1
|
Le Pennec J, Makshakova O, Nevola P, Fouladkar F, Gout E, Machillot P, Friedel-Arboleas M, Picart C, Perez S, Vortkamp A, Vivès RR, Migliorini E. Glycosaminoglycans exhibit distinct interactions and signaling with BMP2 according to their nature and localization. Carbohydr Polym 2024; 341:122294. [PMID: 38876708 DOI: 10.1016/j.carbpol.2024.122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024]
Abstract
The role of glycosaminoglycans (GAGs) in modulating bone morphogenetic protein (BMP) signaling represents a recent and underexplored area. Conflicting reports suggest a dual effect: some indicate a positive influence, while others demonstrate a negative impact. This duality suggests that the localization of GAGs (either at the cell surface or within the extracellular matrix) or the specific type of GAG may dictate their signaling role. The precise sulfation patterns of heparan sulfate (HS) responsible for BMP2 binding remain elusive. BMP2 exhibits a preference for binding to HS over other GAGs. Using well-characterized biomaterials mimicking the extracellular matrix, our research reveals that HS promotes BMP2 signaling in the extracellular space, contrary to chondroitin sulfate (CS), which enhances BMP2 bioactivity at the cell surface. Further observations indicate that a central IdoA (2S)-GlcNS (6S) tri-sulfated motif within HS hexasaccharides enhances binding. Nevertheless, BMP2 exhibits a degree of adaptability to various HS sulfation types and sequences. Molecular dynamic simulations attribute this adaptability to the BMP2 N-terminal end flexibility. Our findings illustrate the complex interplay between GAGs and BMP signaling, highlighting the importance of localization and specific sulfation patterns. This understanding has implications for the development of biomaterials with tailored properties for therapeutic applications targeting BMP signaling pathways.
Collapse
Affiliation(s)
- Jean Le Pennec
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France
| | - Olga Makshakova
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Synthetic Biology of Signalling Processes Lab, University of Freiburg, 79104 Freiburg, Germany
| | - Paola Nevola
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France; Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, University of Naples Federico II, Napoli, Italy
| | - Farah Fouladkar
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France
| | - Evelyne Gout
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Paul Machillot
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France
| | | | - Catherine Picart
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France
| | - Serge Perez
- Univ. Grenoble Alpes, CNRS, Centre de Recherche sur les Macromolécules Végétales, Grenoble, France
| | - Andrea Vortkamp
- Developmental Biology, Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
| | | | - Elisa Migliorini
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France.
| |
Collapse
|
2
|
Evans AD, Pournoori N, Saksala E, Oommen OP. Glycosaminoglycans' for brain health: Harnessing glycosaminoglycan based biomaterials for treating central nervous system diseases and in-vitro modeling. Biomaterials 2024; 309:122629. [PMID: 38797120 DOI: 10.1016/j.biomaterials.2024.122629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/06/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Dysfunction of the central nervous system (CNS) following traumatic brain injuries (TBI), spinal cord injuries (SCI), or strokes remains challenging to address using existing medications and cell-based therapies. Although therapeutic cell administration, such as stem cells and neuronal progenitor cells (NPCs), have shown promise in regenerative properties, they have failed to provide substantial benefits. However, the development of living cortical tissue engineered grafts, created by encapsulating these cells within an extracellular matrix (ECM) mimetic hydrogel scaffold, presents a promising functional replacement for damaged cortex in cases of stroke, SCI, and TBI. These grafts facilitate neural network repair and regeneration following CNS injuries. Given that natural glycosaminoglycans (GAGs) are a major constituent of the CNS, GAG-based hydrogels hold potential for the next generation of CNS healing therapies and in vitro modeling of CNS diseases. Brain-specific GAGs not only offer structural and biochemical signaling support to encapsulated neural cells but also modulate the inflammatory response in lesioned brain tissue, facilitating host integration and regeneration. This review briefly discusses different roles of GAGs and their related proteoglycan counterparts in healthy and diseases brain and explores current trends and advancements in GAG-based biomaterials for treating CNS injuries and modeling diseases. Additionally, it examines injectable, 3D bioprintable, and conductive GAG-based scaffolds, highlighting their clinical potential for in vitro modeling of patient-specific neural dysfunction and their ability to enhance CNS regeneration and repair following CNS injury in vivo.
Collapse
Affiliation(s)
- Austin D Evans
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Negin Pournoori
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Emmi Saksala
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| |
Collapse
|
3
|
Muraleedharan Saraswathy V, Zhou L, Mokalled MH. Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541505. [PMID: 37292638 PMCID: PMC10245778 DOI: 10.1101/2023.05.19.541505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adult zebrafish have an innate ability to recover from severe spinal cord injury. Here, we report a comprehensive single nuclear RNA sequencing atlas that spans 6 weeks of regeneration. We identify cooperative roles for adult neurogenesis and neuronal plasticity during spinal cord repair. Neurogenesis of glutamatergic and GABAergic neurons restores the excitatory/inhibitory balance after injury. In addition, transient populations of injury-responsive neurons (iNeurons) show elevated plasticity between 1 and 3 weeks post-injury. Using cross-species transcriptomics and CRISPR/Cas9 mutagenesis, we found iNeurons are injury-surviving neurons that share transcriptional similarities with a rare population of spontaneously plastic mouse neurons. iNeurons are required for functional recovery and employ vesicular trafficking as an essential mechanism that underlies neuronal plasticity. This study provides a comprehensive resource of the cells and mechanisms that direct spinal cord regeneration and establishes zebrafish as a model of plasticity-driven neural repair.
Collapse
|
4
|
Shen Q, Guo Y, Wang K, Zhang C, Ma Y. A Review of Chondroitin Sulfate's Preparation, Properties, Functions, and Applications. Molecules 2023; 28:7093. [PMID: 37894574 PMCID: PMC10609508 DOI: 10.3390/molecules28207093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chondroitin sulfate (CS) is a natural macromolecule polysaccharide that is extensively distributed in a wide variety of organisms. CS is of great interest to researchers due to its many in vitro and in vivo functions. CS production derives from a diverse number of sources, including but not limited to extraction from various animals or fish, bio-synthesis, and fermentation, and its purity and homogeneity can vary greatly. The structural diversity of CS with respect to sulfation and saccharide content endows this molecule with distinct complexity, allowing for functional modification. These multiple functions contribute to the application of CS in medicines, biomaterials, and functional foods. In this article, we discuss the preparation of CS from different sources, the structure of various forms of CS, and its binding to other relevant molecules. Moreover, for the creation of this article, the functions and applications of CS were reviewed, with an emphasis on drug discovery, hydrogel formation, delivery systems, and food supplements. We conclude that analyzing some perspectives on structural modifications and preparation methods could potentially influence future applications of CS in medical and biomaterial research.
Collapse
Affiliation(s)
- Qingshan Shen
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
| |
Collapse
|
5
|
Koh WS, Knudsen C, Izumikawa T, Nakato E, Grandt K, Kinoshita-Toyoda A, Toyoda H, Nakato H. Regulation of morphogen pathways by a Drosophila chondroitin sulfate proteoglycan Windpipe. J Cell Sci 2023; 136:jcs260525. [PMID: 36897575 PMCID: PMC10113886 DOI: 10.1242/jcs.260525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Morphogens provide quantitative and robust signaling systems to achieve stereotypic patterning and morphogenesis. Heparan sulfate (HS) proteoglycans (HSPGs) are key components of such regulatory feedback networks. In Drosophila, HSPGs serve as co-receptors for a number of morphogens, including Hedgehog (Hh), Wingless (Wg), Decapentaplegic (Dpp) and Unpaired (Upd, or Upd1). Recently, Windpipe (Wdp), a chondroitin sulfate (CS) proteoglycan (CSPG), was found to negatively regulate Upd and Hh signaling. However, the roles of Wdp, and CSPGs in general, in morphogen signaling networks are poorly understood. We found that Wdp is a major CSPG with 4-O-sulfated CS in Drosophila. Overexpression of wdp modulates Dpp and Wg signaling, showing that it is a general regulator of HS-dependent pathways. Although wdp mutant phenotypes are mild in the presence of morphogen signaling buffering systems, this mutant in the absence of Sulf1 or Dally, molecular hubs of the feedback networks, produces high levels of synthetic lethality and various severe morphological phenotypes. Our study indicates a close functional relationship between HS and CS, and identifies the CSPG Wdp as a novel component in morphogen feedback pathways.
Collapse
Affiliation(s)
- Woo Seuk Koh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Collin Knudsen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tomomi Izumikawa
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Eriko Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristin Grandt
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:117-162. [DOI: 10.1007/978-3-031-12390-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Koike T, Mikami T, Tamura JI, Kitagawa H. Altered sulfation status of FAM20C-dependent chondroitin sulfate is associated with osteosclerotic bone dysplasia. Nat Commun 2022; 13:7952. [PMID: 36572689 PMCID: PMC9792594 DOI: 10.1038/s41467-022-35687-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
Raine syndrome, a lethal osteosclerotic bone dysplasia in humans, is caused by loss-of-function mutations in FAM20C; however, Fam20c deficiency in mice does not recapitulate the human disorder, so the underlying pathoetiological mechanisms remain poorly understood. Here we show that FAM20C, in addition to the reported casein kinase activity, also fine-tunes the biosynthesis of chondroitin sulfate (CS) chains to impact bone homeostasis. Specifically, FAM20C with Raine-originated mutations loses the ability to interact with chondroitin 4-O-sulfotransferase-1, and is associated with reduced 4-sulfation/6-sulfation (4S/6S) ratio of CS chains and upregulated biomineralization in human osteosarcoma cells. By contrast, overexpressing chondroitin 6-O-sulfotransferase-1 reduces CS 4S/6S ratio, and induces osteoblast differentiation in vitro and higher bone mineral density in transgenic mice. Meanwhile, a potential xylose kinase activity of FAM20C does not impact CS 4S/6S ratio, and is not associated with Raine syndrome mutations. Our results thus implicate CS 4S/6S ratio imbalances caused by FAM20C mutations as a contributor of Raine syndrome etiology.
Collapse
Affiliation(s)
- Toshiyasu Koike
- grid.411100.50000 0004 0371 6549Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-Ku, Kobe, 658-8558 Japan
| | - Tadahisa Mikami
- grid.411100.50000 0004 0371 6549Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-Ku, Kobe, 658-8558 Japan
| | - Jun-Ichi Tamura
- grid.265107.70000 0001 0663 5064Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, 680-8551 Japan
| | - Hiroshi Kitagawa
- grid.411100.50000 0004 0371 6549Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-Ku, Kobe, 658-8558 Japan
| |
Collapse
|
8
|
Characterization of Hyaluronidase 4 Involved in the Catabolism of Chondroitin Sulfate. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186103. [PMID: 36144836 PMCID: PMC9501593 DOI: 10.3390/molecules27186103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022]
Abstract
Hyaluronidases (HYALs) are endo-beta-N-acetylhexosaminidases that depolymerize not only hyaluronan but also chondroitin sulfate (CS) at the initial step of their catabolism. Although HYAL1 hydrolyzes both CS and HA, HYAL4 is a CS-specific endoglycosidase. The substrate specificity of HYAL4 and identification of amino acid residues required for its enzymatic activity have been reported. In this study, we characterized the properties of HYAL4 including the expression levels in various tissues, cellular localization, and effects of its overexpression on intracellular CS catabolism, using cultured cells as well as mouse tissues. Hyal4 mRNA and HYAL4 protein were demonstrated to be ubiquitously expressed in various organs in the mouse. HYAL4 protein was shown to be present both on cell surfaces as well as in lysosomes of rat skeletal muscle myoblasts, L6 cells. Overexpression of HYAL4 in Chinese hamster ovary cells decreased in the total amount of CS, suggesting its involvement in the cellular catabolism of CS. In conclusion, HYAL4 may be widely distributed and play various biological roles, including the intracellular depolymerization of CS.
Collapse
|
9
|
Yang W, Frickenstein AN, Sheth V, Holden A, Mettenbrink EM, Wang L, Woodward AA, Joo BS, Butterfield SK, Donahue ND, Green DE, Thomas AG, Harcourt T, Young H, Tang M, Malik ZA, Harrison RG, Mukherjee P, DeAngelis PL, Wilhelm S. Controlling Nanoparticle Uptake in Innate Immune Cells with Heparosan Polysaccharides. NANO LETTERS 2022; 22:7119-7128. [PMID: 36048773 PMCID: PMC9486251 DOI: 10.1021/acs.nanolett.2c02226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We used heparosan (HEP) polysaccharides for controlling nanoparticle delivery to innate immune cells. Our results show that HEP-coated nanoparticles were endocytosed in a time-dependent manner by innate immune cells via both clathrin-mediated and macropinocytosis pathways. Upon endocytosis, we observed HEP-coated nanoparticles in intracellular vesicles and the cytoplasm, demonstrating the potential for nanoparticle escape from intracellular vesicles. Competition with other glycosaminoglycan types inhibited the endocytosis of HEP-coated nanoparticles only partially. We further found that nanoparticle uptake into innate immune cells can be controlled by more than 3 orders of magnitude via systematically varying the HEP surface density. Our results suggest a substantial potential for HEP-coated nanoparticles to target innate immune cells for efficient intracellular delivery, including into the cytoplasm. This HEP nanoparticle surface engineering technology may be broadly used to develop efficient nanoscale devices for drug and gene delivery as well as possibly for gene editing and immuno-engineering applications.
Collapse
Affiliation(s)
- Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alyssa Holden
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Evan M. Mettenbrink
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alexis A. Woodward
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Bryan S. Joo
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Sarah K. Butterfield
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Nathan D. Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Dixy E. Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Abigail G. Thomas
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Tekena Harcourt
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Hamilton Young
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Mulan Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Zain A. Malik
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Roger G. Harrison
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Paul L. DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
10
|
Fell CW, Hagelkruys A, Cicvaric A, Horrer M, Liu L, Li JSS, Stadlmann J, Polyansky AA, Mereiter S, Tejada MA, Kokotović T, Achuta VS, Scaramuzza A, Twyman KA, Morrow MM, Juusola J, Yan H, Wang J, Burmeister M, Choudhury B, Andersen TL, Wirnsberger G, Holmskov U, Perrimon N, Žagrović B, Monje FJ, Moeller JB, Penninger JM, Nagy V. FIBCD1 is an endocytic GAG receptor associated with a novel neurodevelopmental disorder. EMBO Mol Med 2022; 14:e15829. [PMID: 35916241 PMCID: PMC9449597 DOI: 10.15252/emmm.202215829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Whole-exome sequencing of two patients with idiopathic complex neurodevelopmental disorder (NDD) identified biallelic variants of unknown significance within FIBCD1, encoding an endocytic acetyl group-binding transmembrane receptor with no known function in the central nervous system. We found that FIBCD1 preferentially binds and endocytoses glycosaminoglycan (GAG) chondroitin sulphate-4S (CS-4S) and regulates GAG content of the brain extracellular matrix (ECM). In silico molecular simulation studies and GAG binding analyses of patient variants determined that such variants are loss-of-function by disrupting FIBCD1-CS-4S association. Gene knockdown in flies resulted in morphological disruption of the neuromuscular junction and motor-related behavioural deficits. In humans and mice, FIBCD1 is expressed in discrete brain regions, including the hippocampus. Fibcd1 KO mice exhibited normal hippocampal neuronal morphology but impaired hippocampal-dependent learning. Further, hippocampal synaptic remodelling in acute slices from Fibcd1 KO mice was deficient but restored upon enzymatically modulating the ECM. Together, we identified FIBCD1 as an endocytic receptor for GAGs in the brain ECM and a novel gene associated with an NDD, revealing a critical role in nervous system structure, function and plasticity.
Collapse
Affiliation(s)
- Christopher W Fell
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Astrid Hagelkruys
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Ana Cicvaric
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaViennaAustria
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Marion Horrer
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Lucy Liu
- Department of Genetics, Harvard Medical SchoolHoward Hughes Medical InstituteBostonMAUSA
| | - Joshua Shing Shun Li
- Department of Genetics, Harvard Medical SchoolHoward Hughes Medical InstituteBostonMAUSA
| | - Johannes Stadlmann
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Institute of BiochemistryUniversity of Natural Resource and Life SciencesViennaAustria
| | - Anton A Polyansky
- Department of Structural and Computational Biology, Max Perutz LabsUniversity of ViennaViennaAustria
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | - Stefan Mereiter
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Miguel Angel Tejada
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Research Unit on Women's Health‐Institute of Health Research INCLIVAValenciaSpain
| | - Tomislav Kokotović
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Venkat Swaroop Achuta
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Angelica Scaramuzza
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | | | | | | | - Huifang Yan
- Department of PediatricsPeking University First HospitalBeijingChina
- Joint International Research Center of Translational and Clinical ResearchBeijingChina
| | - Jingmin Wang
- Department of PediatricsPeking University First HospitalBeijingChina
- Joint International Research Center of Translational and Clinical ResearchBeijingChina
| | - Margit Burmeister
- Michigan Neuroscience InstituteUniversity of MichiganAnn ArborMIUSA
- Departments of Computational Medicine & Bioinformatics, Psychiatry and Human GeneticsUniversity of MichiganAnn ArborMIUSA
| | - Biswa Choudhury
- Department of Cellular and Molecular MedicineUCSDLa JollaCAUSA
| | - Thomas Levin Andersen
- Clinical Cell Biology, Department of PathologyOdense University HospitalOdenseDenmark
- Pathology Research Unit, Department of Clinical Research and Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Gerald Wirnsberger
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Apeiron Biologics AG, Vienna BioCenter CampusViennaAustria
| | - Uffe Holmskov
- Cancer and Inflammation Research, Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical SchoolHoward Hughes Medical InstituteBostonMAUSA
| | - Bojan Žagrović
- Department of Structural and Computational Biology, Max Perutz LabsUniversity of ViennaViennaAustria
| | - Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Jesper Bonnet Moeller
- Cancer and Inflammation Research, Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Danish Institute for Advanced StudyUniversity of Southern DenmarkOdenseDenmark
| | - Josef M Penninger
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Department of Medical Genetics, Life Science InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| |
Collapse
|
11
|
Mubuchi A, Katsumoto S, Tsuboi M, Ishikawa H, Nomura Y, Higashi K, Miyata S. Isolation and structural characterization of bioactive glycosaminoglycans from the green-lipped mussel Perna canaliculus. Biochem Biophys Res Commun 2022; 612:50-56. [DOI: 10.1016/j.bbrc.2022.04.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
|
12
|
Fawcett JW, Kwok JCF. Proteoglycan Sulphation in the Function of the Mature Central Nervous System. Front Integr Neurosci 2022; 16:895493. [PMID: 35712345 PMCID: PMC9195417 DOI: 10.3389/fnint.2022.895493] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chondroitin sulphate and heparan sulphate proteoglycans (CSPGS and HSPGs) are found throughout the central nervous system (CNS). CSPGs are ubiquitous in the diffuse extracellular matrix (ECM) between cells and are a major component of perineuronal nets (PNNs), the condensed ECM present around some neurons. HSPGs are more associated with the surface of neurons and glia, with synapses and in the PNNs. Both CSPGs and HSPGs consist of a protein core to which are attached repeating disaccharide chains modified by sulphation at various positions. The sequence of sulphation gives the chains a unique structure and local charge density. These sulphation codes govern the binding properties and biological effects of the proteoglycans. CSPGs are sulphated along their length, the main forms being 6- and 4-sulphated. In general, the chondroitin 4-sulphates are inhibitory to cell attachment and migration, while chondroitin 6-sulphates are more permissive. HSPGs tend to be sulphated in isolated motifs with un-sulphated regions in between. The sulphation patterns of HS motifs and of CS glycan chains govern their binding to the PTPsigma receptor and binding of many effector molecules to the proteoglycans, such as growth factors, morphogens, and molecules involved in neurodegenerative disease. Sulphation patterns change as a result of injury, inflammation and ageing. For CSPGs, attention has focussed on PNNs and their role in the control of plasticity and memory, and on the soluble CSPGs upregulated in glial scar tissue that can inhibit axon regeneration. HSPGs have key roles in development, regulating cell migration and axon growth. In the adult CNS, they have been associated with tau aggregation and amyloid-beta processing, synaptogenesis, growth factor signalling and as a component of the stem cell niche. These functions of CSPGs and HSPGs are strongly influenced by the pattern of sulphation of the glycan chains, the sulphation code. This review focuses on these sulphation patterns and their effects on the function of the mature CNS.
Collapse
Affiliation(s)
- James W. Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia
| | - Jessica C. F. Kwok
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
13
|
Habuchi O. Functions of chondroitin/dermatan sulfate containing GalNAc4,6-disulfate. Glycobiology 2022; 32:664-678. [PMID: 35552694 DOI: 10.1093/glycob/cwac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) containing GalNAc4,6-disulfate (GalNAc4S6S) were initially discovered in marine animals. Following the discovery, these glycosaminoglycans have been found in various animals including human. In the biosynthesis of CS/DS containing GalNAc4S6S, three groups of sulfotransferases are involved; chondroitin 4-sulfotransferases (C4STs), dermatan 4-sulfotransferase-1 (D4ST-1) and GalNAc 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST). GalNAc4S-6ST and its products have been shown to play important roles in the abnormal pathological conditions such as central nervous system injury, cancer development, abnormal tissue fibrosis, development of osteoporosis, and infection with viruses or nematodes. CS/DS containing GalNAc4S6S has been shown to increase with the functional differentiation of mast cells, macrophages and neutrophils. Genetic approaches using knockout or knockdown of GalNAc4S-6ST, blocking of the epitopes containing GalNAc4S6S by specific antibodies and chemical technology that enabled the synthesis of oligosaccharides with defined sulfation patterns have been applied successfully to these investigations. These studies contributed significantly to the basic understanding of the functional roles of CS/DS containing GalNAc4S6S in various abnormal conditions, and appear to provide promising clues to the development of possible measures to treat them.
Collapse
Affiliation(s)
- Osami Habuchi
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi 480-1195, Japan.,Department of Chemistry, Aichi University of Education, Igayacho, Kariya, Aichi 448-8542, Japan
| |
Collapse
|
14
|
Chondroitin sulfate E alleviates β-amyloid toxicity in transgenic Caenorhabditis elegans by inhibiting its aggregation. Int J Biol Macromol 2022; 209:1280-1287. [PMID: 35461860 DOI: 10.1016/j.ijbiomac.2022.04.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/13/2023]
Abstract
Chondroitin sulfate E (CS-E), which is characterized by oversulfated disaccharide units, has been shown to regulate neuronal adhesion, neurite outgrowth and exert neuroprotective effects. In view of these findings, here we investigated the anti-Alzheimer's disease (AD) activities of CSE by using transgenic Caenorhabditis elegans model of Alzheimer's disease. The behavioral experiments demonstrated that CSE at the concentration of 1 mg/ml significantly delayed the worm paralysis caused by Aβ aggregation as compared with control group. Western blot analysis revealed that the level of small oligomers in the transgenic C. elegans was significantly reduced upon treatment with CSE. The number of Aβ plaque deposits in transgenic worm was significantly decreased. In addition, CSE also protected the worms from oxidative stress and rescued chemotaxis dysfunction in transgenic strain CL2355. Taken together, these data suggested that CSE could protect against Aβ-induced toxicity in C. elegans. These results offer valuable evidence for the future use of CSE in the development of agents for the treatment of AD.
Collapse
|
15
|
Xu S, Han L, Wei Y, Zhang B, Wang Q, Liu J, Liu M, Chen Z, Wang Z, Chen H, Zhu Q. MicroRNA-200c-targeted contactin 1 facilitates the replication of influenza A virus by accelerating the degradation of MAVS. PLoS Pathog 2022; 18:e1010299. [PMID: 35171955 PMCID: PMC8849533 DOI: 10.1371/journal.ppat.1010299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/21/2022] [Indexed: 01/06/2023] Open
Abstract
Influenza A viruses (IAVs) continuously challenge the poultry industry and human health. Elucidation of the host factors that modulate the IAV lifecycle is vital for developing antiviral drugs and vaccines. In this study, we infected A549 cells with IAVs and found that host protein contactin-1 (CNTN1), a member of the immunoglobulin superfamily, enhanced viral replication. Bioinformatic prediction and experimental validation indicated that the expression of CNTN1 was reduced by microRNA-200c (miR-200c) through directly targeting. We further showed that CNTN1-modulated viral replication in A549 cells is dependent on type I interferon signaling. Co-immunoprecipitation experiments revealed that CNTN1 specifically interacts with MAVS and promotes its proteasomal degradation by removing its K63-linked ubiquitination. Moreover, we discovered that the deubiquitinase USP25 is recruited by CNTN1 to catalyze the deubiquitination of K63-linked MAVS. Consequently, the CNTN1-induced degradation cascade of MAVS blocked RIG-I-MAVS-mediated interferon signaling, leading to enhanced viral replication. Taken together, our data reveal novel roles of CNTN1 in the type I interferon pathway and regulatory mechanism of IAV replication.
Collapse
Affiliation(s)
- Shuai Xu
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Lu Han
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Yanli Wei
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Bo Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Qian Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Junwen Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Minxuan Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Zhaoshan Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Zhengxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, College of Animal Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| |
Collapse
|
16
|
Miyata S. Structural and Functional Remodeling of the Extracellular Matrix during Brain Development and Aging. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2003.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shinji Miyata
- Faculty of Agriculture, Tokyo University of Agriculture and Technology
| |
Collapse
|
17
|
Miyata S. Structural and Functional Remodeling of the Extracellular Matrix during Brain Development and Aging. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2003.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shinji Miyata
- Faculty of Agriculture, Tokyo University of Agriculture and Technology
| |
Collapse
|
18
|
Sakamoto K, Ozaki T, Kadomatsu K. Axonal Regeneration by Glycosaminoglycan. Front Cell Dev Biol 2021; 9:702179. [PMID: 34222264 PMCID: PMC8242577 DOI: 10.3389/fcell.2021.702179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Like other biomolecules including nucleic acid and protein, glycan plays pivotal roles in various cellular processes. For instance, it modulates protein folding and stability, organizes extracellular matrix and tissue elasticity, and regulates membrane trafficking. In addition, cell-surface glycans are often utilized as entry receptors for viruses, including SARS-CoV-2. Nevertheless, its roles as ligands to specific surface receptors have not been well understood with a few exceptions such as selectins and siglecs. Recent reports have demonstrated that chondroitin sulfate and heparan sulfate, both of which are glycosaminoglycans, work as physiological ligands on their shared receptor, protein tyrosine phosphatase sigma (PTPσ). These two glycans differentially determine the fates of neuronal axons after injury in our central nervous system. That is, heparan sulfate promotes axonal regeneration while chondroitin sulfate inhibits it, inducing dystrophic endbulbs at the axon tips. In our recent study, we demonstrated that the chondroitin sulfate (CS)-PTPσ axis disrupted autophagy flux at the axon tips by dephosphorylating cortactin. In this minireview, we introduce how glycans work as physiological ligands and regulate their intracellular signaling, especially focusing on chondroitin sulfate.
Collapse
Affiliation(s)
- Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Tomoya Ozaki
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
19
|
Wang W, Shi L, Qin Y, Li F. Research and Application of Chondroitin Sulfate/Dermatan Sulfate-Degrading Enzymes. Front Cell Dev Biol 2021; 8:560442. [PMID: 33425887 PMCID: PMC7793863 DOI: 10.3389/fcell.2020.560442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/05/2020] [Indexed: 01/11/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are widely distributed on the cell surface and in the extracellular matrix in the form of proteoglycan, where they participate in various biological processes. The diverse functions of CS/DS can be mainly attributed to their high structural variability. However, their structural complexity creates a big challenge for structural and functional studies of CS/DS. CS/DS-degrading enzymes with different specific activities are irreplaceable tools that could be used to solve this problem. Depending on the site of action, CS/DS-degrading enzymes can be classified as glycosidic bond-cleaving enzymes and sulfatases from animals and microorganisms. As discussed in this review, a few of the identified enzymes, particularly those from bacteria, have wildly applied to the basic studies and applications of CS/DS, such as disaccharide composition analysis, the preparation of bioactive oligosaccharides, oligosaccharide sequencing, and potential medical application, but these do not fulfill all of the needs in terms of the structural complexity of CS/DS.
Collapse
Affiliation(s)
- Wenshuang Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Liran Shi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Yong Qin
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| |
Collapse
|
20
|
Li G, Zhang Z, Ge G, Fang K, Zhu J. Upregulated CNTN1 is associated with lymph node metastasis and poor prognosis of colorectal cancer. Cancer Biomark 2020; 30:193-201. [PMID: 33104020 DOI: 10.3233/cbm-190981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Contactin1 (CNTN1), a member of the immunoglobulin superfamily, is known to correlate with tumor development and progression. Although recent studies have found that elevated CNTN1 has been demonstrated in some types of cancers, the expression and prognosis of CNTN1 in colorectal cancer (CRC) are unclear. Here, we aimed to determine the clinicopathological characteristics and prognostic role of CNTN1 in CRC patients. METHODS The protein expression of CNTN1 in tumor tissues was evaluated by immunohistochemistry. In addition, the mRNA and protein expressions of CNTN1 were examined by qRT-PCR and Western blotting analysis in 40 matched adjacent normal mucosa samples. The relationships of CNTN1 with clinicopathological data and prognosis significance were analyzed. RESULTS Immunohistochemical consequence suggested that the protein level of CNTN1 was obviously raised in CRC compared with adjacent normal mucosa tissues (56.9% vs 10.3%, P< 0.05). In addition, we detected a significant increase in CNTN1 mRNA and protein levels in CRC tissues compared with the matched adjacent normal mucosa tissues. Moreover, increased CNTN1 exprssion was significantly associated with tumor size, lymph node metastasis (LNM), tumor node-metastasis (TNM) stage and carcino-embryonic antigen (CEA) in clinical analysis. Kaplan-Meier analysis suggested that patients with CNTN1 over-expression showed worse overall survival (OS) (P= 0.001). Multivariate analysis indicated that high CNTN1 expression was an independent predictor for poor OS in CRC patients (P= 0.028). Further analysis revealed that patients with high CNTN1 combined with LNM present accurately predicted poorer outcome. CONCLUSION Taken together, the findingsindicate that CNTN1 plays a significant role and serve as a potential biomarker for the prediction of adverse prognosis in CRC. Intriguingly, high express of CNTN1 + LNM-present combination may improve the accuracy of prognosis.
Collapse
Affiliation(s)
- Guangyao Li
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, Anhui, China
| | - Zhengjun Zhang
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, Anhui, China
| | - Guochao Ge
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, Anhui, China
| | - Ke Fang
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, Anhui, China
| | - Jianyu Zhu
- Department of Trauma Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
21
|
Hussein RK, Mencio CP, Katagiri Y, Brake AM, Geller HM. Role of Chondroitin Sulfation Following Spinal Cord Injury. Front Cell Neurosci 2020; 14:208. [PMID: 32848612 PMCID: PMC7419623 DOI: 10.3389/fncel.2020.00208] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Traumatic spinal cord injury produces long-term neurological damage, and presents a significant public health problem with nearly 18,000 new cases per year in the U.S. The injury results in both acute and chronic changes in the spinal cord, ultimately resulting in the production of a glial scar, consisting of multiple cells including fibroblasts, macrophages, microglia, and reactive astrocytes. Within the scar, there is an accumulation of extracellular matrix (ECM) molecules—primarily tenascins and chondroitin sulfate proteoglycans (CSPGs)—which are considered to be inhibitory to axonal regeneration. In this review article, we discuss the role of CSPGs in the injury response, especially how sulfated glycosaminoglycan (GAG) chains act to inhibit plasticity and regeneration. This includes how sulfation of GAG chains influences their biological activity and interactions with potential receptors. Comprehending the role of CSPGs in the inhibitory properties of the glial scar provides critical knowledge in the much-needed production of new therapies.
Collapse
Affiliation(s)
- Rowan K Hussein
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Yasuhiro Katagiri
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Alexis M Brake
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
22
|
Romereim SM, Johnston CA, Redwine AL, Wachs RA. Development of an in vitro intervertebral disc innervation model to screen neuroinhibitory biomaterials. J Orthop Res 2020; 38:1016-1026. [PMID: 31825104 PMCID: PMC7244214 DOI: 10.1002/jor.24557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/30/2019] [Indexed: 02/04/2023]
Abstract
Pain originating from an intervertebral disc (discogenic pain) is a major source of chronic low back pain. Pathological innervation of the disc by pain-sensing nerve fibers is thought to be a key component of discogenic pain, so treatment with biomaterials that have the ability to inhibit neurite growth will greatly benefit novel disc therapeutics. Currently, disc therapeutic biomaterials are rarely screened for their ability to modulate nerve growth, mainly due to a lack of models to screen neuromodulation. To address this deficit, our lab has engineered a three dimensional in vitro disc innervation model that mimics the interface between primary sensory nerves and the intervertebral disc. Further, herein we have demonstrated the utility of this model to screen the efficacy of chondroitin sulfate biomaterials to inhibit nerve fiber invasion into the model disc. Biomaterials containing chondroitin-4-sulfate (CS-A) decrease neurite growth in a uniform gel and at an interface between a growth-permissive and a growth-inhibitory gel, while chondroitin-6-sulfate (CS-C) is less neuroinhibitory. This in vitro model holds great potential for screening inhibitors of nerve fiber growth to further improve intervertebral disc replacements and therapeutics. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1016-1026, 2020.
Collapse
Affiliation(s)
- Sarah M Romereim
- Biological Systems Engineering, University of Nebraska-Lincoln, P.O. Box 830726, Lincoln, Nebraska, 68583-0726
| | - Caleb A Johnston
- Biological Systems Engineering, University of Nebraska-Lincoln, P.O. Box 830726, Lincoln, Nebraska, 68583-0726
| | - Adan L Redwine
- Biological Systems Engineering, University of Nebraska-Lincoln, P.O. Box 830726, Lincoln, Nebraska, 68583-0726
| | - Rebecca A Wachs
- Biological Systems Engineering, University of Nebraska-Lincoln, P.O. Box 830726, Lincoln, Nebraska, 68583-0726
| |
Collapse
|
23
|
Chondroitin Sulfate Promotes the Proliferation of Keloid Fibroblasts Through Activation of the Integrin and Protein Kinase B Pathways. Int J Mol Sci 2020; 21:ijms21061955. [PMID: 32182995 PMCID: PMC7139995 DOI: 10.3390/ijms21061955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 01/05/2023] Open
Abstract
Keloids are dermal fibroproliferative tumors that arise beyond the boundary of the original wound edges and invades adjacent tissue. Keloids are characterized by the extensive production of extracellular matrix (ECM) and abnormal fibroblast proliferation. Chondroitin sulfate (CS) is one of the major structural components of cartilage and ECM. Recently, we reported the over-accumulation of CS in keloid lesions. Keloid-derived fibroblasts (KFs) and normal dermal fibroblasts (NFs) were incubated with CS. The fibroblast proliferation rate was analyzed using a tetrazolium salt colorimetric assay. The activation of the intracellular signaling pathway was analyzed by Western blotting. Wortmannin, a PI3K inhibitor, and anti-integrin antibodies were tested to investigate the mechanism of the CS-induced cell proliferation. CS strongly stimulated the proliferation of KFs, but not NFs. The analysis of the intracellular signal transduction pathway revealed that the stimulation effect of CS on KF proliferation was due to the activation of the protein kinase B (AKT) pathway and that integrin α1 was responsible for this phenomenon. We revealed that CS probably activates the AKT pathway through integrin to induce KF proliferation. CS may be a novel clinical therapeutic target in keloids.
Collapse
|
24
|
Nie W, Zhang B, Pan R, Wang S, Yan X, Tan J. Surface Modification with Chondroitin Sulfate Targets Nanoparticles to the Neuronal Cell Membrane in the Substantia Nigra. ACS Chem Neurosci 2020; 11:197-204. [PMID: 31867955 DOI: 10.1021/acschemneuro.9b00597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Localizing nanoparticles on or near cell membranes in vivo remains a big challenge. We present a cell membrane targeting complex based on chondroitin sulfate (CS)-conjugated superparamagnetic iron oxide nanoparticles (CS-SPIONs). After SPIONs were injected into the substantia nigra of rats, the subcellular distributions of SPIONs with and without CS modification have been evaluated by transmission electron microscopy (TEM) analysis. CS-SPIONs exhibited low toxicity and low endocytosis and were highly distributed in the extracellular spaces nearing neuronal cell bodies and synapses. This can be attributed to the nature of CS, one of the main components of perineuronal nets with the tendency to surround neuronal cell bodies, dendrites, and synapses. It is expected that CS-SPIONs have a great potential for therapies requiring targeting of or approach to cell membranes.
Collapse
Affiliation(s)
- Wan Nie
- Key Laboratory of Nonferrous and Materials Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004, China
| | - Baolin Zhang
- Key Laboratory of Nonferrous and Materials Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004, China
| | - Ru Pan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 109 North 2nd Huan Cheng Road, Guilin 541004, China
| | - Sheng Wang
- Key Laboratory of Nonferrous and Materials Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004, China
| | - Xianjia Yan
- Key Laboratory of Nonferrous and Materials Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 109 North 2nd Huan Cheng Road, Guilin 541004, China
| |
Collapse
|
25
|
Wang B, Yang X, Zhao T, Du H, Wang T, Zhong S, Yang B, Li H. Upregulation of contactin-1 expression promotes prostate cancer progression. Oncol Lett 2019; 19:1611-1618. [PMID: 32002038 PMCID: PMC6960391 DOI: 10.3892/ol.2019.11244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
Contactin-1 (CNTN-1) has been reported to serve an oncogenic role in several cancer types. However, detailed mechanisms describing the influence of CNTN-1 in prostate cancer progression have not yet been elucidated. The present study aimed to determine the clinical significance of CNTN-1 expression in prostate cancer progression, and also to investigate the regulatory role of CNTN-1 in the proliferation, migration and invasive ability of prostate cancer cells. The results of the present study indicated that expression levels of CNTN-1 were significantly higher in prostate cancer tissues compared with adjacent normal tissues. Moreover, a high expression level of CNTN-1 was positively correlated with tumor size, stage and metastasis, as well as a poorer prognosis in patients with prostate cancer. Furthermore, CNTN-1-knockdown in prostate cancer cells (using short hairpin RNA) resulted in the significant inhibition of cancer cell proliferation, colony formation, migration and invasiveness. Silencing of CNTN-1 expression also suppressed epithelial-mesenchymal transition in prostate cancer cells via the upregulation of E-cadherin, and the downregulation of N-cadherin and vimentin expression. Inhibition of CNTN-1 expression also reduced the activity of the PI3K/AKT signaling pathway in prostate cancer cells. Thus, it was demonstrated that CNTN-1 expression is upregulated, and plays an oncogenic role, in prostate cancer cells. The results of the current study suggest that CNTN-1 may represent a promising therapeutic target, potentially improving the treatment of patients with prostate cancer.
Collapse
Affiliation(s)
- Boren Wang
- Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Xi Yang
- Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Ting Zhao
- Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Hanghang Du
- Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Tong Wang
- Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Suping Zhong
- Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Bo Yang
- Department of Pathology, First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Hui Li
- Department of Microbiology and Immunology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| |
Collapse
|
26
|
The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci 2019; 20:451-465. [PMID: 31263252 DOI: 10.1038/s41583-019-0196-3] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/09/2023]
Abstract
Perineuronal nets (PNNs) are extracellular matrix (ECM) chondroitin sulfate proteoglycan (CSPG)-containing structures that surround the soma and dendrites of various mammalian neuronal cell types. PNNs appear during development around the time that the critical periods for developmental plasticity end and are important for both their onset and closure. A similar structure - the perinodal ECM - surrounds the axonal nodes of Ranvier and appears as myelination is completed, acting as an ion-diffusion barrier that affects axonal conduction speed. Recent work has revealed the importance of PNNs in controlling plasticity in the CNS. Digestion, blocking or removal of PNNs influences functional recovery after a variety of CNS lesions. PNNs have further been shown to be involved in the regulation of memory and have been implicated in a number of psychiatric disorders.
Collapse
|
27
|
Shida M, Mikami T, Tamura JI, Kitagawa H. Chondroitin sulfate-D promotes neurite outgrowth by acting as an extracellular ligand for neuronal integrin αVβ3. Biochim Biophys Acta Gen Subj 2019; 1863:1319-1331. [PMID: 31181256 DOI: 10.1016/j.bbagen.2019.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chondroitin sulfate (CS) chains are prominent extra/pericellular matrix components in the central nervous system (CNS) and can exert positive or negative regulatory effects on neurite outgrowth, depending on the CS structure and the amount. Despite the remarkable abilities of highly sulfated forms of CS chains to enhance neurite outgrowth, the neuronal recognition systems for such promotional CS chains, including CS-D polysaccharide, remain to be fully elucidated. METHODS We explored the molecular basis of the CS-D-mediated neurite extension using primary hippocampal neurons cultured on substrate precoated with CS-D polysaccharides, and evaluated functional involvement of a distinct integrin heterodimer as a novel neuronal CS receptor for CS-D. RESULTS We identified an extracellular matrix receptor, integrin αVβ3, as a functional receptor for CS-D. CS-D, but not CS-C (a precursor form of CS-D) showed significant binding affinity toward recombinant integrin αVβ3 heterodimer and activated intracellular signaling(s) involving focal adhesion kinase (FAK) and Src/Fyn kinase. Functional blockade of the respective players for integrin signaling abrogated the promotional effects of CS-D. We also found the existence of CS-D-induced integrin activation system in neuronal stem/progenitor cell population. CONCLUSIONS The neuronal cell surface integrin αVβ3 can function as a CS receptor for a highly sulfated CS subtype, CS-D. GENERAL SIGNIFICANCE Our findings are the first to demonstrate that CS-dependent neurite outgrowth promotion is exerted via direct activation of specific integrin heterodimers on neuronal cell surfaces, providing new insights into understanding the CS-sensing machineries that regulate CNS development and regeneration.
Collapse
Affiliation(s)
- Miharu Shida
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Tadahisa Mikami
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Jun-Ichi Tamura
- Department of Life and Environmental Agricultural Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8551, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan.
| |
Collapse
|
28
|
Kastana P, Choleva E, Poimenidi E, Karamanos N, Sugahara K, Papadimitriou E. Insight into the role of chondroitin sulfate E in angiogenesis. FEBS J 2019; 286:2921-2936. [DOI: 10.1111/febs.14830] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/05/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Pinelopi Kastana
- Laboratory of Molecular Pharmacology Department of Pharmacy University of Patras Greece
| | - Effrosyni Choleva
- Laboratory of Molecular Pharmacology Department of Pharmacy University of Patras Greece
| | - Evangelia Poimenidi
- Laboratory of Molecular Pharmacology Department of Pharmacy University of Patras Greece
| | - Nikos Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
| | - Kazuyuki Sugahara
- Faculty of Pharmacy Department of Pathobiochemistry Meijo University Nagoya Japan
| | | |
Collapse
|
29
|
Pudełko A, Wisowski G, Olczyk K, Koźma EM. The dual role of the glycosaminoglycan chondroitin-6-sulfate in the development, progression and metastasis of cancer. FEBS J 2019; 286:1815-1837. [PMID: 30637950 PMCID: PMC6850286 DOI: 10.1111/febs.14748] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/14/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022]
Abstract
The remarkable structural heterogeneity of chondroitin sulfate (CS) and dermatan sulfate (DS) generates biological information that can be unique to each of these glycosaminoglycans (GAGs), and changes in their composition are translated into alterations in the binding profiles of these molecules. CS/DS can bind to various cytokines and growth factors, cell surface receptors, adhesion molecules, enzymes and fibrillar glycoproteins of the extracellular matrix, thereby influencing both cell behavior and the biomechanical and biochemical properties of the matrix. In this review, we summarize the current knowledge concerning CS/DS metabolism in the human cancer stroma. The remodeling of the GAG profile in the tumor niche is manifested as a substantial increase in the CS content and a gradual decrease in the proportion between DS and CS. Furthermore, the composition of CS and DS is also affected, which results in a substantial increase in the 6‐O‐sulfated and/or unsulfated disaccharide content, which is concomitant with a decrease in the 4‐O‐sulfation level. Here, we discuss the possible impact of alterations in the CS/DS sulfation pattern on the binding capacity and specificity of these GAGs. Moreover, we propose potential consequences of the stromal accumulation of chondroitin‐6‐sulfate for the progression and metastasis of cancer.
Collapse
Affiliation(s)
- Adam Pudełko
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Grzegorz Wisowski
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Ewa Maria Koźma
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
30
|
Unravel a neuroactive sHA sulfation pattern with neurogenesis activity by a library of defined oligosaccharides. Eur J Med Chem 2019; 163:583-596. [DOI: 10.1016/j.ejmech.2018.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023]
|
31
|
Melrose J. Keratan sulfate (KS)-proteoglycans and neuronal regulation in health and disease: the importance of KS-glycodynamics and interactive capability with neuroregulatory ligands. J Neurochem 2019; 149:170-194. [PMID: 30578672 DOI: 10.1111/jnc.14652] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022]
Abstract
Compared to the other classes of glycosaminoglycans (GAGs), that is, chondroitin/dermatan sulfate, heparin/heparan sulfate and hyaluronan, keratan sulfate (KS), have the least known of its interactive properties. In the human body, the cornea and the brain are the two most abundant tissue sources of KS. Embryonic KS is synthesized as a linear poly-N-acetyllactosamine chain of d-galactose-GlcNAc repeat disaccharides which become progressively sulfated with development, sulfation of GlcNAc is more predominant than galactose. KS contains multi-sulfated high-charge density, monosulfated and non-sulfated poly-N-acetyllactosamine regions and thus is a heterogeneous molecule in terms of chain length and charge distribution. A recent proteomics study on corneal KS demonstrated its interactivity with members of the Slit-Robbo and Ephrin-Ephrin receptor families and proteins which regulate Rho GTPase signaling and actin polymerization/depolymerization in neural development and differentiation. KS decorates a number of peripheral nervous system/CNS proteoglycan (PG) core proteins. The astrocyte KS-PG abakan defines functional margins of the brain and is up-regulated following trauma. The chondroitin sulfate/KS PG aggrecan forms perineuronal nets which are dynamic neuroprotective structures with anti-oxidant properties and roles in neural differentiation, development and synaptic plasticity. Brain phosphacan a chondroitin sulfate, KS, HNK-1 PG have roles in neural development and repair. The intracellular microtubule and synaptic vesicle KS-PGs MAP1B and SV2 have roles in metabolite transport, storage, and export of neurotransmitters and cytoskeletal assembly. MAP1B has binding sites for tubulin and actin through which it promotes cytoskeletal development in growth cones and is highly expressed during neurite extension. The interactive capability of KS with neuroregulatory ligands indicate varied roles for KS-PGs in development and regenerative neural processes.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, St. Leonards, New South Wales, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Sydney Medical School, Northern Campus, Royal North Shore Hospital, The University of Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Royal North Shore Hospital, The University of Sydney, St. Leonards, New South Wales, Australia
| |
Collapse
|
32
|
Site-specific HNK-1 epitope on alternatively spliced fibronectin type-III repeats in tenascin-C promotes neurite outgrowth of hippocampal neurons through contactin-1. PLoS One 2019; 14:e0210193. [PMID: 30629639 PMCID: PMC6328190 DOI: 10.1371/journal.pone.0210193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
The human natural killer-1 (HNK-1) carbohydrate epitope, composed of a unique sulfated trisaccharide (HSO3–3GlcAβ1–3Galβ1–4GlcNAc-R), is highly expressed during brain development and regulates higher brain function. However, it remains unclear which glycoprotein carries the HNK-1 epitope in the embryonic brain and the functional role it plays. Here, we showed that one of the major HNK-1 carrier proteins in the embryonic brain is tenascin-C (TNC), an extracellular matrix protein that regulates neurite outgrowth by interacting with the GPI-anchored protein contactin-1 (CNTN). Because the alternatively spliced fibronectin type-III (FNIII) repeats in TNC give rise to many isoforms and affect neuronal function, we evaluated neurite outgrowth of primary hippocampal neurons on purified recombinant FNIII repeats with or without the HNK-1 epitope as a substrate. We found that the presence of the HNK-1 epitope on the C domain of TNC promoted neurite outgrowth, and that this signal was mediated by CNTN, which is an HNK-1-expressing neuronal receptor. The neurite-promoting activity of the HNK-1 epitope on TNC required neuronal HNK-1 expression, which was defective in neurons lacking the glucuronyltransferases GlcAT-P and GlcAT-S. These results suggest that the HNK-1 epitope is a key modifier of TNC and CNTN in the regulation of embryonic brain development.
Collapse
|
33
|
Yao W, Zhu Y, Zhang X, Sha M, Meng X, Li Z. Semisynthesis of Chondroitin Sulfate E Tetrasaccharide from Hyaluronic Acid. J Org Chem 2018; 83:14069-14077. [DOI: 10.1021/acs.joc.8b01987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wang Yao
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Yong Zhu
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Xiao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Meng Sha
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
34
|
Zhou Z, Li Q, Huang H, Wang H, Wang Y, Du G, Chen J, Kang Z. A microbial-enzymatic strategy for producing chondroitin sulfate glycosaminoglycans. Biotechnol Bioeng 2018; 115:1561-1570. [PMID: 29484646 DOI: 10.1002/bit.26577] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/14/2018] [Accepted: 02/18/2018] [Indexed: 01/11/2023]
Abstract
Chondroitin sulfate has been widely used in both medical and clinical applications. Commercial chondroitin sulfate has been mainly acquired from animal tissue extraction. Here we report a new two-step biological strategy for producing chondroitin sulfate A and chondroitin sulfate C. First, the chondroitin biosynthesis pathway in a recombinant Bacillus subtilis strain using sucrose as carbon source was systematically optimized and the titer of chondroitin was significantly enhanced to 7.15 g/L. Then, specific sulfation transformation systems were successfully constructed and optimized by combining the purified aryl sulfotransferase IV (ASST IV), chondroitin 4-sulfotransferase (C4ST) and chondroitin 6-sulfotransferase (C6ST). Chondroitin sulfate A and C were enzymatically transformed from chondroitin at conversion rates of 98% and 96%, respectively. The present biological strategy has great potential to be scaled up for biosynthesis of chondroitin sulfate A and C from cheap carbon sources.
Collapse
Affiliation(s)
- Zhengxiong Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qing Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hao Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hao Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
35
|
Yu P, Pearson CS, Geller HM. Flexible Roles for Proteoglycan Sulfation and Receptor Signaling. Trends Neurosci 2018; 41:47-61. [PMID: 29150096 PMCID: PMC5748001 DOI: 10.1016/j.tins.2017.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022]
Abstract
Proteoglycans (PGs) in the extracellular matrix (ECM) play vital roles in axon growth and navigation, plasticity, and regeneration of injured neurons. Different classes of PGs may support or inhibit cell growth, and their functions are determined in part by highly specific structural features. Among these, the pattern of sulfation on the PG sugar chains is a paramount determinant of a diverse and flexible set of outcomes. Recent studies of PG sulfation illustrate the challenges of attributing biological actions to specific sulfation patterns, and suggest ways in which highly similar molecules may exert opposing effects on neurons. The receptors for PGs, which have yet to be fully characterized, display a similarly nuanced spectrum of effects. Different classes of PG function via overlapping families of receptors and signaling pathways. This enables them to control axon growth and guidance with remarkable specificity, but it poses challenges for determining the precise binding interactions and downstream effects of different PGs and their assorted sulfated epitopes. This review examines existing and emerging evidence for the roles of PG sulfation and receptor interactions in determining how these complex molecules influence neuronal development, growth, and function.
Collapse
Affiliation(s)
- Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Craig S Pearson
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
Shimbo M, Suzuki R, Fuseya S, Sato T, Kiyohara K, Hagiwara K, Okada R, Wakui H, Tsunakawa Y, Watanabe H, Kimata K, Narimatsu H, Kudo T, Takahashi S. Postnatal lethality and chondrodysplasia in mice lacking both chondroitin sulfate N-acetylgalactosaminyltransferase-1 and -2. PLoS One 2017; 12:e0190333. [PMID: 29287114 PMCID: PMC5747463 DOI: 10.1371/journal.pone.0190333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/12/2017] [Indexed: 02/04/2023] Open
Abstract
Chondroitin sulfate (CS) is a sulfated glycosaminoglycan (GAG) chain. In cartilage, CS plays important roles as the main component of the extracellular matrix (ECM), existing as side chains of the major cartilage proteoglycan, aggrecan. Six glycosyltransferases are known to coordinately synthesize the backbone structure of CS; however, their in vivo synthetic mechanism remains unknown. Previous studies have suggested that two glycosyltransferases, Csgalnact1 (t1) and Csgalnact2 (t2), are critical for initiation of CS synthesis in vitro. Indeed, t1 single knockout mice (t1 KO) exhibit slight dwarfism and a reduction in CS content in cartilage compared with wild-type (WT) mice. To reveal the synergetic roles of t1 and t2 in CS synthesis in vivo, we generated systemic single and double knockout (DKO) mice and cartilage-specific t1 and t2 double knockout (Col2-DKO) mice. DKO mice exhibited postnatal lethality, whereas t2 KO mice showed normal size and skeletal development. Col2-DKO mice survived to adulthood and showed severe dwarfism compared with t1 KO mice. Histological analysis of epiphyseal cartilage from Col2-DKO mice revealed disrupted endochondral ossification, characterized by drastic GAG reduction in the ECM. Moreover, DKO cartilage had reduced chondrocyte proliferation and an increased number of apoptotic chondrocytes compared with WT cartilage. Conversely, primary chondrocyte cultures from Col2-DKO knee cartilage had the same proliferation rate as WT chondrocytes and low GAG expression levels, indicating that the chondrocytes themselves had an intact proliferative ability. Quantitative RT-PCR analysis of E18.5 cartilage showed that the expression levels of Col2a1 and Ptch1 transcripts tended to decrease in DKO compared with those in WT mice. The CS content in DKO cartilage was decreased compared with that in t1 KO cartilage but was not completely absent. These results suggest that aberrant ECM caused by CS reduction disrupted endochondral ossification. Overall, we propose that both t1 and t2 are necessary for CS synthesis and normal chondrocyte differentiation but are not sufficient for all CS synthesis in cartilage.
Collapse
Affiliation(s)
- Miki Shimbo
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Riku Suzuki
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sayaka Fuseya
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Sato
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Katsue Kiyohara
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Kozue Hagiwara
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Risa Okada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiromasa Wakui
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuki Tsunakawa
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Koji Kimata
- Multidisciplinary Pain Center, Aichi Medical University, Aichi, Japan
| | - Hisashi Narimatsu
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takashi Kudo
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Laboratory Animal Resource Center (LARC), University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (TK); (ST)
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Laboratory Animal Resource Center (LARC), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (TK); (ST)
| |
Collapse
|
37
|
Tan RPA, Leshchyns'ka I, Sytnyk V. Glycosylphosphatidylinositol-Anchored Immunoglobulin Superfamily Cell Adhesion Molecules and Their Role in Neuronal Development and Synapse Regulation. Front Mol Neurosci 2017; 10:378. [PMID: 29249937 PMCID: PMC5715320 DOI: 10.3389/fnmol.2017.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023] Open
Abstract
Immunoglobulin superfamily (IgSF) cell adhesion molecules (CAMs) are cell surface glycoproteins that not only mediate interactions between neurons but also between neurons and other cells in the nervous system. While typical IgSF CAMs are transmembrane molecules, this superfamily also includes CAMs, which do not possess transmembrane and intracellular domains and are instead attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. In this review, we focus on the role GPI-anchored IgSF CAMs have as signal transducers and ligands in neurons, and discuss their functions in regulation of neuronal development, synapse formation, synaptic plasticity, learning, and behavior. We also review the links between GPI-anchored IgSF CAMs and brain disorders.
Collapse
Affiliation(s)
- Rui P A Tan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
38
|
Igarashi M, Takeuchi K, Sugiyama S. Roles of CSGalNAcT1, a key enzyme in regulation of CS synthesis, in neuronal regeneration and plasticity. Neurochem Int 2017; 119:77-83. [PMID: 28987564 DOI: 10.1016/j.neuint.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022]
Abstract
Chondroitin sulfate (CS) is a sulfated glycosaminoglycan composed of a long chain of repeating disaccharide units that are attached to core proteins, resulting in CS proteoglycans (CSPGs). In the mature brain, CS is concentrated in perineuronal nets (PNNs), which are extracellular structures that surround synapses and regulate synaptic plasticity. In addition, CS is rapidly synthesized after CNS injury to create a physical and chemical barrier that inhibits axon growth. Most previous studies used a bacterial CS-degrading enzyme to investigate the physiological roles of CS. Recent studies have shown that CS is synthesized by more than 15 enzymes, all of which have been characterized in vitro. Here we focus on one of those enzymes, CSGalNAcT1 (T1). We produced T1 knockout mice (KO), which show extensive axon regeneration following spinal cord injury, as well as the loss of onset of ocular dominance plasticity. These results from T1KO mice suggest important roles for extracellular CS in the brain regarding neuronal plasticity and axon regeneration.
Collapse
Affiliation(s)
- Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University, Niigata 951-8510, Japan; Transdisciplinary Research Programs, Niigata University, Niigata 951-8510, Japan.
| | - Kosei Takeuchi
- Department of Medical Biology, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Sayaka Sugiyama
- Laboratory of Neuronal Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
39
|
Miyata S, Kitagawa H. Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj 2017. [PMID: 28625420 DOI: 10.1016/j.bbagen.2017.06.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration. SCOPE OF REVIEW Here, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury. MAJOR CONCLUSIONS The brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis. GENERAL SIGNIFICANCE Genetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Shinji Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Kobe 658-8558, Japan.
| |
Collapse
|
40
|
Sakamoto K, Kadomatsu K. Mechanisms of axon regeneration: The significance of proteoglycans. Biochim Biophys Acta Gen Subj 2017; 1861:2435-2441. [PMID: 28596106 DOI: 10.1016/j.bbagen.2017.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Therapeutics specific to neural injury have long been anticipated but remain unavailable. Axons in the central nervous system do not readily regenerate after injury, leading to dysfunction of the nervous system. This failure of regeneration is due to both the low intrinsic capacity of axons for regeneration and the various inhibitors emerging upon injury. After many years of concerted efforts, however, these hurdles to axon regeneration have been partially overcome. SCOPE OF REVIEW This review summarizes the mechanisms regulating axon regeneration. We highlight proteoglycans, particularly because it has become increasingly clear that these proteins serve as critical regulators for axon regeneration. MAJOR CONCLUSIONS Studies on proteoglycans have revealed that glycans not only assist in the modulation of protein functions but also act as main players-e.g., as functional ligands mediating intracellular signaling through specific receptors on the cell surface. By regulating clustering of the receptors, glycans in the proteoglycan moiety, i.e., glycosaminoglycans, promote or inhibit axon regeneration. In addition, proteoglycans are involved in various types of neural plasticity, ranging from synaptic plasticity to experience-dependent plasticity. GENERAL SIGNIFICANCE Although studies on proteins have progressively facilitated our understanding of the nervous system, glycans constitute a new frontier for further research and development in this field. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
41
|
Shida M, Mikami T, Tamura JI, Kitagawa H. A characteristic chondroitin sulfate trisaccharide unit with a sulfated fucose branch exhibits neurite outgrowth-promoting activity: Novel biological roles of fucosylated chondroitin sulfates isolated from the sea cucumber Apostichopus japonicus. Biochem Biophys Res Commun 2017; 487:678-683. [PMID: 28450116 DOI: 10.1016/j.bbrc.2017.04.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/21/2017] [Indexed: 01/26/2023]
Abstract
Chondroitin sulfate (CS) is a class of sulfated glycosaminoglycan (GAG) chains that consist of repeating disaccharide unit composed of glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc). CS chains are found throughout the pericellular and extracellular spaces and contribute to the formation of functional microenvironments for numerous biological events. However, their structure-function relations remain to be fully characterized. Here, a fucosylated CS (FCS) was isolated from the body wall of the sea cucumber Apostichopus japonicus. Its promotional effects on neurite outgrowth were assessed by using isolated polysaccharides and the chemically synthesized FCS trisaccharide β-D-GalNAc(4,6-O-disulfate) (1-4)[α-l-fucose (2,4-O-disulfate) (1-3)]-β-D-GlcA. FCS polysaccharides contained the E-type disaccharide unit GlcA-GalNAc(4,6-O-disulfate) as a CS major backbone structure and carried distinct sulfated fucose branches. Despite their relatively lower abundance of E unit, FCS polysaccharides exhibited neurite outgrowth-promoting activity comparable to squid cartilage-derived CS-E polysaccharides, which are characterized by their predominant E units, suggesting potential roles of the fucose branch in neurite outgrowth. Indeed, the chemically synthesized FCS trisaccharide was as effective as CS-E tetrasaccharide in stimulating neurite elongation in vitro. In conclusion, FCS trisaccharide units with 2,4-O-disulfated fucose branches may provide new insights into understanding the structure-function relations of CS chains.
Collapse
Affiliation(s)
- Miharu Shida
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Tadahisa Mikami
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Jun-Ichi Tamura
- Department of Regional Environment, Tottori University, Tottori 680-8551, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan.
| |
Collapse
|
42
|
Chondroitin sulfates and their binding molecules in the central nervous system. Glycoconj J 2017; 34:363-376. [PMID: 28101734 PMCID: PMC5487772 DOI: 10.1007/s10719-017-9761-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/31/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.
Collapse
|
43
|
Kobayashi T, Kakizaki I, Nozaka H, Nakamura T. Chondroitin sulfate proteoglycans from salmon nasal cartilage inhibit angiogenesis. Biochem Biophys Rep 2016; 9:72-78. [PMID: 28955991 PMCID: PMC5614546 DOI: 10.1016/j.bbrep.2016.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/23/2016] [Accepted: 11/14/2016] [Indexed: 12/26/2022] Open
Abstract
Because cartilage lacks nerves, blood vessels, and lymphatic vessels, it is thought to contain factors that inhibit the growth and development of those tissues. Chondroitin sulfate proteoglycans (CSPGs) are a major extracellular component in cartilage. CSPGs contribute to joint flexibility and regulate extracellular signaling via their attached glycosaminoglycan, chondroitin sulfate (CS). CS and CSPG inhibit axonal regeneration; however, their role in blood vessel formation is largely unknown. To clarify the function of CSPG in blood vessel formation, we tested salmon nasal cartilage proteoglycan (PG), a member of the aggrecan family of CSPG, for endothelial capillary-like tube formation. Treatment with salmon PG inhibited endothelial cell adhesion and in vitro tube formation. The anti-angiogenic activity was derived from CS in the salmon PG but not the core protein. Salmon PG also reduced matrix metalloproteinase expression and inhibited angiogenesis in the chick chorioallantoic membrane. All of these data support an anti-angiogenic role for CSPG in cartilage. The role of CSPGs in blood vessel formation in cartilage is largely unknown. Treatment of salmon PG inhibited in vitro and in vivo angiogenesis. The CS portion of salmon PG was responsible for the anti-angiogenic activity. Salmon PG also reduced MMP expression and inhibited cell adhesion. Our results support an anti-angiogenic role for CSPG in cartilage.
Collapse
Key Words
- Aggrecan
- Angiogenesis
- BME, basement membrane extract
- BSA, bovine serum albumin
- CAM, chorioallantoic membrane
- CS, chondroitin sulfate
- CSPG, chondroitin sulfate proteoglycan
- Chondroitin sulfate proteoglycan
- ECM, extracellular matrix
- FAK, focal adhesion kinase
- FBS, fetal bovine serum
- GAG, glycosaminoglycan
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GalNAc, N-acetylgalactosamine
- GdnHCl, guanidine hydrochloride
- GlcUA, glucuronic acid
- Glycosaminoglycan
- HSPG, heparan sulfate proteoglycan
- KSPG, keratin sulfate proteoglycan
- MMP, matrix metalloproteinase
- Matrix metalloproteinase
- OA, osteoarthritis
- PBS, phosphate-buffered saline
- PG, proteoglycan
- UA, uronic acid
- Vascular endothelial cell
Collapse
Affiliation(s)
- Takashi Kobayashi
- Department of Glycotechnology, Center for Advanced Medical Research, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Departments of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Ikuko Kakizaki
- Department of Glycotechnology, Center for Advanced Medical Research, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hiroyuki Nozaka
- Departments of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Toshiya Nakamura
- Departments of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
44
|
Ohtake Y, Wong D, Abdul-Muneer PM, Selzer ME, Li S. Two PTP receptors mediate CSPG inhibition by convergent and divergent signaling pathways in neurons. Sci Rep 2016; 6:37152. [PMID: 27849007 PMCID: PMC5111048 DOI: 10.1038/srep37152] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 01/29/2023] Open
Abstract
Receptor protein tyrosine phosphatase σ (PTPσ) and its subfamily member LAR act as transmembrane receptors that mediate growth inhibition of chondroitin sulfate proteoglycans (CSPGs). Inhibition of either receptor increases axon growth into and beyond scar tissues after CNS injury. However, it is unclear why neurons express two similar CSPG receptors, nor whether they use the same or different intracellular pathways. We have now studied the signaling pathways of these two receptors using N2A cells and primary neurons derived from knockout mice. We demonstrate that both receptors share certain signaling pathways (RhoA, Akt and Erk), but also use distinct signals to mediate CSPG actions. Activation of PTPσ by CSPGs selectively inactivated CRMP2, APC, S6 kinase and CREB. By contrast LAR activation inactivated PKCζ, cofilin and LKB1. For the first time, we propose a model of the signaling pathways downstream of these two CSPG receptors. We also demonstrate that deleting both receptors exhibits additive enhancement of axon growth in adult neuronal cultures in vitro. Our findings elucidate the novel downstream pathways of CSPGs and suggest potential synergy of blocking their two PTP receptors.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Daniella Wong
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - P. M. Abdul-Muneer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
45
|
Sulfated glycosaminoglycans: their distinct roles in stem cell biology. Glycoconj J 2016; 34:725-735. [DOI: 10.1007/s10719-016-9732-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 01/27/2023]
|
46
|
Izumikawa T, Dejima K, Watamoto Y, Nomura KH, Kanaki N, Rikitake M, Tou M, Murata D, Yanagita E, Kano A, Mitani S, Nomura K, Kitagawa H. Chondroitin 4-O-Sulfotransferase Is Indispensable for Sulfation of Chondroitin and Plays an Important Role in Maintaining Normal Life Span and Oxidative Stress Responses in Nematodes. J Biol Chem 2016; 291:23294-23304. [PMID: 27645998 DOI: 10.1074/jbc.m116.757328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 11/06/2022] Open
Abstract
Chondroitin sulfate (CS)/chondroitin (Chn) chains are indispensable for embryonic cell division and cytokinesis in the early developmental stages in Caenorhabditis elegans and mice, whereas heparan sulfate (HS) is essential for axon guidance during nervous system development. These data indicate that the fundamental functions of CS and HS are conserved from worms to mammals and that the function of CS/Chn differs from that of HS. Although previous studies have shown that C. elegans produces HS and non-sulfated Chn, whether the organism produces CS remains unclear. Here, we demonstrate that C. elegans produces a small amount of 4-O-sulfated Chn and report the identification of C41C4.1, an orthologue of the human chondroitin 4-O-sulfotransferase gene. Loss of C41C4.1 in C. elegans resulted in a decline in 4-O-sulfation of CS and an increase in the number of sulfated units in HS. C41C4.1 deletion mutants exhibited reduced survival rates after synchronization with sodium hypochlorite. Collectively, these results show for the first time that CS glycans are present in C. elegans and that the Chn 4-O-sulfotransferase responsible for the sulfation plays an important role in protecting nematodes from oxidative stress.
Collapse
Affiliation(s)
- Tomomi Izumikawa
- From the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Katsufumi Dejima
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yukiko Watamoto
- From the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Kazuko H Nomura
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Nanako Kanaki
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Marika Rikitake
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mai Tou
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Daisuke Murata
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Eri Yanagita
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Ai Kano
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shohei Mitani
- the Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan, and
| | - Kazuya Nomura
- the Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroshi Kitagawa
- From the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan,
| |
Collapse
|
47
|
Abou-Abbass H, Bahmad H, Abou-El-Hassan H, Zhu R, Zhou S, Dong X, Hamade E, Mallah K, Zebian A, Ramadan N, Mondello S, Fares J, Comair Y, Atweh S, Darwish H, Zibara K, Mechref Y, Kobeissy F. Deciphering glycomics and neuroproteomic alterations in experimental traumatic brain injury: Comparative analysis of aspirin and clopidogrel treatment. Electrophoresis 2016; 37:1562-76. [PMID: 27249377 PMCID: PMC4963819 DOI: 10.1002/elps.201500583] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/16/2022]
Abstract
As populations age, the number of patients sustaining traumatic brain injury (TBI) and concomitantly receiving preinjury antiplatelet therapy such as aspirin (ASA) and clopidogrel (CLOP) is rising. These drugs have been linked with unfavorable clinical outcomes following TBI, where the exact mechanism(s) involved are still unknown. In this novel work, we aimed to identify and compare the altered proteome profile imposed by ASA and CLOP when administered alone or in combination, prior to experimental TBI. Furthermore, we assessed differential glycosylation PTM patterns following experimental controlled cortical impact model of TBI, ASA, CLOP, and ASA + CLOP. Ipsilateral cortical brain tissues were harvested 48 h postinjury and were analyzed using an advanced neuroproteomics LC-MS/MS platform to assess proteomic and glycoproteins alterations. Of interest, differential proteins pertaining to each group (22 in TBI, 41 in TBI + ASA, 44 in TBI + CLOP, and 34 in TBI + ASA + CLOP) were revealed. Advanced bioinformatics/systems biology and clustering analyses were performed to evaluate biological networks and protein interaction maps illustrating molecular pathways involved in the experimental conditions. Results have indicated that proteins involved in neuroprotective cellular pathways were upregulated in the ASA and CLOP groups when given separately. However, ASA + CLOP administration revealed enrichment in biological pathways relevant to inflammation and proinjury mechanisms. Moreover, results showed differential upregulation of glycoproteins levels in the sialylated N-glycans PTMs that can be implicated in pathological changes. Omics data obtained have provided molecular insights of the underlying mechanisms that can be translated into clinical bedside settings.
Collapse
Affiliation(s)
- Hussein Abou-Abbass
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Hisham Bahmad
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Rui Zhu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Shiyue Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Eva Hamade
- ER045—Laboratory of Stem Cells, DSST, Lebanese University, Beirut, Lebanon
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Khalil Mallah
- ER045—Laboratory of Stem Cells, DSST, Lebanese University, Beirut, Lebanon
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Abir Zebian
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Naify Ramadan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Jawad Fares
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Youssef Comair
- Department of Surgery, Division of Neurosurgery, Lebanese American University, Beirut, Lebanon
| | - Samir Atweh
- Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hala Darwish
- Faculty of Medicine-School of Nursing, American University of Beirut, New York, NY, USA
| | - Kazem Zibara
- ER045—Laboratory of Stem Cells, DSST, Lebanese University, Beirut, Lebanon
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
48
|
Li GY, Huang M, Pan TT, Jia WD. Expression and prognostic significance of contactin 1 in human hepatocellular carcinoma. Onco Targets Ther 2016; 9:387-94. [PMID: 26855587 PMCID: PMC4727510 DOI: 10.2147/ott.s97367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background CNTN1, a member of the CNTN family of neural cell-recognition molecules, is involved in tumor invasion and metastasis. Although the expression of CNTN1 has been reported in several human malignancies, the expression of CNTN1 in hepatocellular carcinoma (HCC) and its correlation with prognosis remain unclear. The aim of this study was to evaluate the expression of CNTN1 and determine the clinicopathological parameters and prognostic value of CNTN1 in HCC patients. Materials and methods Quantitative real-time polymerase chain-reaction and Western blotting assays were performed to assess messenger RNA and protein levels of CNTN1 in 20 matched HCC specimens. The clinical and prognostic significance of CNTN1 in 90 cases of HCC was determined by immunohistochemistry. Results CNTN1 expression was higher in HCC compared to the expression found in adjacent tissues at both messenger RNA and protein levels (P<0.01). Notably, immunohistochemical results revealed that CNTN1 expression was significantly higher in HCC compared to adjacent tissues (54.4% vs 12.2%, P=0.01). Furthermore, positive CNTN1 expression was associated with tumor size, tumor capsulae, status of metastasis, and tumor–node–metastasis stage. Kaplan–Meier survival analysis showed that high CNTN1 was correlated with reduced overall survival (OS) rate (P<0.001) and disease-free survival (DFS) rate (P=0.001). Multivariate analysis identified CNTN1 as an independent poor prognostic factor of OS and DFS in HCC patients (P=0.007 and P=0.002, respectively). Conclusion Our results suggest that CNTN1 could play an important role in HCC and serve as an independent unfavorable prognostic factor for OS and DFS and a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Guang-Yao Li
- Department of General Surgery, Affiliated Provincial Hospital, Anhui Medical University, Hefei, People's Republic of China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, People's Republic of China
| | - Mei Huang
- Department of General Surgery, Affiliated Provincial Hospital, Anhui Medical University, Hefei, People's Republic of China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, People's Republic of China
| | - Ting-Ting Pan
- Department of General Surgery, Affiliated Provincial Hospital, Anhui Medical University, Hefei, People's Republic of China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, People's Republic of China
| | - Wei-Dong Jia
- Department of General Surgery, Affiliated Provincial Hospital, Anhui Medical University, Hefei, People's Republic of China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, People's Republic of China
| |
Collapse
|
49
|
Distribution of N-Acetylgalactosamine-Positive Perineuronal Nets in the Macaque Brain: Anatomy and Implications. Neural Plast 2016; 2016:6021428. [PMID: 26881119 PMCID: PMC4735937 DOI: 10.1155/2016/6021428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/17/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022] Open
Abstract
Perineuronal nets (PNNs) are extracellular molecules that form around neurons near the end of critical periods during development. They surround neuronal cell bodies and proximal dendrites. PNNs inhibit the formation of new connections and may concentrate around rapidly firing inhibitory interneurons. Previous work characterized the important role of perineuronal nets in plasticity in the visual system, amygdala, and spinal cord of rats. In this study, we use immunohistochemistry to survey the distribution of perineuronal nets in representative areas of the primate brain. We also document changes in PNN prevalence in these areas in animals of different ages. We found that PNNs are most prevalent in the cerebellar nuclei, surrounding >90% of the neurons there. They are much less prevalent in cerebral cortex, surrounding less than 10% of neurons in every area that we examined. The incidence of perineuronal nets around parvalbumin-positive neurons (putative fast-spiking interneurons) varies considerably between different areas in the brain. Our survey indicates that the presence of PNNs may not have a simple relationship with neural plasticity and may serve multiple functions in the central nervous system.
Collapse
|
50
|
Mechanistic and therapeutic overview of glycosaminoglycans: the unsung heroes of biomolecular signaling. Glycoconj J 2015; 33:1-17. [DOI: 10.1007/s10719-015-9642-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
|