1
|
Cardoso JCR, Mc Shane JC, Li Z, Peng M, Power DM. Revisiting the evolution of Family B1 GPCRs and ligands: Insights from mollusca. Mol Cell Endocrinol 2024; 586:112192. [PMID: 38408601 DOI: 10.1016/j.mce.2024.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Family B1 G protein-coupled receptors (GPCRs) are one of the most well studied neuropeptide receptor families since they play a central role in many biological processes including endocrine, gastrointestinal, cardiovascular and reproduction in animals. The genes for these receptors emerged from a common ancestral gene in bilaterian genomes and evolved via gene/genome duplications and deletions in vertebrate and invertebrate genomes. Their existence and function have mostly been characterized in vertebrates and few studies exist in invertebrate species. Recently, an increased interest in molluscs, means a series of genomes have become available, and since they are less modified than insect and nematode genomes, they are ideal to explore the origin and evolution of neuropeptide gene families. This review provides an overview of Family B1 GPCRs and their peptide ligands and incorporates new data obtained from Mollusca genomes and taking a comparative approach challenges existing models on their origin and evolution.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Jennifer C Mc Shane
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Zhi Li
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Maoxiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Vöcking O, Leclère L, Hausen H. The rhodopsin-retinochrome system for retinal re-isomerization predates the origin of cephalopod eyes. BMC Ecol Evol 2021; 21:215. [PMID: 34844573 PMCID: PMC8628405 DOI: 10.1186/s12862-021-01939-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background The process of photoreception in most animals depends on the light induced isomerization of the chromophore retinal, bound to rhodopsin. To re-use retinal, the all-trans-retinal form needs to be re-isomerized to 11-cis-retinal, which can be achieved in different ways. In vertebrates, this mostly includes a stepwise enzymatic process called the visual cycle. The best studied re-isomerization system in protostomes is the rhodopsin-retinochrome system of cephalopods, which consists of rhodopsin, the photoisomerase retinochrome and the protein RALBP functioning as shuttle for retinal. In this study we investigate the expression of the rhodopsin-retinochrome system and functional components of the vertebrate visual cycle in a polyplacophoran mollusk, Leptochiton asellus, and examine the phylogenetic distribution of the individual components in other protostome animals. Results Tree-based orthology assignments revealed that orthologs of the cephalopod retinochrome and RALBP are present in mollusks outside of cephalopods. By mining our dataset for vertebrate visual cycle components, we also found orthologs of the retinoid binding protein RLBP1, in polyplacophoran mollusks, cephalopods and a phoronid. In situ hybridization and antibody staining revealed that L. asellus retinochrome is co-expressed in the larval chiton photoreceptor cells (PRCs) with the visual rhodopsin, RALBP and RLBP1. In addition, multiple retinal dehydrogenases are expressed in the PRCs, which might also contribute to the rhodopsin-retinochrome system. Conclusions We conclude that the rhodopsin-retinochrome system is a common feature of mollusk PRCs and predates the origin of cephalopod eyes. Our results show that this system has to be extended by adding further components, which surprisingly, are shared with vertebrates. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01939-x.
Collapse
Affiliation(s)
- Oliver Vöcking
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway. .,Department of Biology, University of Kentucky, Thomas Hunt Morgan Building, 675 Rose Street, Lexington, KY, 40508, USA.
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France
| | - Harald Hausen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
| |
Collapse
|
3
|
Krueger K, Boehme E, Klettner AK, Zille M. The potential of marine resources for retinal diseases: a systematic review of the molecular mechanisms. Crit Rev Food Sci Nutr 2021; 62:7518-7560. [PMID: 33970706 DOI: 10.1080/10408398.2021.1915242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We rely on vision more than on any other sense to obtain information about our environment. Hence, the loss or even impairment of vision profoundly affects our quality of life. Diet or food components have already demonstrated beneficial effects on the development of retinal diseases. Recently, there has been a growing interest in resources from marine animals and plants for the prevention of retinal diseases through nutrition. Especially fish intake and omega-3 fatty acids have already led to promising results, including associations with a reduced incidence of retinal diseases. However, the underlying molecular mechanisms are insufficiently explained. The aim of this review was to summarize the known mechanistic effects of marine resources on the pathophysiological processes in retinal diseases. We performed a systematic literature review following the PRISMA guidelines and identified 107 studies investigating marine resources in the context of retinal diseases. Of these, 46 studies described the underlying mechanisms including anti-inflammatory, antioxidant, antiangiogenic/vasoprotective, cytoprotective, metabolic, and retinal function effects, which we critically summarize. We further discuss perspectives on the use of marine resources for human nutrition to prevent retinal diseases with a particular focus on regulatory aspects, health claims, safety, and bioavailability.
Collapse
Affiliation(s)
- Kristin Krueger
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany
| | - Elke Boehme
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany
| | - Alexa Karina Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Quincke Research Center, Kiel, Germany
| | - Marietta Zille
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Abstract
Membranes surrounding the biological cell and its internal compartments host proteins that catalyze chemical reactions essential for the functioning of the cell. Rather than being a passive structural matrix that holds membrane-embedded proteins in place, the membrane can largely shape the conformational energy landscape of membrane proteins and impact the energetics of their chemical reaction. Here, we highlight the challenges in understanding how lipids impact the conformational energy landscape of macromolecular membrane complexes whose functioning involves chemical reactions including proton transfer. We review here advances in our understanding of how chemical reactions occur at membrane interfaces gleaned with both theoretical and experimental advances using simple protein systems as guides. Our perspective is that of bridging experiments with theory to understand general physicochemical principles of membrane reactions, with a long term goal of furthering our understanding of the role of the lipids on the functioning of complex macromolecular assemblies at the membrane interface.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - M Joanne Lemieux
- University of Alberta , Department of Biochemistry, Membrane Protein Disease Research Group , Edmonton , Alberta T6G 2H7 , Canada
| |
Collapse
|
5
|
Mallory DP, Gutierrez E, Pinkevitch M, Klinginsmith C, Comar WD, Roushar FJ, Schlebach JP, Smith AW, Jastrzebska B. The Retinitis Pigmentosa-Linked Mutations in Transmembrane Helix 5 of Rhodopsin Disrupt Cellular Trafficking Regardless of Oligomerization State. Biochemistry 2018; 57:5188-5201. [PMID: 30085663 DOI: 10.1021/acs.biochem.8b00403] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors can exist as dimers and higher-order oligomers in biological membranes. The specific oligomeric assembly of these receptors is believed to play a major role in their function, and the disruption of native oligomers has been implicated in specific human pathologies. Computational predictions and biochemical analyses suggest that two molecules of rhodopsin (Rho) associate through the interactions involving its fifth transmembrane helix (TM5). Interestingly, there are several pathogenic loss-of-function mutations within TM5 that face the lipid bilayer in a manner that could potentially influence the dimerization of Rho. Though several of these mutations are known to induce misfolding, the pathogenic defects associated with V209M and F220C Rho remain unclear. In this work, we utilized a variety of biochemical and biophysical approaches to elucidate the effects of these mutations on the dimerization, folding, trafficking, and function of Rho in relation to other pathogenic TM5 variants. Chemical cross-linking, bioluminescence energy transfer, and pulsed-interleaved excitation fluorescence cross-correlation spectroscopy experiments revealed that each of these mutants exhibits a wild type-like propensity to self-associate within the plasma membrane. However, V209M and F220C each exhibit subtle defects in cellular trafficking. Together, our results suggest that the RP pathology associated with the expression of the V209M and F220C mutants could arise from defects in folding and cellular trafficking rather than the disruption of dimerization, as has been previously proposed.
Collapse
Affiliation(s)
- D Paul Mallory
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Elizabeth Gutierrez
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Margaret Pinkevitch
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Christie Klinginsmith
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - William D Comar
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Francis J Roushar
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| | - Jonathan P Schlebach
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| | - Adam W Smith
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
6
|
Chen Y, Chen Y, Jastrzebska B, Golczak M, Gulati S, Tang H, Seibel W, Li X, Jin H, Han Y, Gao S, Zhang J, Liu X, Heidari-Torkabadi H, Stewart PL, Harte WE, Tochtrop GP, Palczewski K. A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration. Nat Commun 2018; 9:1976. [PMID: 29773803 PMCID: PMC5958115 DOI: 10.1038/s41467-018-04261-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
Rhodopsin homeostasis is tightly coupled to rod photoreceptor cell survival and vision. Mutations resulting in the misfolding of rhodopsin can lead to autosomal dominant retinitis pigmentosa (adRP), a progressive retinal degeneration that currently is untreatable. Using a cell-based high-throughput screen (HTS) to identify small molecules that can stabilize the P23H-opsin mutant, which causes most cases of adRP, we identified a novel pharmacological chaperone of rod photoreceptor opsin, YC-001. As a non-retinoid molecule, YC-001 demonstrates micromolar potency and efficacy greater than 9-cis-retinal with lower cytotoxicity. YC-001 binds to bovine rod opsin with an EC50 similar to 9-cis-retinal. The chaperone activity of YC-001 is evidenced by its ability to rescue the transport of multiple rod opsin mutants in mammalian cells. YC-001 is also an inverse agonist that non-competitively antagonizes rod opsin signaling. Significantly, a single dose of YC-001 protects Abca4 -/- Rdh8 -/- mice from bright light-induced retinal degeneration, suggesting its broad therapeutic potential.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Suite 300, Pittsburgh, PA, 15219, USA.
- Department of Ophthalmology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA.
| | - Yu Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - Sahil Gulati
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - Hong Tang
- Drug Discovery Center, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH, 45237, USA
| | - William Seibel
- Drug Discovery Center, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH, 45237, USA
| | - Xiaoyu Li
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Hui Jin
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Yong Han
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Songqi Gao
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Jianye Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Xujie Liu
- Department of Ophthalmology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Hossein Heidari-Torkabadi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Phoebe L Stewart
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - William E Harte
- Office of Translation and Innovation, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Santos FM, Gaspar LM, Ciordia S, Rocha AS, Castro E Sousa JP, Paradela A, Passarinha LA, Tomaz CT. iTRAQ Quantitative Proteomic Analysis of Vitreous from Patients with Retinal Detachment. Int J Mol Sci 2018; 19:ijms19041157. [PMID: 29641463 PMCID: PMC5979392 DOI: 10.3390/ijms19041157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/07/2018] [Accepted: 04/08/2018] [Indexed: 12/15/2022] Open
Abstract
Rhegmatogenous retinal detachment (RRD) is a potentially blinding condition characterized by a physical separation between neurosensory retina and retinal pigment epithelium. Quantitative proteomics can help to understand the changes that occur at the cellular level during RRD, providing additional information about the molecular mechanisms underlying its pathogenesis. In the present study, iTRAQ labeling was combined with two-dimensional LC-ESI-MS/MS to find expression changes in the proteome of vitreous from patients with RRD when compared to control samples. A total of 150 proteins were found differentially expressed in the vitreous of patients with RRD, including 96 overexpressed and 54 underexpressed. Several overexpressed proteins, several such as glycolytic enzymes (fructose-bisphosphate aldolase A, gamma-enolase, and phosphoglycerate kinase 1), glucose transporters (GLUT-1), growth factors (metalloproteinase inhibitor 1), and serine protease inhibitors (plasminogen activator inhibitor 1) are regulated by HIF-1, which suggests that HIF-1 signaling pathway can be triggered in response to RRD. Also, the accumulation of photoreceptor proteins, including phosducin, rhodopsin, and s-arrestin, and vimentin in vitreous may indicate that photoreceptor degeneration occurs in RRD. Also, the accumulation of photoreceptor proteins, including phosducin, rhodopsin, and s-arrestin, and vimentin in vitreous may indicate that photoreceptor degeneration occurs in RRD. Nevertheless, the differentially expressed proteins found in this study suggest that different mechanisms are activated after RRD to promote the survival of retinal cells through complex cellular responses.
Collapse
Affiliation(s)
- Fátima Milhano Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
- Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal.
- Laboratory of Pharmacology and Toxicology-UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal.
| | - Leonor Mesquita Gaspar
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
- Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal.
| | - Sergio Ciordia
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ana Sílvia Rocha
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
- Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal.
| | - João Paulo Castro E Sousa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
- Hospital Center Leiria-Pombal, 3100-462 Pombal, Portugal.
| | - Alberto Paradela
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Luís António Passarinha
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
- Laboratory of Pharmacology and Toxicology-UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal.
| | - Cândida Teixeira Tomaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
- Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal.
| |
Collapse
|
8
|
Cerione RA. The experiences of a biochemist in the evolving world of G protein-dependent signaling. Cell Signal 2017; 41:2-8. [PMID: 28214588 DOI: 10.1016/j.cellsig.2017.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 12/24/2022]
Abstract
This review describes how a biochemist and basic researcher (i.e. myself) came to make a career in the area of receptor-coupled signal transduction and the roles cellular signaling activities play both in normal physiology and in disease. Much of what has been the best part of this research life is due to the time I spent with Bob Lefkowitz (1982-1985), during an extraordinary period in the emerging field of G-protein-coupled receptors. Among my laboratory colleagues were some truly outstanding scientists including Marc Caron, the late Jeffrey Stadel, Berta Strulovici, Jeff Benovic, Brian Kobilka, and Henrik Dohlman, as well as many more. I came to Bob's laboratory after being trained as a physical biochemist and enzymologist. Bob and his laboratory exposed me to a research style that made it possible to connect the kinds of fundamental biochemical and mechanistic questions that I loved to think about with a direct relevance to disease. Indeed, I owe Bob a great deal for having imparted a research style and philosophy that has remained with me throughout my career. Below, I describe how this has taken me on an interesting journey through various areas of cellular signaling, which have a direct relevance to the actions of one or another type of G-protein.
Collapse
Affiliation(s)
- Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853-6401, US.
| |
Collapse
|
9
|
Bhat P, Huo S. Antibodies in autoimmune retinopathy. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1246247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Albert A, Alexander D, Boesze-Battaglia K. Cholesterol in the rod outer segment: A complex role in a "simple" system. Chem Phys Lipids 2016; 199:94-105. [PMID: 27216754 DOI: 10.1016/j.chemphyslip.2016.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/01/2022]
Abstract
The rod outer segment (ROS) of retinal photoreceptor cells consists of disk membranes surrounded by the plasma membrane. It is a relatively uncomplicated system in which to investigate cholesterol distribution and its functional consequences in biologically relevant membranes. The light sensitive protein, rhodopsin is the major protein in both membranes, but the lipid compositions are significantly different in the disk and plasma membranes. Cholesterol is high in the ROS plasma membrane. Disk membranes are synthesized at the base of the ROS and are also high in cholesterol. However, cholesterol is rapidly depleted as the disks are apically displaced. During this apical displacement the disk phospholipid fatty acyl chains become progressively more unsaturated, which creates an environment unfavorable to cholesterol. Membrane cholesterol has functional consequences. The high cholesterol found in the plasma membrane and in newly synthesized disks inhibits the activation of rhodopsin. As disks are apically displaced and cholesterol is depleted rhodopsin becomes more responsive to light. This effect of cholesterol on rhodopsin activation has been shown in both native and reconstituted membranes. The modulation of activity can be at least partially explained by the effect of cholesterol on bulk lipid properties. Cholesterol decreases the partial free volume of the hydrocarbon region of the bilayer and thereby inhibits rhodopsin conformational changes required for activation. However, cholesterol binds to rhodopsin and may directly affect the protein also. Furthermore, cholesterol stabilizes rhodopsin to thermal denaturation. The membrane must provide an environment that allows rhodopsin conformational changes required for activation while also stabilizing the protein to thermal denaturation. Cholesterol thus plays a complex role in modulating the activity and stability of rhodopsin, which have implications for other G-protein coupled receptors.
Collapse
|
11
|
Assessing the relevance of light for fungi: Implications and insights into the network of signal transmission. ADVANCES IN APPLIED MICROBIOLOGY 2016; 76:27-78. [PMID: 21924971 DOI: 10.1016/b978-0-12-387048-3.00002-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light represents an important environmental cue, which provides information enabling fungi to prepare and react to the different ambient conditions between day and night. This adaptation requires both anticipation of the changing conditions, which is accomplished by daily rhythmicity of gene expression brought about by the circadian clock, and reaction to sudden illumination. Besides perception of the light signal, also integration of this signal with other environmental cues, most importantly nutrient availability, necessitates light-dependent regulation of signal transduction pathways and metabolic pathways. An influence of light and/or the circadian clock is known for the cAMP pathway, heterotrimeric G-protein signaling, mitogen-activated protein kinases, two-component phosphorelays, and Ca(2+) signaling. Moreover, also the target of rapamycin signaling pathway and reactive oxygen species as signal transducing elements are assumed to be connected to the light-response pathway. The interplay of the light-response pathway with signaling cascades results in light-dependent regulation of primary and secondary metabolism, morphology, development, biocontrol activity, and virulence. The frequent use of fungi in biotechnology as well as analysis of fungi in the artificial environment of a laboratory therefore requires careful consideration of still operative evolutionary heritage of these organisms. This review summarizes the diverse effects of light on fungi and the mechanisms they apply to deal both with the information content and with the harmful properties of light. Additionally, the implications of the reaction of fungi to light in a laboratory environment for experimental work and industrial applications are discussed.
Collapse
|
12
|
van Hazel I, Dungan SZ, Hauser FE, Morrow JM, Endler JA, Chang BSW. A comparative study of rhodopsin function in the great bowerbird (Ptilonorhynchus nuchalis): Spectral tuning and light-activated kinetics. Protein Sci 2016; 25:1308-18. [PMID: 26889650 DOI: 10.1002/pro.2902] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/18/2022]
Abstract
Rhodopsin is the visual pigment responsible for initiating the phototransduction cascade in vertebrate rod photoreceptors. Although well-characterized in a few model systems, comparative studies of rhodopsin function, particularly for nonmammalian vertebrates are comparatively lacking. Bowerbirds are rare among passerines in possessing a key substitution, D83N, at a site that is otherwise highly conserved among G protein-coupled receptors. While this substitution is present in some dim-light adapted vertebrates, often accompanying another unusual substitution, A292S, its functional relevance in birds is uncertain. To investigate functional effects associated with these two substitutions, we use the rhodopsin gene from the great bowerbird (Ptilonorhynchus nuchalis) as a background for site-directed mutagenesis, in vitro expression and functional characterization. We also mutated these sites in two additional rhodopsins that do not naturally possess N83, chicken and bovine, for comparison. Both sites were found to contribute to spectral blue-shifts, but had opposing effects on kinetic rates. Substitutions at site 83 were found to primarily affect the kinetics of light-activated rhodopsin, while substitutions at site 292 had a larger impact on spectral tuning. The contribution of substitutions at site 83 to spectral tuning in particular depended on genetic background, but overall, the effects of substitutions were otherwise surprisingly additive, and the magnitudes of functional shifts were roughly similar across all three genetic backgrounds. By employing a comparative approach with multiple species, our study provides new insight into the joint impact of sites 83 and 292 on rhodopsin structure-function as well as their evolutionary significance for dim-light vision across vertebrates.
Collapse
Affiliation(s)
- Ilke van Hazel
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | - Sarah Z Dungan
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | - Frances E Hauser
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | - James M Morrow
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - John A Endler
- Centre for Integrative Ecology, Deakin University, Australia
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Canada
| |
Collapse
|
13
|
Chatterjee D, Eckert CE, Slavov C, Saxena K, Fürtig B, Sanders CR, Gurevich VV, Wachtveitl J, Schwalbe H. Influence of Arrestin on the Photodecay of Bovine Rhodopsin. Angew Chem Int Ed Engl 2015; 54:13555-60. [PMID: 26383645 PMCID: PMC4685475 DOI: 10.1002/anie.201505798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/11/2015] [Indexed: 11/07/2022]
Abstract
Continued activation of the photocycle of the dim-light receptor rhodopsin leads to the accumulation of all-trans-retinal in the rod outer segments (ROS). This accumulation can damage the photoreceptor cell. For retinal homeostasis, deactivation processes are initiated in which the release of retinal is delayed. One of these processes involves the binding of arrestin to rhodopsin. Here, the interaction of pre-activated truncated bovine visual arrestin (Arr(Tr)) with rhodopsin in 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC) micelles is investigated by solution NMR techniques and flash photolysis spectroscopy. Our results show that formation of the rhodopsin-arrestin complex markedly influences partitioning in the decay kinetics of rhodopsin, which involves the simultaneous formation of a meta II and a meta III state from the meta I state. Binding of Arr(Tr) leads to an increase in the population of the meta III state and consequently to an approximately twofold slower release of all-trans-retinal from rhodopsin.
Collapse
Affiliation(s)
- Deep Chatterjee
- Institute of Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt/Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main (Germany)
| | - Carl Elias Eckert
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main (Germany)
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main (Germany)
| | - Krishna Saxena
- Institute of Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt/Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main (Germany)
| | - Boris Fürtig
- Institute of Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt/Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main (Germany)
| | - Charles R Sanders
- Department of Biochemistry, Center for Structural Biology, Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 (USA)
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232 (USA)
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main (Germany).
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt/Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main (Germany).
| |
Collapse
|
14
|
Chatterjee D, Eckert CE, Slavov C, Saxena K, Fürtig B, Sanders CR, Gurevich VV, Wachtveitl J, Schwalbe H. Influence of Arrestin on the Photodecay of Bovine Rhodopsin. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa. J Neurosci 2015; 34:13336-48. [PMID: 25274813 DOI: 10.1523/jneurosci.1655-14.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited neurodegenerative disease involving progressive vision loss, and is often linked to mutations in the rhodopsin gene. Mutations that abolish N-terminal glycosylation of rhodopsin (T4K and T17M) cause sector RP in which the inferior retina preferentially degenerates, possibly due to greater light exposure of this region. Transgenic animal models expressing rhodopsin glycosylation mutants also exhibit light exacerbated retinal degeneration (RD). In this study, we used transgenic Xenopus laevis to investigate the pathogenic mechanism connecting light exposure and RD in photoreceptors expressing T4K or T17M rhodopsin. We demonstrate that increasing the thermal stability of these rhodopsins via a novel disulfide bond resulted in significantly less RD. Furthermore, T4K or T17M rhodopsins that were constitutively inactive (due to lack of the chromophore-binding site or dietary deprivation of the chromophore precursor vitamin A) induced less toxicity. In contrast, variants in the active conformation accumulated in the ER and caused RD even in the absence of light. In vitro, T4K and T17M rhodopsins showed reduced ability to regenerate pigment after light exposure. Finally, although multiple amino acid substitutions of T4 abolished glycosylation at N2 but were not toxic, similar substitutions of T17 were not tolerated, suggesting that the carbohydrate moiety at N15 is critical for cell viability. Our results identify a novel pathogenic mechanism in which the glycosylation-deficient rhodopsins are destabilized by light activation. These results have important implications for proposed RP therapies, such as vitamin A supplementation, which may be ineffective or even detrimental for certain RP genotypes.
Collapse
|
16
|
Flipping the Photoswitch: Ion Channels Under Light Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 869:101-17. [DOI: 10.1007/978-1-4939-2845-3_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Choi AR, Shi L, Brown LS, Jung KH. Cyanobacterial light-driven proton pump, gloeobacter rhodopsin: complementarity between rhodopsin-based energy production and photosynthesis. PLoS One 2014; 9:e110643. [PMID: 25347537 PMCID: PMC4210194 DOI: 10.1371/journal.pone.0110643] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/02/2014] [Indexed: 12/02/2022] Open
Abstract
A homologue of type I rhodopsin was found in the unicellular Gloeobacter violaceus PCC7421, which is believed to be primitive because of the lack of thylakoids and peculiar morphology of phycobilisomes. The Gloeobacter rhodopsin (GR) gene encodes a polypeptide of 298 amino acids. This gene is localized alone in the genome unlike cyanobacterium Anabaena opsin, which is clustered together with 14 kDa transducer gene. Amino acid sequence comparison of GR with other type I rhodopsin shows several conserved residues important for retinal binding and H+ pumping. In this study, the gene was expressed in Escherichia coli and bound all-trans retinal to form a pigment (λmax = 544 nm at pH 7). The pKa of proton acceptor (Asp121) for the Schiff base, is approximately 5.9, so GR can translocate H+ under physiological conditions (pH 7.4). In order to prove the functional activity in the cell, pumping activity was measured in the sphaeroplast membranes of E. coli and one of Gloeobacter whole cell. The efficient proton pumping and rapid photocycle of GR strongly suggests that Gloeobacter rhodopsin functions as a proton pumping in its natural environment, probably compensating the shortage of energy generated by chlorophyll-based photosynthesis without thylakoids.
Collapse
Affiliation(s)
- Ah Reum Choi
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea
| | - Lichi Shi
- Department of Physics, University of Guelph, Ontario, Canada
| | - Leonid S. Brown
- Department of Physics, University of Guelph, Ontario, Canada
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
18
|
Ozaki T, Nakazawa M, Kudo T, Hirano S, Suzuki K, Ishiguro SI. Protection of Cone Photoreceptor M-Opsin Degradation with 9-Cis-β-Carotene-Rich AlgaDunaliella bardawilinRpe65−/−Mouse Retinal Explant Culture. Curr Eye Res 2014; 39:1221-31. [DOI: 10.3109/02713683.2014.907430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Chen Y, Jastrzebska B, Cao P, Zhang J, Wang B, Sun W, Yuan Y, Feng Z, Palczewski K. Inherent instability of the retinitis pigmentosa P23H mutant opsin. J Biol Chem 2014; 289:9288-303. [PMID: 24515108 PMCID: PMC3979360 DOI: 10.1074/jbc.m114.551713] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/05/2014] [Indexed: 11/06/2022] Open
Abstract
The P23H opsin mutation is the most common cause of autosomal dominant retinitis pigmentosa. Even though the pathobiology of the resulting retinal degeneration has been characterized in several animal models, its complex molecular mechanism is not well understood. Here, we expressed P23H bovine rod opsin in the nervous system of Caenorhabditis elegans. Expression was low due to enhanced protein degradation. The mutant opsin was glycosylated, but the polysaccharide size differed from that of the normal protein. Although P23H opsin aggregated in the nervous system of C. elegans, the pharmacological chaperone 9-cis-retinal stabilized it during biogenesis, producing a variant of rhodopsin called P23H isorhodopsin. In vitro, P23H isorhodopsin folded correctly, formed the appropriate disulfide bond, could be photoactivated but with reduced sensitivity, and underwent Meta II decay at a rate similar to wild type isorhodopsin. In worm neurons, P23H isorhodopsin initiated phototransduction by coupling with the endogenous Gi/o signaling cascade that induced loss of locomotion. Using pharmacological interventions affecting protein synthesis and degradation, we showed that the chromophore could be incorporated either during or after mutant protein translation. However, regeneration of P23H isorhodopsin with chromophore was significantly slower than that of wild type isorhodopsin. This effect, combined with the inherent instability of P23H rhodopsin, could lead to the structural cellular changes and photoreceptor death found in autosomal dominant retinitis pigmentosa. These results also suggest that slow regeneration of P23H rhodopsin could prevent endogenous chromophore-mediated stabilization of rhodopsin in the retina.
Collapse
Affiliation(s)
| | | | | | | | - Benlian Wang
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965 and
| | - Wenyu Sun
- Polgenix Inc., Cleveland, Ohio 44106
| | | | | | | |
Collapse
|
20
|
Affiliation(s)
| | | | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case
Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106-4965,
United States
| |
Collapse
|
21
|
Petrs-Silva H, Linden R. Advances in gene therapy technologies to treat retinitis pigmentosa. Clin Ophthalmol 2013; 8:127-36. [PMID: 24391438 PMCID: PMC3878960 DOI: 10.2147/opth.s38041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Retinitis pigmentosa (RP) is a class of diseases that leads to progressive degeneration of the retina. Experimental approaches to gene therapy for the treatment of inherited retinal dystrophies have advanced in recent years, inclusive of the safe delivery of genes to the human retina. This review is focused on the development of gene therapy for RP using recombinant adenoassociated viral vectors, which show a positive safety record and have so far been successful in several clinical trials for congenital retinal disease. Gene therapy for RP is under development in a variety of animal models, and the results raise expectations of future clinical application. Nonetheless, the translation of such strategies to the bedside requires further understanding of the mutations and mechanisms that cause visual defects, as well as thorough examination of potential adverse effects.
Collapse
Affiliation(s)
- Hilda Petrs-Silva
- Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Linden
- Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Zhu S, Brown MF, Feller SE. Retinal conformation governs pKa of protonated Schiff base in rhodopsin activation. J Am Chem Soc 2013; 135:9391-8. [PMID: 23701524 PMCID: PMC5176254 DOI: 10.1021/ja4002986] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have explored the relationship between conformational energetics and the protonation state of the Schiff base in retinal, the covalently bound ligand responsible for activating the G protein-coupled receptor rhodopsin, using quantum chemical calculations. Guided by experimental structural determinations and large-scale molecular simulations on this system, we examined rotation about each bond in the retinal polyene chain, for both the protonated and deprotonated states that represent the dark and photoactivated states, respectively. Particular attention was paid to the torsional degrees of freedom that determine the shape of the molecule, and hence its interactions with the protein binding pocket. While most torsional degrees of freedom in retinal are characterized by large energetic barriers that minimize structural fluctuations under physiological temperatures, the C6-C7 dihedral defining the relative orientation of the β-ionone ring to the polyene chain has both modest barrier heights and a torsional energy surface that changes dramatically with protonation of the Schiff base. This surprising coupling between conformational degrees of freedom and protonation state is further quantified by calculations of the pKa as a function of the C6-C7 dihedral angle. Notably, pKa shifts of greater than two units arise from torsional fluctuations observed in molecular dynamics simulations of the full ligand-protein-membrane system. It follows that fluctuations in the protonation state of the Schiff base occur prior to forming the activated MII state. These new results shed light on important mechanistic aspects of retinal conformational changes that are involved in the activation of rhodopsin in the visual process.
Collapse
Affiliation(s)
- Shengshuang Zhu
- Department of Chemistry, Wabash College, Crawfordsville IN 47933
| | - Michael F. Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson AZ 85721
- Department of Physics, University of Arizona, Tucson AZ 85721
| | - Scott E. Feller
- Department of Chemistry, Wabash College, Crawfordsville IN 47933
| |
Collapse
|
23
|
Liu MY, Liu J, Mehrotra D, Liu Y, Guo Y, Baldera-Aguayo PA, Mooney VL, Nour AM, Yan ECY. Thermal stability of rhodopsin and progression of retinitis pigmentosa: comparison of S186W and D190N rhodopsin mutants. J Biol Chem 2013; 288:17698-712. [PMID: 23625926 DOI: 10.1074/jbc.m112.397257] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Over 100 point mutations in the rhodopsin gene have been associated with retinitis pigmentosa (RP), a family of inherited visual disorders. Among these, we focused on characterizing the S186W mutation. We compared the thermal properties of the S186W mutant with another RP-causing mutant, D190N, and with WT rhodopsin. To assess thermal stability, we measured the rate of two thermal reactions contributing to the thermal decay of rhodopsin as follows: thermal isomerization of 11-cis-retinal and hydrolysis of the protonated Schiff base linkage between the 11-cis-retinal chromophore and opsin protein. We used UV-visible spectroscopy and HPLC to examine the kinetics of these reactions at 37 and 55 °C for WT and mutant rhodopsin purified from HEK293 cells. Compared with WT rhodopsin and the D190N mutant, the S186W mutation dramatically increases the rates of both thermal isomerization and dark state hydrolysis of the Schiff base by 1-2 orders of magnitude. The results suggest that the S186W mutant thermally destabilizes rhodopsin by disrupting a hydrogen bond network at the receptor's active site. The decrease in the thermal stability of dark state rhodopsin is likely to be associated with higher levels of dark noise that undermine the sensitivity of rhodopsin, potentially accounting for night blindness in the early stages of RP. Further studies of the thermal stability of additional pathogenic rhodopsin mutations in conjunction with clinical studies are expected to provide insight into the molecular mechanism of RP and test the correlation between rhodopsin's thermal stability and RP progression in patients.
Collapse
Affiliation(s)
- Monica Yun Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yagai S, Iwai K, Karatsu T, Kitamura A. Photoswitchable Exciton Coupling in Merocyanine-Diarylethene Multi-Chromophore Hydrogen-Bonded Complexes. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205504] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Yagai S, Iwai K, Karatsu T, Kitamura A. Photoswitchable Exciton Coupling in Merocyanine-Diarylethene Multi-Chromophore Hydrogen-Bonded Complexes. Angew Chem Int Ed Engl 2012; 51:9679-83. [DOI: 10.1002/anie.201205504] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Indexed: 11/12/2022]
|
26
|
Atomic force microscopy for the study of membrane proteins. Curr Opin Biotechnol 2012; 23:510-5. [DOI: 10.1016/j.copbio.2011.11.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/08/2011] [Accepted: 11/25/2011] [Indexed: 11/19/2022]
|
27
|
Herz J, Verhoefen MK, Weber I, Bamann C, Glaubitz C, Wachtveitl J. Critical role of Asp227 in the photocycle of proteorhodopsin. Biochemistry 2012; 51:5589-600. [PMID: 22738119 DOI: 10.1021/bi3003764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photocycle of the proton acceptor complex mutant D227N of the bacterial retinal protein proteorhodopsin is investigated employing steady state pH-titration experiments in the UV-visible range as well as femtosecond-pump-probe spectroscopy and flash photolysis in the visible spectral range. The evaluation of the pH-dependent spectra showed that the neutralization of the charge at position 227 has a remarkable influence on the ground state properties of the protein. Both the pK(a) values of the primary proton acceptor and of the Schiff base are considerably decreased. Femtosecond-time-resolved measurements demonstrate that the general S(1) deactivation pathway; that is, the K-state formation is preserved in the D227N mutant. However, the pH-dependence of the reaction rate is lost by the substitution of Asp227 with an asparagine. Also no significant kinetic differences are observed upon deuteration. This is explained by the lack of a strongly hydrogen-bonded water in the vicinity of Asp97, Asp227, and the Schiff base or a change in the hydrogen bonding of it (Ikeda et al. (2007) Biochemistry 46, 5365-5373). The flash photolysis measurements prove a considerably elongated photocycle with pronounced pH-dependence. Interestingly, at pH 9 the M-state is visible until the end of the reaction cycle, leading to the conclusion that the mutation does not only lower the pK(a) of the Schiff base in the unphotolyzed ground state but also prevents an efficient reprotonation reaction.
Collapse
Affiliation(s)
- Julia Herz
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
28
|
The physiological impact of microRNA gene regulation in the retina. Cell Mol Life Sci 2012; 69:2739-50. [PMID: 22460583 DOI: 10.1007/s00018-012-0976-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/22/2012] [Accepted: 03/15/2012] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are small, stable RNA molecules that post-transcriptionally regulate gene expression in plants and animals by base pairing to partially complementary sequences on target mRNAs to inhibit protein synthesis. More than 250 miRNAs are reportedly expressed in the retina, and miRNA gene regulation has been shown to affect retinal development, function, and disease. Here we highlight recent advances in understanding the functional roles of vertebrate retinal miRNAs. Details are emerging about the physiological impact of specific miRNAs in the developing and mature retina, and we discuss a group of emerging technologies for studying miRNAs, which can be employed to yield a deeper understanding of retinal miRNA gene regulation.
Collapse
|
29
|
Quantifying the differential effects of DHA and DPA on the early events in visual signal transduction. Chem Phys Lipids 2012; 165:393-400. [PMID: 22405878 DOI: 10.1016/j.chemphyslip.2012.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 11/24/2022]
Abstract
A range of evidence from animal, clinical and epidemiological studies indicates that highly polyunsaturated acyl chains play important roles in development, cognition, vision and other aspects of neurological function. In a number of these studies n3 polyunsaturated fatty acids (PUFAs) appear to be more efficacious than n6 PUFAs. In a previous study of retinal rod outer segments obtained from rats raised on either an n3 adequate or deficient diet, we demonstrated that the replacement of 22:6n3 by 22:5n6 in the n3 deficient rats led to functional deficits in each step in the visual signaling process (Niu et al., 2004). In this study, we examined rhodopsin and phosphodiesterase function and acyl chain packing properties in membranes consisting of phosphatidylcholines with sn-1=18:0, and sn-2=22:6n3, 22:5n6, or 22:5n3 in order to determine if differences in function are due to the loss of one double bond or due to differences in double bond location. At 37 °C the n6 lipid shifted the equilibrium between the active metarhodopsin II (MII) state and inactive metarhodopsin I (MI) state towards MI. In addition, 22:5n6 reduced the rates of MII formation and MII-transducin complex formation by 2- and 6-fold, respectively. At a physiologically relevant level of rhodopsin light stimulation, the activity of phosphodiesterase was reduced by 50% in the 22:5n6 membrane, relative to either of the n3 membranes. Activity levels in the two n3 membranes were essentially identical. Ensemble acyl chain order was assessed with time-resolved fluorescence measurements of the membrane probe diphenylhexatriene (DPH). Analysis in terms of the orientational distribution of DPH showed that acyl chain packing in the two n3 membranes is quite similar, while in the 22:5n6 membrane there was considerably less packing disorder in the bilayer midplane. These results demonstrate that the n3 bond configuration uniquely optimizes the early steps in signaling via a mechanism which may involve acyl chain packing deep in the bilayer.
Collapse
|
30
|
Yanai N, Uemura T, Inoue M, Matsuda R, Fukushima T, Tsujimoto M, Isoda S, Kitagawa S. Guest-to-Host Transmission of Structural Changes for Stimuli-Responsive Adsorption Property. J Am Chem Soc 2012; 134:4501-4. [DOI: 10.1021/ja2115713] [Citation(s) in RCA: 285] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nobuhiro Yanai
- Department of Synthetic Chemistry
and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,
Japan
| | - Takashi Uemura
- Department of Synthetic Chemistry
and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,
Japan
| | - Masafumi Inoue
- Department of Synthetic Chemistry
and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,
Japan
| | - Ryotaro Matsuda
- ERATO Kitagawa Integrated Pores Project, Kyoto Research Park Building
#3, Shimogyo-ku, Kyoto 600-8815, Japan
- Institute for Integrated Cell-Material
Sciences (iCeMS), Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomohiro Fukushima
- Department of Synthetic Chemistry
and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,
Japan
| | - Masahiko Tsujimoto
- Institute for Integrated Cell-Material
Sciences (iCeMS), Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Seiji Isoda
- Institute for Integrated Cell-Material
Sciences (iCeMS), Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Susumu Kitagawa
- Department of Synthetic Chemistry
and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,
Japan
- ERATO Kitagawa Integrated Pores Project, Kyoto Research Park Building
#3, Shimogyo-ku, Kyoto 600-8815, Japan
- Institute for Integrated Cell-Material
Sciences (iCeMS), Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
31
|
Abstract
Rhodopsin is the first G-protein-coupled receptor (GPCR) with its three-dimensional structure solved by X-ray crystallography. The crystal structure of rhodopsin has revealed the molecular mechanism of photoreception and signal transduction in the visual system. Although several other GPCR crystal structures have been reported over the past few years, the rhodopsin structure remains an important model for understanding the structural and functional characteristics of other GPCRs. This review summarizes the structural features, the photoactivation, and the G protein signal transduction of rhodopsin.
Collapse
|
32
|
Fain GL. Adaptation of mammalian photoreceptors to background light: putative role for direct modulation of phosphodiesterase. Mol Neurobiol 2011; 44:374-82. [PMID: 21922272 DOI: 10.1007/s12035-011-8205-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/04/2011] [Indexed: 11/26/2022]
Abstract
All sensory receptors adapt. As the mean level of light or sound or odor is altered, the sensitivity of the receptor is adjusted to permit the cell to function over as wide a range of ambient stimulation as possible. In a rod photoreceptor, adaptation to maintained background light produces a decrease (or "sag") in the response to the prolonged illumination, as well as an acceleration in response decay time and a Weber-Fechner-like decrease in sensitivity. Earlier work on salamander indicated that adaptation is controlled by the intracellular concentration of Ca(2+). Three Ca(2+)-dependent mechanisms were subsequently identified, namely, regulation of guanylyl cyclase, modulation of activated rhodopsin lifetime, and alteration of channel opening probability, with the contribution of the cyclase thought to be the most important. Later experiments on mouse that exploit the powerful techniques of molecular genetics have shown that cyclase does indeed play a significant role in mammalian rods, but that much of adaptation remains even when regulation of cyclase and both of the other proposed pathways have been genetically deleted. The identity of the missing mechanism or mechanisms is unclear, but recent speculation has focused on direct modulation of spontaneous and light-activated phosphodiesterase.
Collapse
Affiliation(s)
- Gordon L Fain
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA.
| |
Collapse
|
33
|
Liu J, Liu MY, Nguyen JB, Bhagat A, Mooney V, Yan ECY. Thermal properties of rhodopsin: insight into the molecular mechanism of dim-light vision. J Biol Chem 2011; 286:27622-9. [PMID: 21659526 PMCID: PMC3149353 DOI: 10.1074/jbc.m111.233312] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/23/2011] [Indexed: 11/06/2022] Open
Abstract
Rhodopsin has developed mechanisms to optimize its sensitivity to light by suppressing dark noise and enhancing quantum yield. We propose that an intramolecular hydrogen-bonding network formed by ∼20 water molecules, the hydrophilic residues, and peptide backbones in the transmembrane region is essential to restrain thermal isomerization, the source of dark noise. We studied the thermal stability of rhodopsin at 55 °C with single point mutations (E181Q and S186A) that perturb the hydrogen-bonding network at the active site. We found that the rate of thermal isomerization increased by 1-2 orders of magnitude in the mutants. Our results illustrate the importance of the intact hydrogen-bonding network for dim-light detection, revealing the functional roles of water molecules in rhodopsin. We also show that thermal isomerization of 11-cis-retinal in solution can be catalyzed by wild-type opsin and that this catalytic property is not affected by the mutations. We characterize the catalytic effect and propose that it is due to steric interactions in the retinal-binding site and increases quantum yield by predetermining the trajectory of photoisomerization. Thus, our studies reveal a balancing act between dark noise and quantum yield, which have opposite effects on the thermal isomerization rate. The acquisition of the hydrogen-bonding network and the tuning of the steric interactions at the retinal-binding site are two important factors in the development of dim-light vision.
Collapse
Affiliation(s)
- Jian Liu
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Monica Yun Liu
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Jennifer B. Nguyen
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Aditi Bhagat
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Victoria Mooney
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Elsa C. Y. Yan
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
34
|
Shim JY. Understanding functional residues of the cannabinoid CB1. Curr Top Med Chem 2011; 10:779-98. [PMID: 20370713 DOI: 10.2174/156802610791164210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/27/2009] [Indexed: 02/07/2023]
Abstract
The brain cannabinoid (CB(1)) receptor that mediates numerous physiological processes in response to marijuana and other psychoactive compounds is a G protein coupled receptor (GPCR) and shares common structural features with many rhodopsin class GPCRs. For the rational development of therapeutic agents targeting the CB(1) receptor, understanding of the ligand-specific CB(1) receptor interactions responsible for unique G protein signals is crucial. For a more than a decade, a combination of mutagenesis and computational modeling approaches has been successfully employed to study the ligand-specific CB(1) receptor interactions. In this review, after a brief discussion about recent advances in understanding of some structural and functional features of GPCRs commonly applicable to the CB(1) receptor, the CB(1) receptor functional residues reported from mutational studies are divided into three different types, ligand binding (B), receptor stabilization (S) and receptor activation (A) residues, to delineate the nature of the binding pockets of anandamide, CP55940, WIN55212-2 and SR141716A and to describe the molecular events of the ligand-specific CB(1) receptor activation from ligand binding to G protein signaling. Taken these CB(1) receptor functional residues, some of which are unique to the CB(1) receptor, together with the biophysical knowledge accumulated for the GPCR active state, it is possible to propose the early stages of the CB(1) receptor activation process that not only provide some insights into understanding molecular mechanisms of receptor activation but also are applicable for identifying new therapeutic agents by applying the validated structure-based approaches, such as virtual high throughput screening (HTS) and fragment-based approach (FBA).
Collapse
Affiliation(s)
- Joong-Youn Shim
- J.L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA.
| |
Collapse
|
35
|
Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation. Nat Struct Mol Biol 2011; 18:392-4. [PMID: 21278756 DOI: 10.1038/nsmb.1982] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 11/16/2010] [Indexed: 11/08/2022]
Abstract
X-ray and magnetic resonance approaches, though central to studies of G protein-coupled receptor (GPCR)-mediated signaling, cannot address GPCR protein dynamics or plasticity. Here we show that solid-state (2)H NMR relaxation elucidates picosecond-to-nanosecond-timescale motions of the retinal ligand that influence larger-scale functional dynamics of rhodopsin in membranes. We propose a multiscale activation mechanism whereby retinal initiates collective helix fluctuations in the meta I-meta II equilibrium on the microsecond-to-millisecond timescale.
Collapse
|
36
|
|
37
|
Davies WL, Hankins MW, Foster RG. Vertebrate ancient opsin and melanopsin: divergent irradiance detectors. Photochem Photobiol Sci 2010; 9:1444-57. [PMID: 20922256 DOI: 10.1039/c0pp00203h] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Both vertebrates and invertebrates respond to light by utilising a wide-ranging array of photosensory systems, with diverse photoreceptor organs expressing a characteristic photopigment, itself consisting of an opsin apoprotein linked to a light-sensitive retinoid chromophore based on vitamin A. In the eye, the pigments expressed in both cone and rod photoreceptors have been studied in great depth and mediate contrast perception, measurement of the spectral composition of environmental light, and thus classical image forming vision. By contrast, the molecular basis for non-visual and extraocular photoreception is far less understood; however, two photopigment genes have become the focus of much study, the vertebrate ancient (va) opsin and melanopsin (opn4). In this review, we discuss the history of discovery for each gene, as well as focusing on the evolution, expression profile, functional role and broader physiological significance of each photopigment. Recently, it has been suggested independently by Arendt et al. and Lamb that an ancestral opsin bifurcated in early metazoans and evolved into two quite different photopigments, one expressed in rhabdomeric photoreceptors and the other in ciliary photoreceptors. This interpretation of the evolution of the metazoan eye has provided a powerful framework for understanding photobiological organization. Their proposal, however, does not encompass all current experimental observations that would be consistent with what we term a central "Evolution of Photosensory Opsins with Common Heredity (EPOCH)" hypothesis to explain the complexity of animal photosensory systems. Clearly, many opsin genes (e.g. va opsin) simply do not fit neatly within this scheme. Thus, the review concludes with a discussion of these anomalies and their context regarding the phylogeny of photoreceptor and photopigment development.
Collapse
Affiliation(s)
- Wayne L Davies
- Circadian and Visual Neuroscience, Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, UK OX3 9DU
| | | | | |
Collapse
|
38
|
Retinoids for treatment of retinal diseases. Trends Pharmacol Sci 2010; 31:284-95. [PMID: 20435355 DOI: 10.1016/j.tips.2010.03.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 12/31/2022]
Abstract
Knowledge about retinal photoreceptor signal transduction and the visual cycle required for normal eyesight has increased exponentially over the past decade. Substantial progress in human genetics has facilitated the identification of candidate genes and complex networks underlying inherited retinal diseases. Natural mutations in animal models that mimic human diseases have been characterized and advanced genetic manipulation can now be used to generate small mammalian models of human retinal diseases. Pharmacological repair of defective visual processes in animal models not only validates their involvement in vision, but also provides great promise for the development of improved therapies for millions who are progressing towards blindness or are almost completely robbed of their eyesight.
Collapse
|
39
|
Provasi D, Filizola M. Putative active states of a prototypic g-protein-coupled receptor from biased molecular dynamics. Biophys J 2010; 98:2347-55. [PMID: 20483344 DOI: 10.1016/j.bpj.2010.01.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 01/22/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022] Open
Abstract
A major current focus of structural work on G-protein-coupled receptors (GPCRs) pertains to the investigation of their active states. However, for virtually all GPCRs, active agonist-bound intermediate states have been difficult to characterize experimentally owing to their higher conformational flexibility, and thus intrinsic instability, as compared to inactive inverse agonist-bound states. In this work, we explored possible activation pathways of the prototypic GPCR bovine rhodopsin by means of biased molecular dynamics simulations. Specifically, we used an explicit atomistic representation of the receptor and its environment, and sampled the conformational transition from the crystal structure of a photoactivated deprotonated state of rhodopsin to the low pH crystal structure of opsin in the presence of 11-trans-retinal, using adiabatic biased molecular dynamics simulations. We then reconstructed the system free-energy landscape along the predetermined transition trajectories using a path collective variable approach based on metadynamics. Our results suggest that the two experimental endpoints of rhodopsin/opsin are connected by at least two different pathways, and that the conformational transition is populated by at least four metastable states of the receptor, characterized by a different amplitude of the outward movement of transmembrane helix 6.
Collapse
Affiliation(s)
- Davide Provasi
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
40
|
Beyond rhodopsin: G protein-coupled receptor structure and modeling incorporating the beta2-adrenergic and adenosine A(2A) crystal structures. Methods Mol Biol 2010; 672:359-86. [PMID: 20838977 DOI: 10.1007/978-1-60761-839-3_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
For quite some time, the majority of GPCR models have been based on a single template structure: dark-adapted bovine rhodopsin. The recent solution of β2AR, β1AR and adenosine A(2A) receptor crystal structures has dramatically expanded the GPCR structural landscape and provided many new insights into receptor conformation and ligand binding. They will serve as templates for the next generation of GPCR models, but also allow direct validation of previous models and computational techniques. This review summarizes key findings from the new structures, comparison of existing models to these structures and highlights new models constructed from these templates.
Collapse
|
41
|
Zobnina V, Roterman I. Application of the fuzzy-oil-drop model to membrane protein simulation. Proteins 2009; 77:378-94. [PMID: 19455711 DOI: 10.1002/prot.22443] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The analysis of structural properties and biological activity of membrane proteins requires long lasting simulation of molecular dynamics. The large number of atoms present in protein molecule, membrane (phospholipids), and water environment makes the simulation of large scale. The implementation of simplified model representing the natural environment for membrane proteins is presented and compared with the vacuum simulation and simulation in the presence of water molecules and membrane phospholipids presented explicite. The comparative structural analysis and computational times for these three models makes the simplified model promising.
Collapse
Affiliation(s)
- Veronica Zobnina
- Department of Bioinformatics and Telemedicine, Collegium Medicum-Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
42
|
Congreve M, Marshall F. The impact of GPCR structures on pharmacology and structure-based drug design. Br J Pharmacol 2009; 159:986-96. [PMID: 19912230 DOI: 10.1111/j.1476-5381.2009.00476.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
After many years of effort, recent technical breakthroughs have enabled the X-ray crystal structures of three G-protein-coupled receptors (GPCRs) (beta1 and beta2 adrenergic and adenosine A(2a)) to be solved in addition to rhodopsin. GPCRs, like other membrane proteins, have lagged behind soluble drug targets such as kinases and proteases in the number of structures available and the level of understanding of these targets and their interaction with drugs. The availability of increasing numbers of structures of GPCRs is set to greatly increase our understanding of some of the key issues in GPCR biology. In particular, what constitutes the different receptor conformations that are involved in signalling and the molecular changes which occur upon receptor activation. How future GPCR structures might alter our views on areas such as agonist-directed signalling and allosteric regulation as well as dimerization is discussed. Knowledge of crystal structures in complex with small molecules will enable techniques in drug discovery and design, which have previously only been applied to soluble targets, to now be used for GPCR targets. These methods include structure-based drug design, virtual screening and fragment screening. This review considers how these methods have been used to address problems in drug discovery for kinase and protease targets and therefore how such methods are likely to impact GPCR drug discovery in the future.
Collapse
Affiliation(s)
- Miles Congreve
- Heptares Therapeutics Ltd, Welwyn Garden City, Hertfordshire, UK
| | | |
Collapse
|
43
|
Liu H, Wang M, Xia CH, Du X, Flannery JG, Ridge KD, Beutler B, Gong X. Severe retinal degeneration caused by a novel rhodopsin mutation. Invest Ophthalmol Vis Sci 2009; 51:1059-65. [PMID: 19741247 DOI: 10.1167/iovs.09-3585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify a new mouse mutation developing early-onset dominant retinal degeneration, to determine the causative gene mutation, and to investigate the underlying mechanism. METHODS Retinal phenotype was examined by indirect ophthalmoscopy, histology, transmission electron microscopy, immunohistochemistry, Western blot analysis, and electroretinography. Causative gene mutation was determined by genomewide linkage analysis and DNA sequencing. Structural modeling was used to predict the impact of the mutation on protein structure. RESULTS An ENU-mutagenized mouse line (R3), displaying attenuated retinal vessels and pigmented patches, was identified by fundus examination. Homozygous R3/R3 mice lost photoreceptors rapidly, leaving only a single row of photoreceptor nuclei at postnatal day 18. The a- and b-waves of ERG were flat in R3/R3 mice, whereas heterozygous R3/+ mice showed reduced amplitude of a- and b-waves. The R3/+ mice had a slower rate of photoreceptor cell loss than compound heterozygous R3/- mice with a null mutant allele. The R3 mutation was mapped and verified to be a rhodopsin point mutation, a c.553T>C for a p.C185R substitution. The side chain of Arg(185) impacted on the extracellular loop of the protein. Mutant rhodopsin-C185R protein accumulated in the photoreceptor inner segments, cellular bodies, or both. CONCLUSIONS Rhodopsin C185R mutation leads to severe retinal degeneration in R3 mutant mice. A dosage-dependent accumulation of misfolded mutant proteins likely triggers or stimulates the death of rod photoreceptors. The presence of a wild-type rhodopsin allele can delay the loss of photoreceptor cells in R3/+ mice.
Collapse
Affiliation(s)
- Haiquan Liu
- Vision Science Program and School of Optometry, University of California, Berkeley, Berkeley, California 94720-2020, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Molecular biomarkers for autoimmune retinopathies: significance of anti-transducin-alpha autoantibodies. Exp Mol Pathol 2009; 87:195-203. [PMID: 19744478 DOI: 10.1016/j.yexmp.2009.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/19/2009] [Accepted: 08/31/2009] [Indexed: 11/20/2022]
Abstract
Autoimmune retinopathies (AR) are uncommon retinal degenerations with vision loss associated with unique clinical symptoms and findings and with serum anti-retinal autoantibodies. The experimental and clinical studies corroborate that autoantibodies in high titers can penetrate into the retina affecting function of the target antigens, which leads to retinal dysfunction and degeneration. Anti-recoverin and anti-enolase alpha-enolase autoantibodies were more frequently recognized in AR but autoantibodies with other specificities have also been documented, indicating immunological heterogeneity. Our goal was to examine the associations of anti-retinal autoantibodies with retinopathy in order to identify molecular biomarkers for better diagnosis and prognosis of retinopathies. In these studies we examined 39 patients (10 with cancers) of average age of approximately 57 years old with sudden onset of unexplained progressive vision loss and the presence of circulating serum autoantibodies against 40-kDa retinal protein. The patients presented the retinal phenotype characterized by defects in visual fields and reduced scotopic ERG responses. Anti-40-kDa autoantibodies had specificity to the amino terminus of transducin-alpha. None of the normal subjects' sera had anti-40-kDa autoantibodies. In conclusion, the clinical phenotype of patients with anti-transducin-alpha autoantibodies differed from other phenotypes of AR. These patients, often women at a ratio approximately 2:1, had defects in rod (scotopic) photoreceptor function and typically did not have cancers, whereas the anti-recoverin phenotype is associated with cancer and severe loss of rod and cones function, and anti-enolase retinopathy typically presents with cone dysfunction and is equal in cancer and non-cancer patients. Our studies suggest that anti-transducin autoantibodies can serve as molecular biomarkers for retinal phenotypes and could be used for progression of retinal dysfunction and degeneration.
Collapse
|
45
|
Jastrzebska B, Goc A, Golczak M, Palczewski K. Phospholipids are needed for the proper formation, stability, and function of the photoactivated rhodopsin-transducin complex. Biochemistry 2009; 48:5159-70. [PMID: 19413332 DOI: 10.1021/bi900284x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Heterotrimeric G proteins become activated after they form a catalytically active complex with activated G protein-coupled receptors (GPCRs) and GTP replaces GDP on the G protein alpha-subunit. This transient coupling can be stabilized by nucleotide depletion, resulting in an empty-nucleotide G protein-GPCR complex. Efficient and reproducible formation of conformationally homogeneous GPCR-Gt complexes is a prerequisite for structural studies. Herein, we report isolation conditions that enhance the stability and preserve the activity and proper stoichiometry of productive complexes between the purified prototypical GPCR, rhodopsin (Rho), and the rod cell-specific G protein, transducin (Gt). Binding of purified Gt to photoactivated Rho (Rho*) in n-dodecyl beta-D-maltoside (DDM) examined by gel filtration chromatography was generally modest, and purified complexes provided heterogeneous ratios of protein components, most likely because of excess detergent. Rho*-Gt complex stability and activity were greatly increased by addition of phospholipids such as DOPC, DOPE, and DOPS and asolectin to detergent-containing solutions of these proteins. In contrast, native Rho*-Gt complexes purified directly from light-exposed bovine ROS membranes by sucrose gradient centrifugation exhibited improved stability and the expected 2:1 stoichiometry between Rho* and Gt. These results strongly indicate a lipid requirement for stable complex formation in which the likely oligomeric structure of Rho provides a superior platform for coupling to Gt, and phospholipids likely form a matrix to which Gt can anchor through its myristoyl and farnesyl groups. Our findings also demonstrate that the choice of detergent and purification method is critical for obtaining highly purified, stable, and active complexes with appropriate stoichiometry between GPCRs and G proteins needed for structural studies.
Collapse
Affiliation(s)
- Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | | | |
Collapse
|
46
|
Parker MS, Sah R, Balasubramaniam A, Sallee FR, Sweatman T, Park EA, Parker SL. Dimers of the neuropeptide Y (NPY) Y2 receptor show asymmetry in agonist affinity and association with G proteins. J Recept Signal Transduct Res 2009; 28:437-51. [PMID: 18946765 DOI: 10.1080/10799890802447423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In conditions precluding activation of G proteins, the binding of agonists to dimers of the neuropeptide Y (NPY) Y2 receptor shows two components of similar size, but differing in affinity. The dimers of all NPY receptors are solubilized as approximately 180-kDa complexes containing one G protein alpha beta gamma trimer. These heteropentamers are stable to excess agonists, chelators, and alkylators. However, dispersion in the weak surfactant cholate releases approximately 300-kDa complexes. These findings indicate that both protomers in the Y2 dimer are associated with G protein heterotrimers, but the extent of interaction depends on affinity for the agonist peptide. The G protein in contact with the first-liganded, higher-affinity protomer should have a stronger interaction with the receptor and a larger probability of activation.
Collapse
Affiliation(s)
- M S Parker
- Department of Molecular Cell Sciences, University of Memphis, Memphis, Tennessee, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Brown MF, Martínez-Mayorga K, Nakanishi K, Salgado GFJ, Struts AV. Retinal conformation and dynamics in activation of rhodopsin illuminated by solid-state H NMR spectroscopy. Photochem Photobiol 2009; 85:442-53. [PMID: 19267870 DOI: 10.1111/j.1751-1097.2008.00510.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Solid-state NMR spectroscopy gives a powerful avenue for investigating G protein-coupled receptors and other integral membrane proteins in a native-like environment. This article reviews the use of solid-state (2)H NMR to study the retinal cofactor of rhodopsin in the dark state as well as the meta I and meta II photointermediates. Site-specific (2)H NMR labels have been introduced into three regions (methyl groups) of retinal that are crucially important for the photochemical function of rhodopsin. Despite its phenomenal stability (2)H NMR spectroscopy indicates retinal undergoes rapid fluctuations within the protein binding cavity. The spectral lineshapes reveal the methyl groups spin rapidly about their three-fold (C(3)) axes with an order parameter for the off-axial motion of SC(3) approximately 0.9. For the dark state, the (2)H NMR structure of 11-cis-retinal manifests torsional twisting of both the polyene chain and the beta-ionone ring due to steric interactions of the ligand and the protein. Retinal is accommodated within the rhodopsin binding pocket with a negative pretwist about the C11=C12 double bond. Conformational distortion explains its rapid photochemistry and reveals the trajectory of the 11-cis to trans isomerization. In addition, (2)H NMR has been applied to study the retinylidene dynamics in the dark and light-activated states. Upon isomerization there are drastic changes in the mobility of all three methyl groups. The relaxation data support an activation mechanism whereby the beta-ionone ring of retinal stays in nearly the same environment, without a large displacement of the ligand. Interactions of the beta-ionone ring and the retinylidene Schiff base with the protein transmit the force of the retinal isomerization. Solid-state (2)H NMR thus provides information about the flow of energy that triggers changes in hydrogen-bonding networks and helix movements in the activation mechanism of the photoreceptor.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | |
Collapse
|
48
|
Park PSH, Sapra KT, Jastrzebska B, Maeda T, Maeda A, Pulawski W, Kono M, Lem J, Crouch RK, Filipek S, Müller DJ, Palczewski K. Modulation of molecular interactions and function by rhodopsin palmitylation. Biochemistry 2009; 48:4294-304. [PMID: 19348429 DOI: 10.1021/bi900417b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopsin is palmitylated at two cysteine residues in its carboxyl terminal region. We have looked at the effects of palmitylation on the molecular interactions formed by rhodopsin using single-molecule force spectroscopy and the function of rhodopsin using both in vitro and in vivo approaches. A knockin mouse model expressing palmitate-deficient rhodopsin was used for live animal in vivo studies and to obtain native tissue samples for in vitro assays. We specifically looked at the effects of palmitylation on the chromophore-binding pocket, interactions of rhodopsin with transducin, and molecular interactions stabilizing the receptor structure. The structure of rhodopsin is largely unperturbed by the absence of palmitate linkage. The binding pocket for the chromophore 11-cis-retinal is minimally altered as palmitate-deficient rhodopsin exhibited the same absorbance spectrum as wild-type rhodopsin. Similarly, the rate of release of all-trans-retinal after light activation was the same both in the presence and absence of palmitylation. Significant differences were observed in the rate of transducin activation by rhodopsin and in the force required to unfold the last stable structural segment in rhodopsin at its carboxyl terminal end. A 1.3-fold reduction in the rate of transducin activation by rhodopsin was observed in the absence of palmitylation. Single-molecule force spectroscopy revealed a 2.1-fold reduction in the normalized force required to unfold the carboxyl terminal end of rhodopsin. The absence of palmitylation in rhodopsin therefore destabilizes the molecular interactions formed in the carboxyl terminal end of the receptor, which appears to hinder the activation of transducin by light-activated rhodopsin.
Collapse
Affiliation(s)
- Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Abstract
Although outnumbered more than 20:1 by rod photoreceptors, cone cells in the human retina mediate daylight vision and are critical for visual acuity and color discrimination. A variety of human diseases are characterized by a progressive loss of cone photoreceptors but the low abundance of cones and the absence of a macula in non-primate mammalian retinas have made it difficult to investigate cones directly. Conventional rodents (laboratory mice and rats) are nocturnal rod-dominated species with few cones in the retina, and studying other animals with cone-rich retinas presents various logistic and technical difficulties. Originating in the early 1900s, past research has begun to provide insights into cone ultrastructure but has yet to afford an overall perspective of cone cell organization. This review summarizes our past progress and focuses on the recent introduction of special mammalian models (transgenic mice and diurnal rats rich in cones) that together with new investigative techniques such as atomic force microscopy and cryo-electron tomography promise to reveal a more unified concept of cone photoreceptor organization and its role in retinal diseases.
Collapse
|