1
|
Gal O, Mehta MP, Kotecha R. Radiotherapeutic advances in the management of glioblastoma. J Neurooncol 2024:10.1007/s11060-024-04824-x. [PMID: 39269554 DOI: 10.1007/s11060-024-04824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Glioblastoma remains a fatal diagnosis despite continuous efforts to improve upon the current standard backbone management paradigm of surgery, radiation therapy, systemic therapy and Tumor Treating Fields. Radiation therapy (RT) plays a pivotal role, with progress recently achieved in multiple key areas of research. The evolving landscape of dose and fractionation schedules and dose escalation options for different patient populations is explored, offering opportunities to better tailor treatment to a patient's overall status and preferences; novel efforts to modify treatment volumes are presented, such as utilizing state-of-the-art MRI-based linear accelerators to deliver adaptive therapy, hoping to reduce normal tissue exposure and treatment-related toxicity; specialized MR techniques and functional imaging using novel PET agents are described, providing improved treatment accuracy and the opportunity to target areas at risk of disease relapse; finally, the role of particle therapy and new altered dose-rate photon and proton therapy techniques in the treatment paradigm of glioblastoma is detailed, aiming to improve tumor control and patient outcome by exploiting novel radiobiological pathways. Improvements in each of these aforementioned areas are needed to make the critical necessary progress and allow for new approaches combining different advanced treatment modalities. This plethora of multiple new treatment options currently under investigation provides hope for a new outlook for patients with glioblastoma in the near future.
Collapse
Affiliation(s)
- Omer Gal
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Dr, Miami, FL, 33176, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Dr, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, 8900 N Kendall Dr, Miami, FL, 33176, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Dr, Miami, FL, 33176, USA.
- Herbert Wertheim College of Medicine, Florida International University, 8900 N Kendall Dr, Miami, FL, 33176, USA.
| |
Collapse
|
2
|
Koosha F, Ahmadikamalabadi M, Mohammadi M. Review of Recent Improvements in Carbon Ion Radiation Therapy in the Treatment of Glioblastoma. Adv Radiat Oncol 2024; 9:101465. [PMID: 38770179 PMCID: PMC11103612 DOI: 10.1016/j.adro.2024.101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose This article provides an overview of the physical and biologic properties of carbon ions, followed by an examination of the latest clinical outcomes in patients with glioma who have received carbon ion radiation therapy. Methods and Materials According to thee articles that have been reviewed, glioma represents the predominant form of neoplastic growth in the brain, accounting for approximately 51% of all malignancies affecting the nervous system. Currently, high-grade glioma, specifically glioblastoma, comprises 15% of cases and is associated with a high mortality rate. The development of novel drugs for the treatment of high-grade tumors has been impeded by various factors, such as the blood-brain barrier and tumor heterogeneity, despite numerous endeavors. According to the definition of tumor grade established by the World Health Organization, the conventional treatment involves surgical resection followed by adjuvant radiation and chemotherapy. Despite numerous attempts in photon radiation therapy to apply the highest possible dose to the tumor site while minimizing damage to healthy tissue, there has been no success in increasing patient survival. The primary cause of resistance to conventional radiation therapy methods, namely x-ray and gamma-ray, is attributed to the survival of radio-resistant glioma stem cells, which have the potential to trigger a recurrence of tumors. Particle beams, such as protons and carbon ions, can deposit the highest dose to a confined region, thus offering a more accurate dose distribution compared with photon beams. Results Carbon ions exhibit higher linear energy transfer and relative biologic effectiveness compared with photons, potentially enabling them to overcome radio-resistant tumor cells. Conclusions Therefore, it can be hypothesized that carbon ion radiation therapy may show superior efficacy in destroying neoplastic cells with reduced negative outcomes compared with x-ray radiation therapy.
Collapse
Affiliation(s)
- Fereshteh Koosha
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Ahmadikamalabadi
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Radiology Department, School of Paramedical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohadesseh Mohammadi
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Fang X, Sun P, Dong Y, Huang Y, Lu JJ, Kong L. In vitro evaluation of photon and carbon ion radiotherapy in combination with cisplatin in head and neck squamous cell carcinoma cell lines. Front Oncol 2023; 13:896142. [PMID: 37081974 PMCID: PMC10110960 DOI: 10.3389/fonc.2023.896142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundHeavy ion radiotherapy, such as carbon ion radiotherapy (CIRT), has multiple advantages over conventional photon therapy. Cisplatin, as a classic anti-tumor drugs, has been tested and discovered as a photon radiosensitizer in several cell lines, including head and neck squamous cell carcinoma (HNSCC). Hence, the aim of our study is to evaluate whether cisplatin can sensitize CIRT towards HNSCC cell lines in vitro.MethodsHuman nasopharyngeal carcinoma cell line CNE-2, human tongue squamous carcinoma cell line TCA 8113 and human hypopharynx squamous carcinoma cell line FADU were all irradiated with photon beam of 2, 4, 6, 8 Gy (physical dose) and carbon ion beam of 1, 2, 3, 4 Gy (physical dose) and treated with cisplatin. Cell survival was assessed by clonogenic survival assay.ResultsCIRT showed significantly stronger cytotoxic effect than standard photon radiotherapy. The relative biological effectiveness (RBE) of carbon ion beam at 10% survival (RBE10) was calculated 3.07 for CNE-2, 2.33 for TCA 8113 and 2.36 for FADU. Chemoradiotherapy (both photon radiotherapy and CIRT) was more effective than radiotherapy alone. In vitro sensitizer enhancement ratios (SERs) of cisplatin in CNE-2, TCA 8113 and FA DU cell lines after photon irradiation were 1.33, 1.14 and 1.21, while after carbon ion irradiation were 1.02, 1.00 and 0.96, showed that cisplatin sensitized photon irradiation but showed no sensitization effect in carbon ion irradiation in all tested cell lines.ConclusionsIn conclusion, high linear energy transfer (LET) CIRT was more effective than photon irradiation to prevent the proliferation of HNSCC cell lines. Additional treatment with cisplatin could sensitize photon irradiation but showed no effect on carbon ion irradiation.
Collapse
Affiliation(s)
- Xumeng Fang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Pian Sun
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yuanli Dong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yangle Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade Jay Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- *Correspondence: Jiade Jay Lu, ; Lin Kong,
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- *Correspondence: Jiade Jay Lu, ; Lin Kong,
| |
Collapse
|
4
|
Wang Y, Liu R, Zhang Q, Dong M, Wang D, Chen J, Ou Y, Luo H, Yang K, Wang X. Charged particle therapy for high-grade gliomas in adults: a systematic review. Radiat Oncol 2023; 18:29. [PMID: 36755321 PMCID: PMC9906872 DOI: 10.1186/s13014-022-02187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023] Open
Abstract
High-grade gliomas are the most common intracranial malignancies, and their current prognosis remains poor despite standard aggressive therapy. Charged particle beams have unique physical and biological properties, especially high relative biological effectiveness (RBE) of carbon ion beam might improve the clinical treatment outcomes of malignant gliomas. We systematically reviewed the safety, efficacy, and dosimetry of carbon-ion or proton radiotherapy to treat high-grade gliomas. The protocol is detailed in the online PROSPERO database, registration No. CRD42021258495. PubMed, EMBASE, Web of Science, and The Cochrane Library databases were collected for data analysis on charged particle radiotherapy for high-grade gliomas. Until July 2022, two independent reviewers extracted data based on inclusion and exclusion criteria. Eleven articles were eligible for further analysis. Overall survival rates were marginally higher in patients with the current standard of care than those receiving concurrent intensity-modulated radiotherapy plus temozolomide. The most common side effects of carbon-ion-related therapy were grade 1-2 (such as dermatitis, headache, and alopecia). Long-term toxicities (more than three to six months) usually present as radiation necrosis; however, toxicities higher than grade 3 were not observed. Similarly, dermatitis, headache, and alopecia are among the most common acute side effects of proton therapy treatment. Despite improvement in survival rates, the method of dose-escalation using proton boost is associated with severe brain necrosis which should not be clinically underestimated. Regarding dosimetry, two studies compared proton therapy and intensity-modulated radiation therapy plans. Proton therapy plans aimed to minimize dose exposure to non-target tissues while maintaining target coverage. The use of charged-particle radiotherapy seems to be effective with acceptable adverse effects when used either alone or as a boost. The tendency of survival outcome shows that carbon ion boost is seemingly superior to proton boost. The proton beam could provide good target coverage, and it seems to reduce dose exposure to contralateral organs at risk significantly. This can potentially reduce the treatment-related dose- and volume-related side effects in long-term survivors, such as neurocognitive impairment. High-quality randomized control trials should be conducted in the future. Moreover, Systemic therapeutic options that can be paired with charged particles are necessary.
Collapse
Affiliation(s)
- Yuhang Wang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ruifeng Liu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China ,grid.410726.60000 0004 1797 8419Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China ,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China. .,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China. .,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China.
| | - Meng Dong
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Dandan Wang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Junru Chen
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yuhong Ou
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Hongtao Luo
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China ,grid.410726.60000 0004 1797 8419Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China ,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Kehu Yang
- grid.32566.340000 0000 8571 0482Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China. .,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China. .,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China. .,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China.
| |
Collapse
|
5
|
Raghavapudi H, Singroul P, Kohila V. Brain Tumor Causes, Symptoms, Diagnosis and Radiotherapy Treatment. Curr Med Imaging 2021; 17:931-942. [PMID: 33573575 DOI: 10.2174/1573405617666210126160206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/22/2022]
Abstract
The strategy used for the treatment of given brain cancer is critical in determining the post effects and survival. An oncological diagnosis of tumor evaluates a range of parameters such as shape, size, volume, location and neurological complexity that define the symptomatic severity. The evaluation determines a suitable treatment approach chosen from a range of options such as surgery, chemotherapy, hormone therapy, radiation therapy and other targeted therapies. Often, a combination of such therapies is applied to achieve superior results. Radiotherapy serves as a better treatment strategy because of a higher survival rate. It offers the flexibility of synergy with other treatment strategies and fewer side effects on organs at risk. This review presents a radiobiological perspective in the treatment of brain tumor. The cause, symptoms, diagnosis, treatment, post-treatment effects and the framework involved in its elimination are summarized.
Collapse
Affiliation(s)
- Haarika Raghavapudi
- Department of Biotechnology, National Institute of Technology Warangal, Warangal -506004, Telangana, India
| | - Pankaj Singroul
- Department of Biotechnology, National Institute of Technology Warangal, Warangal -506004, Telangana, India
| | - V Kohila
- Department of Biotechnology, National Institute of Technology Warangal, Warangal -506004, Telangana, India
| |
Collapse
|
6
|
Bennan ABA, Unkelbach J, Wahl N, Salome P, Bangert M. Joint Optimization of Photon-Carbon Ion Treatments for Glioblastoma. Int J Radiat Oncol Biol Phys 2021; 111:559-572. [PMID: 34058258 DOI: 10.1016/j.ijrobp.2021.05.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Carbon ions are radiobiologically more effective than photons and are beneficial for treating radioresistant gross tumor volumes (GTV). However, owing to a reduced fractionation effect, they may be disadvantageous for treating infiltrative tumors, in which healthy tissue inside the clinical target volume (CTV) must be protected through fractionation. This work addresses the question: What is the ideal combined photon-carbon ion fluence distribution for treating infiltrative tumors given a specific fraction allocation between photons and carbon ions? METHODS AND MATERIALS We present a method to simultaneously optimize sequentially delivered intensity modulated photon (IMRT) and carbon ion (CIRT) treatments based on cumulative biological effect, incorporating both the variable relative biological effect of carbon ions and the fractionation effect within the linear quadratic model. The method is demonstrated for 6 glioblastoma patients in comparison with the current clinical standard of independently optimized CIRT-IMRT plans. RESULTS Compared with the reference plan, joint optimization strategies yield inhomogeneous photon and carbon ion dose distributions that cumulatively deliver a homogeneous biological effect distribution. In the optimal distributions, the dose to CTV is mostly delivered by photons and carbon ions are restricted to the GTV with variations depending on tumor size and location. Improvements in conformity of high-dose regions are reflected by a mean EQD2 reduction of 3.29 ± 1.22 Gy in a dose fall-off margin around the CTV. Carbon ions may deliver higher doses to the center of the GTV, and photon contributions are increased at interfaces with CTV and critical structures. This results in a mean EQD2 reduction of 8.3 ± 2.28 Gy, in which the brain stem abuts the target volumes. CONCLUSIONS We have developed a biophysical model to optimize combined photon-carbon ion treatments. For 6 glioblastoma patient cases, we show that our approach results in a more targeted application of carbon ions that (1) reduces dose in normal tissues within the target volume, which can only be protected through fractionation; and (2) boosts central target volume regions to reduce integral dose. Joint optimization of IMRT-CIRT treatments enable the exploration of a new spectrum of plans that can better address physical and radiobiological treatment planning challenges.
Collapse
Affiliation(s)
- Amit Ben Antony Bennan
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Niklas Wahl
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Patrick Salome
- Medical Faculty, Heidelberg University, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ)
| | - Mark Bangert
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
7
|
Li JY, Li JW, Jin YC, Li MX, Guo LP, Bing ZT, Zhang QN, Bai F, Wang XH, Li XX, Yang KH. The Efficacy and Safety of Carbon Ion Radiotherapy for Meningiomas: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:620534. [PMID: 34113557 PMCID: PMC8185343 DOI: 10.3389/fonc.2021.620534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Objective The purpose of this systematic review and meta-analysis is to evaluate the efficacy and safety of carbon ion radiotherapy (CI-RT) in improving meningioma by comparing photon and protons radiotherapy. Methods A comprehensive search for relevant studies published until March 17, 2021, was conducted in PubMed, the Cochrane Library, Chinese Biomedical Literature Database and EMBASE. Statistical analyses were performed with R 4.0.3. Results We identified 396 studies, of which 18 studies involving 985 participants were included. Except for one low quality study, the quality of the included studies was found to be either moderate or high quality. The analyses conducted according random effects model indicated that the 1-year overall survival rate (OS) of benign and non-benign meningiomas after the CI-RT treatment was 99% (95%CL=.91-1.00, I2 = 0%). The overall average 5-year OS for meningiomas was 72% (95%CL=0.52-0.86, I2 = 35%), not as effective as proton radiotherapy (PR-RT) 85% (95%CL=.72-.93, I2 = 73, Q=4.17, df=2, p=.12). Additionally, 5-year OS of atypical meningiomas (81%) was found to be significantly higher than anaplastic meningiomas (52%). The 10-year OS after CI-RT of patients with mixed grade meningioma was 91% (95%CL=.75-.97, I2 = 73%). The 15-year OS after CI-RT 87% (95%CL=.11-1.00) or PR-RT 87% (95%CL=.23-.99, I2 = 79%) were the same (Q=0, df=1, p=.99). After undergoing CI-RT for 3 and 5 years, the LC for benign meningioma was 100% and 88%, respectively, while the 2-year LC of non-benign meningiomas (atypical/anaplastic) was 33%. Headache, sensory impairment, cognitive impairment, and hearing impairment were found to be the most common adverse reactions, with individual incidences of 19.4%, 23.7%, 9.1%, and 9.1%, respectively. Conclusion CI-RT is a rapidly developing technique that has been proven to be an effective treatment against meningioma. The efficacy and safety of CI-RT for meningiomas were similar to those of PR-RT, better than photon radiotherapy (PH-RT). However, there is a need for more prospective trials in the future that can help provide more supportive evidence.
Collapse
Affiliation(s)
- Jie-Yun Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Jing-Wen Li
- Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Yuan-Chang Jin
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Beijing, China.,Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Mei-Xuan Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Li-Ping Guo
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Zhi-Tong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Beijing, China
| | - Qiu-Ning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Beijing, China.,Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Fei Bai
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,National Health Commission Medical Management Center, Beijing, China
| | - Xiao-Hu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Beijing, China.,Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Xiu-Xia Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Ke-Hu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| |
Collapse
|
8
|
Martínez-Rovira I, Seksek O, Dokic I, Brons S, Abdollahi A, Yousef I. Study of the intracellular nanoparticle-based radiosensitization mechanisms in F98 glioma cells treated with charged particle therapy through synchrotron-based infrared microspectroscopy. Analyst 2020; 145:2345-2356. [PMID: 31993615 DOI: 10.1039/c9an02350j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The use of nanoparticles (NP) as dose enhancers in radiotherapy (RT) is a growing research field. Recently, the use of NP has been extended to charged particle therapy in order to improve the performance in radioresistant tumors. However, the biological mechanisms underlying the synergistic effects involved in NP-RT approaches are not clearly understood. Here, we used the capabilities of synchrotron-based Fourier Transform Infrared Microspectroscopy (SR-FTIRM) as a bio-analytical tool to elucidate the NP-induced cellular damage at the molecular level and at a single-cell scale. F98 glioma cells doped with AuNP and GdNP were irradiated using several types of medical ion beams (proton, helium, carbon and oxygen). Differences in cell composition were analyzed in the nucleic acids, protein and lipid spectral regions using multivariate methods (Principal Component Analysis, PCA). Several NP-induced cellular modifications were detected, such as conformational changes in secondary protein structures, intensity variations in the lipid CHx stretching bands, as well as complex DNA rearrangements following charged particle therapy irradiations. These spectral features seem to be correlated with the already shown enhancement both in the DNA damage response and in the reactive oxygen species (ROS) production by the NP, which causes cell damage in the form of protein, lipid, and/or DNA oxidations. Vibrational features were NP-dependent due to the NP heterogeneous radiosensitization capability. Our results provided new insights into the molecular changes in response to NP-based RT treatments using ion beams, and highlighted the relevance of SR-FTIRM as a useful and precise technique for assessing cell response to innovative radiotherapy approaches.
Collapse
Affiliation(s)
- I Martínez-Rovira
- MIRAS beamline BL01, ALBA-CELLS Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain.
| | - O Seksek
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France and Université de Paris, IJCLab, 91405 Orsay, France
| | - I Dokic
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany and Clinical Cooperation Unite Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - S Brons
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - A Abdollahi
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany and Clinical Cooperation Unite Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - I Yousef
- MIRAS beamline BL01, ALBA-CELLS Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain.
| |
Collapse
|
9
|
Impact of Hypoxia on Carbon Ion Therapy in Glioblastoma Cells: Modulation by LET and Hypoxia-Dependent Genes. Cancers (Basel) 2020; 12:cancers12082019. [PMID: 32718037 PMCID: PMC7464439 DOI: 10.3390/cancers12082019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022] Open
Abstract
Tumor hypoxia is known to limit the efficacy of ionizing radiations, a concept called oxygen enhancement ratio (OER). OER depends on physical factors such as pO2 and linear energy transfer (LET). Biological pathways, such as the hypoxia-inducible transcription factors (HIF), might also modulate the influence of LET on OER. Glioblastoma (GB) is resistant to low-LET radiation (X-rays), due in part to the hypoxic environment in this brain tumor. Here, we aim to evaluate in vitro whether high-LET particles, especially carbon ion radiotherapy (CIRT), can overcome the contribution of hypoxia to radioresistance, and whether HIF-dependent genes, such as erythropoietin (EPO), influence GB sensitivity to CIRT. Hypoxia-induced radioresistance was studied in two human GB cells (U251, GL15) exposed to X-rays or to carbon ion beams with various LET (28, 50, 100 keV/µm), and in genetically-modified GB cells with downregulated EPO signaling. Cell survival, radiobiological parameters, cell cycle, and ERK activation were assessed under those conditions. The results demonstrate that, although CIRT is more efficient than X-rays in GB cells, hypoxia can limit CIRT efficacy in a cell-type manner that may involve differences in ERK activation. Using high-LET carbon beams, or targeting hypoxia-dependent genes such as EPO might reduce the effects of hypoxia.
Collapse
|
10
|
The combined effect of neutron irradiation and temozolomide on glioblastoma cell lines with different MGMT and P53 status. Appl Radiat Isot 2020; 163:109204. [PMID: 32561044 DOI: 10.1016/j.apradiso.2020.109204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/20/2019] [Accepted: 04/10/2020] [Indexed: 11/21/2022]
Abstract
Temozolomide (TMZ) is a DNA-alkylating agent used for chemo-radiotherapy of glioblastoma, which is also a target cancer for boron neutron capture therapy (BNCT). Although the DNA-repair enzyme O6-methylguanine DNA methyltransferase (MGMT) and the tumor suppressor p53 are mutated in some glioblastoma cells, it remains unknown whether these mutations affect sensitivity to neutron irradiation. We examined sensitivity to neutron irradiation and TMZ in two glioblastoma cell lines: T98G, which is p53-mutant with high levels of MGMT activity; and A172, which is p53-wild-type and has low MGMT activity. T98G cells were more resistant to TMZ treatment than A172 cells, with a 10-fold higher LC50. In A172 cells, TMZ treatment did not change the cell-killing effect of neutron irradiation in the presence of borono-phenylalanine (BPA). By contrast, T98G cells were more resistant to neutron irradiation when BPA was present. These results indicate that DNA repair activity in T98G cells might be higher due to upregulation of MGMT after TMZ treatment. Thus, differences in the MGMT and p53 statuses of glioblastoma cells might predict the effect of combination therapy with BNCT and DNA-alkylating agent.
Collapse
|
11
|
Kong L, Wu J, Gao J, Qiu X, Yang J, Hu J, Hu W, Mao Y, Lu JJ. Particle radiation therapy in the management of malignant glioma: Early experience at the Shanghai Proton and Heavy Ion Center. Cancer 2020; 126:2802-2810. [PMID: 32167589 PMCID: PMC7317504 DOI: 10.1002/cncr.32828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Background The objective of this study was to evaluate the outcomes of patients with high‐grade glioma who received treatment with particle radiotherapy. Methods Between June 2015 and October 2018, 50 consecutive and nonselected patients with glioblastoma multiforme (n = 34) or anaplastic glioma (n = 16) were treated at the Shanghai Proton and Heavy Ion Center. Twenty‐four patients received proton radiotherapy (at a dose of 60 gray‐equivalents in 30 daily fractions), and 26 patients received proton radiotherapy plus a carbon‐ion radiotherapy (CIRT) boost in various dose‐escalating schemes. All patients received temozolomide because of their age or their O‐6‐methylguanine‐DNA methyltransferase (MGMT) promoter methylation status. Progression‐free survival (PFS) and overall survival (OS) rates, as well as treatment‐induced toxicities, were analyzed. Results At a median follow‐up of 14.3 months (range, 4.8‐39.6 months), the 12‐month and 18‐month OS rates were 87.8% (95% CI, 77.6%‐98.0%) and 72.8% (95% CI, 56.7%‐88.9%), respectively, and the 12‐month and 18‐month PFS rates were 74.2% (95% CI, 60.9%‐87.5%) and 59.8% (95% CI, 43.1%‐76.5%), respectively. Univariate analyses revealed that age (>50 vs ≤50 years), World Health Organization grade (3 vs 4), and Karnofsky performance status (>80 vs ≤80) were significant prognosticators for OS, and IDH mutation and World Health Organization grade were significant for predicting PFS. Furthermore, MGMT promoter methylation, performance status, and age showed a trend toward predicting PFS. No significant predictive factors for PFS or OS were identified in multivariate analyses. Twenty‐nine patients experienced grade 1 treatment‐related acute adverse effects, and 11 developed grade 1 (n = 6) or grade 2 (n = 5) late adverse effect of radiation‐induced brain necrosis. No grade 3, 4, or 5 toxicities were observed. Conclusions Particle radiotherapy produced 18‐month OS and PFS rates of 72.8% and 59.8%, respectively, with acceptable adverse effects in patients with high‐grade glioma. Particle radiotherapy at a dose ≥60 gray‐equivalents appears to be safe and potentially effective. Particle radiotherapy with concurrent temozolomide could potentially produce better outcomes than conventional radiotherapy plus temozolomide. Particle radiotherapy to a dose of ≥60 gray‐equivalents with concurrent temozolomide is safe for patients with high‐grade glioma.
Collapse
Affiliation(s)
- Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Fudan University Shanghai Huashan Hospital, Shanghai, China
| | - Jing Gao
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Xianxin Qiu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jing Yang
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jiyi Hu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Weixu Hu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Fudan University Shanghai Huashan Hospital, Shanghai, China
| | - Jiade J Lu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| |
Collapse
|
12
|
Carbon ion radiotherapy in the treatment of gliomas: a review. J Neurooncol 2019; 145:191-199. [DOI: 10.1007/s11060-019-03303-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
13
|
Cammarata FP, Torrisi F, Forte GI, Minafra L, Bravatà V, Pisciotta P, Savoca G, Calvaruso M, Petringa G, Cirrone GAP, Fallacara AL, Maccari L, Botta M, Schenone S, Parenti R, Cuttone G, Russo G. Proton Therapy and Src Family Kinase Inhibitor Combined Treatments on U87 Human Glioblastoma Multiforme Cell Line. Int J Mol Sci 2019; 20:E4745. [PMID: 31554327 PMCID: PMC6801826 DOI: 10.3390/ijms20194745] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma Multiforme (GBM) is the most common of malignant gliomas in adults with an exiguous life expectancy. Standard treatments are not curative and the resistance to both chemotherapy and conventional radiotherapy (RT) plans is the main cause of GBM care failures. Proton therapy (PT) shows a ballistic precision and a higher dose conformity than conventional RT. In this study we investigated the radiosensitive effects of a new targeted compound, SRC inhibitor, named Si306, in combination with PT on the U87 glioblastoma cell line. Clonogenic survival assay, dose modifying factor calculation and linear-quadratic model were performed to evaluate radiosensitizing effects mediated by combination of the Si306 with PT. Gene expression profiling by microarray was also conducted after PT treatments alone or combined, to identify gene signatures as biomarkers of response to treatments. Our results indicate that the Si306 compound exhibits a radiosensitizing action on the U87 cells causing a synergic cytotoxic effect with PT. In addition, microarray data confirm the SRC role as the main Si306 target and highlights new genes modulated by the combined action of Si306 and PT. We suggest, the Si306 as a new candidate to treat GBM in combination with PT, overcoming resistance to conventional treatments.
Collapse
Affiliation(s)
- Francesco P Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Filippo Torrisi
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy.
| | - Giusi I Forte
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Pietro Pisciotta
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
- Departments of Physics and Astronomy, University of Catania, 95123 Catania, Italy.
| | - Gaetano Savoca
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Giada Petringa
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy.
| | - Giuseppe A P Cirrone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Anna L Fallacara
- Lead Discovery Siena s.r.l. (LDS), 53100 Siena, Italy.
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Laura Maccari
- Lead Discovery Siena s.r.l. (LDS), 53100 Siena, Italy.
| | - Maurizio Botta
- Lead Discovery Siena s.r.l. (LDS), 53100 Siena, Italy.
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Silvia Schenone
- Department of Pharmacy, Università degli Studi di Genova, 16126 Genova, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy.
| | - Giacomo Cuttone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| |
Collapse
|
14
|
Matsumoto Y, Furusawa Y, Aoki-Nakano M, Matsufuji N, Hirayama R, Kanai T, Ando K, Sakurai H. ESTIMATION OF RBE VALUES FOR CARBON-ION BEAMS IN THE WIDE DOSE RANGE USING MULTICELLULAR SPHEROIDS. RADIATION PROTECTION DOSIMETRY 2019; 183:45-49. [PMID: 30624731 DOI: 10.1093/rpd/ncy269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Hypofractionated carbon-ion therapy has been applied to treatment of several tumours. In this case, relative biological effectiveness (RBE) at high dose region must be considered, however, the RBE calculated physically has been not verified biologically. In this study, spheroid technique was adopted to estimate RBE in wide dose range. Cells were irradiated with X-rays and heavy-ions with LET of 13, 35, 100 and 300 keV/μm with monolayer and spheroid condition. Surviving fractions in wide dose range (0-15 Gy) were obtained to combined monolayer with spheroid survival data. The linear-quadratic and multi-target single-hit equation fitted well in survival data at low dose, and high dose region, respectively. A multi-process equation showed best fitting for survival data in wide dose range. RBE values of heavy-ions could be estimated by combination of monolayer and spheroid data. The values converged at 1.1-1.4 and varied by LET values at high and low dose region, respectively.
Collapse
Affiliation(s)
- Yoshitaka Matsumoto
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
- Proton Medical Research Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
| | - Yoshiya Furusawa
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, Japan
| | - Mizuho Aoki-Nakano
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, Japan
| | - Naruhiro Matsufuji
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, Japan
| | - Ryoichi Hirayama
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, Japan
| | - Tatsuaki Kanai
- Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, Japan
| | - Koichi Ando
- Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, Japan
| | - Hideyuki Sakurai
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
- Proton Medical Research Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
The Role of Particle Therapy for the Treatment of Skull Base Tumors and Tumors of the Central Nervous System (CNS). Top Magn Reson Imaging 2019; 28:49-61. [PMID: 31022048 DOI: 10.1097/rmr.0000000000000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Radiation therapy (RT) is a mainstay in the interdisciplinary treatment of brain tumors of the skull base and brain. Technical innovations during the past 2 decades have allowed for increasingly precise treatment with better sparing of adjacent healthy tissues to prevent treatment-related side effects that influence patients' quality of life. Particle therapy with protons and charged ions offer favorable kinetics with sharp dose deposition in a well-defined depth (Bragg-Peak) and a steep radiation fall-off beyond that maximum. This review highlights the role of particle therapy in the management of primary brain tumors and tumors of the skull base.
Collapse
|
16
|
Chew MT, Bradley DA, Suzuki M, Matsufuji N, Murakami T, Jones B, Nisbet A. The radiobiological effects of He, C and Ne ions as a function of LET on various glioblastoma cell lines. JOURNAL OF RADIATION RESEARCH 2019; 60:178-188. [PMID: 30624699 PMCID: PMC6430257 DOI: 10.1093/jrr/rry099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/07/2018] [Indexed: 06/09/2023]
Abstract
The effects of the charged ion species 4He, 12C and 20Ne on glioblastoma multiforme (GBM) T98G, U87 and LN18 cell lines were compared with the effects of 200 kVp X-rays (1.7 keV/μm). These cell lines have different genetic profiles. Individual GBM relative biological effectiveness (RBE) was estimated in two ways: the RBE10 at 10% survival fraction and the RBE2Gy after 2 Gy doses. The linear quadratic model radiosensitivity parameters α and β and the α/β ratio of each ion type were determined as a function of LET. Mono-energetic 4He, 12C and 20Ne ions were generated by the Heavy Ion Medical Accelerator at the National Institute of Radiological Sciences in Chiba, Japan. Colony-formation assays were used to evaluate the survival fractions. The LET of the various ions used ranged from 2.3 to 100 keV/μm (covering the depth-dose plateau region to clinically relevant LET at the Bragg peak). For U87 and LN18, the RBE10 increased with LET and peaked at 85 keV/μm, whereas T98G peaked at 100 keV/μm. All three GBM α parameters peaked at 100 keV/μm. There is a statistically significant difference between the three GBM RBE10 values, except at 100 keV/μm (P < 0.01), and a statistically significant difference between the α values of the GBM cell lines, except at 85 and 100 keV/μm. The biological response varied depending on the GBM cell lines and on the ions used.
Collapse
Affiliation(s)
- Ming Tsuey Chew
- Sunway University, School of Healthcare and Health Sciences, Centre for Biomedical Physics, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - David A Bradley
- Sunway University, School of Healthcare and Health Sciences, Centre for Biomedical Physics, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor, Malaysia
- Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages; National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, Japan
| | - Naruhiro Matsufuji
- Radiation Effect Research Team, Department of Accelerator and Medical Physics, NIRS, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, Japan
| | - Takeshi Murakami
- Heavy-Ion Radiotherapy Promotion Unit & Department of Accelerator and Medical Physics, NIRS, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, Japan
| | - Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford, Oncology Institute, University of Oxford, ORCRB-Roosevelt Drive, Oxford, UK
| | - Andrew Nisbet
- Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
- The Department of Medical Physics, Royal Surrey County Hospital, Egerton Road, Guildford, UK
| |
Collapse
|
17
|
Kong L, Gao J, Hu J, Lu R, Yang J, Qiu X, Hu W, Lu JJ. Carbon ion radiotherapy boost in the treatment of glioblastoma: a randomized phase I/III clinical trial. Cancer Commun (Lond) 2019; 39:5. [PMID: 30786916 PMCID: PMC6383247 DOI: 10.1186/s40880-019-0351-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Background Glioblastoma (GBM) is a highly virulent tumor of the central nervous system, with a median survival < 15 months. Clearly, an improvement in treatment outcomes is needed. However, the emergence of these malignancies within the delicate brain parenchyma and their infiltrative growth pattern severely limit the use of aggressive local therapies. The particle therapy represents a new promising therapeutic approach to circumvent these prohibitive conditions with improved treatment efficacy. Methods and design Patients with newly diagnosed malignant gliomas will have their tumor tissue samples submitted for the analysis of the status of O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. In Phase I, the patients will undergo an induction carbon ion radiotherapy (CIRT) boost followed by 60 GyE of proton irradiation with concurrent temozolomide (TMZ) at 75 mg/m2. To determine the maximal dose of safe induction boost, the tolerance, and acute toxicity rates in a dose-escalation manner from 9 to 18 GyE in three fractions will be used. In Phase III, GBM-only patients will be randomized to receive either 60 GyE (2 GyE per fraction) of proton irradiation with concurrent TMZ (control arm) or a CIRT boost (dose determined in Phase I of this trial) followed by 60 GyE of proton irradiation with concurrent TMZ. The primary endpoints are overall survival (OS) and toxicity rates (acute and long-term). Secondary endpoints are progression-free survival (PFS), and tumor response (based upon assessment with C-methionine/fluoro-ethyl-tyrosine positron emission tomography [MET/FET PET] or magnetic resonance imaging [MRI] and detection of serologic immune markers). We hypothesize that the induction CIRT boost will result in a greater initial tumor-killing ability and prime the tumor microenvironment for enhanced immunologic tumor clearance, resulting in an expected 33% improvement in OS rates. Discussion The prognosis of GBM remains grim. The mechanism underpinning the poor prognosis of this malignancy is its chronic state of tumor hypoxia, which promotes both immunosuppression/immunologic evasion and radio-resistance. The unique physical and biological properties of CIRT are expected to overcome these microenvironmental limitations to confer an improved tumor-killing ability and anti-tumor immune response, which could result in an improvement in OS with minimal toxicity. Trial registration number This trial has been registered with the China Clinical Trials Registry, and was allocated the number ChiCTR-OID-17013702.
Collapse
Affiliation(s)
- Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, P. R. China
| | - Jing Gao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Pudong, 4365 Kangxin Road, Shanghai, 201321, P. R. China
| | - Jiyi Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Pudong, 4365 Kangxin Road, Shanghai, 201321, P. R. China
| | - Rong Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Pudong, 4365 Kangxin Road, Shanghai, 201321, P. R. China
| | - Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Pudong, 4365 Kangxin Road, Shanghai, 201321, P. R. China
| | - Xianxin Qiu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Pudong, 4365 Kangxin Road, Shanghai, 201321, P. R. China
| | - Weixu Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Pudong, 4365 Kangxin Road, Shanghai, 201321, P. R. China
| | - Jiade J Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Pudong, 4365 Kangxin Road, Shanghai, 201321, P. R. China.
| |
Collapse
|
18
|
Wank M, Schilling D, Reindl J, Meyer B, Gempt J, Motov S, Alexander F, Wilkens JJ, Schlegel J, Schmid TE, Combs SE. Evaluation of radiation-related invasion in primary patient-derived glioma cells and validation with established cell lines: impact of different radiation qualities with differing LET. J Neurooncol 2018; 139:583-590. [PMID: 29882045 DOI: 10.1007/s11060-018-2923-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/05/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is the most common primary brain tumor and has a very poor overall prognosis. Multimodal treatment is still inefficient and one main reason is the invasive nature of GBM cells, enabling the tumor cells to escape from the treatment area causing tumor progression. This experimental study describes the effect of low- and high-LET irradiation on the invasion of primary GBM cells with a validation in established cell systems. METHODS Seven patient derived primary GBM as well as three established cell lines (LN229, LN18 and U87) were used in this study. Invasion was investigated using Matrigel® coated transwell chambers. Irradiation was performed with low- (X-ray) and high-LET (alpha particles) radiation. The colony formation assay was chosen to determine the corresponding alpha particle dose equivalent to the X-ray dose. RESULTS 4 Gy X-ray irradiation increased the invasive potential of six patient derived GBM cells as well as two of the established lines. In contrast, alpha particle irradiation with an equivalent dose of 1.3 Gy did not show any effect on the invasive behavior. The findings were validated with established cell lines. CONCLUSION Our results show that in contrast to low-LET irradiation high-LET irradiation does not enhance the invasion of established and primary glioblastoma cell lines. We therefore suggest that high-LET irradiation could become an alternative treatment option. To fully exploit the benefits of high-LET irradiation concerning the invasion of GBM further molecular studies should be performed.
Collapse
Affiliation(s)
- M Wank
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Oberschleißheim, Germany.,Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site, Munich, Germany
| | - D Schilling
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Oberschleißheim, Germany.,Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site, Munich, Germany
| | - J Reindl
- Institute for Applied Physics and Metrology, Bundeswehr University Munich, Neubiberg, Germany
| | - B Meyer
- Department of Neurosurgery, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - J Gempt
- Department of Neurosurgery, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - S Motov
- Department of Neurosurgery, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - F Alexander
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - J J Wilkens
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - J Schlegel
- Department of Neuropathology, Technical University of Munich (TUM), Munich, Germany
| | - T E Schmid
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Oberschleißheim, Germany.,Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - S E Combs
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Oberschleißheim, Germany. .,Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany. .,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site, Munich, Germany.
| |
Collapse
|
19
|
Berardinelli F, Sgura A, Facoetti A, Leone S, Vischioni B, Ciocca M, Antoccia A. The G-quadruplex-stabilizing ligand RHPS4 enhances sensitivity of U251MG glioblastoma cells to clinical carbon ion beams. FEBS J 2018; 285:1226-1236. [PMID: 29484821 DOI: 10.1111/febs.14415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/11/2018] [Accepted: 02/19/2018] [Indexed: 11/27/2022]
Abstract
The pentacyclic acridine RHPS4 is a highly potent and specific G-quadruplex (G4) ligand, which binds and stabilizes telomeric G4 leading to the block of the replication forks at telomeres and consequently to telomere dysfunctionalization. In turn, the cell recognizes unprotected telomeres as DNA double-strand breaks with consequent activation of DNA repair response at telomeres, cellular growth impairment, and death. Data from the literature showed the capability of this compound to sensitize U251MG glioblastoma radioresistant cell line to X-rays sparsely ionizing radiations. In the present paper, it was investigated whether RHPS4 is also able to increase the effect of clinical carbon ion beams (cells irradiated in the middle of a spread-out Bragg peak, in the energy range of 246-312 MeV·μm-1 and a dose-averaged linear energy transfer of 46 keV·μm-1 ). Interestingly, also for charged particles whose damage inflicted to DNA is more complex than that of sparsely ionizing radiations and results in higher Relative Biological Effectiveness (RBE), RHPS4 significantly potentiated the radiation effect in terms of cell killing, delayed rejoining of DNA double-strand breaks (γ-H2AX and 53BBP1 immunofluorescence staining), chromosome aberrations (pan-centromeric/telomeric FISH and multicolor FISH), and G2 /M-phase accumulation in GBM cells. Overall, the results provide the first evidence that the combined administration of the G4-ligand RHPS4 with charged particles interfere with cellular processes involved in cell survival leading to radiosensitization of highly radioresistant tumor cells.
Collapse
Affiliation(s)
| | - Antonella Sgura
- Dipartimento Di Scienze, Università Roma Tre, Italy.,INFN Sezione di Roma Tre, Italy
| | | | | | | | | | - Antonio Antoccia
- Dipartimento Di Scienze, Università Roma Tre, Italy.,INFN Sezione di Roma Tre, Italy
| |
Collapse
|
20
|
Mohamad O, Makishima H, Kamada T. Evolution of Carbon Ion Radiotherapy at the National Institute of Radiological Sciences in Japan. Cancers (Basel) 2018; 10:cancers10030066. [PMID: 29509684 PMCID: PMC5876641 DOI: 10.3390/cancers10030066] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Charged particles can achieve better dose distribution and higher biological effectiveness compared to photon radiotherapy. Carbon ions are considered an optimal candidate for cancer treatment using particles. The National Institute of Radiological Sciences (NIRS) in Chiba, Japan was the first radiotherapy hospital dedicated for carbon ion treatments in the world. Since its establishment in 1994, the NIRS has pioneered this therapy with more than 69 clinical trials so far, and hundreds of ancillary projects in physics and radiobiology. In this review, we will discuss the evolution of carbon ion radiotherapy at the NIRS and some of the current and future projects in the field.
Collapse
Affiliation(s)
- Osama Mohamad
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Oncology, University of Texas-Southwestern Medical Center, 2280 Inwood Rd., Dallas, TX 75390, USA.
| | - Hirokazu Makishima
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Tadashi Kamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
21
|
Adeberg S, Bernhardt D, Harrabi SB, Nicolay NH, Hörner-Rieber J, König L, Repka M, Mohr A, Abdollahi A, Weber KJ, Debus J, Rieken S. Metformin Enhanced in Vitro Radiosensitivity Associates with G2/M Cell Cycle Arrest and Elevated Adenosine-5'-monophosphate-activated Protein Kinase Levels in Glioblastoma. Radiol Oncol 2017; 51:431-437. [PMID: 29333122 PMCID: PMC5765320 DOI: 10.1515/raon-2017-0042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 09/30/2017] [Indexed: 12/28/2022] Open
Abstract
Background It is hypothesized that metabolism plays a strong role in cancer cell regulation. We have recently demonstrated improved progression-free survival in patients with glioblastoma who received metformin as an antidiabetic substance during chemoradiation. Although metformin is well-established in clinical use the influence of metformin in glioblastoma is far from being understood especially in combination with other treatment modalities such as radiation and temozolomide. Materials and Methods In this study, we examined the influence of metformin in combinations with radiation and temozolomide on cell survival (clonogenic survival), cell cycle (routine flow cytometric analysis, FACScan), and phosphorylated Adenosine-5’-monophosphate-activated protein kinase (AMPK) (Phopho-AMPKalpha1 - ELISA) levels in glioblastoma cell lines LN18 and LN229. Results Metformin and temozolomide enhanced the effectiveness of photon irradiation in glioblastoma cells. Cell toxicity was more pronounced in O6-methylguanine DNA methyltransferase (MGMT) promoter non-methylated LN18 cells. Induction of a G2/M phase cell cycle block through metformin and combined treatments was observed up to 72 h. These findings were associated with elevated levels of activated AMPK levels in LN229 cells but not in LN18 cells after irradiation, metformin, and temozolomide treatment. Conclusions Radiosensitizing effects of metformin on glioblastoma cells treated with irradiation and temozolomide in vitro coincided with G2/M arrest and changes in pAMPK levels.
Collapse
Affiliation(s)
- Sebastian Adeberg
- University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Denise Bernhardt
- University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Semi B Harrabi
- University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Nils H Nicolay
- University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Laila König
- University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Michael Repka
- Department of Radiation Medicine, Georgetown University Hospital, Washington DC, USA
| | - Angela Mohr
- University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Amir Abdollahi
- University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany.,Tanslational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus-Josef Weber
- University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Juergen Debus
- University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Stefan Rieken
- University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
22
|
Hohmann T, Grabiec U, Vogel C, Ghadban C, Ensminger S, Bache M, Vordermark D, Dehghani F. The Impact of Non-Lethal Single-Dose Radiation on Tumor Invasion and Cytoskeletal Properties. Int J Mol Sci 2017; 18:E2001. [PMID: 28926987 PMCID: PMC5618650 DOI: 10.3390/ijms18092001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022] Open
Abstract
Irradiation is the standard therapy for glioblastoma multiforme. Glioblastoma are highly resistant to radiotherapy and the underlying mechanisms remain unclear. To better understand the biological effects of irradiation on glioblastoma cells, we tested whether nonlethal irradiation influences the invasiveness, cell stiffness, and actin cytoskeleton properties. Two different glioblastoma cell lines were irradiated with 2 Gy and changes in mechanical and migratory properties and alterations in the actin structure were measured. The invasiveness of cell lines was determined using a co-culture model with organotypic hippocampal slice cultures. Irradiation led to changes in motility and a less invasive phenotype in both investigated cell lines that were associated with an increase in a "generalized stiffness" and changes in the actin structure. In this study we demonstrate that irradiation can induce changes in the actin cytoskeleton and motility, which probably results in reduced invasiveness of glioblastoma cell lines. Furthermore, "generalized stiffness" was shown to be a profound marker of the invasiveness of a tumor cell population in our model.
Collapse
Affiliation(s)
- Tim Hohmann
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle, Germany.
| | - Urszula Grabiec
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle, Germany.
| | - Carolin Vogel
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle, Germany.
| | - Chalid Ghadban
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle, Germany.
| | - Stephan Ensminger
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle, Germany.
| | - Matthias Bache
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle, Germany.
| | - Dirk Vordermark
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle, Germany.
| | - Faramarz Dehghani
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle, Germany.
| |
Collapse
|
23
|
Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair. Cancers (Basel) 2017; 9:cancers9060066. [PMID: 28598362 PMCID: PMC5483885 DOI: 10.3390/cancers9060066] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.
Collapse
|
24
|
Mozes P, Dittmar JO, Habermehl D, Tonndorf-Martini E, Hideghety K, Dittmar A, Debus J, Combs SE. Volumetric response of intracranial meningioma after photon or particle irradiation. Acta Oncol 2017; 56:431-437. [PMID: 27911139 DOI: 10.1080/0284186x.2016.1259659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Meningiomas are usually slow growing, well circumscribed intracranial tumors. In symptom-free cases observation with close follow-up imaging could be performed. Symptomatic meningiomas could be surgically removed and/or treated with radiotherapy. The study aimed to evaluate the volumetric response of intracranial meningiomas at different time points after photon, proton, and a mixed photon and carbon ion boost irradiation. PATIENTS AND METHODS In Group A 38 patients received proton therapy (median dose: 56 GyE in 1.8-2 GyE daily fractions) or a mixed photon/carbon ion therapy (50 Gy in 2 Gy daily fractions with intensity modulated radiotherapy (IMRT) and 18 GyE in 3 GyE daily dose carbon ion boost). Thirty-nine patients (Group B) were treated by photon therapy with IMRT or fractionated stereotactic radiotherapy technique (median dose: 56 Gy in 1.8-2 Gy daily fractions). The delineation of the tumor volume was based on the initial, one- and two-year follow-up magnetic resonance imaging and these volumes were compared to evaluate the volumetric tumor response. RESULTS Significant tumor volume shrinkage was detected at one- and at two-year follow-up both after irradiation by particles and by photons. No significant difference in tumor volume change was observed between photon, proton or combined photon plus carbon ion boost treated patients. WHO grade and gender appear to be determining factors for tumor volume shrinkage. CONCLUSION Significant volumetric shrinkage of meningiomas could be observed independently of the applied radiation modality. Long-term follow-up is recommended to evaluate further dynamic of size reduction and its correlation with outcome data.
Collapse
Affiliation(s)
- Petra Mozes
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan Oliver Dittmar
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Daniel Habermehl
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Eric Tonndorf-Martini
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Katalin Hideghety
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Attosecond Light Pulse Source, ELI-Hu Nkft, Szeged, Hungary
| | - Anne Dittmar
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute of Innovative Radiotherapy, Department of Radiation Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
25
|
Phase I/II trial evaluating concurrent carbon-ion radiotherapy plus chemotherapy for salvage treatment of locally recurrent nasopharyngeal carcinoma. CHINESE JOURNAL OF CANCER 2016; 35:101. [PMID: 28007028 PMCID: PMC5178073 DOI: 10.1186/s40880-016-0164-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND After definitive chemoradiotherapy for non-metastatic nasopharyngeal carcinoma (NPC), more than 10% of patients will experience a local recurrence. Salvage treatments present significant challenges for locally recurrent NPC. Surgery, stereotactic ablative body radiotherapy, and brachytherapy have been used to treat locally recurrent NPC. However, only patients with small-volume tumors can benefit from these treatments. Re-irradiation with X-ray-based intensity-modulated radiotherapy (IMXT) has been more widely used for salvage treatment of locally recurrent NPC with a large tumor burden, but over-irradiation to the surrounding normal tissues has been shown to cause frequent and severe toxicities. Furthermore, locally recurrent NPC represents a clinical entity that is more radio-resistant than its primary counterpart. Due to the inherent physical advantages of heavy-particle therapy, precise dose delivery to the target volume(s), without exposing the surrounding organs at risk to extra doses, is highly feasible with carbon-ion radiotherapy (CIRT). In addition, CIRT is a high linear energy transfer (LET) radiation and provides an increased relative biological effectiveness compared with photon and proton radiotherapy. Our prior work showed that CIRT alone to 57.5 GyE (gray equivalent), at 2.5 GyE per daily fraction, was well tolerated in patients who were previously treated for NPC with a definitive dose of IMXT. The short-term response rates at 3-6 months were also acceptable. However, no patients were treated with concurrent chemotherapy. Whether the addition of concurrent chemotherapy to CIRT can benefit locally recurrent NPC patients over CIRT alone has never been addressed. It is possible that the benefits of high-LET CIRT may make radiosensitizing chemotherapy unnecessary. We therefore implemented a phase I/II clinical trial to address these questions and present our methodology and results. METHODS AND DESIGN The maximal tolerated dose (MTD) of re-treatment using raster-scanning CIRT plus concurrent cisplatin will be determined in the phase I, dose-escalating stage of this study. CIRT dose escalation from 52.5 to 65 GyE (2.5 GyE × 21-26 fractions) will be delivered, with the primary endpoints being acute and subacute toxicities. Efficacy in terms of overall survival (OS) and local progression-free survival of patients after concurrent chemotherapy plus CIRT at the determined MTD will then be studied in the phase II stage of the trial. We hypothesize that CIRT plus chemotherapy can improve the 2-year OS rate from the historical 50% to at least 70%. CONCLUSIONS Re-treatment of locally recurrent NPC using photon radiation techniques, including IMXT, provides moderate efficacy but causes potentially severe toxicities. Improved outcomes in terms of efficacy and toxicity profile are expected with CIRT plus chemotherapy. However, the MTD of CIRT used concurrently with cisplatin-based chemotherapy for locally recurrent NPC remains to be determined. In addition, whether the addition of chemotherapy to CIRT is needed remains unknown. These questions will be evaluated in the dose-escalating phase I and randomized phase II trials.
Collapse
|
26
|
Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov’yov AV, Prise KM, Golding J, Mason NJ. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol 2016; 7:8. [PMID: 27867425 PMCID: PMC5095165 DOI: 10.1186/s12645-016-0021-x] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is currently used in around 50% of cancer treatments and relies on the deposition of energy directly into tumour tissue. Although it is generally effective, some of the deposited energy can adversely affect healthy tissue outside the tumour volume, especially in the case of photon radiation (gamma and X-rays). Improved radiotherapy outcomes can be achieved by employing ion beams due to the characteristic energy deposition curve which culminates in a localised, high radiation dose (in form of a Bragg peak). In addition to ion radiotherapy, novel sensitisers, such as nanoparticles, have shown to locally increase the damaging effect of both photon and ion radiation, when both are applied to the tumour area. Amongst the available nanoparticle systems, gold nanoparticles have become particularly popular due to several advantages: biocompatibility, well-established methods for synthesis in a wide range of sizes, and the possibility of coating of their surface with a large number of different molecules to provide partial control of, for example, surface charge or interaction with serum proteins. This gives a full range of options for design parameter combinations, in which the optimal choice is not always clear, partially due to a lack of understanding of many processes that take place upon irradiation of such complicated systems. In this review, we summarise the mechanisms of action of radiation therapy with photons and ions in the presence and absence of nanoparticles, as well as the influence of some of the core and coating design parameters of nanoparticles on their radiosensitisation capabilities.
Collapse
Affiliation(s)
- Kaspar Haume
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| | - Soraia Rosa
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Lisburn Road, Belfast, BT9 7BL UK
| | - Sophie Grellet
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| | - Małgorzata A. Śmiałek
- Department of Control and Power Engineering, Faculty of Ocean Engineering and Ship Technology, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Karl T. Butterworth
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Lisburn Road, Belfast, BT9 7BL UK
| | | | - Kevin M. Prise
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Lisburn Road, Belfast, BT9 7BL UK
| | - Jon Golding
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| | - Nigel J. Mason
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| |
Collapse
|
27
|
Kong L, Hu J, Guan X, Gao J, Lu R, Lu JJ. Phase I/II Trial Evaluating Carbon Ion Radiotherapy for Salvaging Treatment of Locally Recurrent Nasopharyngeal Carcinoma. J Cancer 2016; 7:774-83. [PMID: 27162535 PMCID: PMC4860793 DOI: 10.7150/jca.14399] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/11/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Radiation therapy is the mainstay strategy for the treatment of nasopharyngeal cancer (NPC). Intensity-modulated X-ray therapy (IMXT) alone is the current standard for stage I and II NPC. For stage III and IV A/B diseases, concurrent chemotherapy should be provided in addition to IMXT. However, optimal treatment for locally recurrent NPC after previous definitive dose of radiotherapy is lacking. Various techniques including brachytherapy, IMXT, stereotactic radiosurgery or radiotherapy (SRS or SBRT) have been used in the management of locally recurrent NPC. Due to the inherent limitation of these techniques, i.e., limited range of irradiation or over-irradiation to surrounding normal tissues, moderate efficacy has been observed at the cost of severe toxicities. Carbon ion radiotherapy (CIRT) offers potential physical and biological advantages over photon and proton radiotherapy. Due to the inverted dose profile of particle beams and their greater energy deposition within the Bragg peak, precise dose delivery to the target volume(s) without exposing the surrounding organs at risk to extra doses is possible. In addition, CIRT provides an increased relative biological effectiveness (RBE) as compared to photon and proton radiotherapy. Such advantages may translate to improved outcomes after irradiation in terms of disease control in radio-resistant and previously treated, recurrent malignancies. It is therefore reasonable to postulate that recurrent NPC after high-dose radiotherapy could be more resistant to re-irradiation using photons. Reports on the treatment of radio-resistant malignancies in the head and neck region such as melanoma, sarcoma, and adenoid cystic carcinoma (ACC) have demonstrated superior local control rates from CIRT as compared to photon irradiation. Thus patients with recurrent NPC are likely to benefit from the enhanced biological effectiveness of carbon ions. As effective retreatment strategy is lacking for locally recurrent NPC, carbon ion radiation therapy offers an ideal alternate to conventional X-ray irradiation. METHODS AND DESIGN The recommended dose of re-irradiation using CIRT for locally recurrent NPC will be determined in the dose-escalating phase (Phase I) of the study. Efficacy in terms of local progression-free survival (LPFS) and overall survival (OS) will be studied in the second phase of the study. Increasing doses of CIRT using raster scanning technology from 55GyE (22×2.5 GyE) to 65 GyE (26× 2.5 GyE) will be delivered in the Phase I part of the study. The primary endpoint of the Phase I part of the study is acute and sub-acute toxicities; the primary endpoint in the Phase II part is local progression-free survival and overall survival. Using the historical 2-year OS rate of 50% in locally recurrent NPC patients treated with photon or proton, we hypothesize that CIRT can improve the 2-year OS rate to 70%. DISCUSSION The utilization of conventional radiation techniques including IMXT, brachytherapy, or stereotactic radiation therapy provides moderate efficacy in the treatment of locally recurrent NPC due to the limitations in dose distribution and biological effectiveness. Improved outcome in terms of treatment-induced toxicity, LC, LPFS, and OS are expected using CIRT due to the physical and biological characteristics of carbon ion beam. However, the recommended dose of CIRT used in re-irradiation for the local NPC focus remain to be determined. The recommended dose as well as the efficacy of CIRT in the treatment of locally recurrent NPC will be evaluated in the present trial.
Collapse
Affiliation(s)
- Lin Kong
- 1. Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jiyi Hu
- 2. Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Xiyin Guan
- 2. Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jing Gao
- 2. Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Rong Lu
- 3. Department of Outpatient Clinic, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jiade J Lu
- 2. Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| |
Collapse
|
28
|
Held KD, Kawamura H, Kaminuma T, Paz AES, Yoshida Y, Liu Q, Willers H, Takahashi A. Effects of Charged Particles on Human Tumor Cells. Front Oncol 2016; 6:23. [PMID: 26904502 PMCID: PMC4751258 DOI: 10.3389/fonc.2016.00023] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/21/2016] [Indexed: 12/22/2022] Open
Abstract
The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles.
Collapse
Affiliation(s)
- Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Hidemasa Kawamura
- Gunma University Heavy Ion Medical Center, Gunma, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takuya Kaminuma
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Gunma University Heavy Ion Medical Center, Gunma, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center , Gunma , Japan
| | - Qi Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | | |
Collapse
|
29
|
Stress Response Leading to Resistance in Glioblastoma-The Need for Innovative Radiotherapy (iRT) Concepts. Cancers (Basel) 2016; 8:cancers8010015. [PMID: 26771644 PMCID: PMC4728462 DOI: 10.3390/cancers8010015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/23/2015] [Accepted: 01/08/2016] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is the most common and most aggressive malignant primary brain tumor in adults. In spite of multimodal therapy concepts, consisting of surgery, radiotherapy and chemotherapy, the median survival, merely 15–18 months, is still poor. Mechanisms for resistance of GBM to radio(chemo)therapy are not fully understood yet and due to the genetic heterogeneity within the tumor including radiation-resistant tumor stem cells, there are several factors leading to therapy failure. Recent research revealed that, hypoxia during radiation and miRNAs may adversely affect the therapeutic response to radiotherapy. Further molecular alterations and prognostic markers like the DNA-repair protein O6-methylguanine-DNA methyltransferase (MGMT), anti-apoptotic molecular chaperones, and/or the activity of aldehyde dehydrogenase 1 (ALDH1) have also been identified to play a role in the sensitivity to cytostatic agents. Latest approaches in the field of radiotherapy to use particle irradiation or dose escalation strategies including modern molecular imaging, however, need further evaluation with regard to long-term outcome. In this review we focus on current information about the mechanisms and markers that mediate resistance to radio(chemo)therapy, and discuss the opportunities of Innovative Radiotherapy (iRT) concepts to improve treatment options for GBM patients.
Collapse
|
30
|
Nischwitz SP, Bauer J, Welzel T, Rief H, Jäkel O, Haberer T, Frey K, Debus J, Parodi K, Combs SE, Rieken S. Clinical implementation and range evaluation of in vivo PET dosimetry for particle irradiation in patients with primary glioma. Radiother Oncol 2015; 115:179-85. [DOI: 10.1016/j.radonc.2015.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/18/2015] [Accepted: 03/21/2015] [Indexed: 10/23/2022]
|
31
|
Kubo N, Noda SE, Takahashi A, Yoshida Y, Oike T, Murata K, Musha A, Suzuki Y, Ohno T, Takahashi T, Nakano T. Radiosensitizing effect of carboplatin and paclitaxel to carbon-ion beam irradiation in the non-small-cell lung cancer cell line H460. JOURNAL OF RADIATION RESEARCH 2015; 56:229-38. [PMID: 25599995 PMCID: PMC4380040 DOI: 10.1093/jrr/rru085] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 05/22/2023]
Abstract
The present study investigated the ability of carboplatin and paclitaxel to sensitize human non-small-cell lung cancer (NSCLC) cells to carbon-ion beam irradiation. NSCLC H460 cells treated with carboplatin or paclitaxel were irradiated with X-rays or carbon-ion beams, and radiosensitivity was evaluated by clonogenic survival assay. Cell proliferation was determined by counting the number of viable cells using Trypan blue. Apoptosis and senescence were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining and senescence-associated β-galactosidase (SA-β-gal) staining, respectively. The expression of cleaved caspase-3, Bax, p53 and p21 was analyzed by western blotting. Clonogenic survival assays demonstrated a synergistic radiosensitizing effect of carboplatin and paclitaxel with carbon-ion beams; the sensitizer enhancement ratios (SERs) at the dose giving a 10% survival fraction (D10) were 1.21 and 1.22, respectively. Similarly, carboplatin and paclitaxel showed a radiosensitizing effect with X-rays; the SERs were 1.41 and 1.29, respectively. Cell proliferation assays validated the radiosensitizing effect of carboplatin and paclitaxel with both carbon-ion beam and X-ray irradiation. Carboplatin and paclitaxel treatment combined with carbon-ion beams increased TUNEL-positive cells and the expression of cleaved caspase-3 and Bax, indicating the enhancement of apoptosis. The combined treatment also increased SA-β-gal-positive cells and the expression of p53 and p21, indicating the enhancement of senescence. In summary, carboplatin and paclitaxel radiosensitized H460 cells to carbon-ion beam irradiation by enhancing irradiation-induced apoptosis and senescence.
Collapse
Affiliation(s)
- Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Shin-ei Noda
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Akihisa Takahashi
- Advanced Scientific Research Leaders Development Unit, Gunma University, Gunma, Japan
| | | | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kazutoshi Murata
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Atsushi Musha
- Gunma University Heavy Ion Medical Center, Gunma, Japan
| | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Gunma, Japan
| | - Takeo Takahashi
- Department of Radiology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan Gunma University Heavy Ion Medical Center, Gunma, Japan
| |
Collapse
|
32
|
Habermehl D, Ilicic K, Dehne S, Rieken S, Orschiedt L, Brons S, Haberer T, Weber KJ, Debus J, Combs SE. The relative biological effectiveness for carbon and oxygen ion beams using the raster-scanning technique in hepatocellular carcinoma cell lines. PLoS One 2014; 9:e113591. [PMID: 25460352 PMCID: PMC4252049 DOI: 10.1371/journal.pone.0113591] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/29/2014] [Indexed: 12/21/2022] Open
Abstract
Background Aim of this study was to evaluate the relative biological effectiveness (RBE) of carbon (12C) and oxygen ion (16O)-irradiation applied in the raster-scanning technique at the Heidelberg Ion beam Therapy center (HIT) based on clonogenic survival in hepatocellular carcinoma cell lines compared to photon irradiation. Methods Four human HCC lines Hep3B, PLC, HepG2 and HUH7 were irradiated with photons, 12C and 16O using a customized experimental setting at HIT for in-vitro trials. Cells were irradiated with increasing physical photon single doses of 0, 2, 4 and 6 Gy and heavy ionsingle doses of 0, 0.125, 0.5, 1, 2, 3 Gy (12C and 16O). SOBP-penetration depth and extension was 35 mm +/−4 mm and 36 mm +/−5 mm for carbon ions and oxygen ions respectively. Mean energy level and mean linear energy transfer (LET) were 130 MeV/u and 112 keV/um for 12C, and 154 MeV/u and 146 keV/um for 16O. Clonogenic survival was computated and realtive biological effectiveness (RBE) values were defined. Results For all cell lines and both particle modalities α- and β-values were determined. As expected, α-values were significantly higher for 12C and 16O than for photons, reflecting a steeper decline of the initial slope of the survival curves for high-LET beams. RBE-values were in the range of 2.1–3.3 and 1.9–3.1 for 12C and 16O, respectively. Conclusion Both irradiation with 12C and 16O using the rasterscanning technique leads to an enhanced RBE in HCC cell lines. No relevant differences between achieved RBE-values for 12C and 16O were found. Results of this work will further influence biological-adapted treatment planning for HCC patients that will undergo particle therapy with 12C or 16O.
Collapse
Affiliation(s)
- Daniel Habermehl
- Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Isma-ninger Str. 22, 81675, Munich, Germany
- * E-mail:
| | - Katarina Ilicic
- Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Sarah Dehne
- Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Lena Orschiedt
- Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Klaus-Josef Weber
- Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Isma-ninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
33
|
Simon F, Dittmar JO, Brons S, Orschiedt L, Urbschat S, Weber KJ, Debus J, Combs SE, Rieken S. Integrin-based meningioma cell migration is promoted by photon but not by carbon-ion irradiation. Strahlenther Onkol 2014; 191:347-55. [PMID: 25445155 DOI: 10.1007/s00066-014-0778-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/29/2014] [Indexed: 12/11/2022]
Abstract
PURPOSE Sublethal doses of photon irradiation (IR) are suspected to increase tumor cell migration and support locoregional recurrence of disease, which has already been shown in other cell lines. This manuscript describes the effect of photon and carbon-ion IR on WHO class I meningioma cell migration and provides an approach to the underlying cellular mechanisms. MATERIALS AND METHODS Meningioma cells were gained operatively at the university hospital in Homburg/Saar, Germany. For migration, membranes (8-µm pore sizes) were coated with collagen I, with collagen IV, and with fibronectin. Cells were analyzed in migration experiments with or without serum stimulation, with or without photon and carbon IR 24 h prior to experiments, and with or without integrin antibodies. Fluorescence-activated cell sorting (FACS) analyses of the integrins ανβ1, ανβ3, and ανβ5 were performed without IR and 6, 12 and 24 h after IR. Enzyme-linked immunosorbent assay (ELISA) analyses of matrix metalloproteinases (MMP)-2 and MMP-9 were realized with and without IR after cells were cultured on collagen I, collagen IV, or fibronectin for 24 h. Cells and supernatants for FACS and ELISA were stored at - 18 °C. The significance level was set at 5 % using both Student's t test and two-way ANOVA. RESULTS Migration of meningioma cells was serum-inducible (p < 0.001). It could be increased by photon IR (p < 0.02). The integrins ανβ1 and ανβ5 showed a 21 and 11 % higher expression after serum stimulation (not significant), respectively, and ανβ1 expression was raised by 14 % (p = 0.0057) after photon IR. Antibody blockage of the integrins ανβ1 and ανβ5 inhibited serum- and photon-induced migration. Expression of MMP-2 and MMP-9 remained unchanged after both IR and fetal bovine serum (FBS). Carbon-ion IR left both integrin expression and meningioma cell migration unaffected. CONCLUSION Photon but not carbon-ion IR promotes serum-based meningioma cell migration. Fibronectin receptor integrin ανβ1 signaling can be identified as an important mechanism for serum- and photon-induced migration of WHO class I meningioma cells.
Collapse
Affiliation(s)
- Florian Simon
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mairani A, Böhlen TT, Dokic I, Cabal G, Brons S, Haberer T. In response to the comments to the paper 'Modelling of cell killing due to sparsely ionizing radiation in normoxic and hypoxic conditions and an extension to high LET radiation' by T. Friedrich et al. Int J Radiat Biol 2014; 91:129-31. [PMID: 25380346 DOI: 10.3109/09553002.2015.985115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- A Mairani
- Centro Nazionale di Adroterapia Oncologica , Pavia , Italy
| | | | | | | | | | | |
Collapse
|
35
|
Friedrich T, Durante M, Scholz M. Comments on the paper "Modelling of cell killing due to sparsely ionizing radiation in normoxic and hypoxic conditions and an extension to high LET radiation" by A. Mairani et al., Int. J. Radiat. Biol. 89(10), 2013, 782-793. Int J Radiat Biol 2014; 91:127-8. [PMID: 25118892 DOI: 10.3109/09553002.2014.952459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Debus J, Abdollahi A. For the next trick: new discoveries in radiobiology applied to glioblastoma. Am Soc Clin Oncol Educ Book 2014:e95-e99. [PMID: 24857153 DOI: 10.14694/edbook_am.2014.34.e95] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor. Radiotherapy post surgical resection remained the mainstay of the management of GBM for decades until the addition of temozolomide was shown to prolong the median overall survival (OS) by 2.5 months to 14.6 months in 2005. Infiltrative growth to surrounding normal brain tissue and cooption of vascular niches, peripheral microvasuclar hyperplasia, and central hypoxic regions with pseudopalisading necrosis are characteristics of GBM and are causally linked to their exceptional radio- and chemo-resistant phenotype. An intratumoral hierarchy is postulated consisting of tumor stem cells in the apex with high DNA-repair proficiency resisting radiotherapy. It is conceivable that the stem cell property is more dynamic than originally anticipated. Niche effects such as exposure to hypoxia and intercellular communication in proximities to endothelial or bone marrow-derived cells (BMDC), for example, may activate such "stem cell" programs. GBM are exceptionally stroma-rich tumors and may consist of more than 70% stroma components, such as microglia and BMDC. It becomes increasingly apparent that treatment of GBM needs to integrate therapies targeting all above-mentioned distinct pathophysiological features. Accordingly, recent approaches in GBM therapy include inhibition of invasion (e.g., integrin, EGFR, CD95, and mTOR inhibition), antiangiogenesis and stroma modulators (TGFbeta, VEGF, angiopoetin, cMET inhibitors) and activation of immune response (vaccination and blockage of negative co-stimulatory signals). In addition, high LET-radiotherapy, for example with carbon ions, is postulated to ablate tumor stem cell and hypoxic cells more efficiently as compared with conventional low-LET photon irradiation. We discuss current key concepts, their limitations, and potentials to improve the outcome in this rapidly progressive and devastating disease.
Collapse
Affiliation(s)
- Juergen Debus
- From the German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Radiation Oncology, Heidelberg Ion Therapy Center (HIT), Heidelberg Institute of Radiation Oncology (HIRO), University of Heidelberg Medical School; Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amir Abdollahi
- From the German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Radiation Oncology, Heidelberg Ion Therapy Center (HIT), Heidelberg Institute of Radiation Oncology (HIRO), University of Heidelberg Medical School; Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
37
|
Jeynes JCG, Merchant MJ, Barazzuol L, Barry M, Guest D, Palitsin VV, Grime GW, Tullis IDC, Barber PR, Vojnovic B, Kirkby KJ. "Broadbeam" irradiation of mammalian cells using a vertical microbeam facility. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:513-21. [PMID: 23963461 DOI: 10.1007/s00411-013-0487-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
A "broadbeam" facility is demonstrated for the vertical microbeam at Surrey's Ion Beam Centre, validating the new technique used by Barazzuol et al. (Radiat Res 177:651-662, 2012). Here, droplets with a diameter of about 4 mm of 15,000 mammalian cells in suspension were pipetted onto defined locations on a 42-mm-diameter cell dish with each droplet individually irradiated in "broadbeam" mode with 2 MeV protons and 4 MeV alpha particles and assayed for clonogenicity. This method enables multiple experimental data points to be rapidly collected from the same cell dish. Initially, the Surrey vertical beamline was designed for the targeted irradiation of single cells with single counted ions. Here, the benefits of both targeted single-cell and broadbeam irradiations being available at the same facility are discussed: in particular, high-throughput cell irradiation experiments can be conducted on the same system as time-intensive focused-beam experiments with the added benefits of fluorescent microscopy, cell recognition and time-lapse capabilities. The limitations of the system based on a 2 MV tandem accelerator are also discussed, including the uncertainties associated with particle Poisson counting statistics, spread of linear energy transfer in the nucleus and a timed dose delivery. These uncertainties are calculated with Monte Carlo methods. An analysis of how this uncertainty affects relative biological effect measurements is made and discussed.
Collapse
Affiliation(s)
- J C G Jeynes
- Ion Beam Centre, University of Surrey, Guildford, GU2 7XH, UK,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Combs SE, Debus J. Treatment with heavy charged particles: systematic review of clinical data and current clinical (comparative) trials. Acta Oncol 2013; 52:1272-86. [PMID: 23964656 DOI: 10.3109/0284186x.2013.818254] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND To analyze relevant data on carbon ion radiotherapy for different tumor indications and to review current clinical trials. MATERIAL AND METHODS All published data on carbon ion radiotherapy were searched for with specific criteria in PUBMED. The terms for search were 'carbon ion and (radiotherapy OR radiation therapy) and (nirs OR chiba OR japan OR itep OR st. petersburg OR PSI OR dubna OR uppsala OR clatterbridge OR loma linda OR nice OR orsay OR itemba OR mpri OR himac OR triumf OR GSI OR HMI OR NCC OR ibmc OR pmrc OR MGH OR infn-lns OR shizuoka OR werc OR zibo OR md anderson OR fpti OR ncc ilsan OR boston OR heidelberg OR tsukuba) NOT in vitro NOT cell culture NOT review[Publication Type] Filters: Humans, English'. The search delivered 273 hits, of which only articles in English including 20 or more patients were included. Case reports were not considered. We subdivided into disease- and site-specific groups. RESULTS AND CONCLUSION To date, several studies have been performed, however, no randomized trials have been conducted. Therefore, carbon ion radiotherapy must be considered an experimental treatment, and randomized trials comparing modern photon as well as proton treatments are necessary.
Collapse
Affiliation(s)
- Stephanie E Combs
- University Hospital of Heidelberg, Department of Radiation Oncology , Heidelberg , Germany
| | | |
Collapse
|
39
|
Combs S, Debus J. Translationale Uroradioonkologie. Urologe A 2013; 52:1276-82. [DOI: 10.1007/s00120-013-3314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Combs SE, Bruckner T, Mizoe JE, Kamada T, Tsujii H, Kieser M, Debus J. Comparison of carbon ion radiotherapy to photon radiation alone or in combination with temozolomide in patients with high-grade gliomas: explorative hypothesis-generating retrospective analysis. Radiother Oncol 2013; 108:132-5. [PMID: 23932193 DOI: 10.1016/j.radonc.2013.06.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 11/27/2022]
Abstract
PURPOSE To compare retrospectively outcome after photon radiotherapy alone, radiochemotherapy with temozolomide (TMZ), and carbon ion radiotherapy in patients with high-grade gliomas and to generate a hypothetical outcome curve for C12 and TMZ. PATIENTS AND METHODS Patients treated within a Phase I/II Trial with a carbon ion boost were compared retrospectively with randomly chosen patients treated with photons or photons in combination with TMZ in a retrospective analysis. Per treatment group, 16 patients with anaplastic astocytoma (AA), and 32 patients with glioblastoma (GBM) were included. Treatment outcome with focus on progression-free survival (PFS) and overall survival (OS) was analyzed. RESULTS Median OS for patients with GBM was 9 months with RT, 14 months with RCHT group, and 18 months in the C12 group. There was no significant difference between the C12 and the RCHT group. For patients with AA, median OS was 13 months for RT, 39 months for RCHT, and 35 months after C12. The difference from RCHT to C12 was not significant. Median PFS for patients with GBM was 5 months in the RT group, 6 months in the RCHT group, and 8 months in the C12 group. There was a significant difference between the RCHT group and the C12 group. For AA, median PFS was 15 months with RT, 6 months with RCHT, and 34 with C12. Comparing subgroups, C12 was significantly different from RCHT. Based on the significant OS increase from RT to RCHT, and from RT to C12, we projected the potential increase in outcome when combined C12 and TMZ would have been applied. A generated hypothetical curve based on the abovementioned outcome as well as preclinical examinations suggests there might be a benefit from the addition of C12 in patients with high-grade gliomas. CONCLUSIONS This exploratory retrospective study suggests a potential benefit of carbon ions in patients with high-grade gliomas. This hypothesis is now being evaluated prospectively in GBM within the randomized CLEOPATRA clinical trial.
Collapse
Affiliation(s)
- Stephanie E Combs
- University Hospital of Heidelberg, Department of Radiation Oncology, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Vehlow A, Cordes N. Invasion as target for therapy of glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2013; 1836:236-44. [PMID: 23891970 DOI: 10.1016/j.bbcan.2013.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 12/27/2022]
Abstract
The survival of cancer patients suffering from glioblastoma multiforme is limited to just a few months even after treatment with the most advanced techniques. The indefinable borders of glioblastoma cell infiltration into the surrounding healthy tissue prevent complete surgical removal. In addition, genetic mutations, epigenetic modifications and microenvironmental heterogeneity cause resistance to radio- and chemotherapy altogether resulting in a hardly to overcome therapeutic scenario. Therefore, the development of efficient therapeutic strategies to combat these tumors requires a better knowledge of genetic and proteomic alterations as well as the infiltrative behavior of glioblastoma cells and how this can be targeted. Among many cell surface receptors, members of the integrin family are known to regulate glioblastoma cell invasion in concert with extracellular matrix degrading proteases. While preclinical and early clinical trials suggested specific integrin targeting as a promising therapeutic approach, clinical trials failed to deliver improved cure rates up to now. Little is known about glioblastoma cell motility, but switches in invasion modes and adaption to specific microenvironmental cues as a consequence of treatment may maintain tumor cell resistance to therapy. Thus, understanding the molecular basis of integrin and protease function for glioblastoma cell invasion in the context of radiochemotherapy is a pressing issue and may be beneficial for the design of efficient therapeutic approaches. This review article summarizes the latest findings on integrins and extracellular matrix in glioblastoma and adds some perspective thoughts on how this knowledge might be exploited for optimized multimodal therapy approaches.
Collapse
Affiliation(s)
- Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
| | | |
Collapse
|
42
|
Mairani A, Böhlen TT, Dokic I, Cabal G, Brons S, Haberer T. Modelling of cell killing due to sparsely ionizing radiation in normoxic and hypoxic conditions and an extension to high LET radiation. Int J Radiat Biol 2013; 89:782-93. [PMID: 23627742 DOI: 10.3109/09553002.2013.800247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE An approach for describing cell killing with sparsely ionizing radiation in normoxic and hypoxic conditions based on the initial number of randomly distributed DNA double-strand breaks (DSB) is proposed. An extension of the model to high linear energy transfer (LET) radiation is also presented. MATERIALS AND METHODS The model is based on the probabilities that a given DNA giant loop has one DSB or at least two DSB. A linear combination of these two classes of damage gives the mean number of lethal lesions. When coupled with a proper modelling of the spatial distribution of DSB from ion tracks, the formalism can be used to predict cell response to high LET radiation in aerobic conditions. RESULTS Survival data for sparsely ionizing radiation of cell lines in normoxic/hypoxic conditions were satisfactorily fitted with the proposed parametrization. It is shown that for dose ranges up to about 10 Gy, the model describes tested experimental survival data as good as the linear-quadratic model does. The high LET extension yields a reasonable agreement with data in aerobic conditions. CONCLUSIONS A new survival model has been introduced that is able to describe the most relevant features of cellular dose-response postulating two damage classes.
Collapse
Affiliation(s)
- Andrea Mairani
- Centro Nazionale di Adroterapia Oncologica , Pavia , Italy
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The use of charged particle therapy to control tumours non-invasively offers advantages over conventional radiotherapy. Protons and heavy ions deposit energy far more selectively than X-rays, allowing a higher local control of the tumour, a lower probability of damage to healthy tissue, low risk of complications and the chance for a rapid recovery after therapy. Charged particles are also useful for treating tumours located in areas that surround tissues that are radiosensitive and in anatomical sites where surgical access is limited. Current trial outcomes indicate that accelerated ions can potentially replace surgery for radical cancer treatments, which might be beneficial as the success of surgical cancer treatments are largely dependent on the expertise and experience of the surgeon and the location of the tumour. However, to date, only a small number of controlled randomized clinical trials have made comparisons between particle therapy and X-rays. Therefore, although the potential advantages are clear and supported by data, the cost:benefit ratio remains controversial. Research in medical physics and radiobiology is focusing on reducing the costs and increasing the benefits of this treatment.
Collapse
|
44
|
Harrabi S, Combs SE, Brons S, Haberer T, Debus J, Weber KJ. Temozolomide in combination with carbon ion or photon irradiation in glioblastoma multiforme cell lines - does scheduling matter? Int J Radiat Biol 2013; 89:692-7. [PMID: 23577964 DOI: 10.3109/09553002.2013.791406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To extend the application area of particle therapy with carbon ions the many already established treatment regimens for different tumor entities have to be taken into consideration. The present study investigates the effect of combined radiochemotherapy with temozolomide (TMZ) and high linear energy transfer (LET) irradiation with carbon ions versus photons. MATERIALS AND METHODS Clonogenic survival was analyzed for human glioma cell lines with different O6-methylguanine-DNA methyltransferase (MGMT) status, LN18 (MGMT+) and LN-229 (MGMT-), after exposure to different doses of either carbon ion or photon irradiation at different time points relative to TMZ application. Cell cycle distribution was measured by flow cytometry. MGMT status of the cell lines was verified by Western blot. RESULTS LN-18 and LN-229 reacted in accordance to their MGMT status with different sensitivity to TMZ treatment. Combined treatment with irradiation showed additive cytotoxic effects for both cell lines with low radiation doses but no radiosensitization. With increasing photon doses the combination effect was reduced, and the efficacy of the combined treatment was not dependent on administration schedule. Carbon ion irradiation showed the well known increased relative biological efficiency (RBE), overcame the above-mentioned antagonism and was also not schedule-dependent. CONCLUSIONS The in vitro effectiveness of TMZ in combined radiochemotherapy is independent of administration time or MGMT-expression. Both cell lines are significantly more sensitive to combined treatment with carbon ion radiation than to photon radiation but do not show any super-additive effects.
Collapse
Affiliation(s)
- Semi Harrabi
- Radiation Oncology, University Hospital of Heidelberg, Heidelberg University Clinics, Im Neuenheimer Feld 400, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Friedrich T, Scholz U, ElsäSser T, Durante M, Scholz M. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. JOURNAL OF RADIATION RESEARCH 2013; 54:494-514. [PMID: 23266948 PMCID: PMC3650740 DOI: 10.1093/jrr/rrs114] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 05/22/2023]
Abstract
For tumor therapy with light ions and for experimental aspects in particle radiobiology the relative biological effectiveness (RBE) is an important quantity to describe the increased effectiveness of particle radiation. By establishing and analysing a database of ion and photon cell survival data, some remarkable properties of RBE-related quantities were observed. The database consists of 855 in vitro cell survival experiments after ion and photon irradiation. The experiments comprise curves obtained in different labs, using different ion species, different irradiation modalities, the whole range of accessible energies and linear energy transfers (LETs) and various cell types. Each survival curve has been parameterized using the linear-quadratic (LQ) model. The photon parameters, α and β, appear to be slightly anti-correlated, which might point toward an underlying biological mechanism. The RBE values derived from the survival curves support the known dependence of RBE on LET, on particle species and dose. A positive correlation of RBE with the ratio α/β of the photon LQ parameters is found at low doses, which unexpectedly changes to a negative correlation at high doses. Furthermore, we investigated the course of the β coefficient of the LQ model with increasing LET, finding typically a slight initial increase and a final falloff to zero. The observed fluctuations in RBE values of comparable experiments resemble overall RBE uncertainties, which is of relevance for treatment planning. The database can also be used for extensive testing of RBE models. We thus compare simulations with the local effect model to achieve this goal.
Collapse
Affiliation(s)
- Thomas Friedrich
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
- Corresponding author. Tel: +49 (0)6159-71-1340; Fax: +49 (0)6159-71-2106; E-mail:
| | - Uwe Scholz
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
| | - Thilo ElsäSser
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
- Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany
| | - Michael Scholz
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
| |
Collapse
|
46
|
Merz F, Gaunitz F, Dehghani F, Renner C, Meixensberger J, Gutenberg A, Giese A, Schopow K, Hellwig C, Schäfer M, Bauer M, Stöcker H, Taucher-Scholz G, Durante M, Bechmann I. Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments. Neuro Oncol 2013; 15:670-81. [PMID: 23576601 PMCID: PMC3661091 DOI: 10.1093/neuonc/not003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme is the most common lethal brain tumor in human adults, with no major therapeutic breakthroughs in recent decades. Research is based mostly on human tumor cell lines deprived of their organotypic environment or inserted into immune-deficient animals required for graft survival. Here, we describe how glioblastoma specimens obtained from surgical biopsy material can be sectioned and transferred into cultures within minutes. METHODS Slices were kept in 6-well plates, allowing direct observation, application of temozolomide, and irradiation. At the end of experiments, slice cultures were processed for histological analysis including hematoxylin-eosin staining, detection of proliferation (Ki67), apoptosis/cell death (cleaved caspase 3, propidium iodide), DNA double-strand breaks (γH2AX), and neural subpopulations. First clinical trials employed irradiation with the heavy ion carbon for the treatment of glioblastoma patients, but the biological effects and most effective dose regimens remain to be established. Therefore, we developed an approach to expose glioblastoma slice cultures to (12)C and X-rays. RESULTS We found preservation of the individual histopathology over at least 16 days. Treatments resulted in activation of caspase 3, inhibition of proliferation, and cell loss. Irradiation induced γH2AX. In line with clinical observations, individual tumors differed significantly in their susceptibility to temozolomide (0.4%-2.5% apoptosis and 1%-15% cell loss). CONCLUSION Glioblastoma multiforme slice cultures provide a unique tool to explore susceptibility of individual tumors for specific therapies including heavy ions, thus potentially allowing more personalized treatments plus exploration of mechanisms of (and strategies to overcome) tumor resistance.
Collapse
Affiliation(s)
- Felicitas Merz
- Institute of Anatomy, University of Leipzig, Liebigstrasse 13, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Combs SE, Welzel T, Habermehl D, Rieken S, Dittmar JO, Kessel K, Jäkel O, Haberkorn U, Debus J. Prospective evaluation of early treatment outcome in patients with meningiomas treated with particle therapy based on target volume definition with MRI and 68Ga-DOTATOC-PET. Acta Oncol 2013; 52:514-20. [PMID: 23402336 DOI: 10.3109/0284186x.2013.762996] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To evaluate early treatment results and toxicity in patients with meningiomas treated with particle therapy. MATERIAL AND METHODS Seventy patients with meningiomas were treated with protons (n = 38) or carbon ion radiotherapy (n = 26). Median age was 49 years. Median age at treatment was 55 years, 24 were male (34%), and 46 were female (66%). Histology was benign meningioma in 26 patients (37%), atypical in 23 patients (33%) and anaplastic in four patients (6%). In 17 patients (24%) with skull base meningiomas diagnosis was based on the typical appearance of a meningioma. For benign meningiomas, total doses of 52.2-57.6 GyE were applied with protons. For high-grade lesions, the boost volume was 18 GyE carbon ions, with a median dose of 50 GyE applied as highly conformal radiation therapy. Nineteen patients were treated as re-irradiation. Treatment planning with MRI and 68-Ga-DOTATOC-PET was evaluated. RESULTS Very low rates of side effects developed, including headaches, nausea and dizziness. No severe treatment-related toxicity was observed. Local control for benign meningiomas was 100%. Five of 27 patients (19%) developed tumor recurrence during follow-up. Of these, four patients had been treated as re-irradiation for recurrent high-risk meningiomas. Actuarial local control after re-irradiation of high-risk meningiomas was therefore 67% at six and 12 months. In patients treated with primary radiotherapy, only one of 13 patients (8%) developed tumor recurrence 17 months after radiation therapy (photon and carbon ion boost). CONCLUSION Continuous prospective follow-up and development of novel study concepts are required to fully exploit the long-term clinical data after particle therapy for meningiomas. To date, it may be concluded that when proton therapy is available, meningioma patients can be offered a treatment at least comparable to high-end photon therapy.
Collapse
Affiliation(s)
- Stephanie E. Combs
- University Hospital of Heidelberg, Department of Radiation Oncology,
Heidelberg, Germany
| | - Thomas Welzel
- University Hospital of Heidelberg, Department of Radiation Oncology,
Heidelberg, Germany
| | - Daniel Habermehl
- University Hospital of Heidelberg, Department of Radiation Oncology,
Heidelberg, Germany
| | - Stefan Rieken
- University Hospital of Heidelberg, Department of Radiation Oncology,
Heidelberg, Germany
| | - Jan-Oliver Dittmar
- University Hospital of Heidelberg, Department of Radiation Oncology,
Heidelberg, Germany
| | - Kerstin Kessel
- University Hospital of Heidelberg, Department of Radiation Oncology,
Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Ion Therapy Center (HIT),
Heidelberg, Germany
| | - Uwe Haberkorn
- University Hospital of Heidelberg, Department of Nuclear Medicine,
Heidelberg, Germany
| | - Jürgen Debus
- University Hospital of Heidelberg, Department of Radiation Oncology,
Heidelberg, Germany
| |
Collapse
|
48
|
Three-dimensional Invasion of Human Glioblastoma Cells Remains Unchanged by X-ray and Carbon Ion Irradiation In Vitro. Int J Radiat Oncol Biol Phys 2012; 84:e515-23. [DOI: 10.1016/j.ijrobp.2012.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/27/2012] [Accepted: 06/06/2012] [Indexed: 01/29/2023]
|
49
|
Kessel KA, Bougatf N, Bohn C, Habermehl D, Oetzel D, Bendl R, Engelmann U, Orecchia R, Fossati P, Pötter R, Dosanjh M, Debus J, Combs SE. Connection of European particle therapy centers and generation of a common particle database system within the European ULICE-framework. Radiat Oncol 2012; 7:115. [PMID: 22828013 PMCID: PMC3464964 DOI: 10.1186/1748-717x-7-115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 07/24/2012] [Indexed: 11/16/2022] Open
Abstract
Background To establish a common database on particle therapy for the evaluation of clinical studies integrating a large variety of voluminous datasets, different documentation styles, and various information systems, especially in the field of radiation oncology. Methods We developed a web-based documentation system for transnational and multicenter clinical studies in particle therapy. 560 patients have been treated from November 2009 to September 2011. Protons, carbon ions or a combination of both, as well as a combination with photons were applied. To date, 12 studies have been initiated and more are in preparation. Results It is possible to immediately access all patient information and exchange, store, process, and visualize text data, any DICOM images and multimedia data. Accessing the system and submitting clinical data is possible for internal and external users. Integrated into the hospital environment, data is imported both manually and automatically. Security and privacy protection as well as data validation and verification are ensured. Studies can be designed to fit individual needs. Conclusions The described database provides a basis for documentation of large patient groups with specific and specialized questions to be answered. Having recently begun electronic documentation, it has become apparent that the benefits lie in the user-friendly and timely workflow for documentation. The ultimate goal is a simplification of research work, better study analyses quality and eventually, the improvement of treatment concepts by evaluating the effectiveness of particle therapy.
Collapse
Affiliation(s)
- Kerstin A Kessel
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression. Int J Radiat Oncol Biol Phys 2012; 83:394-9. [DOI: 10.1016/j.ijrobp.2011.06.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 05/30/2011] [Accepted: 06/24/2011] [Indexed: 12/15/2022]
|