1
|
Orlikowska M, Wyciszkiewicz A, Węgrzyn K, Mehringer J, de Souza Paiva D, Jurczak P. Methods for monitoring protein-membrane binding. Comparison based on the interactions between amyloidogenic protein human cystatin C and phospholipid liposomes. Int J Biol Macromol 2024; 278:134889. [PMID: 39168225 DOI: 10.1016/j.ijbiomac.2024.134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
A cell membrane is an essential cellular component providing protection against the outer environment. It is also a host for proteins and carbohydrates responsible for, e.g. transporter, receptor, or enzymatic functions. In parallel, the membrane may also be implicated in pathological processes leading, e.g. to the oligomerization of amyloid-forming proteins, a hallmark of i.a. Alzheimer's disease. The increasing need for detailed information on mechanisms driving the amyloid formation and the potential role of cell membranes in the process proves the research on protein-membrane interactions biologically relevant. Considering the potential and limitations of the relatively well established and newly developed methods, this study focused on selecting methods that allow a broad and comprehensive description of interactions between amyloidogenic protein human cystatin C and lipid bilayers. In the first step, dot-blot and ELISA tests were selected as techniques allowing fast screening for protein-ligand interactions. Next, surface plasmon resonance, spectral shift, biolayer interferometry, and switchSENSE® technology were used to determine kinetic parameters and binding constants for interactions between human cystatin C and the selected lipid bilayers. Based on the obtained results we have proposed the most promising candidates for monitoring of interactions and determining affinity between amyloidogenic proteins and membrane mimetics.
Collapse
Affiliation(s)
- Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | | | - Katarzyna Węgrzyn
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | | | | | - Przemyslaw Jurczak
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
2
|
Jurczak P, Fayad N, Benard M, Czaplewska P, Hildebrandt N. Monomer-Dimer Equilibrium of Human Cystatin C During Internalization Into Cancer Cells. Chembiochem 2024; 25:e202400226. [PMID: 38761032 DOI: 10.1002/cbic.202400226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/20/2024]
Abstract
Human cystatin C (hCC) is a physiologically important protein that serves as intra- and extracellular cysteine proteinase inhibitor in homeostasis. However, in pathological states it dimerizes and further oligomerizes accumulating into a toxic amyloid. HCC forms an active monomer in the extracellular space and becomes an inactive dimer when internalized in cellular organelles. However, hCC cell penetration and its oligomeric state during this process are not well understood. To determine if and how the oligomeric state influences hCC transmembrane migration, we investigated the internalization of the hCC wild type protein as well as three different mutants, which exclusively exist in the monomeric or multimeric state into HeLa cells via confocal fluorescence microscopy. Our results showed that the preferred pathway was endocytosis and that the oligomeric state did not significantly influence the internalization because both monomeric and dimeric hCC migrated into HeLa cells. Considering the differences of the active monomeric and the passive dimeric states of hCC, our findings contribute to a better understanding of the intra and extra cellular functions of hCC and their interaction with cysteine proteases.
Collapse
Affiliation(s)
- Przemyslaw Jurczak
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, Gdańsk, 80-307, Poland
- Laboratoire COBRA (UMR6014 & FR3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, Rouen, 76000, France
| | - Nour Fayad
- Laboratoire COBRA (UMR6014 & FR3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, Rouen, 76000, France
| | - Magalie Benard
- PRIMACEN, Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, Rouen, 76000, France
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, Gdańsk, 80-307, Poland
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, L8S4 L7, Canada
| |
Collapse
|
3
|
Zhukov I, Sikorska E, Orlikowska M, Górniewicz-Lorens M, Kepczynski M, Jurczak P. DPPA as a Potential Cell Membrane Component Responsible for Binding Amyloidogenic Protein Human Cystatin C. Molecules 2024; 29:3446. [PMID: 39124852 PMCID: PMC11313537 DOI: 10.3390/molecules29153446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
A phospholipid bilayer is a typical structure that serves crucial functions in various cells and organelles. However, it is not unusual for it to take part in pathological processes. The cell membrane may be a binding target for amyloid-forming proteins, becoming a factor modulating the oligomerization process leading to amyloid deposition-a hallmark of amyloidogenic diseases-e.g., Alzheimer's disease. The information on the mechanisms governing the oligomerization influenced by the protein-membrane interactions is scarce. Therefore, our study aims to describe the interactions between DPPA, a cell membrane mimetic, and amyloidogenic protein human cystatin C. Circular dichroism spectroscopy and differential scanning calorimetry were used to monitor (i) the secondary structure of the human cystatin C and (ii) the phase transition temperature of the DPPA, during the protein-membrane interactions. NMR techniques were used to determine the protein fragments responsible for the interactions, and molecular dynamics simulations were applied to provide a molecular structure representing the interaction. The obtained data indicate that the protein interacts with DPPA, submerging itself into the bilayer via the AS region. Additionally, the interaction increases the content of α-helix within the protein's secondary structure and stabilizes the whole molecule against denaturation.
Collapse
Affiliation(s)
- Igor Zhukov
- Laboratory of Biological NMR, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Emilia Sikorska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Magdalena Górniewicz-Lorens
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (M.G.-L.); (M.K.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Profesora Stanisława Łojasiewicza 11, 30-348 Krakow, Poland
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (M.G.-L.); (M.K.)
| | - Przemyslaw Jurczak
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, 80-307 Gdansk, Poland
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi 351-0198, Saitama, Japan
| |
Collapse
|
4
|
Jurczak P, Zhukov I, Orlikowska M, Czaplewska P, Sikorska E. Monitoring the interactions between POPG phospholipid bilayer and amyloid-forming protein human cystatin C. Does the bilayer influence the oligomeric state and structure of the protein? BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184285. [PMID: 38237885 DOI: 10.1016/j.bbamem.2024.184285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
A biological membrane is a structure characteristic for various cells and organelles present in almost all living organisms. Even though, it is one of the most common structures in organisms, where it serves crucial functions, a phospholipid bilayer may also take part in pathological processes leading to severe diseases. Research indicates that biological membranes have a profound impact on the pathological processes of oligomerization of amyloid-forming proteins. These processes are a hallmark of amyloid diseases, a group of pathological states involving, e.g., Parkinson's or Alzheimer's disease. Even though amyloidogenic diseases reap the harvest in modern societies, especially in elderly patients, the mechanisms governing the amyloid deposition are not clearly described. Therefore, the presented study focuses on the description of interactions between a model biological membrane (POPG) and one of amyloid forming proteins - human cystatin C. For the purpose of the study molecular dynamics simulations were applied to confirm interactions between the protein and POPG membrane. Next the NMR techniques were used to verify how the data obtained in solution compared to MD simulations and determine fragments of the protein responsible for interactions with POPG. Finally, circular dichroism was used to monitor the changes in secondary structure of the protein and size exclusion chromatography was used to monitor its oligomerization process. Obtained data indicates that the protein interacts with POPG submerging itself into the bilayer with the AS region. However, the presence of POPG bilayer does not significantly affect the structure or oligomerization process of human cystatin C.
Collapse
Affiliation(s)
- Przemyslaw Jurczak
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk, Poland; Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
| | - Igor Zhukov
- Biological NMR Facility, Institute of Biochemistry and Bioscience, Polish Academy of Science, Warsaw, Poland
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Paulina Czaplewska
- Specialist Laboratories, Intercollegiate Faculty of Biotechnology UG&MUG, Gdansk, Poland.
| | - Emilia Sikorska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
5
|
Niedziałkowski P, Jurczak P, Orlikowska M, Wcisło A, Ryl J, Ossowski T, Czaplewska P. Phospholipid-functionalized gold electrode for cellular membrane interface studies - interactions between DMPC bilayer and human cystatin C. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184266. [PMID: 38151198 DOI: 10.1016/j.bbamem.2023.184266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
This work describes the electrochemical studies on the interactions between V57G mutant of human cystatin C (hCC V57G) and membrane bilayer immobilized on the surface of a gold electrode. The electrode was modified with 6-mercaptohexan-1-ol (MCH) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). DMPC was used as a membrane mimetic for monitoring electrochemical changes resulting from the interactions between the functionalized electrode surface and human cystatin C. The interactions between the modified electrode and hCC V57G were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in a phosphate buffered saline (PBS) containing Fe(CN)63-/4- as a redox probe. The electrochemical measurements confirm that fabricated electrode is sensitive to hCC V57G at the concentration of 1 × 10-14 M. The incubation studies carried out at higher concentrations resulted in insignificant changes observed in cyclic voltammetry and electrochemical impedance spectroscopy measurements. The calculated values of surface coverage θR confirm that the electrode is equally covered at higher concentrations of hCC V57G. Measurements of wettability and surface free energy made it possible to determine the influence of individual structural elements of the modified gold electrode on its properties, and thus allowed to understand the nature of the interactions. Contact angle values confirmed the results obtained during electrochemical measurements, indicating the sensitivity of the electrode towards hCC V57G at the concentration of 1 × 10-14 M. In addition, the XPS spectra confirmed the successful anchoring of hCC V57G to the DMPC-functionalized surface.
Collapse
Affiliation(s)
- Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland.
| | - Przemysław Jurczak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland; Specialist Laboratories, Intercollegiate Faculty of Biotechnology UG&MUG, Abrahama 58, Gdańsk 80-307, Poland.
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Anna Wcisło
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Institute of Nanotechnology and Materials Engineering and Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Tadeusz Ossowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Paulina Czaplewska
- Specialist Laboratories, Intercollegiate Faculty of Biotechnology UG&MUG, Abrahama 58, Gdańsk 80-307, Poland
| |
Collapse
|
6
|
Pang KT, Yang YS, Zhang W, Ho YS, Sormanni P, Michaels TCT, Walsh I, Chia S. Understanding and controlling the molecular mechanisms of protein aggregation in mAb therapeutics. Biotechnol Adv 2023; 67:108192. [PMID: 37290583 DOI: 10.1016/j.biotechadv.2023.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
In antibody development and manufacturing, protein aggregation is a common challenge that can lead to serious efficacy and safety issues. To mitigate this problem, it is important to investigate its molecular origins. This review discusses (1) our current molecular understanding and theoretical models of antibody aggregation, (2) how various stress conditions related to antibody upstream and downstream bioprocesses can trigger aggregation, and (3) current mitigation strategies employed towards inhibiting aggregation. We discuss the relevance of the aggregation phenomenon in the context of novel antibody modalities and highlight how in silico approaches can be exploited to mitigate it.
Collapse
Affiliation(s)
- Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore; School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, Singapore
| | - Yuan Sheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wei Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Pietro Sormanni
- Chemistry of Health, Yusuf Hamied Department of Chemistry, University of Cambridge, United Kingdom
| | - Thomas C T Michaels
- Department of Biology, Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland; Bringing Materials to Life Initiative, ETH Zurich, Switzerland
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
7
|
Aggregation mechanism and branched 3D morphologies of pathological human light chain proteins under reducing conditions. Colloids Surf B Biointerfaces 2023; 221:112983. [DOI: 10.1016/j.colsurfb.2022.112983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
|
8
|
Krzek M, Stroobants S, Gelin P, De Malsche W, Maes D. Influence of Centrifugation and Shaking on the Self-Assembly of Lysozyme Fibrils. Biomolecules 2022; 12:biom12121746. [PMID: 36551175 PMCID: PMC9775142 DOI: 10.3390/biom12121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Protein self-assembly into fibrils and oligomers plays a key role in the etiology of degenerative diseases. Several pathways for this self-assembly process have been described and shown to result in different types and ratios of final assemblies, therewith defining the effective physiological response. Known factors that influence assembly pathways are chemical conditions and the presence or lack of agitation. However, in natural and industrial systems, proteins are exposed to a sequence of different and often complex mass transfers. In this paper, we compare the effect of two fundamentally different mass transfer processes on the fibrilization process. Aggregation-prone solutions of hen egg white lysozyme were subjected to predominantly non-advective mass transfer by employing centrifugation and to advective mass transport represented by orbital shaking. In both cases, fibrilization was triggered, while in quiescent only oligomers were formed. The fibrils obtained by shaking compared to fibrils obtained through centrifugation were shorter, thicker, and more rigid. They had rod-like protofibrils as building blocks and a significantly higher β-sheet content was observed. In contrast, fibrils from centrifugation were more flexible and braided. They consisted of intertwined filaments and had low β-sheet content at the expense of random coil. To the best of our knowledge, this is the first evidence of a fibrilization pathway selectivity, with the fibrilization route determined by the mass transfer and mixing configuration (shaking versus centrifugation). This selectivity can be potentially employed for directed protein fibrilization.
Collapse
Affiliation(s)
- Marzena Krzek
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Sander Stroobants
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Pierre Gelin
- μFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Wim De Malsche
- μFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Dominique Maes
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Correspondence:
| |
Collapse
|
9
|
Bhagavatula H, Sarkar A, Santra B, Das A. Scan-Find-Scan-Model: Discrete Site-Targeted Suppressor Design Strategy for Amyloid-β. ACS Chem Neurosci 2022; 13:2191-2208. [PMID: 35767676 DOI: 10.1021/acschemneuro.2c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease is undoubtedly the most well-studied neurodegenerative disease. Consequently, the amyloid-β (Aβ) protein ranks at the top in terms of getting attention from the scientific community for structural property-based characterization. Even after decades of extensive research, there is existing volatility in terms of understanding and hence the effective tackling procedures against the disease that arises due to the lack of knowledge of both specific target- and site-specific drugs. Here, we develop a multidimensional approach based on the characterization of the common static-dynamic-thermodynamic trait of the monomeric protein, which efficiently identifies a small target sequence that contains an inherent tendency to misfold and consequently aggregate. The robustness of the identification of the target sequence comes with an abundance of a priori knowledge about the length and sequence of the target and hence guides toward effective designing of the target-specific drug with a very low probability of bottleneck and failure. Based on the target sequence information, we further identified a specific mutant that showed the maximum potential to act as a destabilizer of the monomeric protein as well as enormous success as an aggregation suppressor. We eventually tested the drug efficacy by estimating the extent of modulation of binding affinity existing within the fibrillar form of the Aβ protein due to a single-point mutation and hence provided a proof of concept of the entire protocol.
Collapse
Affiliation(s)
- Hasathi Bhagavatula
- Department of Biotechnology, Progressive Education Society's Modern College of Arts Science and Commerce, Shivajinagar, Pune 411005, India
| | - Archishman Sarkar
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra Mallick Road, Kolkata, West Bengal 700032, India
| | - Binit Santra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Crystalline Supramolecular Polymers: Dynamics, Chirality, and Function. Isr J Chem 2021. [DOI: 10.1002/ijch.202100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Kelly C, Gage MJ. Protein Unfolding: Denaturant vs. Force. Biomedicines 2021; 9:biomedicines9101395. [PMID: 34680512 PMCID: PMC8533514 DOI: 10.3390/biomedicines9101395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
While protein refolding has been studied for over 50 years since the pioneering work of Christian Anfinsen, there have been a limited number of studies correlating results between chemical, thermal, and mechanical unfolding. The limited knowledge of the relationship between these processes makes it challenging to compare results between studies if different refolding methods were applied. Our current work compares the energetic barriers and folding rates derived from chemical, thermal, and mechanical experiments using an immunoglobulin-like domain from the muscle protein titin as a model system. This domain, I83, has high solubility and low stability relative to other Ig domains in titin, though its stability can be modulated by calcium. Our experiments demonstrated that the free energy of refolding was equivalent with all three techniques, but the refolding rates exhibited differences, with mechanical refolding having slightly faster rates. This suggests that results from equilibrium-based measurements can be compared directly but care should be given comparing refolding kinetics derived from refolding experiments that used different unfolding methods.
Collapse
Affiliation(s)
- Colleen Kelly
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Matthew J. Gage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA;
- UMass Movement Center (UMOVE), University of Massachusetts Lowell, Lowell, MA 01854, USA
- Correspondence:
| |
Collapse
|
12
|
Identification of transmissible proteotoxic oligomer-like fibrils that expand conformational diversity of amyloid assemblies. Commun Biol 2021; 4:939. [PMID: 34354242 PMCID: PMC8342456 DOI: 10.1038/s42003-021-02466-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
Protein misfolding and amyloid deposition are associated with numerous diseases. The detailed characterization of the proteospecies mediating cell death remains elusive owing to the (supra)structural polymorphism and transient nature of the assemblies populating the amyloid pathway. Here we describe the identification of toxic amyloid fibrils with oligomer-like characteristics, which were assembled from an islet amyloid polypeptide (IAPP) derivative containing an Asn-to-Gln substitution (N21Q). While N21Q filaments share structural properties with cytocompatible fibrils, including the 4.7 Å inter-strand distance and β-sheet-rich conformation, they concurrently display characteristics of oligomers, such as low thioflavin-T binding, high surface hydrophobicity and recognition by the A11 antibody, leading to high potency to disrupt membranes and cause cellular dysfunction. The toxic oligomer-like conformation of N21Q fibrils, which is preserved upon elongation, is transmissible to naïve IAPP. These stable fibrils expanding the conformational diversity of amyloid assemblies represent an opportunity to elucidate the structural basis of amyloid disorders. Nguyen et al identified cytotoxic amyloid fibrils with oligomer-like characteristics, which were assembled from an islet amyloid polypeptide (IAPP) derivative containing an Asn-to-Gln substitution (N21Q). They presented evidence to show that these stable fibrils expand the conformational diversity of amyloid assemblies, which represents an opportunity to elucidate the structural basis of amyloid disorders.
Collapse
|
13
|
Susapto HH, Alhattab D, Abdelrahman S, Khan Z, Alshehri S, Kahin K, Ge R, Moretti M, Emwas AH, Hauser CAE. Ultrashort Peptide Bioinks Support Automated Printing of Large-Scale Constructs Assuring Long-Term Survival of Printed Tissue Constructs. NANO LETTERS 2021; 21:2719-2729. [PMID: 33492960 DOI: 10.1021/acs.nanolett.0c04426] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report about rationally designed ultrashort peptide bioinks, overcoming severe limitations in current bioprinting procedures. Bioprinting is increasingly relevant in tissue engineering, regenerative and personalized medicine due to its ability to fabricate complex tissue scaffolds through an automated deposition process. Printing stable large-scale constructs with high shape fidelity and enabling long-term cell survival are major challenges that most existing bioinks are unable to solve. Additionally, they require chemical or UV-cross-linking for the structure-solidifying process which compromises the encapsulated cells, resulting in restricted structure complexity and low cell viability. Using ultrashort peptide bioinks as ideal bodylike but synthetic material, we demonstrate an instant solidifying cell-embedding printing process via a sophisticated extrusion procedure under true physiological conditions and at cost-effective low bioink concentrations. Our printed large-scale cell constructs and the chondrogenic differentiation of printed mesenchymal stem cells point to the strong potential of the peptide bioinks for automated complex tissue fabrication.
Collapse
Affiliation(s)
- Hepi H Susapto
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Dana Alhattab
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zainab Khan
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Salwa Alshehri
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kowther Kahin
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rui Ge
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Manola Moretti
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
14
|
Razbin M, Benetatos P, Mirabbaszadeh K. Directionality of growth and kinetics of branched fibril formation. J Chem Phys 2020; 153:244101. [PMID: 33380088 DOI: 10.1063/5.0029142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The self-assembly of fibrils is a subject of intense interest, primarily due to its relevance to the formation of pathological structures. Some fibrils develop branches via the so-called secondary nucleation. In this paper, we use the master equation approach to model the kinetics of formation of branched fibrils. In our model, a branched fibril consists of one mother branch and several daughter branches. We consider five basic processes of fibril formation, namely, nucleation, elongation, branching, fragmentation, and dissociation of the primary nucleus of fibrils into free monomers. Our main focus is on the effect of the directionality of growth on the kinetics of fibril formation. We consider several cases. At first, the mother branch may elongate from one or from both ends, while the daughter branch elongates only from one end. We also study the case of branched fibrils with bidirectionally growing daughter branches, tangentially to the main stem, which resembles the intertwining process. We derive a set of ordinary differential equations for the moments of the number concentration of fibrils, which can be solved numerically. Assuming that the primary nucleus of fibrils dissociates with the fragmentation rate, in the limit of the zero branching rate, our model reproduces the results of a previous model that considers only the three basic processes of nucleation, elongation, and fragmentation. We also use the experimental parameters for the fibril formation of Huntingtin fragments to investigate the effect of unidirectional vs bidirectional elongation of the filaments on the kinetics of fibrillogenesis.
Collapse
Affiliation(s)
- Mohammadhosein Razbin
- Department of Energy Engineering and Physics, Amirkabir University of Technology, 14588 Tehran, Iran
| | - Panayotis Benetatos
- Department of Physics, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Kavoos Mirabbaszadeh
- Department of Energy Engineering and Physics, Amirkabir University of Technology, 14588 Tehran, Iran
| |
Collapse
|
15
|
Jurczak P, Szutkowski K, Lach S, Jurga S, Czaplewska P, Szymanska A, Zhukov I. DMPC Phospholipid Bilayer as a Potential Interface for Human Cystatin C Oligomerization: Analysis of Protein-Liposome Interactions Using NMR Spectroscopy. MEMBRANES 2020; 11:membranes11010013. [PMID: 33374166 PMCID: PMC7824490 DOI: 10.3390/membranes11010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Studies revolving around mechanisms responsible for the development of amyloid-based diseases lay the foundations for the recognition of molecular targets of future to-be-developed treatments. However, the vast number of peptides and proteins known to be responsible for fibril formation, combined with their complexity and complexity of their interactions with various cellular components, renders this task extremely difficult and time-consuming. One of these proteins, human cystatin C (hCC), is a well-known and studied cysteine-protease inhibitor. While being a monomer in physiological conditions, under the necessary stimulus—usually a mutation, it tends to form fibrils, which later participate in the disease development. This process can potentially be regulated (in several ways) by many cellular components and it is being hypothesized that the cell membrane might play a key role in the oligomerization pathway. Studies involving cell membranes pose several difficulties; therefore, an alternative in the form of membrane mimetics is a very attractive solution. Here, we would like to present the first study on hCC oligomerization under the influence of phospholipid liposomes, acting as a membrane mimetic. The protein–mimetic interactions are studied utilizing circular dichroism, nuclear magnetic resonance, and size exclusion chromatography.
Collapse
Affiliation(s)
- Przemyslaw Jurczak
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.J.); (S.L.); (A.S.)
| | - Kosma Szutkowski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland; (K.S.); (S.J.)
| | - Slawomir Lach
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.J.); (S.L.); (A.S.)
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland; (K.S.); (S.J.)
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology UG & MUG, University of Gdańsk, Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland;
| | - Aneta Szymanska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.J.); (S.L.); (A.S.)
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106 Warszawa, Poland
- Correspondence: ; Tel.: +48-22-592-2038
| |
Collapse
|
16
|
Holubová M, Štěpánek P, Hrubý M. Polymer materials as promoters/inhibitors of amyloid fibril formation. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04710-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Ruggeri FS, Flagmeier P, Kumita JR, Meisl G, Chirgadze DY, Bongiovanni MN, Knowles TPJ, Dobson CM. The Influence of Pathogenic Mutations in α-Synuclein on Biophysical and Structural Characteristics of Amyloid Fibrils. ACS NANO 2020; 14:5213-5222. [PMID: 32159944 DOI: 10.1021/acsnano.9b09676] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteinaceous deposits of α-synuclein amyloid fibrils are a hallmark of human disorders including Parkinson's disease. The onset of this disease is also associated with five familial mutations of the gene encoding the protein. However, the mechanistic link between single point mutations and the kinetics of aggregation, biophysical properties of the resulting amyloid fibrils, and an increased risk of disease is still elusive. Here, we demonstrate that the disease-associated mutations of α-synuclein generate different amyloid fibril polymorphs compared to the wild type protein. Remarkably, the α-synuclein variants forming amyloid fibrils of a comparable structure, morphology, and heterogeneity show similar microscopic steps defining the aggregation kinetics. These results demonstrate that a single point mutation can significantly alter the distribution of fibrillar polymorphs in α-synuclein, suggesting that differences in the clinical phenotypes of familial Parkinson's disease could be associated with differences in the mechanism of formation and the structural characteristics of the aggregates.
Collapse
Affiliation(s)
- Francesco Simone Ruggeri
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick Flagmeier
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Janet R Kumita
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Georg Meisl
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Old Addenbrooke's Site, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Marie N Bongiovanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
18
|
Wang J, Feng Y, Tian X, Li C, Liu L. Disassembling and degradation of amyloid protein aggregates based on gold nanoparticle-modified g-C 3N 4. Colloids Surf B Biointerfaces 2020; 192:111051. [PMID: 32344165 DOI: 10.1016/j.colsurfb.2020.111051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/04/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022]
Abstract
Amyloid protein misfolds, abnormally aggregates and accumulates into amyloid deposits which endanger tissue functions and are closely related to the pathogenesis of many diseases including Type 2 Diabetes Mellitus (T2DM). There are on-going efforts to find new methods or effective reagents to disassemble and eliminate the existing amyloid aggregates. Herein, we showed that a gold nanoparticle-modified quasi-2D nanomaterial, Au/g-C3N4, could efficiently degrade preformed amyloid aggregates. Furthermore, the scavenger experiment revealed this photodegradation effect was depended on the induced oxygen radicals, particularly hydroxyl radical. The new finding in this work could demonstrate that a gold nanoparticle-modified quasi-2D nanomaterial would have potential applications in the strategy design of the treatment of amyloid related diseases in future.
Collapse
Affiliation(s)
- Jie Wang
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yonghai Feng
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaohua Tian
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chenglong Li
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Liu
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
19
|
Forte G, Caraglio M, Marenduzzo D, Orlandini E. Plectoneme dynamics and statistics in braided polymers. Phys Rev E 2019; 99:052503. [PMID: 31212427 DOI: 10.1103/physreve.99.052503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Braids composed of two interwoven polymer chains exhibit a "buckling" transition whose origin has been explained through the onset of plectonemic structures. Here we study, by a combination of simulation and analytics, the dynamics of plectoneme formation and their statistics in steady state. The introduction of an order parameter-the plectonemic fraction-allows us to map out the phase boundary between the straight-braid phase and the plectonemic one. We then monitor the formation and the growth of plectonemes, observing events typical of phase separation kinetics for liquid-gas systems (fusion, fission, and one-dimensional Ostwald ripening) but also of DNA supercoiling dynamics (plectonemic hopping). Finally, we propose a stochastic field theory for the coupled dynamics of twist and local writhe which explains the phenomenology found with Brownian dynamics simulations as well as the power laws underlying the coarsening of plectonemes.
Collapse
Affiliation(s)
- Giada Forte
- Dipartimento di Fisica e Astronomia and Sezione INFN, Università degli Studi di Padova, I-35131 Padova, Italy
| | - Michele Caraglio
- Soft Matter and Biophysics section, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Enzo Orlandini
- Dipartimento di Fisica e Astronomia and Sezione INFN, Università degli Studi di Padova, I-35131 Padova, Italy
| |
Collapse
|
20
|
Pillai M, Jha SK. The Folding and Aggregation Energy Landscapes of Tethered RRM Domains of Human TDP-43 Are Coupled via a Metastable Molten Globule-like Oligomer. Biochemistry 2018; 58:608-620. [DOI: 10.1021/acs.biochem.8b01013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Meenakshi Pillai
- Physical and Materials Chemistry Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
21
|
Lee CT, Terentjev EM. Mechanisms and rates of nucleation of amyloid fibrils. J Chem Phys 2018; 147:105103. [PMID: 28915747 DOI: 10.1063/1.4995255] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The classical nucleation theory finds the rate of nucleation proportional to the monomer concentration raised to the power, which is the "critical nucleus size," nc. The implicit assumption, that amyloids nucleate in the same way, has been recently challenged by an alternative two-step mechanism, when the soluble monomers first form a metastable aggregate (micelle) and then undergo conversion into the conformation rich in β-strands that are able to form a stable growing nucleus for the protofilament. Here we put together the elements of extensive knowledge about aggregation and nucleation kinetics, using a specific case of Aβ1-42 amyloidogenic peptide for illustration, to find theoretical expressions for the effective rate of amyloid nucleation. We find that at low monomer concentrations in solution and also at low interaction energy between two peptide conformations in the micelle, the nucleation occurs via the classical route. At higher monomer concentrations, and a range of other interaction parameters between peptides, the two-step "aggregation-conversion" mechanism of nucleation takes over. In this regime, the effective rate of the process can be interpreted as a power of monomer concentration in a certain range of parameters; however, the exponent is determined by a complicated interplay of interaction parameters and is not related to the minimum size of the growing nucleus (which we find to be ∼7-8 for Aβ1-42).
Collapse
Affiliation(s)
- Cheng-Tai Lee
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Eugene M Terentjev
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
22
|
Zhao J, Zhang B, Zhu J, Nussinov R, Ma B. Structure and energetic basis of overrepresented λ light chain in systemic light chain amyloidosis patients. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2294-2303. [PMID: 29241665 PMCID: PMC5927852 DOI: 10.1016/j.bbadis.2017.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Amyloid formation and deposition of immunoglobulin light-chain proteins in systemic amyloidosis (AL) cause major organ failures. While the κ light-chain is dominant (λ/κ=1:2) in healthy individuals, λ is highly overrepresented (λ/κ=3:1) in AL patients. The structural basis of the amyloid formation and the sequence preference are unknown. We examined the correlation between sequence and structural stability of dimeric variable domains of immunoglobulin light chains using molecular dynamics simulations of 24 representative dimer interfaces, followed by energy evaluation of conformational ensembles for 20 AL patients' light chain sequences. We identified a stable interface with displaced N-terminal residues, provides the structural basis for AL protein fibrils formation. Proline isomerization may cause the N-terminus to adopt amyloid-prone conformations. We found that λ light-chains prefer misfolded dimer conformation, while κ chain structures are stabilized by a natively folded dimer. Our study may facilitate structure-based small molecule and antibody design to inhibit AL. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Collapse
Affiliation(s)
- Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianwei Zhu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Jecho Laboratories, Inc., 7320A Executive Way, Frederick, MD 21704, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
23
|
Velázquez-López I, Valdés-García G, Romero Romero S, Maya Martínez R, Leal-Cervantes AI, Costas M, Sánchez-López R, Amero C, Pastor N, Fernández Velasco DA. Localized conformational changes trigger the pH-induced fibrillogenesis of an amyloidogenic λ light chain protein. Biochim Biophys Acta Gen Subj 2018; 1862:1656-1666. [PMID: 29669263 DOI: 10.1016/j.bbagen.2018.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/04/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023]
Abstract
Solvent conditions modulate the expression of the amyloidogenic potential of proteins. In this work the effect of pH on the fibrillogenic behavior and the conformational properties of 6aJL2, a model protein of the highly amyloidogenic variable light chain λ6a gene segment, was examined. Ordered aggregates showing the ultrastructural and spectroscopic properties observed in amyloid fibrils were formed in the 2.0-8.0 pH range. At pH <3.0 a drastic decrease in lag time and an increase in fibril formation rate were found. In the 4.0-8.0 pH range there was no spectroscopic evidence for significant conformational changes in the native state. Likewise, heat capacity measurements showed no evidence for residual structure in the unfolded state. However, at pH <3.0 stability is severely decreased and the protein suffers conformational changes as detected by circular dichroism, tryptophan and ANS fluorescence, as well as by NMR spectroscopy. Molecular dynamics simulations indicate that acid-induced conformational changes involve the exposure of the loop connecting strands E and F. These results are compatible with pH-induced changes in the NMR spectra. Overall, the results indicate that the mechanism involved in the acid-induced increase in the fibrillogenic potential of 6aJL2 is profoundly different to that observed in κ light chains, and is promoted by localized conformational changes in a region of the protein that was previously not known to be involved in acid-induced light chain fibril formation. The identification of this region opens the potential for the design of specific inhibitors.
Collapse
Affiliation(s)
- Isabel Velázquez-López
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Gilberto Valdés-García
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, México
| | - Sergio Romero Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Roberto Maya Martínez
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, México
| | - Ana I Leal-Cervantes
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México
| | | | - Carlos Amero
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, México.
| | - D Alejandro Fernández Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
24
|
Gouveia M, Xia K, Colón W, Vieira SI, Ribeiro F. Protein aggregation, cardiovascular diseases, and exercise training: Where do we stand? Ageing Res Rev 2017; 40:1-10. [PMID: 28757291 DOI: 10.1016/j.arr.2017.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Cells ensure their protein quality control through the proteostasis network. Aging and age-related diseases, such as neurodegenerative and cardiovascular diseases, have been associated to the reduction of proteostasis network efficiency and, consequently, to the accumulation of protein misfolded aggregates. The decline in protein homeostasis has been associated with the development and progression of atherosclerotic cardiovascular disease, cardiac hypertrophy, cardiomyopathies, and heart failure. Exercise training is a key component of the management of patients with cardiovascular disease, consistently improving quality of life and prognosis. In this review, we give an overview on age-related protein aggregation, the role of the increase of misfolded protein aggregates on cardiovascular pathophysiology, and describe the beneficial or deleterious effects of the proteostasis network on the development of cardiovascular disease. We subsequently discuss how exercise training, a key lifestyle intervention in those with cardiovascular disease, could restore proteostasis and improve disease status.
Collapse
|
25
|
Dekel Y, Machluf Y, Gefen T, Eidelshtein G, Kotlyar A, Bram Y, Shahar E, Reslane F, Aizenshtein E, Pitcovski J. Formation of multimeric antibodies for self-delivery of active monomers. Drug Deliv 2017; 24:199-208. [PMID: 28156181 PMCID: PMC8241139 DOI: 10.1080/10717544.2016.1242179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022] Open
Abstract
Proteins and peptides have been used as drugs for almost a century. Technological advances in the past 30 years have enabled the production of pure, stable proteins in vast amounts. In contrast, administration of proteins based on their native active conformation (and thus necessitating the use of subcutaneous injections) has remained solely unchanged. The therapeutic anti-HER2 humanized monoclonal immunoglobulin (IgG) Trastuzumab (Herceptin) is a first line of the treatment for breast cancer. Chicken IgY is a commercially important polyclonal antibody (Ab). These Abs were examined for their ability to self-assemble and form ordered aggregates, by several biophysical methods. Atomic force microscopy analyses revealed the formation of multimeric nanostructures. The biological activity of multimeric IgG or IgY particles was retained and restored, in a dilution/time-dependent manner. IgG activity was confirmed by a binding assay using HER2 + human breast cancer cell line, SKBR3, while IgY activity was confirmed by ELISA assay using the VP2 antigen. Competition assay with native Herceptin antibodies demonstrated that the binding availability of the multimer formulation remained unaffected. Under long incubation periods, IgG multimers retained five times more activity than native IgG. In conclusion, the multimeric antibody formulations can serve as a storage depositories and sustained-release particles. These two important characteristics make this formulation promising for future novel administration protocols and altogether bring to light a different conceptual approach for the future use of therapeutic proteins as self-delivery entities rather than conjugated/encapsulated to other bio-compounds.
Collapse
Affiliation(s)
- Yaron Dekel
- Shamir Research Institute, University of Haifa, Kazrin, Israel
- Department of Clinical Laboratory, Zefat Academic College, Zefat, Israel
- Department of Life Sciences, Tel Hai College, Upper Galilee, Israel
| | - Yossy Machluf
- Consultant, specialist in the fields of biochemistry, molecular biology and genetics
| | - Tal Gefen
- Department of Life Sciences, Tel Hai College, Upper Galilee, Israel
- MIGAL – Galilee Technology Center, Kiryat Shmona, Israel
| | - Gennady Eidelshtein
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel, and
| | - Alexander Kotlyar
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel, and
| | - Yaron Bram
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Shahar
- Department of Life Sciences, Tel Hai College, Upper Galilee, Israel
- MIGAL – Galilee Technology Center, Kiryat Shmona, Israel
| | - Farah Reslane
- Department of Life Sciences, Tel Hai College, Upper Galilee, Israel
- MIGAL – Galilee Technology Center, Kiryat Shmona, Israel
| | - Elina Aizenshtein
- Department of Life Sciences, Tel Hai College, Upper Galilee, Israel
- MIGAL – Galilee Technology Center, Kiryat Shmona, Israel
| | - Jacob Pitcovski
- Department of Life Sciences, Tel Hai College, Upper Galilee, Israel
- MIGAL – Galilee Technology Center, Kiryat Shmona, Israel
| |
Collapse
|
26
|
Ke PC, Sani MA, Ding F, Kakinen A, Javed I, Separovic F, Davis TP, Mezzenga R. Implications of peptide assemblies in amyloid diseases. Chem Soc Rev 2017; 46:6492-6531. [PMID: 28702523 PMCID: PMC5902192 DOI: 10.1039/c7cs00372b] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurodegenerative disorders and type 2 diabetes are global epidemics compromising the quality of life of millions worldwide, with profound social and economic implications. Despite the significant differences in pathology - much of which are poorly understood - these diseases are commonly characterized by the presence of cross-β amyloid fibrils as well as the loss of neuronal or pancreatic β-cells. In this review, we document research progress on the molecular and mesoscopic self-assembly of amyloid-beta, alpha synuclein, human islet amyloid polypeptide and prions, the peptides and proteins associated with Alzheimer's, Parkinson's, type 2 diabetes and prion diseases. In addition, we discuss the toxicities of these amyloid proteins based on their self-assembly as well as their interactions with membranes, metal ions, small molecules and engineered nanoparticles. Through this presentation we show the remarkable similarities and differences in the structural transitions of the amyloid proteins through primary and secondary nucleation, the common evolution from disordered monomers to alpha-helices and then to β-sheets when the proteins encounter the cell membrane, and, the consensus (with a few exceptions) that off-pathway oligomers, rather than amyloid fibrils, are the toxic species regardless of the pathogenic protein sequence or physicochemical properties. In addition, we highlight the crucial role of molecular self-assembly in eliciting the biological and pathological consequences of the amyloid proteins within the context of their cellular environments and their spreading between cells and organs. Exploiting such structure-function-toxicity relationship may prove pivotal for the detection and mitigation of amyloid diseases.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Marc-Antonie Sani
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Science & Technology, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
| |
Collapse
|
27
|
Khan JM, Khan MS, Alsenaidy MA, Ahmed A, Sen P, Oves M, Al-Shabib NA, Khan RH. Sodium louroyl sarcosinate (sarkosyl) modulate amyloid fibril formation in hen egg white lysozyme (HEWL) at alkaline pH: a molecular insight study. J Biomol Struct Dyn 2017; 36:1550-1565. [DOI: 10.1080/07391102.2017.1329097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Javed Masood Khan
- Faculty of Food and Agricultural Sciences, Department of Food Science and Nutrition, King Saud University, 2460 Riyadh 11451, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Anwar Ahmed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Priyankar Sen
- Centre for Bioseparation Technology, VIT University, Vellore 632014, India
| | - Mohammad Oves
- Center of Excellence in Enviromental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasser Abdulatif Al-Shabib
- Faculty of Food and Agricultural Sciences, Department of Food Science and Nutrition, King Saud University, 2460 Riyadh 11451, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
28
|
Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem Rev 2016; 116:13752-13990. [PMID: 27754649 DOI: 10.1021/acs.chemrev.6b00354] [Citation(s) in RCA: 1230] [Impact Index Per Article: 153.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this review, we describe the recent advances in supramolecular helical assemblies formed from chiral and achiral small molecules, oligomers (foldamers), and helical and nonhelical polymers from the viewpoints of their formations with unique chiral phenomena, such as amplification of chirality during the dynamic helically assembled processes, properties, and specific functionalities, some of which have not been observed in or achieved by biological systems. In addition, a brief historical overview of the helical assemblies of small molecules and remarkable progress in the synthesis of single-stranded and multistranded helical foldamers and polymers, their properties, structures, and functions, mainly since 2009, will also be described.
Collapse
Affiliation(s)
- Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Ousaka
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Taura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Kouhei Shimomura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoyuki Ikai
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
29
|
Probing the role of λ6 immunoglobulin light chain dimerization in amyloid formation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:409-18. [PMID: 26802902 DOI: 10.1016/j.bbapap.2016.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 01/22/2023]
Abstract
Light chain amyloidosis (AL) is a lethal disease associated with the deposition of misfolded immunoglobulin light chains (LC) as amyloid fibrils in the extracellular space of vital organs. The exact mechanisms of LC self-assembly and the molecular basis leading to cellular and organ failure still remain poorly understood. In this study, we investigated the relationship between the quaternary structure, the stability and the amyloidogenecity of LC variable domain (VL) from the λ6 germline. We observed that the amyloidogenic λ6 Wil and its non-amyloidogenic counterpart Jto dimerize in a concentration-dependent manner and that the dimer affinity is considerably decreased in the presence of a high ionic strength. Our results showed that the dimeric state delays the structural conversion associated with amyloid formation and that the monomer is critical to initiate amyloidogenesis. Thermal and chemical unfolding studies revealed that the dimeric state of VL λ6 has an equivalent stability to the monomer. This indicates that the protective effect of dimerization is not related to thermodynamic stability but, most likely, resides in specific structural features. The toxicity of monomeric Jto and Wil as well as fibrillar aggregates was evaluated on cardiomyoblasts and ThT-negative proteospecies reduced cellular viability when employed at high concentration. This study provides novel insights into the complex process of LC amyloidogenesis and suggests that dimer stabilization constitutes a promising strategy to prevent self-assembly and amyloid deposition.
Collapse
|
30
|
Dovidchenko NV, Leonova EI, Galzitskaya OV. Mechanisms of amyloid fibril formation. BIOCHEMISTRY (MOSCOW) 2015; 79:1515-27. [PMID: 25749162 DOI: 10.1134/s0006297914130057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amyloid and amyloid-like aggregates are elongated unbranched fibrils consisting of β-structures of separate monomers positioned perpendicular to the fibril axis and stacked strictly above each other. In their physicochemical properties, amyloid fibrils are reminiscent of synthetic polymers rather than usual proteins because they are stable to the action of denaturing agents and proteases. Their mechanical stability can be compared to a spider's web, that in spite of its ability to stretch, is stronger than steel. It is not surprising that a large number of diseases are accompanied with amyloid fibril depositing in different organs. Pathologies provoked by depositing of incorrectly folded proteins include Alzheimer's, Parkinson's, and Huntington's diseases. In addition, this group of diseases involves mucoviscidosis, some types of diabetes, and hereditary cataracts. Each type of amyloidosis is characterized by aggregation of a certain type of protein that is soluble in general, and thus leads to specific distortions of functions of the corresponding organs. Therefore, it is important to understand the process of transformation of "native" proteins to amyloid fibrils to clarify how these molecules acquire such strength and what key elements of this process determine the pathway of erroneous protein folding. This review presents our analysis of complied information on the mechanisms of formation and biochemical properties of amyloid fibrils.
Collapse
Affiliation(s)
- N V Dovidchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
31
|
Wimmer T, Lorenz B, Stieger K. Functional Characterization of AAV-Expressed Recombinant Anti-VEGF Single-Chain Variable Fragments In Vitro. J Ocul Pharmacol Ther 2015; 31:269-76. [PMID: 25867736 DOI: 10.1089/jop.2014.0125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Most retinal neovascular disorders are caused by upregulation of vascular endothelial growth factor (VEGF) expression. These disorders are treated with repeated injections of anti-VEGF molecules, which may have severe side effects. The expression of anti-VEGF molecules by the retina itself in a controlled manner following adeno-associated viral (AAV) gene transfer could be a replacement of this therapy. METHODS The open reading frames (orf) of the light and the heavy chain of ranibizumab were cloned into an expression plasmid separated by an internal ribosomal entry site (IRES). The construct was mutated to generate ranibizumab single-chain variable fragments (scFv). Expression was verified by western blotting and the concentrations were measured with a custom-made ranibizumab ELISA. Biological activity, VEGF-binding properties, and the doxycycline-dependent induction of anti-VEGF expression were tested. An AAV2/5 vector was generated containing the optimal variant Ra02. RESULTS Ra01-Ra05 molecules were detected in the cell culture medium. While the VEGF-binding affinity was significantly lower for Ra01 and Ra02 compared to Lucentis(®), the inhibition of cell migration was comparable and the maximum inhibition of Ra01 and Ra02 was reached at lower doses. The expression of Ra01 and Ra02 was shown to be regulable with the TetOn-system(®) as plasmid (Ra01, Ra02) and AAV vector construct (Ra02). CONCLUSION Ra01 and Ra02 can be produced in eukaryotic cells after AAV-mediated gene transfer in a regulable manner in vitro and display comparable biological activity as Lucentis. These results are the basis for in vivo studies in human VEGF-overexpressing mice, a model for human neovascular disorders.
Collapse
Affiliation(s)
- Tobias Wimmer
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Knut Stieger
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
32
|
Deehan M, Garcês S, Kramer D, Baker MP, Rat D, Roettger Y, Kromminga A. Managing unwanted immunogenicity of biologicals. Autoimmun Rev 2015; 14:569-74. [PMID: 25742758 DOI: 10.1016/j.autrev.2015.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/02/2015] [Indexed: 01/15/2023]
Abstract
All protein drugs (biologicals) have an immunogenic potential and we are armed with multiple guidelines, regulatory documents and white papers to assist us in assessing the level of risk for unwanted immunogenicity of new biologicals. However, for certain biologicals, significant immunogenicity becomes only apparent after their use in patients. Causes of immunogenicity are multifactorial but not yet fully understood. Within the pharmaceutical industry there are only a few opportunities to openly discuss the causes and consequences of immunogenicity with regard to the development of new biologicals. The annual Open Scientific Symposium of the European Immunogenicity Platform (EIP) is one such meeting that brings together scientists and clinicians from academia and industry to build know-how and expertise in the field of immunogenicity. The critical topics discussed at the last EIP meeting (February 2014) will be reviewed here. The current opinion of this expert group is that the assessment of unwanted immunogenicity can be improved by using prediction tools, optimizing the performance of immunogenicity assays and learning from the clinical impact of other biologicals that have already been administered to patients. A multidisciplinary approach is warranted to better understand and minimize drug immunogenicity and its clinical consequences.
Collapse
Affiliation(s)
- Maureen Deehan
- Novimmune SA, 14 Chemin des Aulx, 1228 Plan-Les-Ouates, Geneva, Switzerland.
| | - Sandra Garcês
- Gulbenkian Institute of Science, Portugal, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; Garcia de Orta Hospital, Portugal, Department of Rheumatology; HGO Research Center, Av. Torrado da Silva, 2801-951 Almada, Portugal.
| | - Daniel Kramer
- Sanofi, R&D, DSAR-PSI, Industriepark Höchst, D-65926 Frankfurt/M., Germany.
| | - Matthew P Baker
- Abzena, Babraham Research Campus, Babraham, Cambridge CB22 3AT, United Kingdom.
| | - Dorothea Rat
- Sanofi, R&D, DSAR-BBB, Industriepark Höchst, D-65926 Frankfurt/M., Germany.
| | - Yvonne Roettger
- Sanofi, R&D, DSAR-BBB, Industriepark Höchst, D-65926 Frankfurt/M., Germany.
| | - Arno Kromminga
- Institute for Immunology, University of Kiel, Germany, Arnold-Heller-Straße 3, Haus 17, 24105 Kiel, Germany; IPM Biotech, Lademannbogen 61, 22453 Hamburg, Germany.
| |
Collapse
|
33
|
Peralta MDR, Karsai A, Ngo A, Sierra C, Fong KT, Hayre NR, Mirzaee N, Ravikumar KM, Kluber AJ, Chen X, Liu GY, Toney MD, Singh RR, Cox DL. Engineering amyloid fibrils from β-solenoid proteins for biomaterials applications. ACS NANO 2015; 9:449-463. [PMID: 25562726 DOI: 10.1021/nn5056089] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nature provides numerous examples of self-assembly that can potentially be implemented for materials applications. Considerable attention has been given to one-dimensional cross-β or amyloid structures that can serve as templates for wire growth or strengthen materials such as glue or cement. Here, we demonstrate controlled amyloid self-assembly based on modifications of β-solenoid proteins. They occur naturally in several contexts (e.g., antifreeze proteins, drug resistance proteins) but do not aggregate in vivo due to capping structures or distortions at their ends. Removal of these capping structures and regularization of the ends of the spruce budworm and rye grass antifreeze proteins yield micron length amyloid fibrils with predictable heights, which can be a platform for biomaterial-based self-assembly. The design process, including all-atom molecular dynamics simulations, purification, and self-assembly procedures are described. Fibril formation with the predicted characteristics is supported by evidence from thioflavin-T fluorescence, circular dichroism, dynamic light scattering, and atomic force microscopy. Additionally, we find evidence for lateral assembly of the modified spruce budworm antifreeze fibrils with sufficient incubation time. The kinetics of polymerization are consistent with those for other amyloid formation reactions and are relatively fast due to the preformed nature of the polymerization nucleus.
Collapse
Affiliation(s)
- Maria D R Peralta
- Department of Chemistry, ‡Department of Physics, and §Institute for Complex Adaptive Matter, University of California , 1 Shields Avenue, Davis, California 95616, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Alkoxy bridged binuclear rhenium (I) complexes as a potential sensor for β-amyloid aggregation. Talanta 2014; 130:274-9. [DOI: 10.1016/j.talanta.2014.06.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 01/05/2023]
|
35
|
Sidhu A, Segers-Nolten I, Subramaniam V. Solution conditions define morphological homogeneity of α-synuclein fibrils. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2127-34. [DOI: 10.1016/j.bbapap.2014.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/24/2023]
|
36
|
Dzwolak W. Chirality and Chiroptical Properties of Amyloid Fibrils. Chirality 2014; 26:580-7. [DOI: 10.1002/chir.22335] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/28/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Wojciech Dzwolak
- Biological and Chemical Research Centre, Department of Chemistry; University of Warsaw; Warsaw Poland
| |
Collapse
|
37
|
Guerrero-Muñoz MJ, Castillo-Carranza DL, Kayed R. Therapeutic approaches against common structural features of toxic oligomers shared by multiple amyloidogenic proteins. Biochem Pharmacol 2014; 88:468-78. [PMID: 24406245 DOI: 10.1016/j.bcp.2013.12.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 02/03/2023]
Abstract
Impaired proteostasis is one of the main features of all amyloid diseases, which are associated with the formation of insoluble aggregates from amyloidogenic proteins. The aggregation process can be caused by overproduction or poor clearance of these proteins. However, numerous reports suggest that amyloid oligomers are the most toxic species, rather than insoluble fibrillar material, in Alzheimer's, Parkinson's, and Prion diseases, among others. Although the exact protein that aggregates varies between amyloid disorders, they all share common structural features that can be used as therapeutic targets. In this review, we focus on therapeutic approaches against shared features of toxic oligomeric structures and future directions.
Collapse
Affiliation(s)
- Marcos J Guerrero-Muñoz
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Diana L Castillo-Carranza
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
38
|
Niu L, Liu L, Xu M, Cramer J, Gothelf KV, Dong M, Besenbacher F, Zeng Q, Yang Y, Wang C. Transformation of β-sheet structures of the amyloid peptide induced by molecular modulators. Chem Commun (Camb) 2014; 50:8923-6. [DOI: 10.1039/c4cc02748e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this work we report the controlled modulation of secondary structures of the amyloid peptide by terminus molecular modulators.
Collapse
Affiliation(s)
- Lin Niu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences)
- and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences)
- National Center for Nanoscience and Technology
- Beijing 100190, China
| | - Lei Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences)
- and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences)
- National Center for Nanoscience and Technology
- Beijing 100190, China
- Interdisciplinary Nanoscience Center
| | - Meng Xu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences)
- and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences)
- National Center for Nanoscience and Technology
- Beijing 100190, China
| | - Jacob Cramer
- Interdisciplinary Nanoscience Center
- Aarhus University
- DK-8000 Aarhus C, Denmark
| | - Kurt V. Gothelf
- Interdisciplinary Nanoscience Center
- Aarhus University
- DK-8000 Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center
- Aarhus University
- DK-8000 Aarhus C, Denmark
| | | | - Qingdao Zeng
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences)
- and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences)
- National Center for Nanoscience and Technology
- Beijing 100190, China
| | - Yanlian Yang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences)
- and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences)
- National Center for Nanoscience and Technology
- Beijing 100190, China
| | - Chen Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences)
- and Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences)
- National Center for Nanoscience and Technology
- Beijing 100190, China
| |
Collapse
|
39
|
Molecular Dynamics Studies on Amyloidogenic Proteins. COMPUTATIONAL METHODS TO STUDY THE STRUCTURE AND DYNAMICS OF BIOMOLECULES AND BIOMOLECULAR PROCESSES 2014. [DOI: 10.1007/978-3-642-28554-7_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Thermal stability threshold for amyloid formation in light chain amyloidosis. Int J Mol Sci 2013; 14:22604-17. [PMID: 24248061 PMCID: PMC3856080 DOI: 10.3390/ijms141122604] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/25/2013] [Accepted: 11/04/2013] [Indexed: 11/16/2022] Open
Abstract
Light chain (AL) amyloidosis is a devastating disease characterized by amyloid deposits formed by immunoglobulin light chains. Current available treatments involve conventional chemotherapy and autologous stem cell transplant. We have recently concluded a phase III trial comparing these two treatments. AL amyloidosis patients who achieve hematological complete response (CR) do not necessarily achieve organ response regardless of the treatment they received. In order to investigate the possible correlation between amyloid formation kinetics and organ response, we selected AL amyloidosis patients from the trial with kidney involvement and CR after treatment. Six patients were selected and their monoclonal immunoglobulin light chains were characterized. The proteins showed differences in their stability and their kinetics of amyloid formation. A correlation was detected at pH 7.4, showing that less stable proteins are more likely to form amyloid fibrils. AL-T03 is too unstable to form amyloid fibrils at pH 7.4. This protein was found in the only patient in the study that had organ response, suggesting that partially folded species are required for amyloid formation to occur in AL amyloidosis.
Collapse
|
41
|
Ramirez-Alvarado M. Amyloid formation in light chain amyloidosis. Curr Top Med Chem 2013; 12:2523-33. [PMID: 23339305 DOI: 10.2174/1568026611212220007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 01/16/2023]
Abstract
Light chain amyloidosis is one of the unique examples within amyloid diseases where the amyloidogenic precursor is a protein that escapes the quality control machinery and is secreted from the cells to be circulated in the bloodstream. The immunoglobulin light chains are produced by an abnormally proliferative monoclonal population of plasma cells that under normal conditions produce immunoglobulin molecules such as IgG, IgM or IgA. Once the light chains are in circulation, the proteins misfold and deposit as amyloid fibrils in numerous tissues and organs, causing organ failure and death. While there is a correlation between the thermodynamic stability of the protein and the kinetics of amyloid formation, we have recently found that this correlation applies within a thermodynamic range, and it is only a helpful correlation when comparing mutants from the same protein. Light chain amyloidosis poses unique challenges because each patient has a unique protein sequence as a result of the selection of a germline gene and the incorporation of somatic mutations. The exact location of the misfolding process is unknown as well as the full characterization of all of the toxic species populated during the amyloid formation process in light chain amyloidosis.
Collapse
Affiliation(s)
- Marina Ramirez-Alvarado
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| |
Collapse
|
42
|
Abstract
The amyloidoses are a group of protein misfolding diseases in which the precursor protein undergoes a conformational change that triggers the formation of amyloid fibrils in different tissues and organs, causing cell death and organ failure. Amyloidoses can be either localized or systemic. In localized amyloidosis, amyloid deposits form at the site of precursor protein synthesis, whereas in systemic amyloidosis, amyloid deposition occurs distant from the site of precursor protein secretion. We review the type of proteins and cells involved and what is known about the complex pathophysiology of these diseases. We focus on light chain amyloidosis to illustrate how biochemical and biophysical studies have led to a deeper understanding of the pathogenesis of this devastating disease. We also review current cellular, tissue, and animal models and discuss the challenges and opportunities for future studies of the systemic amyloidoses.
Collapse
Affiliation(s)
- Luis M Blancas-Mejía
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
43
|
Ridgley DM, Barone JR. Evolution of the amyloid fiber over multiple length scales. ACS NANO 2013; 7:1006-1015. [PMID: 23268732 DOI: 10.1021/nn303489a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The amyloid is a natural self-assembled peptide material comparable in specific stiffness to spider silk and steel. Throughout the literature there are many studies of the nanometer-sized amyloid fibril; however, peptide mixtures are capable of self-assembling beyond the nanometer scale into micrometer-sized fibers. Here, atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to observe the self-assembly of the peptide mixtures in solution for 20 days and the fibers upon drying. Beyond the nanometer scale, self-assembling fibers differentiate into two morphologies, cylindrical or rectangular cross-section, depending on peptide properties. Microscopic observations delineate a four stage self-assembly mechanism: (1) protofibril (2-4 nm high and 15-30 nm wide) formation; (2) protofibril aggregation into fibrils 6-10 nm high and 60-120 nm wide; (3) fibril aggregation into large fibrils and morphological differentiation where large fibrils begin to resemble the final fiber morphology of cylinders (WG peptides) or tapes (Gd:My peptides). WG large fibrils are 50 nm high and 480 nm wide and Gd:My large fibrils are 10 nm high and 150 nm wide; (4) micrometer-sized fiber formation upon drying at 480 h resulting in 18.0 μm diameter cylindrical fibers (WG peptides) and 14.0 μm wide and 6.0 μm thick flat tapes (Gd:My peptides). Evolution of the large fiber morphology can be rationalized on the basis of the peptide properties.
Collapse
Affiliation(s)
- Devin M Ridgley
- Biological Systems Engineering Department, Virginia Tech, 303 Seitz Hall, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
44
|
Coexistence of ribbon and helical fibrils originating from hIAPP(20-29) revealed by quantitative nanomechanical atomic force microscopy. Proc Natl Acad Sci U S A 2013; 110:2798-803. [PMID: 23388629 DOI: 10.1073/pnas.1209955110] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Uncontrolled misfolding of proteins leading to the formation of amyloid deposits is associated with more than 40 types of diseases, such as neurodegenerative diseases and type-2 diabetes. These irreversible amyloid fibrils typically assemble in distinct stages. Transitions among the various intermediate stages are the subject of many studies but are not yet fully elucidated. Here, we combine high-resolution atomic force microscopy and quantitative nanomechanical mapping to determine the self-assembled structures of the decapeptide hIAPP(20-29), which is considered to be the fibrillating core fragment of the human islet amyloid polypeptide (hIAPP) involved in type-2 diabetes. We successfully follow the evolution of hIAPP(20-29) nanostructures over time, calculate the average thickening speed of small ribbon-like structures, and provide evidence of the coexistence of ribbon and helical fibrils, highlighting a key step within the self-assembly model. In addition, the mutations of individual side chains of wide-type hIAPP(20-29) shift this balance and destabilize the helical fibrils sufficiently relative to the twisted ribbons to lead to their complete elimination. We combine atomic force microscopy structures, mechanical properties, and solid-state NMR structural information to build a molecular model containing β sheets in cross-β motifs as the basis of self-assembled amyloids.
Collapse
|
45
|
Hydrophobic collapse overrides Coulombic repulsion in ferricytochrome c fibrillation under extremely alkaline condition. Arch Biochem Biophys 2012; 528:67-71. [DOI: 10.1016/j.abb.2012.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 11/21/2022]
|
46
|
Crespo R, Rocha FA, Damas AM, Martins PM. A generic crystallization-like model that describes the kinetics of amyloid fibril formation. J Biol Chem 2012; 287:30585-94. [PMID: 22767606 DOI: 10.1074/jbc.m112.375345] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Associated with neurodegenerative disorders such as Alzheimer, Parkinson, or prion diseases, the conversion of soluble proteins into amyloid fibrils remains poorly understood. Extensive "in vitro" measurements of protein aggregation kinetics have been reported, but no consensus mechanism has emerged until now. This contribution aims at overcoming this gap by proposing a theoretically consistent crystallization-like model (CLM) that is able to describe the classic types of amyloid fibrillization kinetics identified in our literature survey. Amyloid conversion represented as a function of time is shown to follow different curve shapes, ranging from sigmoidal to hyperbolic, according to the relative importance of the nucleation and growth steps. Using the CLM, apparently unrelated data are deconvoluted into generic mechanistic information integrating the combined influence of seeding, nucleation, growth, and fibril breakage events. It is notable that this complex assembly of interdependent events is ultimately reduced to a mathematically simple model, whose two parameters can be determined by little more than visual inspection. The good fitting results obtained for all cases confirm the CLM as a good approximation to the generalized underlying principle governing amyloid fibrillization. A perspective is presented on possible applications of the CLM during the development of new targets for amyloid disease therapeutics.
Collapse
Affiliation(s)
- Rosa Crespo
- LEPAE, Laboratório de Engenharia de Processos Ambiente e Energia, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | | | | | | |
Collapse
|
47
|
Connelly L, Jang H, Arce FT, Ramachandran S, Kagan BL, Nussinov R, Lal R. Effects of point substitutions on the structure of toxic Alzheimer's β-amyloid channels: atomic force microscopy and molecular dynamics simulations. Biochemistry 2012; 51:3031-8. [PMID: 22413858 PMCID: PMC7512688 DOI: 10.1021/bi300257e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a misfolded protein disease characterized by the accumulation of β-amyloid (Aβ) peptide as senile plaques, progressive neurodegeneration, and memory loss. Recent evidence suggests that AD pathology is linked to the destabilization of cellular ionic homeostasis mediated by toxic pores made of Aβ peptides. Understanding the exact nature by which these pores conduct electrical and molecular signals could aid in identifying potential therapeutic targets for the prevention and treatment of AD. Here using atomic force microscopy (AFM) and molecular dynamics (MD) simulations, we compared the imaged pore structures with models to predict channel conformations as a function of amino acid sequence. Site-specific amino acid (AA) substitutions in the wild-type Aβ(1-42) peptide yield information regarding the location and significance of individual AA residues to its characteristic structure-activity relationship. We selected two AAs that our MD simulation predicted to inhibit or permit pore conductance. The substitution of Phe19 with Pro has previously been shown to eliminate conductance in the planar lipid bilayer system. Our MD simulations predict a channel-like shape with a collapsed pore, which is supported by the AFM channel images. We suggest that proline, a known β-sheet breaker, creates a kink in the center of the pore and prevents conductance via blockage. This residue may be a viable target for drug development studies aiming to inhibit Aβ from inducing ionic destabilization toxicity. The substitution of Phe20 with Cys exhibits pore structures indistinguishable from the wild type in AFM images. MD simulations predict site 20 to face the solvated pore. Overall, the mutations support the previously predicted β-sheet-based channel structure.
Collapse
Affiliation(s)
- Laura Connelly
- Departments of Bioengineering and of Mechanical and Aerospace Engineering, and Material Science Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Hyunbum Jang
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Fernando Teran Arce
- Departments of Bioengineering and of Mechanical and Aerospace Engineering, and Material Science Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Srinivasan Ramachandran
- Departments of Bioengineering and of Mechanical and Aerospace Engineering, and Material Science Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Bruce L. Kagan
- Department of Psychiatry, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90024, United States
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ratnesh Lal
- Departments of Bioengineering and of Mechanical and Aerospace Engineering, and Material Science Program, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
48
|
Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ. Nucleated polymerization with secondary pathways. III. Equilibrium behavior and oligomer populations. J Chem Phys 2012; 135:065107. [PMID: 21842956 DOI: 10.1063/1.3608918] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We explore the long-time behavior and equilibrium properties of a system of linear filaments growing through nucleated polymerisation. We show that the length distribution for breakable filaments evolves through two well defined limiting cases: first, a steady state distribution determined by the balance of breakage and elongation is reached; upon monomer depletion at the end of the growth phase, an equilibrium length distribution biased towards smaller filament fragments emerges. We furthermore compute the time evolution of the concentration of small oligomeric filament fragments. For frangible filaments, oligomers are present both at early times and at equilibrium, whereas in the absence of fragmentation, oligomers are only present in significant quantities at the beginning of the polymerisation reaction. Finally, we discuss the significance of these results for the biological consequences of filamentous protein aggregation.
Collapse
Affiliation(s)
- Samuel I A Cohen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | |
Collapse
|
49
|
Cohen SIA, Vendruscolo M, Welland ME, Dobson CM, Terentjev EM, Knowles TPJ. Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. J Chem Phys 2012; 135:065105. [PMID: 21842954 DOI: 10.1063/1.3608916] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Self-assembly processes resulting in linear structures are often observed in molecular biology, and include the formation of functional filaments such as actin and tubulin, as well as generally dysfunctional ones such as amyloid aggregates. Although the basic kinetic equations describing these phenomena are well-established, it has proved to be challenging, due to their non-linear nature, to derive solutions to these equations except for special cases. The availability of general analytical solutions provides a route for determining the rates of molecular level processes from the analysis of macroscopic experimental measurements of the growth kinetics, in addition to the phenomenological parameters, such as lag times and maximal growth rates that are already obtainable from standard fitting procedures. We describe here an analytical approach based on fixed-point analysis, which provides self-consistent solutions for the growth of filamentous structures that can, in addition to elongation, undergo internal fracturing and monomer-dependent nucleation as mechanisms for generating new free ends acting as growth sites. Our results generalise the analytical expression for sigmoidal growth kinetics from the Oosawa theory for nucleated polymerisation to the case of fragmenting filaments. We determine the corresponding growth laws in closed form and derive from first principles a number of relationships which have been empirically established for the kinetics of the self-assembly of amyloid fibrils.
Collapse
Affiliation(s)
- Samuel I A Cohen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Connelly L, Arce FT, Jang H, Capone R, Kotler SA, Ramachandran S, Kagan BL, Nussinov R, Lal R. Atomic force microscopy and MD simulations reveal pore-like structures of all-D-enantiomer of Alzheimer's β-amyloid peptide: relevance to the ion channel mechanism of AD pathology. J Phys Chem B 2012; 116:1728-35. [PMID: 22217000 PMCID: PMC4342054 DOI: 10.1021/jp2108126] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a protein misfolding disease characterized by a buildup of β-amyloid (Aβ) peptide as senile plaques, uncontrolled neurodegeneration, and memory loss. AD pathology is linked to the destabilization of cellular ionic homeostasis and involves Aβ peptide-plasma membrane interactions. In principle, there are two possible ways through which disturbance of the ionic homeostasis can take place: directly, where the Aβ peptide either inserts into the membrane and creates ion-conductive pores or destabilizes the membrane organization, or, indirectly, where the Aβ peptide interacts with existing cell membrane receptors. To distinguish between these two possible types of Aβ-membrane interactions, we took advantage of the biochemical tenet that ligand-receptor interactions are stereospecific; L-amino acid peptides, but not their D-counterparts, bind to cell membrane receptors. However, with respect to the ion channel-mediated mechanism, like L-amino acids, D-amino acid peptides will also form ion channel-like structures. Using atomic force microscopy (AFM), we imaged the structures of both D- and L-enantiomers of the full length Aβ(1-42) when reconstituted in lipid bilayers. AFM imaging shows that both L- and D-Aβ isomers form similar channel-like structures. Molecular dynamics (MD) simulations support the AFM imaged 3D structures. Previously, we have shown that D-Aβ(1-42) channels conduct ions similarly to their L- counterparts. Taken together, our results support the direct mechanism of Aβ ion channel-mediated destabilization of ionic homeostasis rather than the indirect mechanism through Aβ interaction with membrane receptors.
Collapse
Affiliation(s)
- Laura Connelly
- Departments of Bioengineering and of Mechanical and Aerospace Engineering and Materials Science Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fernando Teran Arce
- Departments of Bioengineering and of Mechanical and Aerospace Engineering and Materials Science Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hyunbum Jang
- Center for Cancer Research Nanobiology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Ricardo Capone
- Departments of Bioengineering and of Mechanical and Aerospace Engineering and Materials Science Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samuel A. Kotler
- Departments of Bioengineering and of Mechanical and Aerospace Engineering and Materials Science Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Srinivasan Ramachandran
- Departments of Bioengineering and of Mechanical and Aerospace Engineering and Materials Science Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bruce L. Kagan
- Department of Psychiatry, David Geffen School of Medicine, Semel Institute for Neuroscience Human Behavior, University of California, Los Angeles, CA 90024, USA
| | - Ruth Nussinov
- Center for Cancer Research Nanobiology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Ratnesh Lal
- Departments of Bioengineering and of Mechanical and Aerospace Engineering and Materials Science Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|