Developmental Biology, Philadelphia 19104-6058, USA.
| | | | | |
Collapse
|
45
|
Martin CA, Petousi N, Chawla S, Hockaday AR, Burgess AJ, Fraser JA, Huang CLH, Skepper JN. The effect of extracellular tonicity on the anatomy of triad complexes in amphibian skeletal muscle. J Muscle Res Cell Motil 2004; 24:407-15. [PMID: 14677643 DOI: 10.1023/a:1027356410698] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ultrastructural features of tubular-sarcoplasmic (T-SR) triad junctions and measures of cell volume following graded increases of extracellular tonicity were compared under physiological conditions recently shown to produce spontaneous release of intracellularly stored Ca2+ in fully polarized amphibian skeletal muscle fibres. The fibres were fixed using solutions of equivalent tonicities prior to processing for electron microscopy. The resulting anatomical sections demonstrated a partially reversible cell shrinkage corresponding to substantial increases in intracellular solute or ionic strength graded with extracellular tonicity. Serial thin sections through triad structures confirmed the presence of geometrically close but anatomically isolated transverse (T-) tubular and sarcoplasmic reticular (SR) membranes contrary to earlier suggestions for the development of luminal continuities between these structures in hypertonic solutions. They also quantitatively demonstrated accompanying decreases in T-SR distances, increased numbers of sections that showed closely apposed T and SR membranes, tubular luminal swelling and reductions in luminal volume of the junctional SR, all correlated with the imposed increases in extracellular osmolarity. Fully polarized fibres correspondingly showed elementary Ca(2+)-release events ('sparks', in 100 mM-sucrose-Ringer solution), sustained Ca2+ elevations and propagated Ca2+ waves (> or = 350-500 mM sucrose) following exposure to physiological Ringer solutions of successively greater tonicities. These were absent in hypotonic, isotonic or less strongly hypertonic (approximately 50 mM sucrose-Ringer) solutions. Yet exposure to hypotonic solutions also disrupted T-SR junctional anatomy. It increased the tubular diameters and T-SR distances and reduced their area of potential contact. The spontaneous release of intracellularly stored Ca2+ thus appears more closely to correlate with the expected changes in intracellular solute strength or a reduction in absolute T-SR distance rather than disruption of an optimal anatomical relationship between T and SR membranes taking place with either increases or decreases in extracellular tonicity.
Collapse
Affiliation(s)
- Claire A Martin
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Takekura H, Tamaki H, Nishizawa T, Kasuga N. Plasticity of the transverse tubules following denervation and subsequent reinnervation in rat slow and fast muscle fibres. J Muscle Res Cell Motil 2004; 24:439-51. [PMID: 14677647 DOI: 10.1023/a:1027356912404] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have studied the effects of short term denervation followed by reinnervation on the ultrastructure of the membrane systems and on the content of and distribution of key proteins involved in calcium regulation of fast-twitch (FT) extensor digitorum longus (EDL) and slow-twitch (ST) soleus (SOL) muscle fibres. Ischiadic nerve freezing resulted in total lack of neuromuscular transmission for 3 days followed by a slow recovery, but no decline in twitch force elicited by direct stimulation. The latter measurements indicate no significant atrophy within this time frame. The membrane systems of skeletal muscle fibres were visualized using Ca92+)-K3Fe(CN)6-OsO4 techniques and observed using a high voltage electron microscope. [3H]nitrendipine binding was used to detect levels of dihydropyridine receptor (DHPR) expression. The Ca2+ pumping free sarcoplasmic reticulum domains were not affected by the denervation, but the Ca2+ release domains were dramatically increased, particularly in the FT-EDL muscle fibres. The increase is evidenced by a doubling up of the areas of contacts between SR and transverse (t-) tubules, so that in place of the normal triadic arrangement, pentadic and heptadic junctions, formed by multiple interacting layers of ST and t-tubules are seen. Frequency of pentads and heptads increases and declines in parallel to the denervation and reinnervation but with a delay. Immunofluorecence and electron microscopy observations show presence of DHPR and ryanodine receptor clusters at pentads and heptads junctions. A significant (P < 0.01) positive correlation between the level of [3H]nitrendipine binding component and the frequency pentads and heptads was observed in both the FT-EDL and ST-SOL muscle fibres indicating that overexpression of DHPRs accompanies the build up extra junctional contacts. The results indicate that denervation reversibly affects the domains of the membrane systems involved in excitation-contraction coupling.
Collapse
Affiliation(s)
- Hiroaki Takekura
- Department of Physiological Sciences, National Institute of Fitness and Sports, Kanoya, Kagoshima 891-2393, Japan.
| | | | | | | |
Collapse
|
47
|
Papadopoulos S, Leuranguer V, Bannister RA, Beam KG. Mapping sites of potential proximity between the dihydropyridine receptor and RyR1 in muscle using a cyan fluorescent protein-yellow fluorescent protein tandem as a fluorescence resonance energy transfer probe. J Biol Chem 2004; 279:44046-56. [PMID: 15280389 DOI: 10.1074/jbc.m405317200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excitation-contraction coupling in skeletal muscle involves conformational coupling between the dihydropyridine receptor (DHPR) and the type 1 ryanodine receptor (RyR1) at junctions between the plasma membrane and sarcoplasmic reticulum. In an attempt to find which regions of these proteins are in close proximity to one another, we have constructed a tandem of cyan and yellow fluorescent proteins (CFP and YFP, respectively) linked by a 23-residue spacer, and measured the fluorescence resonance energy transfer (FRET) of the tandem either in free solution or after attachment to sites of the alpha1S and beta1a subunits of the DHPR. For all of the sites examined, attachment of the CFP-YFP tandem did not impair function of the DHPR as a Ca2+ channel or voltage sensor for excitation-contraction coupling. The free tandem displayed a 27.5% FRET efficiency, which decreased significantly after attachment to the DHPR subunits. At several sites examined for both alpha1S (N-terminal, proximal II-III loop of a two fragment construct) and beta1a (C-terminal), the FRET efficiency was similar after expression in either dysgenic (alpha1S-null) or dyspedic (RyR1-null) myotubes. However, compared with dysgenic myotubes, the FRET efficiency in dyspedic myotubes increased from 9.9 to 16.7% for CFP-YFP attached to the N-terminal of beta1a, and from 9.5 to 16.8% for CFP-YFP at the C-terminal of alpha1S. Thus, the tandem reporter suggests that the C terminus of alpha1S and the N terminus of beta1a may be in close proximity to the ryanodine receptor.
Collapse
Affiliation(s)
- Symeon Papadopoulos
- Department of Biomedical Sciences, Anatomy Section, Colorado State University, Fort Collins 80523-1617, USA
| | | | | | | |
Collapse
|
48
|
Wolf M, Eberhart A, Glossmann H, Striessnig J, Grigorieff N. Visualization of the domain structure of an L-type Ca2+ channel using electron cryo-microscopy. J Mol Biol 2003; 332:171-82. [PMID: 12946355 DOI: 10.1016/s0022-2836(03)00899-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The three-dimensional structure of the skeletal muscle voltage-gated L-type calcium channel (Ca(v)1.1; dihydropyridine receptor, DHPR) was determined using electron cryo-microscopy and single-particle averaging. The structure shows a single channel complex with an approximate total molecular mass of 550 kDa, corresponding to the five known subunits of the DHPR, and bound detergent and lipid. Features visible in our structure together with antibody labeling of the beta and alpha(2) subunits allowed us to assign locations for four of the five subunits within the structure. The most striking feature of the structure is the extra-cellular alpha(2) subunit that protrudes from the membrane domain in close proximity to the alpha(1) subunit. The cytosolic beta subunit is located close to the membrane and adjacent to subunits alpha(1), gamma and delta. Our structure correlates well with the functional and biochemical data available for this channel and suggests a three-dimensional model for the excitation-contraction coupling complex consisting of DHPR tetrads and the calcium release channel.
Collapse
Affiliation(s)
- M Wolf
- Howard Hughes Medical Institute, Brandeis University, Rosenstiel Center (MS029), 415 South Street, Waltham, MA 02454-9110, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
In excitable cell types, activation of cell-surface Ca(2+) channels triggers Ca(2+) release from the endplasmic or sarcoplasmic reticulum (ER/SR). This Ca(2+) signal amplification, termed Ca(2+)-induced or voltage-induced Ca(2+) release (CICR/VICR), requires the ryanodine receptor as an intracellular Ca(2+) channel, which is predominantly localized in the junctional membrane complex between the plasma membrane and the ER/SR. Junctophilin is an ER/SR membrane protein that contributes to the formation of the junctional membrane structure. Ryanodine receptor and junctophilin subtypes are derived from distinct genes and show different tissue-specific expression. Recent gene-knockout studies have defined physiological functions of both Ca(2+) release via ryanodine receptors and junctional membrane structures constituted by junctophilins in excitable cells. Moreover, several human genetic diseases are caused by mutations at the ryanodine receptor and junctophilin subtype genes.
Collapse
Affiliation(s)
- Hiroshi Takeshima
- Department of Medical Chemistry, Tohoku University Graduate School of Medicine, Seiryo-machi, Sendai, Miyagi, Japan.
| |
Collapse
|
50
|
Schuhmeier RP, Dietze B, Ursu D, Lehmann-Horn F, Melzer W. Voltage-activated calcium signals in myotubes loaded with high concentrations of EGTA. Biophys J 2003; 84:1065-78. [PMID: 12547788 PMCID: PMC1302684 DOI: 10.1016/s0006-3495(03)74923-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Accepted: 10/16/2002] [Indexed: 10/21/2022] Open
Abstract
In the present study we describe the analysis of optically recorded whole cell Ca(2+) transients elicited by depolarization in cultured skeletal myotubes. Myotubes were obtained from the mouse muscle-derived cell line C2C12 and from mouse satellite cells. The cells were voltage-clamped and perfused with an artificial intracellular solution containing 15 mM EGTA to ensure that the bulk of the Ca(2+) mobilized by depolarization is bound to this extrinsic buffer. The apparent on- and off-rate constants of EGTA and the dissociation rate constant of fura-2 in the cell were estimated by investigating the Ca(2+)-dependence of kinetic components of the fluorescence decay after repolarization. These parameters were used to calculate the time course of the total voltage-controlled flux of Ca(2+) to the myoplasmic space (Ca(2+) input flux). The validity of the procedure was confirmed by model simulations using artificial Ca(2+) input fluxes. Both C2C12 and primary-cultured myotubes showed a very similar phasic-tonic time course of the Ca(2+) input flux. In most measurements, the input flux was considerably larger and showed a different time course than the estimated Ca(2+) flux carried by the L-type Ca(2+) channels, indicating that it consists mainly of voltage-controlled Ca(2+) release from the sarcoplasmic reticulum. In cells with extremely small fluorescence transients, the calculated input fluxes matched the kinetic characteristics of the Ca(2+) inward current, indicating that Ca(2+) release was absent. These measurements served as a control for the fidelity of the fluorimetric flux analysis. The procedures promise a deeper insight into alterations of Ca(2+) release gating in studies employing myotube expression systems for mutant or chimeric protein components of excitation-contraction coupling.
Collapse
Affiliation(s)
- R P Schuhmeier
- Universität Ulm, Abteilung für Angewandte Physiologie, D-89069 Ulm, Germany
| | | | | | | | | |
Collapse
|