1
|
Nguyen AD, Michael N, Sauthof L, von Sass J, Hoang OT, Schmidt A, La Greca M, Schlesinger R, Budisa N, Scheerer P, Mroginski MA, Kraskov A, Hildebrandt P. Hydrogen Bonding and Noncovalent Electric Field Effects in the Photoconversion of a Phytochrome. J Phys Chem B 2024; 128:11644-11657. [PMID: 39561028 PMCID: PMC11613453 DOI: 10.1021/acs.jpcb.4c06419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
A profound understanding of protein structure and mechanism requires dedicated experimental and theoretical tools to elucidate electrostatic and hydrogen bonding interactions in proteins. In this work, we employed an approach to disentangle noncovalent and hydrogen-bonding electric field changes during the reaction cascade of a multidomain protein, i.e., the phytochrome Agp2. The approach exploits the spectroscopic properties of nitrile probes commonly used as reporter groups of the vibrational Stark effect. These probes were introduced into the protein through site-specific incorporation of noncanonical amino acids resulting in four variants with different positions and orientations of the nitrile groups. All substitutions left structures and the reaction mechanism unchanged. Structural models of the dark states (Pfr) were used to evaluate the total electric field at the nitrile label and its transition dipole moment. These quantities served as an internal standard to calculate the respective properties of the photoinduced products (Lumi-F, Meta-F, and Pr) based on the relative intensities of the nitrile stretching bands. In most cases, the spectral analysis revealed two substates with a nitrile in a hydrogen-bonded or hydrophobic environment. Using frequencies and intensities, we managed to extract the noncovalent contribution of the electric field from the individual substates. This analysis resulted in profiles of the noncovalent and hydrogen-bond-related electric fields during the photoinduced reaction cascade of Agp2. These profiles, which vary significantly among the four variants due to the different positions and orientations of the nitrile probes, were discussed in the context of the molecular events along the Pfr → Pr reaction cascade.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Institut
für Chemie, Sekr. C7, Technische
Universität Berlin, Straße des 17. Juni 115, Berlin D-10623, Germany
| | - Norbert Michael
- Institut
für Chemie, Sekr. PC14, Technische
Universität Berlin, Straße des 17. Juni 135, Berlin D-10623, Germany
| | - Luisa Sauthof
- Institute
of Medical Physics and Biophysics, Group Structural Biology of Cellular
Signaling, Charité − Universitätsmedizin Berlin,
Corporate member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, Charitéplatz
1, Berlin D-10117, Germany
| | - Johannes von Sass
- Institut
für Chemie, Sekr. PC14, Technische
Universität Berlin, Straße des 17. Juni 135, Berlin D-10623, Germany
| | - Oanh Tu Hoang
- Institut
für Chemie, Sekr. C7, Technische
Universität Berlin, Straße des 17. Juni 115, Berlin D-10623, Germany
| | - Andrea Schmidt
- Institute
of Medical Physics and Biophysics, Group Structural Biology of Cellular
Signaling, Charité − Universitätsmedizin Berlin,
Corporate member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, Charitéplatz
1, Berlin D-10117, Germany
| | - Mariafrancesca La Greca
- Experimental
Physics: Genetic Biophysics, Freie Universität
Berlin, Arnimallee 14, Berlin D-14195, Germany
| | - Ramona Schlesinger
- Experimental
Physics: Genetic Biophysics, Freie Universität
Berlin, Arnimallee 14, Berlin D-14195, Germany
| | - Nediljko Budisa
- Department
of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Patrick Scheerer
- Institute
of Medical Physics and Biophysics, Group Structural Biology of Cellular
Signaling, Charité − Universitätsmedizin Berlin,
Corporate member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, Charitéplatz
1, Berlin D-10117, Germany
| | - Maria Andrea Mroginski
- Institut
für Chemie, Sekr. C7, Technische
Universität Berlin, Straße des 17. Juni 115, Berlin D-10623, Germany
| | - Anastasia Kraskov
- Institut
für Chemie, Sekr. PC14, Technische
Universität Berlin, Straße des 17. Juni 135, Berlin D-10623, Germany
| | - Peter Hildebrandt
- Institut
für Chemie, Sekr. PC14, Technische
Universität Berlin, Straße des 17. Juni 135, Berlin D-10623, Germany
| |
Collapse
|
2
|
Katz S, Phan HT, Rieder F, Seifert F, Pietzsch M, Laufer J, Schmitt FJ, Hildebrandt P. High Fluorescence of Phytochromes Does Not Require Chromophore Protonation. Molecules 2024; 29:4948. [PMID: 39459316 PMCID: PMC11510734 DOI: 10.3390/molecules29204948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Fluorescing proteins emitting in the near-infrared region are of high importance in various fields of biomedicine and applied life sciences. Promising candidates are phytochromes that can be engineered to a small size and genetically attached to a target system for in vivo monitoring. Here, we have investigated two of these minimal single-domain phytochromes, miRFP670nano3 and miRFP718nano, aiming at a better understanding of the structural parameters that control the fluorescence properties of the covalently bound biliverdin (BV) chromophore. On the basis of resonance Raman and time-resolved fluorescence spectroscopy, it is shown that in both proteins, BV is deprotonated at one of the inner pyrrole rings (B or C). This protonation pattern, which is unusual for tetrapyrroles in proteins, implies an equilibrium between a B- and C-protonated tautomer. The dynamics of the equilibrium are slow compared to the fluorescence lifetime in miRFP670nano3 but much faster in miRFP718nano, both in the ground and excited states. The different rates of proton exchange are most likely due to the different structural dynamics of the more rigid and more flexible chromophore in miRFP670nano3 and miRFP718nano, respectively. We suggest that these structural properties account for the quite different fluorescent quantum yields of both proteins.
Collapse
Affiliation(s)
- Sagie Katz
- Institute of Chemistry, Technical University Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany;
| | - Hoang Trong Phan
- Institute of Physics, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, D-06120 Halle (Saale), Germany; (H.T.P.); (F.R.); (J.L.)
- Leibniz Institute for New Materials, Campus D2 2, D-66123 Saarbrücken, Germany
| | - Fabian Rieder
- Institute of Physics, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, D-06120 Halle (Saale), Germany; (H.T.P.); (F.R.); (J.L.)
| | - Franziska Seifert
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale), Germany; (F.S.); (M.P.)
| | - Markus Pietzsch
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale), Germany; (F.S.); (M.P.)
| | - Jan Laufer
- Institute of Physics, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, D-06120 Halle (Saale), Germany; (H.T.P.); (F.R.); (J.L.)
| | - Franz-Josef Schmitt
- Institute of Physics, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, D-06120 Halle (Saale), Germany; (H.T.P.); (F.R.); (J.L.)
| | - Peter Hildebrandt
- Institute of Chemistry, Technical University Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany;
| |
Collapse
|
3
|
Blain-Hartung M, Johannes von Sass G, Plaickner J, Katz S, Tu Hoang O, Andrea Mroginski M, Esser N, Budisa N, Forest KT, Hildebrandt P. On the Role of a Conserved Tryptophan in the Chromophore Pocket of Cyanobacteriochrome. J Mol Biol 2024; 436:168227. [PMID: 37544357 DOI: 10.1016/j.jmb.2023.168227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The cyanobacteriochrome Slr1393 can be photoconverted between a red (Pr) and green absorbing form (Pg). The recently determined crystal structures of both states suggest a major movement of Trp496 from a stacking interaction with ring D of the phycocyanobilin (PCB) chromophore in Pr to a position outside the chromophore pocket in Pg. Here, we investigated the role of this amino acid during photoconversion in solution using engineered protein variants in which Trp496 was substituted by natural and non-natural amino acids. These variants and the native protein were studied by various spectroscopic techniques (UV-vis absorption, fluorescence, IR, NIR and UV resonance Raman) complemented by theoretical approaches. Trp496 is shown to affect the electronic transition of PCB and to be essential for the thermal equilibrium between Pr and an intermediate state O600. However, Trp496 is not required to stabilize the tilted orientation of ring D in Pr, and does not play a role in the secondary structure changes of Slr1393 during the Pr/Pg transition. The present results confirm the re-orientation of Trp496 upon Pr → Pg conversion, but do not provide evidence of a major change in the microenvironment of this residue. Structural models indicate the penetration of water molecules into the chromophore pocket in both Pr and Pg states and thus water-Trp contacts, which can readily account for the subtle spectral changes between Pr and Pg. Thus, we conclude that reorientation of Trp496 during the Pr-to-Pg photoconversion in solution is not associated with a major change in the dielectric environment in the two states.
Collapse
Affiliation(s)
- Matthew Blain-Hartung
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Georg Johannes von Sass
- Technische Universität Berlin, Institut für Chemie, Sekr. CL1, Müller-Breslau-Str.10, D-10623 Berlin, Germany
| | - Julian Plaickner
- Technische Universität Berlin, Institut für Festkörperphysik, Sekr. EW 6-1, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Sagie Katz
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Oanh Tu Hoang
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Norbert Esser
- Technische Universität Berlin, Institut für Festkörperphysik, Sekr. EW 6-1, Hardenbergstraße 36, 10623 Berlin, Germany; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Schwarzschildstraße 8, 12489 Berlin, Germany
| | - Nediljko Budisa
- Technische Universität Berlin, Institut für Chemie, Sekr. CL1, Müller-Breslau-Str.10, D-10623 Berlin, Germany; Department of Chemistry, University of Manitoba, 144 Dysart Rd, 360 Parker Building, R3T 2N2 Winnipeg, Manitoba, Canada
| | - Katrina T Forest
- University of Wisconsin-Madison, Department of Bacteriology, 1550 Linden Dr., Madison, WI 53706, USA
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
4
|
Hildebrandt P. Vibrational Spectroscopy of Phytochromes. Biomolecules 2023; 13:1007. [PMID: 37371587 DOI: 10.3390/biom13061007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochromes are biological photoswitches that translate light into physiological functions. Spectroscopic techniques are essential tools for molecular research into these photoreceptors. This review is directed at summarizing how resonance Raman and IR spectroscopy contributed to an understanding of the structure, dynamics, and reaction mechanism of phytochromes, outlining the substantial experimental and theoretical challenges and describing the strategies to master them. It is shown that the potential of the various vibrational spectroscopic techniques can be most efficiently exploited using integral approaches via a combination of theoretical methods as well as other experimental techniques.
Collapse
Affiliation(s)
- Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
5
|
Chenchiliyan M, Kübel J, Ooi SA, Salvadori G, Mennucci B, Westenhoff S, Maj M. Ground-state heterogeneity and vibrational energy redistribution in bacterial phytochrome observed with femtosecond 2D IR spectroscopy. J Chem Phys 2023; 158:085103. [PMID: 36859103 DOI: 10.1063/5.0135268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Phytochromes belong to a group of photoreceptor proteins containing a covalently bound biliverdin chromophore that inter-converts between two isomeric forms upon photoexcitation. The existence and stability of the photocycle products are largely determined by the protein sequence and the presence of conserved hydrogen-bonding interactions in the vicinity of the chromophore. The vibrational signatures of biliverdin, however, are often weak and obscured under more intense protein bands, limiting spectroscopic studies of its non-transient signals. In this study, we apply isotope-labeling techniques to isolate the vibrational bands from the protein-bound chromophore of the bacterial phytochrome from Deinococcus radiodurans. We elucidate the structure and ultrafast dynamics of the chromophore with 2D infra-red (IR) spectroscopy and molecular dynamics simulations. The carbonyl stretch vibrations of the pyrrole rings show the heterogeneous distribution of hydrogen-bonding structures, which exhibit distinct ultrafast relaxation dynamics. Moreover, we resolve a previously undetected 1678 cm-1 band that is strongly coupled to the A- and D-ring of biliverdin and demonstrate the presence of complex vibrational redistribution pathways between the biliverdin modes with relaxation-assisted measurements of 2D IR cross peaks. In summary, we expect 2D IR spectroscopy to be useful in explaining how point mutations in the protein sequence affect the hydrogen-bonding structure around the chromophore and consequently its ability to photoisomerize to the light-activated states.
Collapse
Affiliation(s)
- Manoop Chenchiliyan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Joachim Kübel
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Saik Ann Ooi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56126 Pisa, Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56126 Pisa, Italy
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Michał Maj
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| |
Collapse
|
6
|
Zavafer A, Ball MC. Good vibrations: Raman spectroscopy enables insights into plant biochemical composition. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:1-16. [PMID: 36592984 DOI: 10.1071/fp21335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/20/2022] [Indexed: 06/17/2023]
Abstract
Non-invasive techniques are needed to enable an integrated understanding of plant metabolic responses to environmental stresses. Raman spectroscopy is one such technique, allowing non-destructive chemical characterisation of samples in situ and in vivo and resolving the chemical composition of plant material at scales from microns to metres. Here, we review Raman band assignments of pigments, structural and non-structural carbohydrates, lipids, proteins and secondary metabolites in plant material and consider opportunities this technology raises for studies in vascular plant physiology.
Collapse
Affiliation(s)
- Alonso Zavafer
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 2000, Australia; and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2001, Australia; and Present address: Department Biological Sciences and Yousef Haj-Ahmad Department of Engineering, Brock University, St. Catherines, ON, Canada
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 2000, Australia
| |
Collapse
|
7
|
Hashizume R, Fujii H, Mehta S, Ota K, Qian Y, Zhu W, Drobizhev M, Nasu Y, Zhang J, Bito H, Campbell RE. A genetically encoded far-red fluorescent calcium ion biosensor derived from a biliverdin-binding protein. Protein Sci 2022; 31:e4440. [PMID: 36173169 PMCID: PMC9518226 DOI: 10.1002/pro.4440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022]
Abstract
Far-red and near-infrared (NIR) genetically encoded calcium ion (Ca2+ ) indicators (GECIs) are powerful tools for in vivo and multiplexed imaging of neural activity and cell signaling. Inspired by a previous report to engineer a far-red fluorescent protein (FP) from a biliverdin (BV)-binding NIR FP, we have developed a far-red fluorescent GECI, designated iBB-GECO1, from a previously reported NIR GECI. iBB-GECO1 exhibits a relatively high molecular brightness, an inverse response to Ca2+ with ΔF/Fmin = -13, and a near-optimal dissociation constant (Kd ) for Ca2+ of 105 nM. We demonstrate the utility of iBB-GECO1 for four-color multiplexed imaging in MIN6 cells and five-color imaging in HEK293T cells. Like other BV-binding GECIs, iBB-GECO1 did not give robust signals during in vivo imaging of neural activity in mice, but did provide promising results that will guide future engineering efforts. SIGNIFICANCE: Genetically encoded calcium ion (Ca2+ ) indicators (GECIs) compatible with common far-red laser lines (~630-640 nm) on commercial microscopes are of critical importance for their widespread application to deep-tissue multiplexed imaging of neural activity. In this study, we engineered a far-red excitable fluorescent GECI, designated iBB-GECO1, that exhibits a range of preferable specifications such as high brightness, large fluorescence response to Ca2+ , and compatibility with multiplexed imaging in mammalian cells.
Collapse
Affiliation(s)
- Rina Hashizume
- Department of Chemistry, School of ScienceThe University of Tokyo, Bunkyo‐kuTokyoJapan
| | - Hajime Fujii
- Department of Neurochemistry, Graduate School of MedicineThe University of Tokyo, Bunkyo‐kuTokyoJapan
| | - Sohum Mehta
- Department of PharmacologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Keisuke Ota
- Department of Neurochemistry, Graduate School of MedicineThe University of Tokyo, Bunkyo‐kuTokyoJapan
| | - Yong Qian
- Department of ChemistryUniversity of AlbertaEdmontonAlbertaCanada
- McGovern Institute for Brain Research, MITCambridgeMassachusettsUSA
| | - Wenchao Zhu
- Department of Chemistry, School of ScienceThe University of Tokyo, Bunkyo‐kuTokyoJapan
| | - Mikhail Drobizhev
- Department of Microbiology and Cell BiologyMontana State UniversityBozemanMontanaUSA
| | - Yusuke Nasu
- Department of Chemistry, School of ScienceThe University of Tokyo, Bunkyo‐kuTokyoJapan
| | - Jin Zhang
- Department of PharmacologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of MedicineThe University of Tokyo, Bunkyo‐kuTokyoJapan
| | - Robert E. Campbell
- Department of Chemistry, School of ScienceThe University of Tokyo, Bunkyo‐kuTokyoJapan
- Department of ChemistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
8
|
López MF, Dahl M, Escobar FV, Bonomi HR, Kraskov A, Michael N, Mroginski MA, Scheerer P, Hildebrandt P. Photoinduced reaction mechanisms in prototypical and bathy phytochromes. Phys Chem Chem Phys 2022; 24:11967-11978. [PMID: 35527718 DOI: 10.1039/d2cp00020b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phytochromes, found in plants, fungi, and bacteria, exploit light as a source of information to control physiological processes via photoswitching between two states of different physiological activity, i.e. a red-absorbing Pr and a far-red-absorbing Pfr state. Depending on the relative stability in the dark, bacterial phytochromes are divided into prototypical and bathy phytochromes, where the stable state is Pr and Pfr, respectively. In this work we studied representatives of these groups (prototypical Agp1 and bathy Agp2 from Agrobacterium fabrum) together with the bathy-like phytochrome XccBphP from Xanthomonas campestris by resonance Raman and IR difference spectroscopy. In all three phytochromes, the photoinduced conversions display the same mechanistic pattern as reflected by the chromophore structures in the various intermediate states. We also observed in each case the secondary structure transition of the tongue, which is presumably crucial for the function of phytochrome. The three phytochromes differ in details of the chromophore conformation in the various intermediates and the energetic barrier of their respective decay reactions. The specific protein environment in the chromophore pocket, which is most likely the origin for these small differences, also controls the proton transfer processes concomitant to the photoconversions. These proton translocations, which are tightly coupled to the structural transition of the tongue, presumably proceed via the same mechanism along the Pr → Pfr conversion whereas the reverse Pfr → Pr photoconversion includes different proton transfer pathways. Finally, classification of phytochromes in prototypical and bathy (or bathy-like) phytochromes is discussed in terms of molecular structure and mechanistic properties.
Collapse
Affiliation(s)
- María Fernández López
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Margarethe Dahl
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Francisco Velázquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Hernán Ruy Bonomi
- Leloir Institute Foundation, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Anastasia Kraskov
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
9
|
Ultrafast proton-coupled isomerization in the phototransformation of phytochrome. Nat Chem 2022; 14:823-830. [PMID: 35577919 PMCID: PMC9252900 DOI: 10.1038/s41557-022-00944-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/01/2022] [Indexed: 11/08/2022]
Abstract
The biological function of phytochromes is triggered by an ultrafast photoisomerization of the tetrapyrrole chromophore biliverdin between two rings denoted C and D. The mechanism by which this process induces extended structural changes of the protein is unclear. Here we report ultrafast proton-coupled photoisomerization upon excitation of the parent state (Pfr) of bacteriophytochrome Agp2. Transient deprotonation of the chromophore's pyrrole ring D or ring C into a hydrogen-bonded water cluster, revealed by a broad continuum infrared band, is triggered by electronic excitation, coherent oscillations and the sudden electric-field change in the excited state. Subsequently, a dominant fraction of the excited population relaxes back to the Pfr state, while ~35% follows the forward reaction to the photoproduct. A combination of quantum mechanics/molecular mechanics calculations and ultrafast visible and infrared spectroscopies demonstrates how proton-coupled dynamics in the excited state of Pfr leads to a restructured hydrogen-bond environment of early Lumi-F, which is interpreted as a trigger for downstream protein structural changes.
Collapse
|
10
|
Rydzewski J, Walczewska-Szewc K, Czach S, Nowak W, Kuczera K. Enhancing the Inhomogeneous Photodynamics of Canonical Bacteriophytochrome. J Phys Chem B 2022; 126:2647-2657. [PMID: 35357137 PMCID: PMC9014414 DOI: 10.1021/acs.jpcb.2c00131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The ability of phytochromes
to act as photoswitches in plants and
microorganisms depends on interactions between a bilin-like chromophore
and a host protein. The interconversion occurs between the spectrally
distinct red (Pr) and far-red (Pfr) conformers. This conformational
change is triggered by the photoisomerization of the chromophore D-ring
pyrrole. In this study, as a representative example of a phytochrome-bilin
system, we consider biliverdin IXα (BV) bound to bacteriophytochrome
(BphP) from Deinococcus radiodurans. In the absence
of light, we use an enhanced sampling molecular dynamics (MD) method
to overcome the photoisomerization energy barrier. We find that the
calculated free energy (FE) barriers between essential metastable
states agree with spectroscopic results. We show that the enhanced
dynamics of the BV chromophore in BphP contributes to triggering nanometer-scale
conformational movements that propagate by two experimentally determined
signal transduction pathways. Most importantly, we describe how the
metastable states enable a thermal transition known as the dark reversion
between Pfr and Pr, through a previously unknown intermediate state
of Pfr. We present the heterogeneity of temperature-dependent Pfr
states at the atomistic level. This work paves a way toward understanding
the complete mechanism of the photoisomerization of a bilin-like chromophore
in phytochromes.
Collapse
Affiliation(s)
- Jakub Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Sylwia Czach
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Krzysztof Kuczera
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, United States.,Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
11
|
Okuda Y, Miyoshi R, Kamo T, Fujisawa T, Nagae T, Mishima M, Eki T, Hirose Y, Unno M. Raman Spectroscopy of an Atypical C15-E,syn Bilin Chromophore in Cyanobacteriochrome RcaE. J Phys Chem B 2022; 126:813-821. [DOI: 10.1021/acs.jpcb.1c09652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuji Okuda
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Risako Miyoshi
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takanari Kamo
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takayuki Nagae
- Synchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Masaki Mishima
- Department of Molecular Biophysics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
12
|
Ghosh S, Mondal S, Yadav K, Aggarwal S, Schaefer WF, Narayana C, Subramanian R. Modulation of biliverdin dynamics and spectral properties by Sandercyanin. RSC Adv 2022; 12:20296-20304. [PMID: 35919616 PMCID: PMC9277520 DOI: 10.1039/d2ra02880h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Biliverdin IX-alpha (BV), a tetrapyrrole, is found ubiquitously in most living organisms. It functions as a metabolite, pigment, and signaling compound. While BV is known to bind to diverse protein families such as heme-metabolizing enzymes and phytochromes, not many BV-bound lipocalins (ubiquitous, small lipid-binding proteins) have been studied. The molecular basis of binding and conformational selectivity of BV in lipocalins remains unexplained. Sandercyanin (SFP)–BV complex is a blue lipocalin protein present in the mucus of the Canadian walleye (Stizostedion vitreum). In this study, we present the structures and binding modes of BV to SFP. Using a combination of designed site-directed mutations, X-ray crystallography, UV/VIS, and resonance Raman spectroscopy, we have identified multiple conformations of BV that are stabilized in the binding pocket of SFP. In complex with the protein, these conformers generate varied spectroscopic signatures both in their absorption and fluorescence spectra. We show that despite no covalent anchor, structural heterogeneity of the chromophore is primarily driven by the D-ring pyrrole of BV. Our work shows how conformational promiscuity of BV is correlated to the rearrangement of amino acids in the protein matrix leading to modulation of spectral properties. Biliverdin IX-alpha undergoes rotation around the D-ring pyrrole and displays a broad far-red absorbance on binding to monomeric Sandercyanin variant (orange) compared to the wild-type tetrameric protein (cyan).![]()
Collapse
Affiliation(s)
- Swagatha Ghosh
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Sayan Mondal
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Keerti Yadav
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
- Manipal Academy of Higher Education, Manipal University, Madhav Nagar, 576104, India
| | - Shantanu Aggarwal
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Wayne F. Schaefer
- Department of Biological Sciences, University of Wisconsin at Milwaukee, Washington County, West Bend, WI 53095, USA
| | - Chandrabhas Narayana
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Ramaswamy Subramanian
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
- Department of Biological Sciences, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
Kraskov A, Buhrke D, Scheerer P, Shaef I, Sanchez JC, Carrillo M, Noda M, Feliz D, Stojković EA, Hildebrandt P. On the Role of the Conserved Histidine at the Chromophore Isomerization Site in Phytochromes. J Phys Chem B 2021; 125:13696-13709. [PMID: 34843240 DOI: 10.1021/acs.jpcb.1c08245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phytochromes are sensory photoreceptors that use light to drive protein structural changes, which in turn trigger physiological reaction cascades. The process starts with a double-bond photoisomerization of the linear methine-bridged tetrapyrrole chromophore in the photosensory core module. The molecular mechanism of the photoconversion depends on the structural and electrostatic properties of the chromophore environment, which are highly conserved in related phytochromes. However, the specific role of individual amino acids is yet not clear. A histidine in the vicinity of the isomerization site is highly conserved and almost invariant among all phytochromes. The present study aimed at analyzing its role by taking advantage of a myxobacterial phytochrome SaBphP1 from Stigmatella aurantiaca, where this histidine is naturally substituted with a threonine (Thr289), and comparing it to its normal, His-containing counterpart from the same organism SaBphP2 (His275). We have carried out a detailed resonance Raman and IR spectroscopic investigation of the wild-type proteins and their respective His- or Thr-substituted variants (SaBphP1-T289H and SaBphP2-H275T) using the well-characterized prototypical phytochrome Agp1 from Agrobacterium fabrum as a reference. The overall mechanism of the photoconversion is insensitive toward the His substitution. However, the chromophore geometry at the isomerization site appears to be affected, with a slightly stronger twist of ring D in the presence of Thr, which is sufficient to cause different light absorption properties in SaBphP1 and SaBphP2. Furthermore, the presence of His allows for multiple hydrogen-bonding interactions with the ring D carbonyl which may be the origin for the geometric differences of the C-D methine bridge compared to the Thr-containing variants. Other structural and mechanistic differences are independent of the presence of His. The most striking finding is the protonation of the ring C propionate in the Pfr states of SaBphP2, which is common among bathy phytochromes but so far has not been reported in prototypical phytochromes.
Collapse
Affiliation(s)
- Anastasia Kraskov
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - David Buhrke
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Charité─Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Ida Shaef
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Juan C Sanchez
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Melissa Carrillo
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Moraima Noda
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Denisse Feliz
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
14
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Kraskov A, von Sass J, Nguyen AD, Hoang TO, Buhrke D, Katz S, Michael N, Kozuch J, Zebger I, Siebert F, Scheerer P, Mroginski MA, Budisa N, Hildebrandt P. Local Electric Field Changes during the Photoconversion of the Bathy Phytochrome Agp2. Biochemistry 2021; 60:2967-2977. [PMID: 34570488 DOI: 10.1021/acs.biochem.1c00426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phytochromes switch between a physiologically inactive and active state via a light-induced reaction cascade, which is initiated by isomerization of the tetrapyrrole chromophore and leads to the functionally relevant secondary structure transition of a protein segment (tongue). Although details of the underlying cause-effect relationships are not known, electrostatic fields are likely to play a crucial role in coupling chromophores and protein structural changes. Here, we studied local electric field changes during the photoconversion of the dark state Pfr to the photoactivated state Pr of the bathy phytochrome Agp2. Substituting Tyr165 and Phe192 in the chromophore pocket by para-cyanophenylalanine (pCNF), we monitored the respective nitrile stretching modes in the various states of photoconversion (vibrational Stark effect). Resonance Raman and IR spectroscopic analyses revealed that both pCNF-substituted variants undergo the same photoinduced structural changes as wild-type Agp2. Based on a structural model for the Pfr state of F192pCNF, a molecular mechanical-quantum mechanical approach was employed to calculate the electric field at the nitrile group and the respective stretching frequency, in excellent agreement with the experiment. These calculations serve as a reference for determining the electric field changes in the photoinduced states of F192pCNF. Unlike F192pCNF, the nitrile group in Y165pCNF is strongly hydrogen bonded such that the theoretical approach is not applicable. However, in both variants, the largest changes of the nitrile stretching modes occur in the last step of the photoconversion, supporting the view that the proton-coupled restructuring of the tongue is accompanied by a change of the electric field.
Collapse
Affiliation(s)
- Anastasia Kraskov
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Johannes von Sass
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Anh Duc Nguyen
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Tu Oanh Hoang
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Sagie Katz
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jacek Kozuch
- Freie Universität Berlin, Fachbereich für Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Ingo Zebger
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Friedrich Siebert
- Albert-Ludwigs-Universität Freiburg, Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik, Hermann-Herderstr. 9, D-79104 Freiburg, Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, 144 Dysart Rd, 360 Parker Building, R3T 2N2 Winnipeg, Manitoba, Canada
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
16
|
Merga G, Lopez MF, Fischer P, Piwowarski P, Nogacz Ż, Kraskov A, Buhrke D, Escobar FV, Michael N, Siebert F, Scheerer P, Bartl F, Hildebrandt P. Light- and temperature-dependent dynamics of chromophore and protein structural changes in bathy phytochrome Agp2. Phys Chem Chem Phys 2021; 23:18197-18205. [PMID: 34612283 DOI: 10.1039/d1cp02494a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial phytochromes are sensoric photoreceptors that transform light absorbed by the photosensor core module (PCM) to protein structural changes that eventually lead to the activation of the enzymatic output module. The underlying photoinduced reaction cascade in the PCM starts with the isomerization of the tetrapyrrole chromophore, followed by conformational relaxations, proton transfer steps, and a secondary structure transition of a peptide segment (tongue) that is essential for communicating the signal to the output module. In this work, we employed various static and time-resolved IR and resonance Raman spectroscopic techniques to study the structural and reaction dynamics of the Meta-F intermediate of both the PCM and the full-length (PCM and output module) variant of the bathy phytochrome Agp2 from Agrobacterium fabrum. In both cases, this intermediate represents a branching point of the phototransformation, since it opens an unproductive reaction channel back to the initial state and a productive pathway to the final active state, including the functional protein structural changes. It is shown that the functional quantum yield, i.e. the events of tongue refolding per absorbed photons, is lower by a factor of ca. two than the quantum yield of the primary photochemical process. However, the kinetic data derived from the spectroscopic experiments imply an increased formation of the final active state upon increasing photon flux or elevated temperature under photostationary conditions. Accordingly, the branching mechanism does not only account for the phytochrome's function as a light intensity sensor but may also modulate its temperature sensitivity.
Collapse
Affiliation(s)
- Galaan Merga
- Humboldt Universität zu Berlin, Institut für Biologie, Biophysikalische Chemie, Invalidenstr. 42, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim Y, Xu QZ, Zhao KH, Gärtner W, Matysik J, Song C. Lyophilization Reveals a Multitude of Structural Conformations in the Chromophore of a Cph2-like Phytochrome. J Phys Chem B 2020; 124:7115-7127. [PMID: 32693592 DOI: 10.1021/acs.jpcb.0c03431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria sense and respond to various colors of light employing a large number of bilin-based phytochrome-like photoreceptors. All2699 from Nostoc 7120 has three consecutive GAF domains with GAF1 and GAF3 binding a phycocyanobilin chromophore. GAF1, even when expressed independently, can be photoconverted between red-absorbing Pr and far-red-absorbing Pfr states, while the nonphotosensory GAF2 domain is structurally and functionally homologous to the PHY domains in canonical and Cph2-like phytochromes. Here, we characterize possible bilin chromophore conformers using solid-state NMR spectroscopy on the two lyophilized All2699 samples (GAF1-only and GAF1-PHY constructs). On the basis of complete 1H, 13C, and 15N assignments for the chromophore obtained on the two Pr lyophilizates, multiple static conformations of the chromophore in both cases are identified. Moreover, most atoms of the chromophore in the bidomain sample show only subtle changes in the mean chemical shifts relative to those in frozen solution (FS), indicating an optimized interaction of the GAF2 domain with the GAF1-bound chromophore. Our results confirm the conservation of key chromophore-protein interactions and the photoreversibility in both All2699 lyophilizates, offering the possibility to investigate conformational distributions of the heterogeneous chromophore and its functional consequences in phytochromes and other bilin-dependent photoreceptors intractable by the solid-state NMR technique as FSs.
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Qian-Zhao Xu
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wolfgang Gärtner
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
18
|
Antelo GT, Sánchez-Lamas M, Goldbaum FA, Otero LH, Bonomi HR, Rinaldi J. A Spectroscopy-based Methodology for Rapid Screening and Characterization of Phytochrome Photochemistry in Search of Pfr-favored Variants. Photochem Photobiol 2020; 96:1221-1232. [PMID: 32683707 DOI: 10.1111/php.13313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/11/2020] [Indexed: 11/30/2022]
Abstract
Phytochromes are photosensitive proteins with a covalently bound open-chain chromophore that can switch between two principal states: red light absorbing Pr and far-red light absorbing Pfr. Our group has previously shown that the bacteriophytochrome from Xanthomonas campestris pv. campestris (XccBphP) is a bathy-like phytochrome that uses biliverdin IXα as a co-factor and is involved in bacterial virulence. To date, the XccBphP crystal structure could only be solved in the Pr state, while the structure of its Pfr state remains elusive. The aims of this work were to develop an efficient screening methodology for the rapid characterization and to identify XccBphP variants that favor the Pfr form. The screening approach developed here consists in analyzing the UV-Vis absorption behavior of clarified crude extracts containing recombinant phytochromes. This strategy has allowed us to quickly explore over a hundred XccBphP variants, characterize multiple variants and identify Pfr-favored candidates. The high-quality data obtained enabled not only a qualitative, but also a quantitative characterization of their photochemistry. This method could be easily adapted to other phytochromes or other photoreceptor families.
Collapse
Affiliation(s)
| | | | | | - Lisandro Horacio Otero
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | | | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
19
|
Velazquez Escobar F, Kneip C, Michael N, Hildebrandt T, Tavraz N, Gärtner W, Hughes J, Friedrich T, Scheerer P, Mroginski MA, Hildebrandt P. The Lumi-R Intermediates of Prototypical Phytochromes. J Phys Chem B 2020; 124:4044-4055. [PMID: 32330037 DOI: 10.1021/acs.jpcb.0c01059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phytochromes are photoreceptors that upon light absorption initiate a physiological reaction cascade. The starting point is the photoisomerization of the tetrapyrrole cofactor in the parent Pr state, followed by thermal relaxation steps culminating in activation of the physiological signal. Here we have employed resonance Raman (RR) spectroscopy to study the chromophore structure in the primary photoproduct Lumi-R, trapped between 130 and 200 K. The investigations covered phytochromes from plants (phyA) and prokaryotes (Cph1, Agp1, CphB, and RpBphP2) including phytochromobilin (PΦB), phycocyanobilin (PCB), and biliverdin (BV). In PΦB- and PCB-binding phyA and Cph1, two Lumi-R states (Lumi-R1, Lumi-R2) were identified and discussed in terms of sequential and parallel reaction models. In Lumi-R1, the chromophore structural changes are restricted to the C-D methine bridge isomerization site but extended throughout the chromophore in Lumi-R2. Formation and decay kinetics as well as photochemical activity depend on the specific protein-chromophore interactions and thus account for the different distribution between Lumi-R1 and Lumi-R2 in the photostationary mixtures of the various PΦB(PCB)-binding phytochromes. For BV-binding bacteriophytochromes, only a single Lumi-R(BV) state was found. In this state, which is similar for Agp1, CphB, and RpBphP2, the chromophore structural changes comprise major torsions of the C-D methine bridge but also perturbations at the A-B methine bridge remote from the isomerization site. The different structures of the photoproducts in PΦB(PCB)-binding phytochromes and BV-binding bacteriophytochromes are attributed to the different disposition of ring D upon isomerization, which leads to distinct protein-chromophore interactions in the Lumi-R states of these two classes of phytochromes.
Collapse
Affiliation(s)
- Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Christa Kneip
- Grünenthal GmbH, Zieglerstraße 6, D-52078 Aachen, Germany
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Thomas Hildebrandt
- Universitätsklinikum Düsseldorf, Klinik für Neurologie, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Neslihan Tavraz
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Wolfgang Gärtner
- Universität Leipzig, Institut für Analytische Chemie, Linnéstr. 3, D-04103 Leipzig, Germany
| | - Jon Hughes
- Plant Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
20
|
Rockwell NC, Lagarias JC. Phytochrome evolution in 3D: deletion, duplication, and diversification. THE NEW PHYTOLOGIST 2020; 225:2283-2300. [PMID: 31595505 PMCID: PMC7028483 DOI: 10.1111/nph.16240] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 05/09/2023]
Abstract
Canonical plant phytochromes are master regulators of photomorphogenesis and the shade avoidance response. They are also part of a widespread superfamily of photoreceptors with diverse spectral and biochemical properties. Plant phytochromes belong to a clade including other phytochromes from glaucophyte, prasinophyte, and streptophyte algae (all members of the Archaeplastida) and those from cryptophyte algae. This is consistent with recent analyses supporting the existence of an AC (Archaeplastida + Cryptista) clade. AC phytochromes have been proposed to arise from ancestral cyanobacterial genes via endosymbiotic gene transfer (EGT), but most recent studies instead support multiple horizontal gene transfer (HGT) events to generate extant eukaryotic phytochromes. In principle, this scenario would be compared to the emerging understanding of early events in eukaryotic evolution to generate a coherent picture. Unfortunately, there is currently a major discrepancy between the evolution of phytochromes and the evolution of eukaryotes; phytochrome evolution is thus not a solved problem. We therefore examine phytochrome evolution in a broader context. Within this context, we can identify three important themes in phytochrome evolution: deletion, duplication, and diversification. These themes drive phytochrome evolution as organisms evolve in response to environmental challenges.
Collapse
|
21
|
Kraskov A, Nguyen AD, Goerling J, Buhrke D, Velazquez Escobar F, Fernandez Lopez M, Michael N, Sauthof L, Schmidt A, Piwowarski P, Yang Y, Stensitzki T, Adam S, Bartl F, Schapiro I, Heyne K, Siebert F, Scheerer P, Mroginski MA, Hildebrandt P. Intramolecular Proton Transfer Controls Protein Structural Changes in Phytochrome. Biochemistry 2020; 59:1023-1037. [DOI: 10.1021/acs.biochem.0c00053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Anastasia Kraskov
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Anh Duc Nguyen
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jan Goerling
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Fernandez Lopez
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Luisa Sauthof
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Andrea Schmidt
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Patrick Piwowarski
- Humboldt Universität zu Berlin, Institut für Biologie, Experimentelle Biophysik, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Yang Yang
- Freie Universität Berlin, Experimentelle Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Till Stensitzki
- Freie Universität Berlin, Experimentelle Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Suliman Adam
- Institute of Chemistry, Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Franz Bartl
- Humboldt Universität zu Berlin, Institut für Biologie, Experimentelle Biophysik, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Igor Schapiro
- Institute of Chemistry, Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Karsten Heyne
- Freie Universität Berlin, Experimentelle Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Friedrich Siebert
- Albert-Ludwigs-Universität Freiburg, Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik, Hermann-Herderstraße 9, D-79104 Freiburg, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
22
|
Buhrke D, Gourinchas G, Müller M, Michael N, Hildebrandt P, Winkler A. Distinct chromophore-protein environments enable asymmetric activation of a bacteriophytochrome-activated diguanylate cyclase. J Biol Chem 2020; 295:539-551. [PMID: 31801828 PMCID: PMC6956517 DOI: 10.1074/jbc.ra119.011915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/04/2019] [Indexed: 01/31/2023] Open
Abstract
Sensing of red and far-red light by bacteriophytochromes involves intricate interactions between their bilin chromophore and the protein environment. The light-triggered rearrangements of the cofactor configuration and eventually the protein conformation enable bacteriophytochromes to interact with various protein effector domains for biological modulation of diverse physiological functions. Excitation of the holoproteins by red or far-red light promotes the photoconversion to their far-red light-absorbing Pfr state or the red light-absorbing Pr state, respectively. Because prototypical bacteriophytochromes have a parallel dimer architecture, it is generally assumed that symmetric activation with two Pfr state protomers constitutes the signaling-active species. However, the bacteriophytochrome from Idiomarina species A28L (IsPadC) has recently been reported to enable long-range signal transduction also in asymmetric dimers containing only one Pfr protomer. By combining crystallography, hydrogen-deuterium exchange coupled to MS, and vibrational spectroscopy, we show here that Pfr of IsPadC is in equilibrium with an intermediate "Pfr-like" state that combines features of Pfr and Meta-R states observed in other bacteriophytochromes. We also show that structural rearrangements in the N-terminal segment (NTS) can stabilize this Pfr-like state and that the PHY-tongue conformation of IsPadC is partially uncoupled from the initial changes in the NTS. This uncoupling enables structural asymmetry of the overall homodimeric assembly and allows signal transduction to the covalently linked physiological diguanylate cyclase output module in which asymmetry might play a role in the enzyme-catalyzed reaction. The functional differences to other phytochrome systems identified here highlight opportunities for using additional red-light sensors in artificial sensor-effector systems.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany.
| | - Geoffrey Gourinchas
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Melanie Müller
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
23
|
Buhrke D, Battocchio G, Wilkening S, Blain-Hartung M, Baumann T, Schmitt FJ, Friedrich T, Mroginski MA, Hildebrandt P. Red, Orange, Green: Light- and Temperature-Dependent Color Tuning in a Cyanobacteriochrome. Biochemistry 2019; 59:509-519. [PMID: 31840994 DOI: 10.1021/acs.biochem.9b00931] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyanobacteriochromes (CBCRs) are photoreceptor proteins that photoconvert between two parent states and thereby regulate various biological processes. An intriguing property is their variable ultraviolet-visible (UV-vis) absorption that covers the entire spectral range from the far-red to the near-UV region and thus makes CBCRs promising candidates for optogenetic applications. Here, we have studied Slr1393, a CBCR that photoswitches between red- and green-absorbing states (Pr and Pg, respectively). Using UV-vis absorption, fluorescence, and resonance Raman (RR) spectroscopy, a further orange-absorbing state O600 that is in thermal equilibrium with Pr was identified. The different absorption properties of the three states were attributed to the different lengths of the conjugated π-electron system of the phycocyanobilin chromophore. In agreement with available crystal structures and supported by quantum mechanics/molecular mechanics (QM/MM) calculations, the most extended conjugation holds for Pr whereas it is substantially reduced in Pg. Here, the two outer pyrrole rings D and A are twisted out of the plane defined by inner pyrrole rings B and C. For the O600 state, the comparison of the experimental RR spectra with QM/MM-calculated spectra indicates a partially distorted ZZZssa geometry in which ring A is twisted while ring D and the adjacent methine bridge display essentially the same geometry as Pr. The quantitative analysis of temperature-dependent spectra yields an enthalpy barrier of ∼30 kJ/mol for the transition from Pr to O600. This reaction is associated with the movement of a conserved tryptophan residue from the chromophore binding pocket to a solvent-exposed position.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Giovanni Battocchio
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Svea Wilkening
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Matthew Blain-Hartung
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Tobias Baumann
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Franz-Josef Schmitt
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Thomas Friedrich
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Maria-Andrea Mroginski
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Peter Hildebrandt
- Technische Universität Berlin , Faculty II-Mathematics and Natural Sciences, Institute of Chemistry , Sekr. PC14, Straße des 17. Juni 135 , D-10623 Berlin , Germany
| |
Collapse
|
24
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
25
|
Sato T, Kikukawa T, Miyoshi R, Kajimoto K, Yonekawa C, Fujisawa T, Unno M, Eki T, Hirose Y. Protochromic absorption changes in the two-cysteine photocycle of a blue/orange cyanobacteriochrome. J Biol Chem 2019; 294:18909-18922. [PMID: 31649035 DOI: 10.1074/jbc.ra119.010384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/23/2019] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are phytochrome-related photosensors with diverse spectral sensitivities spanning the entire visible spectrum. They covalently bind bilin chromophores via conserved cysteine residues and undergo 15Z/15E bilin photoisomerization upon light illumination. CBCR subfamilies absorbing violet-blue light use an additional cysteine residue to form a second bilin-thiol adduct in a two-Cys photocycle. However, the process of second thiol adduct formation is incompletely understood, especially the involvement of the bilin protonation state. Here, we focused on the Oscil6304_2705 protein from the cyanobacterium Oscillatoria acuminata PCC 6304, which photoconverts between a blue-absorbing 15Z state ( 15Z Pb) and orange-absorbing 15E state ( 15E Po). pH titration analysis revealed that 15Z Pb was stable over a wide pH range, suggesting that bilin protonation is stabilized by a second thiol adduct. As revealed by resonance Raman spectroscopy, 15E Po harbored protonated bilin at both acidic and neutral pH, but readily converted to a deprotonated green-absorbing 15Z state ( 15Z Pg) at alkaline pH. Site-directed mutagenesis revealed that the conserved Asp-71 and His-102 residues are required for second thiol adduct formation in 15Z Pb and bilin protonation in 15E Po, respectively. An Oscil6304_2705 variant lacking the second cysteine residue, Cys-73, photoconverted between deprotonated 15Z Pg and protonated 15E Pr, similarly to the protochromic photocycle of the green/red CBCR subfamily. Time-resolved spectroscopy revealed 15Z Pg formation as an intermediate in the 15E Pr-to- 15Z Pg conversion with a significant solvent-isotope effect, suggesting the sequential occurrence of 15EP-to-15Z photoisomerization, deprotonation, and second thiol adduct formation. Our findings uncover the details of protochromic absorption changes underlying the two-Cys photocycle of violet-blue-absorbing CBCR subfamilies.
Collapse
Affiliation(s)
- Teppei Sato
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Takashi Kikukawa
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita10 Nishi8, Kita-ku, Sapporo 060-0810, Japan; Faculty of Advanced Life Science, Hokkaido University, Kita10 Nishi8, Kita-ku, Sapporo 060-0810, Japan
| | - Risako Miyoshi
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Kousuke Kajimoto
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Chinatsu Yonekawa
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
26
|
Fernandez Lopez M, Nguyen AD, Velazquez Escobar F, González R, Michael N, Nogacz Ż, Piwowarski P, Bartl F, Siebert F, Heise I, Scheerer P, Gärtner W, Mroginski MA, Hildebrandt P. Role of the Propionic Side Chains for the Photoconversion of Bacterial Phytochromes. Biochemistry 2019; 58:3504-3519. [DOI: 10.1021/acs.biochem.9b00526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Maria Fernandez Lopez
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Anh Duc Nguyen
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Ronald González
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Żaneta Nogacz
- Humboldt Universität zu Berlin, Institut für Biologie, Biophysikalische Chemie, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Patrick Piwowarski
- Humboldt Universität zu Berlin, Institut für Biologie, Biophysikalische Chemie, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Franz Bartl
- Humboldt Universität zu Berlin, Institut für Biologie, Biophysikalische Chemie, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Friedrich Siebert
- Albert-Ludwigs-Universität Freiburg, Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik, Hermann-Herderstraße 9, D-79104 Freiburg, Germany
| | - Inge Heise
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, D-45470 Mülheim, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Wolfgang Gärtner
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, D-45470 Mülheim, Germany
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
27
|
QM/MM Benchmarking of Cyanobacteriochrome Slr1393g3 Absorption Spectra. Molecules 2019; 24:molecules24091720. [PMID: 31058803 PMCID: PMC6540152 DOI: 10.3390/molecules24091720] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteriochromes are compact and spectrally diverse photoreceptor proteins that are promising candidates for biotechnological applications. Computational studies can contribute to an understanding at a molecular level of their wide spectral tuning and diversity. In this contribution, we benchmark methods to model a 110 nm shift in the UV/Vis absorption spectrum from a red- to a green-absorbing form of the cyanobacteriochrome Slr1393g3. Based on an assessment of semiempirical methods to describe the chromophore geometries of both forms in vacuo, we find that DFTB2+D leads to structures that are the closest to the reference method. The benchmark of the excited state calculations is based on snapshots from quantum mechanics/molecular mechanics molecular dynamics simulations. In our case, the methods RI-ADC(2) and sTD-DFT based on CAM-B3LYP ground state calculations perform the best, whereas no functional can be recommended to simulate the absorption spectra of both forms with time-dependent density functional theory. Furthermore, the difference in absorption for the lowest energy absorption maxima of both forms can already be modelled with optimized structures, but sampling is required to improve the shape of the absorption bands of both forms, in particular for the second band. This benchmark study can guide further computational studies, as it assesses essential components of a protocol to model the spectral tuning of both cyanobacteriochromes and the related phytochromes.
Collapse
|
28
|
Gourinchas G, Vide U, Winkler A. Influence of the N-terminal segment and the PHY-tongue element on light-regulation in bacteriophytochromes. J Biol Chem 2019; 294:4498-4510. [PMID: 30683693 PMCID: PMC6433076 DOI: 10.1074/jbc.ra118.007260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/22/2019] [Indexed: 11/30/2022] Open
Abstract
Photoreceptors enable the integration of ambient light stimuli to trigger lifestyle adaptations via modulation of central metabolite levels involved in diverse regulatory processes. Red light–sensing bacteriophytochromes are attractive targets for the development of innovative optogenetic tools because of their natural modularity of coupling with diverse functionalities and the natural availability of the light-absorbing biliverdin chromophore in animal tissues. However, a rational design of such tools is complicated by the poor understanding of molecular mechanisms of light signal transduction over long distances—from the site of photon absorption to the active site of downstream enzymatic effectors. Here we show how swapping structural elements between two bacteriophytochrome homologs provides additional insight into light signal integration and effector regulation, involving a fine-tuned interplay of important structural elements of the sensor, as well as the sensor–effector linker. Facilitated by the availability of structural information of inhibited and activated full-length structures of one of the two homologs (Idiomarina species A28L phytochrome-activated diguanylyl cyclase (IsPadC)) and characteristic differences in photoresponses of the two homologs, we identify an important cross-talk between the N-terminal segment, containing the covalent attachment site of the chromophore, and the PHY-tongue region. Moreover, we highlight how these elements influence the dynamic range of photoactivation and how activation can be improved to light/dark ratios of ∼800-fold by reducing basal dark-state activities at the same time as increasing conversion in the light state. This will enable future optimization of optogenetic tools aiming at a direct allosteric regulation of enzymatic effectors.
Collapse
Affiliation(s)
- Geoffrey Gourinchas
- From the Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria and
| | - Uršula Vide
- From the Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria and
| | - Andreas Winkler
- From the Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria and .,BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
29
|
Schmidt A, Sauthof L, Szczepek M, Lopez MF, Escobar FV, Qureshi BM, Michael N, Buhrke D, Stevens T, Kwiatkowski D, von Stetten D, Mroginski MA, Krauß N, Lamparter T, Hildebrandt P, Scheerer P. Structural snapshot of a bacterial phytochrome in its functional intermediate state. Nat Commun 2018; 9:4912. [PMID: 30464203 PMCID: PMC6249285 DOI: 10.1038/s41467-018-07392-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/31/2018] [Indexed: 11/09/2022] Open
Abstract
Phytochromes are modular photoreceptors of plants, bacteria and fungi that use light as a source of information to regulate fundamental physiological processes. Interconversion between the active and inactive states is accomplished by a photoinduced reaction sequence which couples the sensor with the output module. However, the underlying molecular mechanism is yet not fully understood due to the lack of structural data of functionally relevant intermediate states. Here we report the crystal structure of a Meta-F intermediate state of an Agp2 variant from Agrobacterium fabrum. This intermediate, the identity of which was verified by resonance Raman spectroscopy, was formed by irradiation of the parent Pfr state and displays significant reorientations of almost all amino acids surrounding the chromophore. Structural comparisons allow identifying structural motifs that might serve as conformational switch for initiating the functional secondary structure change that is linked to the (de-)activation of these photoreceptors.
Collapse
Affiliation(s)
- Andrea Schmidt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, D-10117, Germany
| | - Luisa Sauthof
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, D-10117, Germany
| | - Michal Szczepek
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, D-10117, Germany
| | - Maria Fernandez Lopez
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - Bilal M Qureshi
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, D-10117, Germany
- Division of Biological & Environmental Sciences & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - Tammo Stevens
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, D-10117, Germany
| | - Dennis Kwiatkowski
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, D-10117, Germany
| | - David von Stetten
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220 F-38043, Grenoble Cedex 9, France
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestrasse 85, Hamburg, D-22607, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Fritz-Haber-Weg 4, Karlsruhe, D-76131, Germany
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Fritz-Haber-Weg 4, Karlsruhe, D-76131, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623, Germany.
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, D-10117, Germany.
| |
Collapse
|
30
|
Gourinchas G, Heintz U, Winkler A. Asymmetric activation mechanism of a homodimeric red light-regulated photoreceptor. eLife 2018; 7:e34815. [PMID: 29869984 PMCID: PMC6005682 DOI: 10.7554/elife.34815] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/03/2018] [Indexed: 12/18/2022] Open
Abstract
Organisms adapt to environmental cues using diverse signaling networks. In order to sense and integrate light for regulating various biological functions, photoreceptor proteins have evolved in a modular way. This modularity is targeted in the development of optogenetic tools enabling the control of cellular events with high spatiotemporal precision. However, the limited understanding of signaling mechanisms impedes the rational design of innovative photoreceptor-effector couples. Here, we reveal molecular details of signal transduction in phytochrome-regulated diguanylyl cyclases. Asymmetric structural changes of the full-length homodimer result in a functional heterodimer featuring two different photoactivation states. Structural changes around the cofactors result in a quasi-translational rearrangement of the distant coiled-coil sensor-effector linker. Eventually, this regulates enzymatic activity by modulating the dimer interface of the output domains. Considering the importance of phytochrome heterodimerization in plant signaling, our mechanistic details of asymmetric photoactivation in a bacterial system reveal novel aspects of the evolutionary adaptation of phytochromes.
Collapse
Affiliation(s)
| | - Udo Heintz
- Max Planck Institute for Medical ResearchHeidelbergGermany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of TechnologyGrazAustria
| |
Collapse
|
31
|
Song C, Mroginski MA, Lang C, Kopycki J, Gärtner W, Matysik J, Hughes J. 3D Structures of Plant Phytochrome A as Pr and Pfr From Solid-State NMR: Implications for Molecular Function. FRONTIERS IN PLANT SCIENCE 2018; 9:498. [PMID: 29740459 PMCID: PMC5928327 DOI: 10.3389/fpls.2018.00498] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/03/2018] [Indexed: 05/25/2023]
Abstract
We present structural information for oat phyA3 in the far-red-light-absorbing (Pfr) signaling state, to our knowledge the first three-dimensional (3D) information for a plant phytochrome as Pfr. Solid-state magic-angle spinning (MAS) NMR was used to detect interatomic contacts in the complete photosensory module [residues 1-595, including the NTE (N-terminal extension), PAS (Per/Arnt/Sim), GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) and PHY (phytochrome-specific) domains but with the C-terminal PAS repeat and transmitter-like module deleted] auto-assembled in vitro with 13C- and 15N-labeled phycocyanobilin (PCB) chromophore. Thereafter, quantum mechanics/molecular mechanics (QM/MM) enabled us to refine 3D structural models constrained by the NMR data. We provide definitive atomic assignments for all carbon and nitrogen atoms of the chromophore, showing the Pfr chromophore geometry to be periplanar ZZEssa with the D -ring in a β-facial disposition incompatible with many earlier notions regarding photoconversion yet supporting circular dichroism (CD) data. The Y268 side chain is shifted radically relative to published Pfr crystal structures in order to accommodate the β-facial ring D . Our findings support a photoconversion sequence beginning with Pr photoactivation via an anticlockwise D -ring Za→Ea photoflip followed by significant shifts at the coupling of ring A to the protein, a B -ring propionate partner swap from R317 to R287, changes in the C -ring propionate hydrogen-bonding network, breakage of the D272-R552 salt bridge accompanied by sheet-to-helix refolding of the tongue region stabilized by Y326-D272-S554 hydrogen bonding, and binding of the NTE to the hydrophobic side of ring A . We discuss phyA photoconversion, including the possible roles of mesoscopic phase transitions and protonation dynamics in the chromophore pocket. We also discuss possible associations between structural changes and translocation and signaling processes within the cell.
Collapse
Affiliation(s)
- Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden, Leiden, Netherlands
| | | | - Christina Lang
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Germany
| | - Jakub Kopycki
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Germany
| | - Wolfgang Gärtner
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Germany
| |
Collapse
|
32
|
Buhrke D, Kuhlmann U, Michael N, Hildebrandt P. The Photoconversion of Phytochrome Includes an Unproductive Shunt Reaction Pathway. Chemphyschem 2018; 19:566-570. [DOI: 10.1002/cphc.201701311] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 11/08/2022]
Affiliation(s)
- David Buhrke
- Institut für Chemie, Sekr. PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Uwe Kuhlmann
- Institut für Chemie, Sekr. PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Norbert Michael
- Institut für Chemie, Sekr. PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Peter Hildebrandt
- Institut für Chemie, Sekr. PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
33
|
Wiemann J, Yang TR, Sander PN, Schneider M, Engeser M, Kath-Schorr S, Müller CE, Sander PM. Dinosaur origin of egg color: oviraptors laid blue-green eggs. PeerJ 2017; 5:e3706. [PMID: 28875070 PMCID: PMC5580385 DOI: 10.7717/peerj.3706] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 07/27/2017] [Indexed: 12/02/2022] Open
Abstract
Protoporphyrin (PP) and biliverdin (BV) give rise to the enormous diversity in avian egg coloration. Egg color serves several ecological purposes, including post-mating signaling and camouflage. Egg camouflage represents a major character of open-nesting birds which accomplish protection of their unhatched offspring against visually oriented predators by cryptic egg coloration. Cryptic coloration evolved to match the predominant shades of color found in the nesting environment. Such a selection pressure for the evolution of colored or cryptic eggs should be present in all open nesting birds and relatives. Many birds are open-nesting, but protect their eggs by continuous brooding, and thus exhibit no or minimal eggshell pigmentation. Their closest extant relatives, crocodiles, protect their eggs by burial and have unpigmented eggs. This phylogenetic pattern led to the assumption that colored eggs evolved within crown birds. The mosaic evolution of supposedly avian traits in non-avian theropod dinosaurs, however, such as the supposed evolution of partially open nesting behavior in oviraptorids, argues against this long-established theory. Using a double-checking liquid chromatography ESI-Q-TOF mass spectrometry routine, we traced the origin of colored eggs to their non-avian dinosaur ancestors by providing the first record of the avian eggshell pigments protoporphyrin and biliverdin in the eggshells of Late Cretaceous oviraptorid dinosaurs. The eggshell parataxon Macroolithus yaotunensis can be assigned to the oviraptor Heyuannia huangi based on exceptionally preserved, late developmental stage embryo remains. The analyzed eggshells are from three Late Cretaceous fluvial deposits ranging from eastern to southernmost China. Reevaluation of these taphonomic settings, and a consideration of patterns in the porosity of completely preserved eggs support an at least partially open nesting behavior for oviraptorosaurs. Such a nest arrangement corresponds with our reconstruction of blue-green eggs for oviraptors. According to the sexual signaling hypothesis, the reconstructed blue-green eggs support the origin of previously hypothesized avian paternal care in oviraptorid dinosaurs. Preserved dinosaur egg color not only pushes the current limits of the vertebrate molecular and associated soft tissue fossil record, but also provides a perspective on the potential application of this unexplored paleontological resource.
Collapse
Affiliation(s)
- Jasmina Wiemann
- Division of Palaeontology, Steinmann Institute of Geology, Mineralogy and Palaeontology, University of Bonn, Bonn, Germany.,Department of Geology & Geophysics, Yale University, New Haven, CT, United States of America
| | - Tzu-Ruei Yang
- Division of Palaeontology, Steinmann Institute of Geology, Mineralogy and Palaeontology, University of Bonn, Bonn, Germany
| | - Philipp N Sander
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.,Department of Chemistry, University of California, Berkeley, United States of America
| | - Marion Schneider
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | | | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - P Martin Sander
- Division of Palaeontology, Steinmann Institute of Geology, Mineralogy and Palaeontology, University of Bonn, Bonn, Germany
| |
Collapse
|
34
|
Velázquez Escobar F, Buhrke D, Michael N, Sauthof L, Wilkening S, Tavraz NN, Salewski J, Frankenberg-Dinkel N, Mroginski MA, Scheerer P, Friedrich T, Siebert F, Hildebrandt P. Common Structural Elements in the Chromophore Binding Pocket of the Pfr State of Bathy Phytochromes. Photochem Photobiol 2017; 93:724-732. [DOI: 10.1111/php.12742] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023]
Affiliation(s)
| | - David Buhrke
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
| | - Norbert Michael
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
| | - Luisa Sauthof
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
- Institute of Medical Physics and Biophysics (CCO); Group Protein X-ray Crystallography & Signal Transduction; Charité - University Medicine Berlin; Berlin Germany
| | - Svea Wilkening
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
| | | | | | - Nicole Frankenberg-Dinkel
- Fachbereich Biologie; Abt. Mikrobiologie; Technische Universität Kaiserslautern; Kaiserslautern Germany
| | | | - Patrick Scheerer
- Institute of Medical Physics and Biophysics (CCO); Group Protein X-ray Crystallography & Signal Transduction; Charité - University Medicine Berlin; Berlin Germany
| | - Thomas Friedrich
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
| | - Friedrich Siebert
- Institut für Molekulare Medizin und Zellforschung; Sektion Biophysik; Albert-Ludwigs-Universität Freiburg; Freiburg Germany
| | | |
Collapse
|
35
|
Lamparter T, Krauß N, Scheerer P. Phytochromes from Agrobacterium fabrum. Photochem Photobiol 2017; 93:642-655. [DOI: 10.1111/php.12761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/22/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Tilman Lamparter
- Karlsruhe Institute of Technology (KIT); Botanical Institute; Karlsruhe Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology (KIT); Botanical Institute; Karlsruhe Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin; Institute of Medical Physics and Biophysics (CC2); Group Protein X-ray Crystallography and Signal Transduction; Berlin Germany
| |
Collapse
|
36
|
Takiden A, Velazquez-Escobar F, Dragelj J, Woelke AL, Knapp EW, Piwowarski P, Bart F, Hildebrandt P, Mroginski MA. Structural and Vibrational Characterization of the Chromophore Binding Site of Bacterial Phytochrome Agp1. Photochem Photobiol 2017; 93:713-723. [DOI: 10.1111/php.12737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Aref Takiden
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
| | | | - Jovan Dragelj
- Institut für Chemie und Biochemie; Freie Universität Berlin; Berlin Germany
| | - Anna Lena Woelke
- Institut für Chemie und Biochemie; Freie Universität Berlin; Berlin Germany
| | - Ernst-Walter Knapp
- Institut für Chemie und Biochemie; Freie Universität Berlin; Berlin Germany
| | - Patrick Piwowarski
- Institute of Medical Physics and Biophysics; Charité-Medical University Berlin; Berlin Germany
| | - Franz Bart
- Institute of Medical Physics and Biophysics; Charité-Medical University Berlin; Berlin Germany
| | | | | |
Collapse
|
37
|
Velázquez Escobar F, Buhrke D, Fernandez Lopez M, Shenkutie SM, von Horsten S, Essen LO, Hughes J, Hildebrandt P. Structural communication between the chromophore-binding pocket and the N-terminal extension in plant phytochrome phyB. FEBS Lett 2017; 591:1258-1265. [DOI: 10.1002/1873-3468.12642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Affiliation(s)
| | - David Buhrke
- Institut für Chemie; Technische Universität Berlin; Germany
| | | | | | - Silke von Horsten
- Fachbereich Chemie, Strukturbiochemie; Philipps-Universität Marburg; Marburg Germany
| | - Lars-Oliver Essen
- Fachbereich Chemie, Strukturbiochemie; Philipps-Universität Marburg; Marburg Germany
- LOEWE Center for Synthetic Microbiology; Philipps-Universität; Marburg Germany
| | - Jon Hughes
- Plant Physiology; Justus-Liebig University Gießen; Giessen Germany
| | | |
Collapse
|
38
|
Velazquez Escobar F, Lang C, Takiden A, Schneider C, Balke J, Hughes J, Alexiev U, Hildebrandt P, Mroginski MA. Protonation-Dependent Structural Heterogeneity in the Chromophore Binding Site of Cyanobacterial Phytochrome Cph1. J Phys Chem B 2016; 121:47-57. [DOI: 10.1021/acs.jpcb.6b09600] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francisco Velazquez Escobar
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Christina Lang
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Aref Takiden
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Constantin Schneider
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jens Balke
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jon Hughes
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Ulrike Alexiev
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Peter Hildebrandt
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
39
|
Abstract
The walleye (Sander vitreus) is a golden yellow fish that inhabits the Northern American lakes. The recent sightings of the blue walleye and the correlation of its sighting to possible increased UV radiation have been proposed earlier. The underlying molecular basis of its adaptation to increased UV radiation is the presence of a protein (Sandercyanin)-ligand complex in the mucus of walleyes. Degradation of heme by UV radiation results in the formation of Biliverdin IXα (BLA), the chromophore bound to Sandercyanin. We show that Sandercyanin is a monomeric protein that forms stable homotetramers on addition of BLA to the protein. A structure of the Sandercyanin-BLA complex, purified from the fish mucus, reveals a glycosylated protein with a lipocalin fold. This protein-ligand complex absorbs light in the UV region (λmax of 375 nm) and upon excitation at this wavelength emits in the red region (λmax of 675 nm). Unlike all other known biliverdin-bound fluorescent proteins, the chromophore is noncovalently bound to the protein. We provide here a molecular rationale for the observed spectral properties of Sandercyanin.
Collapse
|
40
|
Nagano S, Scheerer P, Zubow K, Michael N, Inomata K, Lamparter T, Krauß N. The Crystal Structures of the N-terminal Photosensory Core Module of Agrobacterium Phytochrome Agp1 as Parallel and Anti-parallel Dimers. J Biol Chem 2016; 291:20674-91. [PMID: 27466363 DOI: 10.1074/jbc.m116.739136] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 11/06/2022] Open
Abstract
Agp1 is a canonical biliverdin-binding bacteriophytochrome from the soil bacterium Agrobacterium fabrum that acts as a light-regulated histidine kinase. Crystal structures of the photosensory core modules (PCMs) of homologous phytochromes have provided a consistent picture of the structural changes that these proteins undergo during photoconversion between the parent red light-absorbing state (Pr) and the far-red light-absorbing state (Pfr). These changes include secondary structure rearrangements in the so-called tongue of the phytochrome-specific (PHY) domain and structural rearrangements within the long α-helix that connects the cGMP-specific phosphodiesterase, adenylyl cyclase, and FhlA (GAF) and the PHY domains. We present the crystal structures of the PCM of Agp1 at 2.70 Å resolution and of a surface-engineered mutant of this PCM at 1.85 Å resolution in the dark-adapted Pr states. Whereas in the mutant structure the dimer subunits are in anti-parallel orientation, the wild-type structure contains parallel subunits. The relative orientations between the PAS-GAF bidomain and the PHY domain are different in the two structures, due to movement involving two hinge regions in the GAF-PHY connecting α-helix and the tongue, indicating pronounced structural flexibility that may give rise to a dynamic Pr state. The resolution of the mutant structure enabled us to detect a sterically strained conformation of the chromophore at ring A that we attribute to the tight interaction with Pro-461 of the conserved PRXSF motif in the tongue. Based on this observation and on data from mutants where residues in the tongue region were replaced by alanine, we discuss the crucial roles of those residues in Pr-to-Pfr photoconversion.
Collapse
Affiliation(s)
- Soshichiro Nagano
- From the School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Patrick Scheerer
- the Institute of Medical Physics and Biophysics (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Kristina Zubow
- From the School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Norbert Michael
- the Institut für Chemie, Technische Universität Berlin, Sekretariat PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Katsuhiko Inomata
- the Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan, and
| | - Tilman Lamparter
- the Botanical Institute, Karlsruhe Institute of Technology (KIT), Kaiserstraße 2, D-76131 Karlsruhe, Germany
| | - Norbert Krauß
- From the School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom, the Botanical Institute, Karlsruhe Institute of Technology (KIT), Kaiserstraße 2, D-76131 Karlsruhe, Germany
| |
Collapse
|
41
|
Buhrke D, Velazquez Escobar F, Sauthof L, Wilkening S, Herder N, Tavraz NN, Willoweit M, Keidel A, Utesch T, Mroginski MA, Schmitt FJ, Hildebrandt P, Friedrich T. The role of local and remote amino acid substitutions for optimizing fluorescence in bacteriophytochromes: A case study on iRFP. Sci Rep 2016; 6:28444. [PMID: 27329837 PMCID: PMC4916461 DOI: 10.1038/srep28444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/03/2016] [Indexed: 12/30/2022] Open
Abstract
Bacteriophytochromes are promising tools for tissue microscopy and imaging due to their fluorescence in the near-infrared region. These applications require optimization of the originally low fluorescence quantum yields via genetic engineering. Factors that favour fluorescence over other non-radiative excited state decay channels are yet poorly understood. In this work we employed resonance Raman and fluorescence spectroscopy to analyse the consequences of multiple amino acid substitutions on fluorescence of the iRFP713 benchmark protein. Two groups of mutations distinguishing iRFP from its precursor, the PAS-GAF domain of the bacteriophytochrome P2 from Rhodopseudomonas palustris, have qualitatively different effects on the biliverdin cofactor, which exists in a fluorescent (state II) and a non-fluorescent conformer (state I). Substitution of three critical amino acids in the chromophore binding pocket increases the intrinsic fluorescence quantum yield of state II from 1.7 to 5.0% due to slight structural changes of the tetrapyrrole chromophore. Whereas these changes are accompanied by an enrichment of state II from ~40 to ~50%, a major shift to ~88% is achieved by remote amino acid substitutions. Additionally, an increase of the intrinsic fluorescence quantum yield of this conformer by ~34% is achieved. The present results have important implications for future design strategies of biofluorophores.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Luisa Sauthof
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Svea Wilkening
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Nico Herder
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Neslihan N Tavraz
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Mario Willoweit
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Anke Keidel
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Tillmann Utesch
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria-Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Franz-Josef Schmitt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straβe des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
42
|
Otero LH, Klinke S, Rinaldi J, Velázquez-Escobar F, Mroginski MA, Fernández López M, Malamud F, Vojnov AA, Hildebrandt P, Goldbaum FA, Bonomi HR. Structure of the Full-Length Bacteriophytochrome from the Plant Pathogen Xanthomonas campestris Provides Clues to its Long-Range Signaling Mechanism. J Mol Biol 2016; 428:3702-20. [PMID: 27107635 DOI: 10.1016/j.jmb.2016.04.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 11/25/2022]
Abstract
Phytochromes constitute a major superfamily of light-sensing proteins that are reversibly photoconverted between a red-absorbing (Pr) and a far-red-absorbing (Pfr) state. Bacteriophytochromes (BphPs) are found among photosynthetic and non-photosynthetic bacteria, including pathogens. To date, several BphPs have been biophysically characterized. However, it is still not fully understood how structural changes are propagated from the photosensory module to the output module during the signal transduction event. Most phytochromes share a common architecture consisting of an N-terminal photosensor that includes the PAS2-GAF-PHY domain triad and a C-terminal variable output module. Here we present the crystal structure of the full-length BphP from the plant pathogen Xanthomonas campestris pv. campestris (XccBphP) bearing its photosensor and its complete output module, a PAS9 domain. In the crystals, the protein was found to be in the Pr state, whereas diffraction data together with resonance Raman spectroscopic and theoretical results indicate a ZZZssa and a ZZEssa chromophore configuration corresponding to a mixture of Pr and Meta-R state, the precursor of Pfr. The XccBphP quaternary assembly reveals a head-to-head dimer in which the output module contributes to the helical dimer interface. The photosensor, which is shown to be a bathy-like BphP, is influenced in its dark reactions by the output module. Our structural analyses suggest that the photoconversion between the Pr and Pfr states in the full-length XccBphP may involve changes in the relative positioning of the output module. This work contributes to understand the light-induced structural changes propagated from the photosensor to the output modules in phytochrome signaling.
Collapse
Affiliation(s)
- Lisandro Horacio Otero
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Jimena Rinaldi
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Francisco Velázquez-Escobar
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - María Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - María Fernández López
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - Florencia Malamud
- UNSAM Campus Miguelete IIB-Instituto de Investigaciones Biotecnológicas, Av. 25 de Mayo y Francia (B1650KNA), Buenos Aires, Argentina
| | - Adrián Alberto Vojnov
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 (C1440FFX), Buenos Aires, Argentina
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - Fernando Alberto Goldbaum
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Hernán Ruy Bonomi
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina.
| |
Collapse
|
43
|
Singer P, Wörner S, Lamparter T, Diller R. Spectroscopic Investigation on the Primary Photoreaction of Bathy Phytochrome Agp2-Pr ofAgrobacterium fabrum: Isomerization in a pH-dependent H-bond Network. Chemphyschem 2016; 17:1288-97. [DOI: 10.1002/cphc.201600199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Patrick Singer
- Department of Physics; University of Kaiserslautern; Erwin-Schrödinger-Strasse, Geb. 46 67663 Kaiserslautern Germany), Fax: +49-631-205-3902
| | - Sybille Wörner
- Botanical Institute; Karlsruhe Institute of Technology; Kaiserstraße 2 76131 Karlsruhe Germany
| | - Tilman Lamparter
- Botanical Institute; Karlsruhe Institute of Technology; Kaiserstraße 2 76131 Karlsruhe Germany
| | - Rolf Diller
- Department of Physics; University of Kaiserslautern; Erwin-Schrödinger-Strasse, Geb. 46 67663 Kaiserslautern Germany), Fax: +49-631-205-3902
| |
Collapse
|
44
|
Nagano S. From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes. JOURNAL OF PLANT RESEARCH 2016; 129:123-135. [PMID: 26818948 DOI: 10.1007/s10265-016-0789-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
Phytochromes represent a diverse family of red/far-red-light absorbing chromoproteins which are widespread across plants, cyanobacteria, non-photosynthetic bacteria, and more. Phytochromes play key roles in regulating physiological activities in response to light, a critical element in the acclimatization to the environment. The discovery of prokaryotic phytochromes facilitated structural studies which deepened our understanding on the general mechanisms of phytochrome action. An extrapolation of this information to plant phytochromes is justified for universally conserved functional aspects, but it is also true that there are many aspects which are unique to plant phytochromes. Here I summarize some structural studies carried out to date on both prokaryotic and plant phytochromes. I also attempt to identify aspects which are common or unique to plant and prokaryotic phytochromes. Phytochrome themselves, as well as the downstream signaling pathway in plants are more complex than in their prokaryotic counterparts. Thus many structural and functional aspects of plant phytochrome remain unresolved.
Collapse
Affiliation(s)
- Soshichiro Nagano
- Institute for Plant Physiology, Justus Liebig University Giessen, Senckenbergstrasse 3, 35390, Giessen, Germany.
| |
Collapse
|
45
|
Burgie E, Zhang J, Vierstra R. Crystal Structure of Deinococcus Phytochrome in the Photoactivated State Reveals a Cascade of Structural Rearrangements during Photoconversion. Structure 2016; 24:448-57. [DOI: 10.1016/j.str.2016.01.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/04/2015] [Accepted: 01/02/2016] [Indexed: 11/30/2022]
|
46
|
Song C, Velazquez Escobar F, Xu XL, Narikawa R, Ikeuchi M, Siebert F, Gärtner W, Matysik J, Hildebrandt P. A Red/Green Cyanobacteriochrome Sustains Its Color Despite a Change in the Bilin Chromophore’s Protonation State. Biochemistry 2015; 54:5839-48. [DOI: 10.1021/acs.biochem.5b00735] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chen Song
- Leids
Instituut voor Chemisch Onderzoek, Universiteit Leiden, 2300 RA Leiden, The Netherlands
- Institut
für Analytische Chemie, Universität Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für
Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Xiu-Ling Xu
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Rei Narikawa
- Department
of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Department
of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Meguro, Tokyo 153-8902, Japan
| | - Masahiko Ikeuchi
- Department
of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Japan
Science and Technology Agency (JST), Core Research for Evolutionary Science and Technology (CREST), Meguro, Tokyo 153-8902, Japan
| | - Friedrich Siebert
- Technische Universität Berlin, Institut für
Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für
Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
47
|
Siebert E, Rippers Y, Frielingsdorf S, Fritsch J, Schmidt A, Kalms J, Katz S, Lenz O, Scheerer P, Paasche L, Pelmenschikov V, Kuhlmann U, Mroginski MA, Zebger I, Hildebrandt P. Resonance Raman Spectroscopic Analysis of the [NiFe] Active Site and the Proximal [4Fe-3S] Cluster of an O2-Tolerant Membrane-Bound Hydrogenase in the Crystalline State. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b04119] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Elisabeth Siebert
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Yvonne Rippers
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Stefan Frielingsdorf
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Johannes Fritsch
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Andrea Schmidt
- Charité − Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group
Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Jacqueline Kalms
- Charité − Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group
Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Sagie Katz
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Oliver Lenz
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Charité − Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group
Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - Lars Paasche
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Vladimir Pelmenschikov
- Technische
Universität Berlin, Institut für Chemie, Sekr. C7, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Uwe Kuhlmann
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Ingo Zebger
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische
Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
48
|
Hardman SJO, Hauck AFE, Clark IP, Heyes DJ, Scrutton NS. Comprehensive analysis of the green-to-blue photoconversion of full-length Cyanobacteriochrome Tlr0924. Biophys J 2015; 107:2195-203. [PMID: 25418104 PMCID: PMC4223177 DOI: 10.1016/j.bpj.2014.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/11/2014] [Accepted: 09/24/2014] [Indexed: 12/18/2022] Open
Abstract
Cyanobacteriochromes are members of the phytochrome superfamily of photoreceptors and are of central importance in biological light-activated signaling mechanisms. These photoreceptors are known to reversibly convert between two states in a photoinitiated process that involves a basic E/Z isomerization of the bilin chromophore and, in certain cases, the breakage of a thioether linkage to a conserved cysteine residue in the bulk protein structure. The exact details and timescales of the reactions involved in these photoconversions have not been conclusively shown. The cyanobacteriochrome Tlr0924 contains phycocyanobilin and phycoviolobilin chromophores, both of which photoconvert between two species: blue-absorbing and green-absorbing, and blue-absorbing and red-absorbing, respectively. Here, we followed the complete green-to-blue photoconversion process of the phycoviolobilin chromophore in the full-length form of Tlr0924 over timescales ranging from femtoseconds to seconds. Using a combination of time-resolved visible and mid-infrared transient absorption spectroscopy and cryotrapping techniques, we showed that after photoisomerization, which occurs with a lifetime of 3.6 ps, the phycoviolobilin twists or distorts slightly with a lifetime of 5.3 μs. The final step, the formation of the thioether linkage with the protein, occurs with a lifetime of 23.6 ms.
Collapse
Affiliation(s)
- Samantha J O Hardman
- Manchester Institute of Biotechnology and Photon Science Institute, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Anna F E Hauck
- Manchester Institute of Biotechnology and Photon Science Institute, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Harwell Oxford, Didcot, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology and Photon Science Institute, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Photon Science Institute, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
49
|
Velazquez Escobar F, von Stetten D, Günther-Lütkens M, Keidel A, Michael N, Lamparter T, Essen LO, Hughes J, Gärtner W, Yang Y, Heyne K, Mroginski MA, Hildebrandt P. Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes. Front Mol Biosci 2015. [PMID: 26217669 PMCID: PMC4498102 DOI: 10.3389/fmolb.2015.00037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB) and a phycocyanobilin (PCB), respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e., Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr). The present study aimed to improve our understanding of the specific reactivity of various PΦB- and PCB-binding phytochromes in the Pfr state by analysing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR) spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II) forming a temperature-dependent conformational equilibrium. The two sub-states—found in all phytochromes studied, albeit with different relative contributions—differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10° compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale) to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed.
Collapse
Affiliation(s)
| | | | | | - Anke Keidel
- Institut für Chemie, Technische Universität Berlin Berlin, Germany
| | - Norbert Michael
- Institut für Chemie, Technische Universität Berlin Berlin, Germany
| | - Tilman Lamparter
- Botanisches Institut, Karlsruher Institut für Technologie Karlsruhe, Germany
| | | | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus Liebig University Gießen, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Chemische Energiekonversion Mülheim, Germany
| | - Yang Yang
- Institut für Experimentalphysik, Freie Universität Berlin Berlin, Germany
| | - Karsten Heyne
- Institut für Experimentalphysik, Freie Universität Berlin Berlin, Germany
| | | | | |
Collapse
|
50
|
Song C, Narikawa R, Ikeuchi M, Gärtner W, Matysik J. Color Tuning in Red/Green Cyanobacteriochrome AnPixJ: Photoisomerization at C15 Causes an Excited-State Destabilization. J Phys Chem B 2015; 119:9688-95. [DOI: 10.1021/acs.jpcb.5b04655] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chen Song
- Leids
Instituut voor Chemisch Onderzoek, Universiteit Leiden, P.O. Box 9502, 2300
RA Leiden, The Netherlands
- Institut
für Analytische Chemie, Universität Leipzig, Johannisallee
29, D-04103 Leipzig, Germany
| | - Rei Narikawa
- Department
of Biological Science, Faculty of Science, Shizuoka University, Ohya, Suruga-ku,
Shizuoka 422-8529, Japan
- Graduate
School of Art and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
- Precursory
Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Masahiko Ikeuchi
- Department
of Biological Science, Faculty of Science, Shizuoka University, Ohya, Suruga-ku,
Shizuoka 422-8529, Japan
- Core Research
for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Wolfgang Gärtner
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Jörg Matysik
- Leids
Instituut voor Chemisch Onderzoek, Universiteit Leiden, P.O. Box 9502, 2300
RA Leiden, The Netherlands
- Institut
für Analytische Chemie, Universität Leipzig, Johannisallee
29, D-04103 Leipzig, Germany
| |
Collapse
|