1
|
Duarte MA, Fernandes CR, Heckel G, da Luz Mathias M, Bastos-Silveira C. Variation and Selection in the Putative Sperm-Binding Region of ZP3 in Muroid Rodents: A Comparison between Cricetids and Murines. Genes (Basel) 2021; 12:genes12091450. [PMID: 34573431 PMCID: PMC8469249 DOI: 10.3390/genes12091450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
In mammals, the zona pellucida glycoprotein 3 (ZP3) is considered a primary sperm receptor of the oocyte and is hypothesized to be involved in reproductive isolation. We investigated patterns of diversity and selection in the putative sperm-binding region (pSBR) of mouse ZP3 across Cricetidae and Murinae, two hyperdiverse taxonomic groups within muroid rodents. In murines, the pSBR is fairly conserved, in particular the serine-rich stretch containing the glycosylation sites proposed as essential for sperm binding. In contrast, cricetid amino acid sequences of the pSBR were much more variable and the serine-rich motif, typical of murines, was generally substantially modified. Overall, our results suggest a general lack of species specificity of the pSBR across the two muroid families. We document statistical evidence of positive selection acting on exons 6 and 7 of ZP3 and identified several amino acid sites that are likely targets of selection, with most positively selected sites falling within or adjacent to the pSBR.
Collapse
Affiliation(s)
- Margarida Alexandra Duarte
- Champalimaud Centre for the Uknown, Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisboa, Portugal
- Museu Nacional de História Natural e da Ciência, Departamento de Zoologia e Antropologia, Universidade de Lisboa, Rua da Escola Politécnica, 58, Lisboa, 1250-102 Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- Centro de Estudos de Ambiente e Mar, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence:
| | - Carlos Rodríguez Fernandes
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (C.R.F.); (C.B.-S.)
- Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013 Lisboa, Portugal
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland;
- SIB Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Amphipole, CH-1015 Lausanne, Switzerland
| | - Maria da Luz Mathias
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- Centro de Estudos de Ambiente e Mar, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Cristiane Bastos-Silveira
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (C.R.F.); (C.B.-S.)
| |
Collapse
|
2
|
Ligands and Receptors Involved in the Sperm-Zona Pellucida Interactions in Mammals. Cells 2021; 10:cells10010133. [PMID: 33445482 PMCID: PMC7827414 DOI: 10.3390/cells10010133] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Sperm-zona pellucida (ZP) interaction, involving the binding of sperm surface ligands to complementary carbohydrates of ZP, is the first direct gamete contact event crucial for subsequent gamete fusion and successful fertilization in mammals. It is a complex process mediated by the coordinated engagement of multiple ZP receptors forming high-molecular-weight (HMW) protein complexes at the acrosomal region of the sperm surface. The present article aims to review the current understanding of sperm-ZP binding in the four most studied mammalian models, i.e., murine, porcine, bovine, and human, and summarizes the candidate ZP receptors with established ZP affinity, including their origins and the mechanisms of ZP binding. Further, it compares and contrasts the ZP structure and carbohydrate composition in the aforementioned model organisms. The comprehensive understanding of sperm-ZP interaction mechanisms is critical for the diagnosis of infertility and thus becomes an integral part of assisted reproductive therapies/technologies.
Collapse
|
3
|
Membrane-Mediated Regulation of Sperm Fertilization Potential in Poultry. J Poult Sci 2021; 59:114-120. [PMID: 35528376 PMCID: PMC9039145 DOI: 10.2141/jpsa.0210104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/06/2021] [Indexed: 11/21/2022] Open
|
4
|
Dutta S, Aoki K, Doungkamchan K, Tiemeyer M, Bovin N, Miller DJ. Sulfated Lewis A trisaccharide on oviduct membrane glycoproteins binds bovine sperm and lengthens sperm lifespan. J Biol Chem 2019; 294:13445-13463. [PMID: 31337705 DOI: 10.1074/jbc.ra119.007695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/19/2019] [Indexed: 10/26/2022] Open
Abstract
A fraction of sperm deposited at mating or insemination reaches the oviduct isthmus, where sperm are retained and thereby form a reservoir. This reservoir delays capacitation, prevents polyspermy, selects a fertile population of sperm, and, foremost, increases sperm lifespan. The molecular interactions underlying the formation of a sperm reservoir are becoming clearer in mammals. Sperm lectins bind to oviductal glycans to form the reservoir. Herein, we found that the highest percentage of bovine sperm bound to the 3'-O-sulfated form of Lewis A (suLeA) trisaccharide and sialylated Lewis A and that fluoresceinated versions of each localized to receptors on the anterior head of the sperm. Following capacitation, binding to suLeA decreased significantly, a potential explanation for sperm release from the reservoir. MS and immunohistochemistry analyses indicated that suLeA motifs were present predominantly on O-linked glycans initiated by GalNAc residues, but no sialylated Lewis A was detected. To determine whether sperm binding to isolated suLeA in vitro could mimic in vivo sperm binding to oviduct cells and increase sperm longevity, we immobilized suLeA and incubated it with sperm. Using free-swimming sperm and sperm bound to immobilized laminin as controls, we observed that over 96 h, the viability of free-swimming sperm decreased to 10%, and that of sperm bound to immobilized laminin decreased to about 50%, whereas viability of sperm bound to immobilized suLeA was highest throughout the incubation and 60% at 96 h. These results indicate that bovine sperm binding to oviduct suLeA retains sperm for reservoir formation and extends sperm lifespan.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Kankanit Doungkamchan
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Nicolai Bovin
- Shemyakin Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - David J Miller
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
| |
Collapse
|
5
|
Watanabe H, Takeda R, Hirota K, Kondoh G. Lipid raft dynamics linked to sperm competency for fertilization in mice. Genes Cells 2017; 22:493-500. [PMID: 28425215 DOI: 10.1111/gtc.12491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/18/2017] [Indexed: 12/13/2022]
Abstract
It is well known that mammalian sperm acquires fertilization ability after several maturation processes, particularly within the female reproductive tract. In a previous study, we found that both glycosylphosphatidylinositol (GPI)-anchored protein (GPI-AP) release and lipid raft movement occur during the sperm maturation process. In several genetic studies, release of GPI-AP is a crucial step for sperm fertilization ability in the mouse. Here, we show that lipid raft movement is also fundamental for sperm to be competent for fertilization by comparing the sperm maturation process of two mouse inbred strains, C57BL/6 and BALB/c. We found that ganglioside GM1 movement was exclusively reduced in BALB/c compared with C57BL/6 among other examined sperm maturation parameters, such as GPI-AP release, sperm migration to the oviduct, cholesterol efflux, protein tyrosine phosphorylation and acrosome reaction, and was strongly linked to sperm fertility phenotype. The relationship between GM1 movement and in vitro fertilization ability was confirmed in other mouse strains, suggesting that lipid raft movement is one of the important steps for completing the sperm maturation process.
Collapse
Affiliation(s)
- Hitomi Watanabe
- Laboratory of Integrative Biological Science and Animal Experiments for Regeneration, Institute for Frontier Life and Medical Sciences and Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Rie Takeda
- Laboratory of Integrative Biological Science and Animal Experiments for Regeneration, Institute for Frontier Life and Medical Sciences and Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science and Animal Experiments for Regeneration, Institute for Frontier Life and Medical Sciences and Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science and Animal Experiments for Regeneration, Institute for Frontier Life and Medical Sciences and Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
6
|
Swann CA, Cooper SJB, Breed WG. The egg coat zona pellucida 3 glycoprotein - evolution of its putative sperm-binding region in Old World murine rodents (Rodentia: Muridae). Reprod Fertil Dev 2017; 29:2376-2386. [PMID: 28403915 DOI: 10.1071/rd16455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/26/2017] [Indexed: 11/23/2022] Open
Abstract
In eutherian mammals, before fertilisation can occur the spermatozoon has to bind to, and penetrate, the egg coat, the zona pellucida (ZP). In the laboratory mouse there is good evidence that the primary sperm-binding site is a protein region encoded by Exon 7 of the ZP3 gene and it has been proposed that binding is species specific and evolves by sexual selection. In the present study we investigate these hypotheses by comparing Exon 6 and 7 sequences of ZP3 in 28 species of murine rodents of eight different divisions from Asia, Africa and Australasia, in which a diverse array of sperm morphologies occurs. We found considerable nucleotide (and corresponding amino acid) sequence divergence in Exon 7, but not in Exon 6, across these species, with evidence for positive selection at five codon positions. This molecular divergence does not appear to be due to reinforcement to reduce hybridisation, nor does it correlate with divergence in sperm head morphology or tail length, thus it is unlikely to be driven by inter-male sperm competition. Other forms of post-copulatory sexual selection therefore appear to have resulted in the molecular divergence of this region of ZP3 in this highly speciose group of mammals.
Collapse
Affiliation(s)
- Christine A Swann
- Discipline of Anatomy and Pathology, Medical School, and Robinson Research Institute, Faculty of Health Sciences, The University of Adelaide, SA 5005, Australia
| | - Steven J B Cooper
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
| | - William G Breed
- Discipline of Anatomy and Pathology, Medical School, and Robinson Research Institute, Faculty of Health Sciences, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
Clark GF. Functional glycosylation in the human and mammalian uterus. FERTILITY RESEARCH AND PRACTICE 2015; 1:17. [PMID: 28620522 PMCID: PMC5424290 DOI: 10.1186/s40738-015-0007-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
Background Glycosylation is the most common and structurally diverse of all the post-translational modifications of proteins. Lipids and extracellular matrices are also often glycosylated. The mammalian uterus is highly enriched in glycoconjugates that are associated with the apical surfaces of epithelial cells and the secretions released by both epithelial and stromal cells. These glycoconjugates interact primarily with sperm, the implanting embryo, the fetus, and any pathogen that happens to gain entry into the uterus. Secretions of the endometrial glands increase substantially during the luteal phase of the menstrual cycle. These secretions are highly enriched in glycoproteins and mucins that promote specific uterine functions. Findings Lectins and antibodies have been employed in the majority of the studies focused on uterine glycosylation have employed to define the expression of carbohydrate sequences. However, while these studies provide insight about potential glycosylation, precise information about glycan structure is lacking. Direct sequencing studies that employ biochemical or mass spectrometric methods are far more definitive, but have rarely been employed with uterine glycoproteins. Both lectin/antibody binding and direct carbohydrate sequencing studies that have been focused on the mammalian uterus are reviewed. The primary functional role of the eutherian uterus is to facilitate fertilization and nurture the developing embryo/fetus. Trophoblasts are the primary cells that mediate the binding of the embryo and placenta to the uterine lining. In mammals that utilize hemochorial placentation, they invade the decidua, the specialized endometrial lining that forms during pregnancy. Trophoblasts have also been analyzed for their lectin/antibody binding as a complement to the analysis of the uterine cells and tissues. They will also be reviewed here. Conclusions The functional roles of the glycans linked to uterine and trophoblast glycoconjugates remain enigmatic. Another major question in the human is whether defects in placental or uterine glycosylation play a role in the development the Great Obstetrical Syndromes. More recent findings indicate that changes in glycosylation occur in trophoblasts obtained from patients that develop preeclampsia and preterm birth. The functional significance of these changes remain to be defined. Whether such shifts happen during the development of other types of obstetrical syndromes remains to be determined.
Collapse
Affiliation(s)
- Gary F Clark
- Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, University of Missouri, 1 Hospital Drive HSC M658, Columbia, MO 65211 USA
| |
Collapse
|
8
|
Zhang S, Xiao Q, Sherman SE, Muncan A, Ramos Vicente ADM, Wang Z, Hammer DA, Williams D, Chen Y, Pochan DJ, Vértesy S, André S, Klein ML, Gabius HJ, Percec V. Glycodendrimersomes from Sequence-Defined Janus Glycodendrimers Reveal High Activity and Sensor Capacity for the Agglutination by Natural Variants of Human Lectins. J Am Chem Soc 2015; 137:13334-44. [DOI: 10.1021/jacs.5b08844] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shaodong Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Samuel E. Sherman
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Adam Muncan
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Andrea D. M. Ramos Vicente
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Zhichun Wang
- Department
of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6391, United States
| | - Daniel A. Hammer
- Department
of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6391, United States
| | - Dewight Williams
- Electron
Microscopy Resource Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6082, United States
| | - Yingchao Chen
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J. Pochan
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Sabine Vértesy
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany
| | - Sabine André
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany
| | - Michael L. Klein
- Institute
of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Hans-Joachim Gabius
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
9
|
Miller DJ. Regulation of Sperm Function by Oviduct Fluid and the Epithelium: Insight into the Role of Glycans. Reprod Domest Anim 2015; 50 Suppl 2:31-9. [DOI: 10.1111/rda.12570] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 01/18/2023]
Affiliation(s)
- DJ Miller
- Department of Animal Sciences; University of Illinois; Urbana-Champaign IL USA
| |
Collapse
|
10
|
Vasen G, Battistone MA, Croci DO, Brukman NG, Weigel Muñoz M, Stupirski JC, Rabinovich GA, Cuasnicú PS. The galectin-1-glycan axis controls sperm fertilizing capacity by regulating sperm motility and membrane hyperpolarization. FASEB J 2015; 29:4189-200. [PMID: 26136479 DOI: 10.1096/fj.15-270975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/15/2015] [Indexed: 12/15/2022]
Abstract
Lectin-glycan recognition systems play central roles in many physiologic and pathologic processes. We identified a role for galectin-1 (Gal-1), a highly conserved glycan-binding protein, in the control of sperm function. We found that Gal-1 is expressed in the epididymis and associates with sperm during epididymal maturation. Exposure of sperm to Gal-1 resulted in glycan-dependent modulation of the acrosome reaction (AR), a key event in the fertilization process. Gal-1-deficient (Lgals1(-/-)) mice revealed the essential contribution of this lectin for full sperm fertilizing ability both in vitro and in vivo. Mechanistically, Lgals1(-/-) sperm exhibited defects in their ability to develop hyperactivation, a vigorous motility required for penetration of the egg vestments. Moreover, Lgals1(-/-) sperm showed a decreased ability to control cell volume and to undergo progesterone-induced AR, phenotypes that were rescued by exposure of the cells to recombinant Gal-1. Interestingly, the AR defect was associated with a deficiency in sperm membrane potential hyperpolarization. Our study highlights the relevance of the Gal-1-glycan axis in sperm function with critical implications in mammalian reproductive biology.
Collapse
Affiliation(s)
- Gustavo Vasen
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Agustina Battistone
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego O Croci
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás G Brukman
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Weigel Muñoz
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan C Stupirski
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia S Cuasnicú
- *Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Accogli G, Douet C, Ambruosi B, Martino NA, Uranio MF, Deleuze S, Dell'Aquila ME, Desantis S, Goudet G. Differential expression and localization of glycosidic residues in in vitro- and in vivo-matured cumulus-oocyte complexes in equine and porcine species. Mol Reprod Dev 2014; 81:1115-35. [PMID: 25511183 DOI: 10.1002/mrd.22432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/09/2014] [Indexed: 11/10/2022]
Abstract
Glycoprotein oligosaccharides play major roles during reproduction, yet their function in gamete interactions is not fully elucidated. Identification and comparison of the glycan pattern in cumulus-oocyte complexes (COCs) from species with different efficiencies of in vitro spermatozoa penetration through the zona pellucida (ZP) could help clarify how oligosaccharides affect gamete interactions. We compared the expression and localization of 12 glycosidic residues in equine and porcine in vitro-matured (IVM) and preovulatory COCs by means of lectin histochemistry. The COCs glycan pattern differed between animals and COC source (IVM versus preovulatory). Among the 12 carbohydrate residues investigated, the IVM COCs from these two species shared: (a) sialo- and βN-acetylgalactosamine (GalNAc)-terminating glycans in the ZP; (b) sialylated and fucosylated glycans in cumulus cells; and (c) GalNAc and N-acetylglucosamine (GlcNAc) glycans in the ooplasm. Differences in the preovulatory COCs of the two species included: (a) sialoglycans and GlcNAc terminating glycans in the equine ZP versus terminal GalNAc and internal GlcNAc in the porcine ZP; (b) terminal galactosides in equine cumulus cells versus terminal GlcNAc and fucose in porcine cohorts; and (c) fucose in the mare ooplasm versus lactosamine and internal GlcNAc in porcine oocyte cytoplasm. Furthermore, equine and porcine cumulus cells and oocytes contributed differently to the synthesis of ZP glycoproteins. These results could be attributed to the different in vitro fertilization efficiencies between these two divergent, large-animal models.
Collapse
Affiliation(s)
- Gianluca Accogli
- Section of Veterinary Clinics and Animal Productions, Department Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Machado SA, Kadirvel G, Daigneault BW, Korneli C, Miller P, Bovin N, Miller DJ. LewisX-containing glycans on the porcine oviductal epithelium contribute to formation of the sperm reservoir. Biol Reprod 2014; 91:140. [PMID: 25339106 DOI: 10.1095/biolreprod.114.119503] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In many mammals, after semen deposition, a subpopulation of the sperm is transported to the lower oviduct, or isthmus, to form a functional sperm reservoir that provides sperm to fertilize oocytes. The precise molecular interactions that allow formation of this reservoir are unclear. It is proposed that binding of sperm receptors (lectins) to their oviductal cell ligands is accomplished by glycans. Previous results indicated that Lewis trisaccharides are present in glycosphingolipids and O- and N-linked glycans of the porcine isthmus and that Le(X)-containing molecules bind porcine sperm. Immunohistochemistry indicated that the Lewis structures identified by mass spectrometry were, in fact, Lewis X (Le(X)) trisaccharides. These motifs were localized to the luminal border of the isthmus. Assays using fluoresceinated glycans showed that 3-O-sulfated Le(X) (suLe(X)) bound to receptors localized on the head of nearly 60% of uncapacitated boar sperm but that the positional isomer 3-O-sulfo-Le(A) (suLe(A)) bound to <5% of sperm. Sperm also bound preferentially to suLe(X) made insoluble by coupling to beads. Capacitation reduced the ability of suLe(X) to bind sperm to <10%, perhaps helping to explain why sperm are released at capacitation. Pretreatment of oviduct cell aggregates with the Le(X) antibody blocked 57% of sperm binding to isthmic aggregates. Blocking putative receptors on sperm with soluble Le(X) and suLe(X) glycans specifically reduced sperm binding to oviduct cells up to 61%. These results demonstrate that the oviduct isthmus contains Le(X)-related moieties and that sperm binding to these oviduct glycans is necessary and sufficient for forming the sperm reservoir.
Collapse
Affiliation(s)
- Sergio A Machado
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Govindasamy Kadirvel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Bradford W Daigneault
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Claudia Korneli
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Paul Miller
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Nicolai Bovin
- Shemyakin Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - David J Miller
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
13
|
Sui DD, Wu JL, Zhang H, Li H, Zhou ZM, Zhang DH, Han CX. Molecular cloning, structural analysis, and expression of zona pellucida glycoprotein ZP3 gene from Chinese zokor, Myospalax fontanierii. Mol Biol 2014. [DOI: 10.1134/s0026893314050148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
A role for carbohydrate recognition in mammalian sperm-egg binding. Biochem Biophys Res Commun 2014; 450:1195-203. [DOI: 10.1016/j.bbrc.2014.06.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 11/18/2022]
|
15
|
Chiu PCN, Lam KKW, Wong RCW, Yeung WSB. The identity of zona pellucida receptor on spermatozoa: an unresolved issue in developmental biology. Semin Cell Dev Biol 2014; 30:86-95. [PMID: 24747367 DOI: 10.1016/j.semcdb.2014.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 11/29/2022]
Abstract
Mammalian oocytes are surrounded by an acellular zona pellucida (ZP). Fertilization begins when a capacitated spermatozoon binds to the ZP. Defective sperm-ZP interaction is a cause of male infertility and reduced fertilization rates in clinical assisted reproduction treatment. Despite the importance of spermatozoa-ZP binding, the mechanisms and regulation of the interaction are unclear partly due to the failure in the identification of ZP receptor on spermatozoa. Most of the previous studies assumed that the sperm ZP receptor is a single molecular species, and a number of potential candidates had been suggested. Yet none of them can be considered as the sole sperm ZP receptor. Accumulated evidence suggested that the sperm ZP receptor is a dynamic multi-molecular structure requiring coordinated action of different proteins that are assembled into a functional complex during post-testicular maturation and capacitation. The complex components may include carbohydrate-binding, protein-binding and acrosomal matrix proteins which work as a suite to mediate spermatozoa-ZP interaction. This article aims to review the latest insights in the identification of the sperm ZP receptor. Continued investigation of the area will provide considerable understanding of the regulation of fertilization that will be useful for practical application in human contraception and reproductive medicine.
Collapse
Affiliation(s)
- Philip C N Chiu
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China; Centre of Reproduction, Development and Growth, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Kevin K W Lam
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Rachel C W Wong
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China; Centre of Reproduction, Development and Growth, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
16
|
Clark GF. The role of glycans in immune evasion: the human fetoembryonic defence system hypothesis revisited. Mol Hum Reprod 2014; 20:185-99. [PMID: 24043694 PMCID: PMC3925329 DOI: 10.1093/molehr/gat064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023] Open
Abstract
Emerging data suggest that mechanisms to evade the human immune system may be shared by the conceptus, tumour cells, persistent pathogens and viruses. It is therefore timely to revisit the human fetoembryonic defense system (Hu-FEDS) hypothesis that was proposed in two papers in the 1990s. The initial paper suggested that glycoconjugates expressed in the human reproductive system inhibited immune responses directed against gametes and the developing human by employing their carbohydrate sequences as functional groups. These glycoconjugates were proposed to block specific binding interactions and interact with lectins linked to signal transduction pathways that modulated immune cell functions. The second article suggested that aggressive tumour cells and persistent pathogens (HIV, H. pylori, schistosomes) either mimicked or acquired the same carbohydrate functional groups employed in this system to evade immune responses. This subterfuge enabled these pathogens and tumour cells to couple their survival to the human reproductive imperative. The Hu-FEDS model has been repeatedly tested since its inception. Data relevant to this model have also been obtained in other studies. Herein, the Hu-FEDS hypothesis is revisited in the context of these more recent findings. Far more supportive evidence for this model now exists than when it was first proposed, and many of the original predictions have been validated. This type of subterfuge by pathogens and tumour cells likely applies to all sexually reproducing metazoans that must protect their gametes from immune responses. Intervention in these pathological states will likely remain problematic until this system of immune evasion is fully understood and appreciated.
Collapse
Affiliation(s)
- Gary F. Clark
- Department of Obstetrics, Gynecology and Women's Health, Division of Reproductive and Perinatal Research and Division of Reproductive Medicine and Fertility, University of Missouri School of Medicine, Columbia, MO 65211, USA
| |
Collapse
|
17
|
Wu L, Sampson NS. Fucose, mannose, and β-N-acetylglucosamine glycopolymers initiate the mouse sperm acrosome reaction through convergent signaling pathways. ACS Chem Biol 2014; 9:468-75. [PMID: 24252131 PMCID: PMC4049243 DOI: 10.1021/cb400550j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
The sperm acrosome reaction (AR),
an essential exocytosis step
in mammalian fertilization, is mediated by a species-specific interaction
of sperm surface molecules with glycans on the egg. Previous studies
indicate that a subset of terminal carbohydrates on the mouse egg
zona pellucida (ZP) trigger the AR by cross-linking or aggregating
receptors on the sperm membrane. However, the exact role of those
carbohydrates in AR has not been identified and the mechanism underlying
the AR still needs further investigation. To study this process, a
series of glycopolymers was synthesized. The glycopolymers are composed
of a multivalent scaffold (norbornene), a functional ligand (previously
identified ZP terminal monosaccharides), and a linker connecting the
ligand and the scaffold. The polymers were tested for their ability
to initiate AR and through which signaling pathways AR induction occurred.
Our data demonstrate that mannose, fucose, and β-N-acetylglucosamine 10-mers and 100-mers initiate AR in a dose-dependent
manner, and the 100-mers are more potent on a per monomer basis than
the 10-mers. Although nearly equipotent in inducing the AR at the
optimal concentrations, their AR activation kinetics are not identical.
Similar to mouse ZP3, all 100-mer-activated AR are sensitive to guanine-binding
regulatory proteins (G-proteins), tyrosine kinase, protein kinase
A, protein kinase C, and Ca2+-related antagonists. Thus,
the chemotypes of synthetic glycopolymers imitate the physiologic
AR-activation agents and provide evidence that occupation of one of
at least three different receptor binding sites is sufficient to initiate
the AR.
Collapse
Affiliation(s)
- Linghui Wu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
18
|
Posttranslational modifications of zona pellucida proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:111-40. [PMID: 25030762 DOI: 10.1007/978-1-4939-0817-2_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The zona pellucida (ZP), which surrounds the mammalian oocyte, functions in various aspects of fertilization. The ZP consists of three or four glycoproteins, which are derived from transmembrane proteins that lack the ability to self-assemble. Following posttranslational processing at specific sites, ectodomains of ZP precursor proteins are released from the membrane and begin to form a matrix. Glycosylational modification is thought to be involved in species-selective sperm recognition by ZP proteins. However, in mice, the supramolecular structure of the zona matrix is also important in sperm recognition. One ZP protein, ZP2, is processed at a specific site upon fertilization by ovastacin, which is released from cortical granules inside the oocyte. This phenomenon is involved in the block to polyspermy. The proteolysis of ubiquitinated ZP proteins by a sperm-associated proteasome is involved in penetration of the zona matrix by sperm, at least in the pigs. Thus, the posttranslational modification of ZP proteins is closely tied to ZP formation and the regulation of sperm-oocyte interactions.
Collapse
|
19
|
Clark GF. The role of carbohydrate recognition during human sperm-egg binding. Hum Reprod 2013; 28:566-77. [DOI: 10.1093/humrep/des447] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
20
|
Margalit M, Paz G, Yavetz H, Yogev L, Amit A, Hevlin-Schwartz T, Gupta SK, Kleiman SE. Genetic and physiological study of morphologically abnormal human zona pellucida. Eur J Obstet Gynecol Reprod Biol 2012; 165:70-6. [DOI: 10.1016/j.ejogrb.2012.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/05/2012] [Accepted: 07/24/2012] [Indexed: 01/08/2023]
|
21
|
Dun MD, Smith ND, Baker MA, Lin M, Aitken RJ, Nixon B. The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-oocyte interaction. J Biol Chem 2011; 286:36875-87. [PMID: 21880732 DOI: 10.1074/jbc.m110.188888] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sperm-oocyte interactions are among the most remarkable processes in cell biology. These cellular recognition events are initiated by an exquisitely specific adhesion of free-swimming spermatozoa to the zona pellucida, an acellular matrix that surrounds the ovulated oocyte. Decades of research focusing on this interaction have led to the establishment of a widely held paradigm that the zona pellucida receptor is a single molecular entity that is constitutively expressed on the sperm cell surface. In contrast, we have employed the techniques of blue native-polyacrylamide gel electrophoresis, far Western blotting, and proximity ligation to secure the first direct evidence in support of a novel hypothesis that zona binding is mediated by multimeric sperm receptor complex(es). Furthermore, we show that one such multimeric association, comprising the chaperonin-containing TCP1 complex (CCT/TRiC) and a zona-binding protein, zona pellucida-binding protein 2, is present on the surface of capacitated spermatozoa and could account for the zona binding activity of these cells. Collectively, these data provide an important biochemical insight into the molecular basis of sperm-zona pellucida interaction and a plausible explanation for how spermatozoa gain their ability to fertilize.
Collapse
Affiliation(s)
- Matthew D Dun
- Reproductive Science Group, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Watanabe H, Kondoh G. Mouse sperm undergo GPI-anchored protein release associated with lipid raft reorganization and acrosome reaction to acquire fertility. J Cell Sci 2011; 124:2573-81. [DOI: 10.1242/jcs.086967] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian sperm undergo several maturation steps after leaving the testis to become competent for fertilization. Important changes occur in sperm within the female reproductive tract, although the molecular mechanisms underlying these processes remain unclear. To investigate sperm membrane remodeling upon sperm maturation, we developed transgenic mouse lines carrying glycosylphosphatidylinositol (GPI)-anchored enhanced green fluorescent protein (EGFP–GPI) and traced the fate of this fluorescent protein during the fertility-acquiring process in sperm in vitro and in vivo. When the GFP-labeled sperm were treated with compounds for promoting the acrosome reaction, EGFP–GPI was released from the sperm surface crosslinked with characteristic relocation of a lipid raft marker ganglioside GM1. Sperm ejaculated into the uterus strongly expressed EGFP–GPI in the head region, whereas a part of the oviductal sperm lost fluorescence in a manner that was dependent on the presence of angiotensin-converting enzyme (ACE). Moreover, sperm on the zona pellucida of eggs in the oviduct were all found to have low levels of GFP. These results suggest that sperm undergoing GPI-anchored protein release associated with reorganization of lipid rafts and the acrosome reaction acquire fertilization potential.
Collapse
Affiliation(s)
- Hitomi Watanabe
- Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University and CREST Program, Japan Science and Technology Society, 53 Syogoin-Kawahara-cho, Kyoto 606-8507, Japan
| | - Gen Kondoh
- Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University and CREST Program, Japan Science and Technology Society, 53 Syogoin-Kawahara-cho, Kyoto 606-8507, Japan
| |
Collapse
|
23
|
Clark GF. The molecular basis of mouse sperm-zona pellucida binding: a still unresolved issue in developmental biology. Reproduction 2011; 142:377-81. [PMID: 21730109 DOI: 10.1530/rep-11-0118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During murine fertilization, sperm bind to the specialized extracellular matrix of the egg, known as the zona pellucida (ZP). This matrix is composed of three major glycoproteins designated ZP1, ZP2, and ZP3. Three models for sperm-ZP binding are now under consideration. The domain-specific model posits that adhesion relies primarily on interactions between N-glycans located within the C-terminal domain of ZP3 and a lectin-like egg-binding protein in the sperm plasma membrane. However, this model does not explain recent results obtained in studies with ZP2(mut) mice. In the supramolecular structure model, sperm bind to a three-dimensional zona matrix that depends on the cleavage status of ZP2. This paradigm does not explain the potent inhibitory effect of specific carbohydrate sequences or a C-terminal glycopeptide (gp55) derived from ZP3. Recently, O-glycans linked at Thr(155) and Thr(162) of ZP3 were implicated as potential ligands that mediate initial sperm-ZP binding. This novel model will be reviewed. A major challenge is to develop an alternate model for sperm-ZP binding that fits as much of the data as possible. Such a model is presented in this review. This paradigm could explain how the inability to cleave ZP2(mut) in ZP2(mut) mice could result in continued sperm binding to two-cell stage embryos without the formation of a supramolecular binding complex. These novel insights should guide future experiments that will eventually determine the molecular basis underlying gamete binding in the mouse and other eutherian mammals.
Collapse
Affiliation(s)
- Gary F Clark
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, Missouri 65211, USA.
| |
Collapse
|
24
|
Jiao J, Zhang H, Reinhold VN. High Performance IT-MS Sequencing of Glycans (Spatial Resolution of Ovalbumin Isomers). INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 303:109-117. [PMID: 21686090 PMCID: PMC3115573 DOI: 10.1016/j.ijms.2011.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This report outlines and applies a high performance sequencing technology to evaluate the glycome of a common model glycoprotein, ovalbumin. The targets were the N-linked glycans enzymatically released from the protein, the N-glycoproteome. These product glycans were reduced, methylated and directly infused into the MS using a chip-based nanoelectrospray with the ions structurally characterized by sequential disassembly. Ten major ions were selected for detailed analysis. Isomer topologies (glycan connectivity) were determined from ion pathways of disassembly. Linkage information was revealed by specific cross-ring cleavage fragments within smaller oligomers. Both connectivity and linkage features were assisted with described bioinformatic tools and details confirmed with a standards library of fragments. The number of isomeric structures found within these 10 parent ions were 37, more than double earlier reports, and setting a new goal for developing technology. In this non-chromatographic, high performance spatial approach, the focus has been patterned to be comprehensive, and stay within the bounds of a plausible high throughput strategy consistent with automation. Selective structures are described in the text to appraise readers of the general approach; a more comprehensive coverage has been included in supplemental material.
Collapse
Affiliation(s)
| | | | - Vernon N. Reinhold
- To whom correspondence should be addressed: Vernon N. Reinhold, Glycomics Center, Gregg Hall, University of New Hampshire, 35 Colovos Road, Durham, NH 03824,
| |
Collapse
|
25
|
Kirkpatrick JF, Lyda RO, Frank KM. Contraceptive Vaccines for Wildlife: A Review. Am J Reprod Immunol 2011; 66:40-50. [DOI: 10.1111/j.1600-0897.2011.01003.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Hanaue M, Miwa N, Uebi T, Fukuda Y, Katagiri Y, Takamatsu K. Characterization of S100A11, a suppressive factor of fertilization, in the mouse female reproductive tract. Mol Reprod Dev 2011; 78:91-103. [DOI: 10.1002/mrd.21273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/15/2010] [Indexed: 12/15/2022]
|
27
|
Clark GF. The mammalian zona pellucida: a matrix that mediates both gamete binding and immune recognition? Syst Biol Reprod Med 2011; 56:349-64. [PMID: 20662591 DOI: 10.3109/19396360903524812] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The crucial cell adhesion events required for mammalian fertilization commence when spermatozoa bind to the specialized extracellular matrix of the oocyte, known as the zona pellucida (ZP). Bound gametes then undergo a signal transduction cascade known as acrosomal exocytosis that enables them to penetrate this matrix and fuse with the oocyte to create a new individual. The ZP is therefore the target of intense investigation in the mouse, pig, bovine, and human models. Major goals in such studies are to define the adhesion molecules, signal transduction pathways, and the molecular basis for the species-restricted binding of gametes. Evidence exists indicating that protein-carbohydrate and to a lesser extent protein-protein interactions play a role in the initial gamete binding. More recent findings in an unusual sperm-somatic cell adhesion system indicate that tri- and tetraantennary N-glycans mediate initial sperm-oocyte binding in both the murine and porcine models, but conflicting data exist. A novel paradigm designated the "domain specific model" will be presented that could explain these inconsistencies. Another potential functional role of the ZP is immune recognition. Both spermatozoa and oocytes lack major histocompatibility (MHC) class I molecules that mediate the recognition of self in the immune system. This absence makes gametes less susceptible to class I restricted cytotoxic T lymphocytes, but more vulnerable to natural killer (NK) cells. Therefore a "fail safe" system for NK cell recognition should exist on both types of gametes. Another issue is that oocytes could begin to express paternal major histocompatibility antigens during the blastocyst stage prior to hatching, and thus mechanisms could also be in place to block the development of maternal adaptive immune responses. An enhanced understanding of these issues could facilitate the development of superior infertility treatments and contraceptive strategies, and define central operating principles of immune recognition in the female reproductive system.
Collapse
Affiliation(s)
- Gary F Clark
- Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
28
|
Williams SA, Stanley P. Roles for N- and O-Glycans in Early Mouse Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:397-410. [DOI: 10.1007/978-1-4419-7877-6_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
|
30
|
Abstract
Binding of mammalian sperm to eggs depends in part on ZP3, a glycoprotein in the egg's extracellular coat, the zona pellucida. In this issue, Han et al. (2010) describe the structure of an avian ZP3 homolog, providing insights into ZP3 processing and polymerization and the roles of the ZP3 polypeptide and its carbohydrate in sperm binding.
Collapse
Affiliation(s)
- Paul M Wassarman
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
31
|
Abstract
During mammalian fertilisation, the zona pellucida (ZP) matrix surrounding the oocyte is responsible for the binding of the spermatozoa to the oocyte and induction of the acrosome reaction (AR) in the ZP-bound spermatozoon. The AR is crucial for the penetration of the ZP matrix by spermatozoa. The ZP matrix in mice is composed of three glycoproteins designated ZP1, ZP2 and ZP3, whereas in humans, it is composed of four (ZP1, ZP2, ZP3 and ZP4). ZP3 acts as the putative primary sperm receptor and is responsible for AR induction in mice, whereas in humans (in addition to ZP3), ZP1 and ZP4 also induce the AR. The ability of ZP3 to induce the AR resides in its C-terminal fragment. O-linked glycans are critical for the murine ZP3-mediated AR. However, N-linked glycans of human ZP1, ZP3 and ZP4 have important roles in the induction of the AR. Studies with pharmacological inhibitors showed that the ZP3-induced AR involves the activation of the G(i)-coupled receptor pathway, whereas ZP1- and ZP4-mediated ARs are independent of this pathway. The ZP3-induced AR involves the activation of T-type voltage-operated calcium channels (VOCCs), whereas ZP1- and ZP4-induced ARs involve both T- and L-type VOCCs. To conclude, in mice, ZP3 is primarily responsible for the binding of capacitated spermatozoa to the ZP matrix and induction of the AR, whereas in humans (in addition to ZP3), ZP1 and ZP4 also participate in these stages of fertilisation.
Collapse
|
32
|
Clark GF, Zimmerman S, Lafrenz DE, Yi YJ, Sutovsky P. Carbohydrate-mediated binding and induction of acrosomal exocytosis in a boar sperm-somatic cell adhesion model. Biol Reprod 2010; 83:623-34. [PMID: 20592306 DOI: 10.1095/biolreprod.110.084319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The molecular basis underlying the binding of spermatozoa to their homologous eggs and the subsequent induction of acrosomal exocytosis remain a major unresolved issue in mammalian fertilization. Novel cell adhesion systems are now being explored to advance this research. Triantennary and tetraantennary N-glycans have previously been implicated as the major carbohydrate sequences that mediate the initial binding of spermatozoa to the specialized egg coat (zona pellucida) in the murine and porcine models. Mouse spermatozoa also undergo binding to rabbit erythrocytes (rRBCs), presumably via the interaction of their lectin-like egg-binding proteins with branched polylactosamine sequences present on these somatic cells. Experiments presented in this study confirm that boar spermatozoa also bind to rRBCs. However, unlike mouse spermatozoa, boar spermatozoa also undergo acrosomal exocytosis within 30 min after binding to rRBCs. Both binding and induction of acrosomal exocytosis in this system did not require the participation of terminal Galalpha1-3Gal sequences that are found on rRBCs. Pronase glycopeptides derived from rRBCs inhibited the binding of boar sperm to porcine oocytes by 91% at a final concentration of 0.3 mg/ml under standard IVF conditions. Binding in this porcine cell adhesion model was also completely blocked at this concentration of glycopeptide. Thus, adhesion results from the interaction of the egg-binding protein expressed on the surface of boar spermatozoa with the glycans presented on rRBCs. This cell adhesion model will be useful for investigating the molecular basis of gamete binding and the induction of acrosomal exocytosis in the pig.
Collapse
Affiliation(s)
- Gary F Clark
- Department of Obstetrics, Gynecology, and Women's Health, Division of Reproductive and Perinatal Research, University of Missouri School of Medicine, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
33
|
Ganguly A, Bukovsky A, Sharma RK, Bansal P, Bhandari B, Gupta SK. In humans, zona pellucida glycoprotein-1 binds to spermatozoa and induces acrosomal exocytosis. Hum Reprod 2010; 25:1643-56. [PMID: 20504872 DOI: 10.1093/humrep/deq105] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND It has been suggested that the zona pellucida (ZP) may mediate species-specific fertilization. In human the ZP is composed of four glycoproteins: ZP1, ZP2, ZP3 and ZP4. In the present study, the expression profile of ZP1 in human oocytes and ovaries, and its role during fertilization, is presented. METHODS Human ZP1 (amino acid residues 26-551) was cloned and expressed in both non-glycosylated and glycosylated forms and its ability to bind to the capacitated human spermatozoa and to induce acrosomal exocytosis was studied. Monoclonal antibodies (MAbs), specific for human ZP1 and devoid of reactivity with ZP2, ZP3 and ZP4 were generated and used to localize native ZP1 in oocytes and ovarian tissues. RESULTS The MAbs generated against ZP1 recognized specifically the zona matrix of secondary and antral follicles, ovulated oocytes, atretic follicles and degenerating intravascular oocytes, but failed to react with the Fallopian tube, endometrium, ectocervix and kidney. Escherichia coli and baculovirus-expressed recombinant human ZP1 revealed bands of approximately 75 and approximately 85 kDa, respectively, in western blot. Lectin binding studies revealed the presence of both N- and O-linked glycosylation in baculovirus-expressed ZP1. Fluorescein isothiocyanate-labelled E. coli- and baculovirus-expressed recombinant ZP1 bound to the anterior head of capacitated spermatozoa, however, only baculovirus-expressed ZP1 induced acrosomal exocytosis in capacitated sperm suggesting the importance of glycosylation in mediating the acrosome reaction. The human ZP1-mediated acrosome reaction involved the activation of both T- and L-type voltage-operated calcium channels, but does not activate the G(i)-coupled receptor pathway. Inhibition of protein kinase A and C significantly also reduced the ZP1-mediated induction of the acrosome reaction. CONCLUSION These studies revealed for the first time that in humans ZP1, in addition to ZP3 and ZP4, binds to capacitated spermatozoa and induces acrosomal exocytosis.
Collapse
Affiliation(s)
- Anasua Ganguly
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
34
|
Miwa N, Ogawa M, Shinmyo Y, Hiraoka Y, Takamatsu K, Kawamura S. Dicalcin inhibits fertilization through its binding to a glycoprotein in the egg envelope in Xenopus laevis. J Biol Chem 2010; 285:15627-15636. [PMID: 20299459 DOI: 10.1074/jbc.m109.079483] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fertilization comprises oligosaccharide-mediated sperm-egg interactions, including sperm binding to an extracellular egg envelope, sperm penetration through the envelope, and fusion with an egg plasma membrane. We show that Xenopus dicalcin, an S100-like Ca(2+)-binding protein, present in the extracellular egg envelope (vitelline envelope (VE)), is a suppressive mediator of sperm-egg interaction. Preincubation with specific antibody greatly increased the efficiency of in vitro fertilization, whereas prior application of exogenous dicalcin substantially inhibited fertilization as well as sperm binding to an egg and in vitro sperm penetration through the VE protein layer. Dicalcin showed binding to protein cores of gp41 and gp37, constituents of VE, in a Ca(2+)-dependent manner and increased in vivo reactivity of VE with a lectin, Ricinus communis agglutinin I, which was accounted for by increased binding ability of gp41 to the lectin and greater exposure of gp41 to an external environment. Our findings strongly suggest that dicalcin regulates the distribution of oligosaccharides within the VE through its binding to the protein core of gp41, probably by modulating configuration of oligosaccharides on gp41 and the three-dimensional structure of VE framework, and thereby plays a pivotal role in sperm-egg interactions during fertilization.
Collapse
Affiliation(s)
- Naofumi Miwa
- Department of Physiology, School of Medicine, Toho University, 5-21-16 Ohmori-nishi, Ohta-ku, Tokyo 143-8540.
| | - Motoyuki Ogawa
- Department of Medical Education, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555
| | - Yukiko Shinmyo
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka 565-0871
| | - Yoshiki Hiraoka
- Department of Anatomy, School of Medicine, Keio University, 15 Shinano-machi, Shinjyuku-ku, Tokyo 160-0016, Japan
| | - Ken Takamatsu
- Department of Physiology, School of Medicine, Toho University, 5-21-16 Ohmori-nishi, Ohta-ku, Tokyo 143-8540
| | - Satoru Kawamura
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka 565-0871
| |
Collapse
|
35
|
Dorus S, Wasbrough ER, Busby J, Wilkin EC, Karr TL. Sperm proteomics reveals intensified selection on mouse sperm membrane and acrosome genes. Mol Biol Evol 2010; 27:1235-46. [PMID: 20080865 DOI: 10.1093/molbev/msq007] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spermatozoa are a focal point for the impact of sexual selection due to sperm competition and sperm-female interactions in a wide range of sexually reproducing organisms. In-depth molecular investigation of the ramifications of these selective regimes has been limited due to a lack of information concerning the molecular composition of sperm. In this study, we utilize three previously published proteomic data sets in conjunction with our whole mouse sperm proteomic analysis to delineate cellular regions of sperm most impacted by positive selection. Interspecific analysis reveals robust evolutionary acceleration of sperm cell membrane genes (which include genes encoding acrosomal and sperm cell surface proteins) relative to other sperm genes, and evidence for positive selection in approximately 22% of sperm cell membrane components was obtained using maximum likelihood models. The selective forces driving the accelerated evolution of these membrane proteins may occur at a number of locations during sperm development, maturation, and transit through the female reproductive tract where the sperm cell membrane and eventually the acrosome are exposed to the extracellular milieu and available for direct cell-cell interactions.
Collapse
Affiliation(s)
- Steve Dorus
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Dun MD, Mitchell LA, Aitken RJ, Nixon B. Sperm-zona pellucida interaction: molecular mechanisms and the potential for contraceptive intervention. Handb Exp Pharmacol 2010:139-178. [PMID: 20839091 DOI: 10.1007/978-3-642-02062-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
At the moment of insemination, millions of mammalian sperm cells are released into the female reproductive tract with the single goal of finding the oocyte. The spermatozoa subsequently ignore the thousands of cells they make contact with during their journey to the site of fertilization, until they reach the surface of the oocyte. At this point, they bind tenaciously to the acellular coat, known as the zona pellucida, which surrounds the oocyte and orchestrate a cascade of cellular interactions that culminate in fertilization. These exquisitely cell- and species- specific recognition events are among the most strategically important cellular interactions in biology. Understanding the cellular and molecular mechanisms that underpin them has implications for the etiology of human infertility and the development of novel targets for fertility regulation. Herein we describe our current understanding of the molecular basis of successful sperm-zona pellucida binding.
Collapse
Affiliation(s)
- Matthew D Dun
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | | | | |
Collapse
|
37
|
Wassarman PM, Litscher ES. The multifunctional zona pellucida and mammalian fertilization. J Reprod Immunol 2009; 83:45-9. [DOI: 10.1016/j.jri.2009.06.259] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/10/2009] [Accepted: 06/26/2009] [Indexed: 12/19/2022]
|
38
|
Nixon B, Aitken RJ. The biological significance of detergent-resistant membranes in spermatozoa. J Reprod Immunol 2009; 83:8-13. [DOI: 10.1016/j.jri.2009.06.258] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 05/01/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
|
39
|
Lyng R, Shur BD. Mouse oviduct-specific glycoprotein is an egg-associated ZP3-independent sperm-adhesion ligand. J Cell Sci 2009; 122:3894-906. [PMID: 19808884 DOI: 10.1242/jcs.058776] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse sperm-egg binding requires a multiplicity of receptor-ligand interactions, including an oviduct-derived, high molecular weight, wheat germ agglutinin (WGA)-binding glycoprotein that associates with the egg coat at ovulation. Herein, we report the purification and identification of this sperm-binding ligand. WGA-binding, high molecular weight glycoproteins isolated from hormonally primed mouse oviduct lysates competitively inhibit sperm-egg binding in vitro. Within this heterogeneous glycoprotein preparation, a distinct 220 kDa protein selectively binds to sperm surfaces, and was identified by sequence analysis as oviduct-specific glycoprotein (OGP). The sperm-binding activity of OGP was confirmed by the loss of sperm-binding following immunodepletion of OGP from oviduct lysates, and by the ability of both immunoprecipitated OGP and natively purified OGP to competitively inhibit sperm-egg binding. As expected, OGP is expressed by the secretory cells of the fimbriae and infundibulum; however, in contrast to previous reports, OGP is also associated with both the zona pellucida and the perivitelline space of mouse oocytes. Western blot analysis and lectin affinity chromatography demonstrate that whereas the bulk of OGP remains soluble in the ampullar fluid, distinct glycoforms associate with the cumulus matrix, zona pellucida and perivitelline space. The sperm-binding activity of OGP is carbohydrate-dependent and restricted to a relatively minor peanut agglutinin (PNA)-binding glycoform that preferentially associates with the sperm surface, zona pellucida and perivitelline space, relative to other more abundant glycoforms. Finally, pretreatment of two-cell embryos, which do not normally bind sperm, with PNA-binding OGP stimulates sperm binding.
Collapse
Affiliation(s)
- Robert Lyng
- Department of Cell Biology, Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
40
|
Min JZ, Kurihara T, Hirata A, Toyo'oka T, Inagaki S. Identification ofN-linked oligosaccharide labeled with 1-pyrenesulfonyl chloride by quadrupole time-of-flight tandem mass spectrometry after separation by micro- and nanoflow liquid chromatography. Biomed Chromatogr 2009; 23:912-21. [DOI: 10.1002/bmc.1201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Desantis S, Ventriglia G, Zizza S, De Santis T, Di Summa A, De Metrio G, Dell’Aquila M. Lectin-binding sites in isolated equine cumulus-oocyte complexes: Differential expression of glycosidic residues in complexes recovered with compact or expanded cumulus. Theriogenology 2009; 72:300-9. [DOI: 10.1016/j.theriogenology.2009.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 01/26/2009] [Accepted: 01/31/2009] [Indexed: 11/26/2022]
|
42
|
Characterization of the acidic N-linked glycans of the zona pellucida of prepuberal pigs by a mass spectrometric approach. Carbohydr Res 2009; 344:1541-9. [DOI: 10.1016/j.carres.2009.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 04/21/2009] [Accepted: 05/05/2009] [Indexed: 11/20/2022]
|
43
|
Mugnier S, Dell'Aquila ME, Pelaez J, Douet C, Ambruosi B, De Santis T, Lacalandra GM, Lebos C, Sizaret PY, Delaleu B, Monget P, Mermillod P, Magistrini M, Meyers SA, Goudet G. New insights into the mechanisms of fertilization: comparison of the fertilization steps, composition, and structure of the zona pellucida between horses and pigs. Biol Reprod 2009; 81:856-70. [PMID: 19587333 DOI: 10.1095/biolreprod.109.077651] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mechanism of fertilization remains largely enigmatic in mammals. Most studies exploring the molecular mechanism underlying fertilization have been restricted to a single species, generally the mouse, without a comparative approach. However, the identification of divergences between species could allow us to highlight key components in the mechanism of fertilization. In the pig, in vitro fertilization (IVF) and polyspermy rates are high, and spermatozoa penetrate easily through the zona pellucida (ZP). In contrast, IVF rates are low in the horse, and polyspermy is scarce. Our objective was to develop a comparative strategy between these two divergent models. First, we compared the role of equine and porcine gametes in the following five functions using intraspecific and interspecific IVF: ZP binding, acrosome reaction, penetration through the ZP, gamete fusion, and pronucleus formation. Under in vitro conditions, we showed that the ZP is a determining element in sperm-ZP attachment and penetration, whereas the capacity of the spermatozoa is of less importance. In contrast, the capacity of the spermatozoa is a key component of the acrosome reaction step. Second, we compared the composition and structure of the equine and porcine ZP. We observed differences in the number and localization of the ZP glycoproteins and in the mesh-like structure of the ZP between equine and porcine species. These differences might correlate with the differences in spermatozoal attachment and penetration rates. In conclusion, our comparative approach allows us to identify determining elements in the mechanism of fertilization.
Collapse
Affiliation(s)
- Sylvie Mugnier
- Institut National de la Recherche Agronomique, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Is the zona pellucida an intrinsic source of signals activating maternal recognition of the developing mammalian embryo? J Reprod Immunol 2009; 81:1-8. [DOI: 10.1016/j.jri.2009.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 03/12/2009] [Accepted: 04/03/2009] [Indexed: 11/30/2022]
|
45
|
Litscher ES, Williams Z, Wassarman PM. Zona pellucida glycoprotein ZP3 and fertilization in mammals. Mol Reprod Dev 2009; 76:933-41. [DOI: 10.1002/mrd.21046] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Muratori M, Luconi M, Marchiani S, Forti G, Baldi E. Molecular markers of human sperm functions. ACTA ACUST UNITED AC 2009; 32:25-45. [DOI: 10.1111/j.1365-2605.2008.00875.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Abstract
General mass spectrometry-based strategies for analysis of N-glycosylated peptides are described. The well-established method utilizes Peptide-N-glycosidase F (PNGase F) for in-gel or in-solution release of N-linked glycans from the polypeptide chains (along with the conversion of the formerly N-glycosylated Asn to Asp), thus allowing separate analysis of glycan moieties and deglycosylated peptides. However, no assignment of individual glycans to a glycosylation site can be realized. Intact glycopeptides (i.e., proteolytic mixtures in which the glycan chains stay attached at their original glycosylation sites) can be analyzed either by a direct infusion or with HPLC separation prior to MALDI or ESI mass spectrometric analysis to provide both information on the glycan structure and glycosylation site in the same experiment. Several different strategies for efficient in-solution digestion of glycoproteins are described, such as proteolytic digestion in the electrospray capillary and simultaneous analysis of the resulting (glyco)peptides.
Collapse
Affiliation(s)
- Stefanie Henning
- Institute for Medical Physics and Biophysics, University of Münster, Münster, Germany
| | | | | |
Collapse
|
48
|
Nixon B, Bielanowicz A, Mclaughlin EA, Tanphaichitr N, Ensslin MA, Aitken RJ. Composition and significance of detergent resistant membranes in mouse spermatozoa. J Cell Physiol 2009; 218:122-34. [DOI: 10.1002/jcp.21575] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Shur BD. Reassessing the role of protein-carbohydrate complementarity during sperm-egg interactions in the mouse. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2008; 52:703-15. [PMID: 18649283 DOI: 10.1387/ijdb.082571bs] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite years of intense study by many investigators, it may appear that we have made little progress towards a molecular understanding of mammalian sperm binding to the egg zona pellucida. An abundance of evidence derived from in vitro assays suggests that sperm-zona pellucida binding is dependent upon sperm recognition of specific glycan moieties on the zona pellucida glycoproteins. However, there is considerable disagreement regarding the identity of the zona pellucida sugars thought to mediate sperm binding, as well as disagreement over the identity of the sperm receptors themselves. Moreover, results from in vivo gene-targeting strategies fail to support a role for many, if not all, of the sperm receptors and their zona pellucida ligands implicated from in vitro assays. Nevertheless, a retrospective view of the literature suggests that some common principles are emerging regarding the molecular basis of mammalian sperm-zona binding, both with respect to the nature of the components that mediate binding, as well as the involvement of distinct receptor-ligand interactions, that involve both protein- and carbohydrate-dependent mechanisms of binding.
Collapse
Affiliation(s)
- Barry D Shur
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
50
|
Lemoine M, Grasseau I, Brillard JP, Blesbois E. A reappraisal of the factors involved in in vitro initiation of the acrosome reaction in chicken spermatozoa. Reproduction 2008; 136:391-9. [DOI: 10.1530/rep-08-0094] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chicken spermatozoa may remain in the female oviduct for a prolonged period before induction of the acrosome reaction on contact with the inner perivitelline layer (IPVL). By contrast, the acrosome reaction may be induced very rapidlyin vitroin the presence of IPVL and Ca2+. In the present study, we examined the extent to which the chicken acrosome reaction can be induced in media of various compositions in the presence or absence of IPVL and/or Ca2+and other factors known to be efficient in mammals. We also compared the efficacy of perivitelline layer (PL) taken at various states of oocyte maturation in initiating the reaction. The acrosome reaction was induced in less than 5 min in the presence of Ca2+and IPVL. Incubation of spermatozoa in different saline media (Beltsville poultry semen extender (BPSE); Dulbecco's modified eagle medium; NaCl-TES buffer) without IPVL showed a significant induction of acrosome reaction in BPSE supplemented with 5 mM Ca2+and in the three media after supplementation with Ca2+and Ca2+ionophore A23187. By contrast, the acrosome reaction was never induced without Ca2+. BSA, NaHCO3, and progesterone did not stimulate the acrosome reaction. Ca2+plus PL taken at various physiological states (follicle IPVL, ovulated IPVL, oviposited IPVL, and/or outer perivitelline layer) strongly stimulated the acrosome reaction, the latest states being the most efficient. Although PL induced the acrosome reaction in the presence of extracellular Ca2+, it was not possible to induce hyperactivation in chicken spermatozoa. Taken together, these results emphasize the central role of Ca2+in thein vitroinitiation of the acrosome reaction in chickens and show specific features of this induction in birds.
Collapse
|