1
|
Hu Y, Ren B, Cheng L, Deng S, Chen Q. Candida species in periodontitis: A new villain or a new target? J Dent 2024; 148:105138. [PMID: 38906455 DOI: 10.1016/j.jdent.2024.105138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
OBJECTIVES Recent research indicated that fungi might have a role in periodontitis alongside traditional periodontal pathogens. This state-of-the-art narrative review explores current concepts on the involvement of Candida species in periodontitis, and suggests the potential for ecological management of this disease. DATA, SOURCES AND STUDY SELECTION A literature search was conducted for a narrative review on Web of Science, PubMed, Medline and Scopus about periodontitis associated with Candida species. Published articles, including case reports, case series, observational and interventional clinical trials, and critical appraisals of the literature were retrieved and reviewed. CONCLUSIONS Several factors predispose individuals to periodontitis associated with Candida species. These include systemic diseases that lead to immunosuppression and oral environment changes such as cigarette smoking. While a consistent significant increase in the detection rate of Candida species in patients with periodontitis has not been universally observed, there is evidence linking Candida species to the severity of periodontitis and their potential to worsen the condition. Candida species may participate in the development of periodontitis in various ways, including cross-kingdom interactions with periodontal pathogens, changes in the local or systemic environment favoring the virulence of Candida species, and interactions between Candida-bacteria and host immunity. CLINICAL SIGNIFICANCE Mechanical plaque control is the most common treatment for periodontitis, but its effectiveness may be limited, particularly when dealing with systemic risk factors. Understanding the specific role of Candida in periodontitis illuminates innovative approaches for managing the ecological balance in periodontal health.
Collapse
Affiliation(s)
- Yao Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China; State Key Laboratory of Oral Diseases & West China School of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & West China School of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & West China School of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China; State Key Laboratory of Oral Diseases & West China School of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Shahabudin S, Azmi NS, Lani MN, Mukhtar M, Hossain MS. Candida albicans skin infection in diabetic patients: An updated review of pathogenesis and management. Mycoses 2024; 67:e13753. [PMID: 38877612 DOI: 10.1111/myc.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
Candida species, commensal residents of human skin, are recognized as the cause of cutaneous candidiasis across various body surfaces. Individuals with weakened immune systems, particularly those with immunosuppressive conditions, are significantly more susceptible to this infection. Diabetes mellitus, a major metabolic disorder, has emerged as a critical factor inducing immunosuppression, thereby facilitating Candida colonization and subsequent skin infections. This comprehensive review examines the prevalence of different types of Candida albicans-induced cutaneous candidiasis in diabetic patients. It explores the underlying mechanisms of pathogenicity and offers insights into recommended preventive measures and treatment strategies. Diabetes notably increases vulnerability to oral and oesophageal candidiasis. Additionally, it can precipitate vulvovaginal candidiasis in females, Candida balanitis in males, and diaper candidiasis in young children with diabetes. Diabetic individuals may also experience candidal infections on their nails, hands and feet. Notably, diabetes appears to be a risk factor for intertrigo syndrome in obese individuals and periodontal disorders in denture wearers. In conclusion, the intricate relationship between diabetes and cutaneous candidiasis necessitates a comprehensive understanding to strategize effective management planning. Further investigation and interdisciplinary collaborative efforts are crucial to address this multifaceted challenge and uncover novel approaches for the treatment, management and prevention of both health conditions, including the development of safer and more effective antifungal agents.
Collapse
Affiliation(s)
- Sakina Shahabudin
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Nina Suhaity Azmi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Mohd Nizam Lani
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | | | - Md Sanower Hossain
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| |
Collapse
|
3
|
Defta CL, Albu CC, Albu ŞD, Bogdan-Andreescu CF. Oral Mycobiota: A Narrative Review. Dent J (Basel) 2024; 12:115. [PMID: 38668027 PMCID: PMC11049401 DOI: 10.3390/dj12040115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Numerous studies have proven the important role of the oral microbiota in health and disease. The dysfunctionality of the oral microbiota, known as dysbiosis, is incriminated in dental caries, periodontal disease, oral infectious diseases, oral cancer, and systemic disease. The lesser-known component of the oral microbiota, the mycobiota, is now assiduously investigated. Recent technological developments have helped foster the identification of new fungal species based on genomic research. Next-generation sequencing has expanded our knowledge about the diversity, architecture, and relationships of oral microorganisms within the oral cavity. The mycobiome structure and relationships with the bacteriome have been studied to identify a mycobiotic signature. This review aimed to emphasize the latest knowledge of the oral mycobiome.
Collapse
Affiliation(s)
- Carmen Liliana Defta
- Department of Microbiology, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Cristina-Crenguţa Albu
- Department of Genetics, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ştefan-Dimitrie Albu
- Department of Periodontology, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | | |
Collapse
|
4
|
Ramage G, Borghi E, Rodrigues CF, Kean R, Williams C, Lopez-Ribot J. Our current clinical understanding of Candida biofilms: where are we two decades on? APMIS 2023; 131:636-653. [PMID: 36932821 DOI: 10.1111/apm.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Clinically we have been aware of the concept of Candida biofilms for many decades, though perhaps without the formal designation. Just over 20 years ago the subject emerged on the back of progress made from the bacterial biofilms, and academic progress pace has continued to mirror the bacterial biofilm community, albeit at a decreased volume. It is apparent that Candida species have a considerable capacity to colonize surfaces and interfaces and form tenacious biofilm structures, either alone or in mixed species communities. From the oral cavity, to the respiratory and genitourinary tracts, wounds, or in and around a plethora of biomedical devices, the scope of these infections is vast. These are highly tolerant to antifungal therapies that has a measurable impact on clinical management. This review aims to provide a comprehensive overight of our current clinical understanding of where these biofilms cause infections, and we discuss existing and emerging antifungal therapies and strategies.
Collapse
Affiliation(s)
- Gordon Ramage
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
| | - Elisa Borghi
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Health Sciences, San Paolo Medical School, Università Degli Studi di Milano, Milan, Italy
| | - Célia Fortuna Rodrigues
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
| | - Ryan Kean
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Biological Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Craig Williams
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Microbiology Department, Morecambe Bay NHS Trust, Lancaster, UK
| | - Jose Lopez-Ribot
- Department of Biology and the South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
5
|
Belayutham S, Wan Hassan WN, Razak FA, Mohd Tahir NNZ. Microbial adherence on vacuum-formed retainers with different surface roughness as constructed from conventional stone models and 3D printed models: a randomized controlled clinical trial. Clin Oral Investig 2023:10.1007/s00784-023-04940-4. [PMID: 36947263 PMCID: PMC10031723 DOI: 10.1007/s00784-023-04940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE This single center parallel, randomized controlled trial aimed to determine the propensity of microbial adherence on vacuum-formed retainers (VFRs) with different surface roughness imprints. MATERIALS AND METHODS Thirty-six patients debonded from fixed appliances at a teaching institution were allocated by block randomization stratified for gender to three groups [VFRs fabricated on conventional, fused deposition modeling (FDM) or stereolithography apparatus (SLA) working models]. Participants wore the VFRs for three months full-time followed by three months part-time. VFRs were collected after each follow-up for Streptococcus and yeast counts. Surface roughness was measured indirectly on the working models using a 3D optical surface texture analyzer. Blinding was not feasible due to appliance appearance. The trial was registered [NCT03844425 ( ClinicalTrials.gov )] and funded by the Universiti Malaya Dental Postgraduate Research Grant (DPRG/14/19). RESULTS Thirty participants (eleven conventional, ten FDM, and nine SLA) were analyzed after six dropped out. No harms were reported. Microbial counts between the groups were not significantly different. There were more microbes in the lower VFRs than upper VFRs (total count: p<0.05; effect size, 0.5 during full-time wear and 0.4 during part-time wear). SLA had significantly (p<0.05) smoother surface than FDM (effect size, 0.3) and conventional models (effect size, 0.5). Microbial adherence was not associated with working model surface roughness. CONCLUSION Microbial adherence on VFRs was not influenced by degree of surface roughness imprints from working models. CLINICAL RELEVANCE 3D printed models can be used to make VFRs. Lower VFRs tended to accumulate oral microbes, potentially increasing the oral health risk in the lower arch.
Collapse
Affiliation(s)
- Sonia Belayutham
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wan Nurazreena Wan Hassan
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Fathilah Abdul Razak
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
6
|
Santos JO, Roldán WH. Entamoeba gingivalis and Trichomonas tenax: Protozoa parasites living in the mouth. Arch Oral Biol 2023; 147:105631. [PMID: 36764082 DOI: 10.1016/j.archoralbio.2023.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVE This review article aims to summarize the existing data on the history, biology and potential pathogenicity of Entamoeba gingivalis and Trichomonas tenax in periodontal disease, as well as the available techniques for laboratory diagnosis. DESIGN A detailed review of scientific literature available up to October 1, 2022 in three databases (PubMed, Scopus and Web of Science) was performed relevant to biology, biochemistry, epidemiology, and experimental studies on infection by E. gingivalis and T. tenax, as well as laboratory techniques for the diagnosis of both protozoa in periodontal diseases. RESULTS Accumulated evidence over the decades indicates that the protozoa E. gingivalis and T. tenax are able to interact with host cells and induce inflammation in the periodontal tissue by promoting the expression of pro-inflammatory molecules and the recruitment of neutrophils, contributing to the periodontal disease process. Among the available techniques for the laboratory diagnosis, culture and molecular assays seems to be the best tools for detection of both protozoan parasites. CONCLUSIONS E. gingivalis and T. tenax are potentially pathogens that colonize the oral cavity of humans and may cause periodontal disease.
Collapse
Affiliation(s)
- Juliana Oliveira Santos
- Faculdade de Odontologia, Universidade Anhanguera de São Paulo, Av. dos Autonomistas, 1325, CEP 06020-015 Osasco, SP, Brazil
| | - William Henry Roldán
- Laboratório de Investigação Médica 06, Hospital das Clínicas, Faculdade de Medicina Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 470, CEP 05403-000 São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Du Q, Ren B, Zhou X, Zhang L, Xu X. Cross-kingdom interaction between Candida albicans and oral bacteria. Front Microbiol 2022; 13:911623. [PMID: 36406433 PMCID: PMC9668886 DOI: 10.3389/fmicb.2022.911623] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
Candida albicans is a symbiotic fungus that commonly colonizes on oral mucosal surfaces and mainly affects immuno-compromised individuals. Polymicrobial interactions between C. albicans and oral microbes influence the cellular and biochemical composition of the biofilm, contributing to change clinically relevant outcomes of biofilm-related oral diseases, such as pathogenesis, virulence, and drug-resistance. Notably, the symbiotic relationships between C. albicans and oral bacteria have been well-documented in dental caries, oral mucositis, endodontic and periodontal diseases, implant-related infections, and oral cancer. C. albicans interacts with co-existing oral bacteria through physical attachment, extracellular signals, and metabolic cross-feeding. This review discusses the bacterial-fungal interactions between C. albicans and different oral bacteria, with a particular focus on the underlying mechanism and its relevance to the development and clinical management of oral diseases.
Collapse
Affiliation(s)
- Qian Du
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Lomelí-Martínez SM, González-Hernández LA, Ruiz-Anaya ADJ, Lomelí-Martínez MA, Martínez-Salazar SY, Mercado González AE, Andrade-Villanueva JF, Varela-Hernández JJ. Oral Manifestations Associated with HIV/AIDS Patients. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1214. [PMID: 36143891 PMCID: PMC9504409 DOI: 10.3390/medicina58091214] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Oral manifestations are early and important clinical indicators of Human Immunodeficiency Virus (HIV) infection since they can occur in up to 50% of HIV-infected patients and in up to 80% of patients at the AIDS stage (<200 CD4+ T lymphocytes). Oral health is related to physical and mental well-being because the presence of some lesions can compromise dental aesthetics, and alter speech, chewing, and swallowing, thus impacting the quality of life of patients. For this reason, it is necessary to integrate, as part of the medical treatment of HIV-positive patients, the prevention, diagnosis, and control of oral health. It is essential that health professionals have the power to identify, diagnose, and treat oral pathologies through clinical characteristics, etiological agents, and risk factors, both local and systemic. A diagnosis at an early stage of injury allows optimizing and prioritizing oral treatments, especially in acute pathologies, such as gingivitis and necrotizing periodontitis. In this group of patients, the development of strategies for the prevention, control, and reduction of these pathologies must be prioritized in order to reduce morbidity and mortality in this group of patients.
Collapse
Affiliation(s)
- Sarah Monserrat Lomelí-Martínez
- Department of Medical and Life Sciences, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Mexico
- Master of Public Health, Department of Wellbeing and Sustainable Development, Centro Universitario del Norte, Universidad de Guadalajara, Colotlán 46200, Mexico
- Periodontics Program, Department of Integrated Dentistry Clinics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Prostodontics Program, Department of Integrated Dentistry Clinics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Luz Alicia González-Hernández
- HIV and Immunodeficiencies Research Institute, Department of Medical Clinic, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- HIV Unit Department, Antiguo Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Universidad de Guadalajara, Guadalajara 44280, Mexico
| | - Antonio de Jesús Ruiz-Anaya
- Prostodontics Program, Department of Integrated Dentistry Clinics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Manuel Arturo Lomelí-Martínez
- Department of Plastic and Reconstructive Surgery, Hospital Regional de la Zona No. 89, Instituto Mexicano del Seguro Social, Guadalajara 44190, Mexico
| | - Silvia Yolanda Martínez-Salazar
- Department of Medical and Life Sciences, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Mexico
| | - Ana Esther Mercado González
- HIV Unit Department, Antiguo Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Universidad de Guadalajara, Guadalajara 44280, Mexico
- Pediatric Dentistry Program, Department of Integrated Dentistry Clinics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Jaime Federico Andrade-Villanueva
- HIV and Immunodeficiencies Research Institute, Department of Medical Clinic, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- HIV Unit Department, Antiguo Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Universidad de Guadalajara, Guadalajara 44280, Mexico
| | - Juan José Varela-Hernández
- Department of Medical and Life Sciences, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Mexico
| |
Collapse
|
9
|
A Novel Technique for Disinfection Treatment of Contaminated Dental Implant Surface Using 0.1% Riboflavin and 445 nm Diode Laser—An In Vitro Study. Bioengineering (Basel) 2022; 9:bioengineering9070308. [PMID: 35877359 PMCID: PMC9311919 DOI: 10.3390/bioengineering9070308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Antimicrobial photodynamic therapy (PDT) has been introduced as a potential option for peri-implantitis treatment. The aim of this study is to evaluate the antimicrobial effect of a novel technique involving a combination of 445 nm diode laser light with 0.1% riboflavin solution (used as a photosensitizing dye) as applied on a bacterial–fungal biofilm formed on implants and to compare the performance of this technique with that of the commonly used combination of 660 nm diode laser with 0.1% methylene blue dye. Methods: An in vitro study was conducted on 80 titanium dental implants contaminated with Staphylococcus aureus (SA) and Candida albicans (CA) species. The implants were randomly divided into four groups: negative control (NC), without surface treatment; positive control (PC), treated with a 0.2% chlorhexidine (CHX)-based solution; PDT1, 660 nm (EasyTip 320 µm, 200 mW, Q power = 100 mW, 124.34 W/cm2, 1240 J/cm2) with a 0.1% methylene blue dye; and PDT2, 445 nm (EasyTip 320 µm, 200 mW, Q power = 100 mW, 100 Hz, 124.34 W/cm2, 1.24 J/cm2) with a 0.1% riboflavin dye. Results: The PDT1 and PDT2 groups showed greater reduction of SA and CA in comparison to the NC group and no significant differences in comparison to the PC group. No statistically significant differences between the PDT1 and PDT2 groups were observed. Conclusions: A novel antimicrobial treatment involving a combination of 445 nm diode laser light with riboflavin solution showed efficiency in reducing SA and CA biofilm formation on dental implant surfaces comparable to those of the more commonly used PDT treatment consisting of 660 nm diode laser light with methylene blue dye or 0.2% CHX treatment.
Collapse
|
10
|
Radunovic M, Barac M, Kuzmanovic Pficer J, Pavlica D, Jovanovic A, Pucar A, Petrovic S. Antifungal Susceptibility of Candida albicans Isolated from Tongue and Subgingival Biofilm of Periodontitis Patients. Antibiotics (Basel) 2022; 11:802. [PMID: 35740208 PMCID: PMC9219811 DOI: 10.3390/antibiotics11060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
The subgingival biofilm, as the most complex microbial community, has been proven to be reservoir of Candida spp. The main concept of this study was to investigate if there is a difference between the sensitivity of Candida albicans (C. albicans) isolated from tongue and subgingival areas of periodontitis patients to antifungal agents. The aim of the study was to determine: (1) the distribution of different Candida species in the tongue and subgingival samples of periodontitis patients; (2) the susceptibility of Candida albicans strains from tongue and subgingival biofilm to the effects of commonly used antifungal agents: fluconazole, amphotericin B and itraconazole; (3) the correlation between the susceptibility of Candida albicans and clinical periodontal parameters. Tongue and subgingival biofilm samples of periodontitis subjects (N = 163) were examined. Susceptibility was tested when the same Candida species was isolated from both sites (17 subjects). Candida spp. were isolated in 23.3% of tongue and 21.5% of the subgingival samples. All isolates were susceptible to amphotericin B, while 64.71% of tongue and 52.94% of subgingival isolates were susceptible to fluconazole. A low frequency of itraconazole susceptibility was observed for tongue (17.64%) and subgingival isolates (11.76%). The correlations between full-mouth plaque score and Minimal Inhibitory Concentration (MIC) for tongue isolates were strongly positive for all antimycotics. Positive correlation was also observed between moderate periodontal destruction and MICs for tongue and subgingival isolates. The susceptibility of C. albicans to antifungals correlate with oral hygiene and moderate periodontal destruction. There is no difference in antifungal susceptibility between tongue and subgingival isolates.
Collapse
Affiliation(s)
- Milena Radunovic
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia;
| | - Milena Barac
- Department of Oral Medicine and Periodontology, School of Dental Medicine, University of Belgrade, Dr Subotica 4, 11000 Belgrade, Serbia; (M.B.); (A.P.)
| | - Jovana Kuzmanovic Pficer
- Department for Medical Statistics and Informatics, School of Dental Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia;
| | - Dusan Pavlica
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia;
| | - Aleksandar Jovanovic
- Clinic of Urology, University Clinical Center of Serbia, Resavska 51, 11000 Belgrade, Serbia;
| | - Ana Pucar
- Department of Oral Medicine and Periodontology, School of Dental Medicine, University of Belgrade, Dr Subotica 4, 11000 Belgrade, Serbia; (M.B.); (A.P.)
| | - Sanja Petrovic
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia;
| |
Collapse
|
11
|
Oka I, Shigeishi H, Ohta K. Co-Infection of Oral Candida albicans and Porphyromonas gingivalis Is Associated with Active Periodontitis in Middle-Aged and Older Japanese People. Medicina (B Aires) 2022; 58:medicina58060723. [PMID: 35743986 PMCID: PMC9227322 DOI: 10.3390/medicina58060723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Objectives: Candida albicans can be detected in subgingival sites of patients with periodontitis. However, the association between oral Candida albicans and periodontitis has not been fully elucidated in Japanese adults. The aim of this study is to clarify the relationship between oral Candida albicans infection/co-infection of oral C. albicans and Porphyromonas gingivalis and periodontitis among middle-aged and older Japanese people. Materials and Methods: Eighty-six patients (mean age 70.4 years) who visited the Hiroshima University Hospital from April to September 2021 were investigated in this study. Oral swab samples were collected from the tongue surface. C. albicans and P. gingivalis DNA was detected by real-time PCR using specific DNA primer sets. C. albicans-positive participants were classified into two groups according to the presence or absence of intron insertion of C. albicans DNA by PCR analysis. Results: C. albicans was detected in 22 (25.6%) of the 86 patients. Patients in their 80s recorded a higher C. albicans-positive rate (35.3%) compared with other participants. However, there was no significant association between the C. albicans positivity rate and clinical parameters such as sex, age, systemic disease, denture use, or oral health status. Of the 22 C. albicans-positive participants, 10 participants (45.5%) had C. albicans with intron insertion; 70% of participants who had C. albicans with intron insertion exhibited ≥6 mm probing depth. C. albicans/P. gingivalis co-infection was found in 12 patients (14%). Importantly, binomial logistic regression analysis revealed that C. albicans/P. gingivalis co-infection was significantly associated with ≥6 mm periodontal pockets with bleeding on probing (p = 0.02). Conclusions: Co-infection of C. albicans and P. gingivalis is involved in active periodontitis in middle-aged and older people.
Collapse
|
12
|
Satala D, Gonzalez-Gonzalez M, Smolarz M, Surowiec M, Kulig K, Wronowska E, Zawrotniak M, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. The Role of Candida albicans Virulence Factors in the Formation of Multispecies Biofilms With Bacterial Periodontal Pathogens. Front Cell Infect Microbiol 2022; 11:765942. [PMID: 35071033 PMCID: PMC8766842 DOI: 10.3389/fcimb.2021.765942] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
Periodontal disease depends on the presence of different microorganisms in the oral cavity that during the colonization of periodontal tissues form a multispecies biofilm community, thus allowing them to survive under adverse conditions or facilitate further colonization of host tissues. Not only numerous bacterial species participate in the development of biofilm complex structure but also fungi, especially Candida albicans, that often commensally inhabits the oral cavity. C. albicans employs an extensive armory of various virulence factors supporting its coexistence with bacteria resulting in successful host colonization and propagation of infection. In this article, we highlight various aspects of individual fungal virulence factors that may facilitate the collaboration with the associated bacterial representatives of the early colonizers of the oral cavity, the bridging species, and the late colonizers directly involved in the development of periodontitis, including the “red complex” species. In particular, we discuss the involvement of candidal cell surface proteins—typical fungal adhesins as well as originally cytosolic “moonlighting” proteins that perform a new function on the cell surface and are also present within the biofilm structures. Another group of virulence factors considered includes secreted aspartic proteases (Sap) and other secreted hydrolytic enzymes. The specific structure of the candidal cell wall, dynamically changing during morphological transitions of the fungus that favor the biofilm formation, is equally important and discussed. The non-protein biofilm-composing factors also show dynamic variability upon the contact with bacteria, and their biosynthesis processes could be involved in the stability of mixed biofilms. Biofilm-associated changes in the microbe communication system using different quorum sensing molecules of both fungal and bacterial cells are also emphasized in this review. All discussed virulence factors involved in the formation of mixed biofilm pose new challenges and influence the successful design of new diagnostic methods and the application of appropriate therapies in periodontal diseases.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland.,Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Smolarz
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamila Kulig
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
13
|
Candida albicans and Candida dubliniensis in Periodontitis in Adolescents and Young Adults. Int J Microbiol 2022; 2022:4625368. [PMID: 35058983 PMCID: PMC8766183 DOI: 10.1155/2022/4625368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Aim This study aims to evaluate the association of Candida albicans and Candida dubliniensis with periodontitis in adolescents and young adults in a Moroccan population. Methods 426 subjects aged between 12 and 25 years were recruited for the study. A pool of plaque sample was taken. Samples were cultured on Sabouraud Chloramphenicol medium at 37°C for 24–48 hours and then identified by the Vitek 2 YST system. Clinical data and presence of Candida albicans and Candida dubliniensis were analyzed using Jamovi (Version 1.8). Results Candida albicans was observed in 25 subjects among 68 diseased patients (37%) and in 60 subjects among 358 healthy patients (17%). It can be reported that under normal yeast conditions, there is a statistically significant difference between these two groups (P < 0.001). Candida dubliniensis was more prevalent in periodontitis than in healthy subjects (P=0.026). Regarding clinical variables, subgroups of periodontitis subjects showed significant statistical differences for periodontal probing depth, clinical attachment loss, and number of decayed teeth in advanced periodontitis in comparison with initial or mild periodontitis. The results also indicate that the presence of the two species of Candida is not related to gender or age (P > 0.05) nor related to the severity of the periodontal disease in this population. Conclusion Within the limits of our study, Candida albicans is more frequently associated with periodontitis. The potential role of C. albicans in periodontitis pathogenesis is very complex. More studies on biofilm associated with different forms of periodontitis are necessary. It is also important to assess the coexistence of periodontitis and caries and the associated biofilms.
Collapse
|
14
|
Fungi—A Component of the Oral Microbiome Involved in Periodontal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:113-138. [DOI: 10.1007/978-3-030-96881-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Effect of finishing/polishing techniques and aging on topography, C. albicans adherence, and flexural strength of ultra-translucent zirconia: an in situ study. Clin Oral Investig 2022; 26:889-900. [PMID: 34448074 PMCID: PMC9902030 DOI: 10.1007/s00784-021-04068-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate the influence of different finishing/polishing techniques and in situ aging on the flexural strength (σ), surface roughness, and Candida albicans adherence of 5 mol% yttria-stabilized zirconia (ultratranslucent zirconia). MATERIALS AND METHODS A total of 120 zirconia bars (Prettau Anterior, Zirkonzahn) with dimensions of 8 × 2 × 0.5 mm were divided into 8 groups (n = 15) according to two factors: "in situ aging" (non-aged and aged (A)) and "finishing/polishing" (control (C), diamond rubber polishing (R), coarse grit diamond bur abrasion (B), and coarse grit diamond bur abrasion + diamond rubber polishing (BR)). Half of the samples from each group were subjected to a 60-day in situ aging by fixing the bars into cavities prepared in the posterior region of the base of complete or partial dentures of 15 patients. The samples were then subjected to the mini flexural (σ) test (1 mm/min). A total of 40 zirconia blocks (5 × 5 × 2 mm) were prepared and subjected to roughness (Ra) analyses and fungal adherence and complementary analyses (X-ray diffraction (XRD) and scanning electron microscopy (SEM)). The data of mean σ (MPa) and roughness Ra (μm) were statistically analyzed by two-way and one-way ANOVA, respectively, and Tukey's test. The Weibull analysis was performed for σ data. The fungal adhesion (Log CFU/mL) data were analyzed by Kruskal-Wallis tests. RESULTS For flexural resistance, the "finishing/polishing" factor was statistically significant (P = 0.0001); however, the "in situ aging" factor (P = 0.4458) was not significant. The non-aged (507.3 ± 115.7 MPa) and aged (487.6 ± 118.4 MPa) rubber polishing groups exhibited higher mean σ than the other techniques. The non-aged (260.2 ± 43.3 MPa) and aged (270.1 ± 48.8 MPa) bur abrasion groups presented lower σ. The coarse-grit diamond bur abrasion group (1.82 ± 0.61 µm) presented the highest roughness value (P = 0.001). Cell adhesion was not different among groups (P = 0.053). Group B presented the most irregular surface and the highest roughness Ra of 0.61 m. CONCLUSIONS The finishing of ultratranslucent zirconia might be preferably done with a diamond rubber polisher. Moreover, the protocols used did not interfere with Candida albicans adhesion. CLINICAL RELEVANCE Coarse-grit diamond burs might be avoided for finishing ultratranslucent monolithic zirconia, which might be preferably performed with a diamond rubber polisher.
Collapse
|
16
|
Lafuente-Ibáñez de Mendoza I, Cayero-Garay A, Quindós-Andrés G, Aguirre-Urizar JM. A systematic review on the implication of Candida in peri-implantitis. Int J Implant Dent 2021; 7:73. [PMID: 34136968 PMCID: PMC8209131 DOI: 10.1186/s40729-021-00338-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 01/17/2023] Open
Abstract
Background Candida is a heterogeneous fungal genus. Subgingival sulcus is a refuge for Candida, which has already been related to the pathogenic inflammation of periodontitis. This work aims to review the presence of Candida in the sulcular fluid surrounding dental implants and discuss its potential role in peri-implantitis. Results A bibliographical research was performed in PubMed, Scopus and Web of Science databases, with the keywords candida, peri-implantitis, periimplantitis, “dental implant” and implant. Newcastle-Ottawa Scale was used to assess the methodological quality of the included studies. At the end, nine observational studies were included, which analysed 400 dental implants with PI and 337 without peri-implantitis. Presence of Candida was assessed by traditional microbiological culture in blood agar or/and CHROMagar, though identification was also detected by quantitative real-time PCR, random amplified polymorphic DNA or ATB ID 32C. Dentate individuals and implants with peri-implantitis (range, 3–76.7%) had a bigger presence of Candida. C. albicans was the most isolated species, followed by Candida parapsilosis, Candida tropicalis, and Candida dubliniensis. Conclusion Candida is part of the microbiological profile of the peri-implant sulcular fluid. More studies are needed to compare the link between Candida and other microorganisms and to discover the true role of these fungi in peri-implantitis.
Collapse
Affiliation(s)
| | - Amaia Cayero-Garay
- Department of Stomatology II, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain
| | - Guillermo Quindós-Andrés
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Vizcaya, Spain
| | - José Manuel Aguirre-Urizar
- Department of Stomatology II, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain.
| |
Collapse
|
17
|
Occurrence of Candida albicans in Periodontitis. Int J Dent 2021; 2021:5589664. [PMID: 34135968 PMCID: PMC8179758 DOI: 10.1155/2021/5589664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/22/2021] [Accepted: 05/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background Periodontal diseases are the result of an imbalance between the microbiota and immune defense. The role of yeast in the pathogenesis of these diseases has been studied. This study aims to assess the occurrence of Candida albicans in periodontitis. Materials and Methods Fifty subjects were recruited for the study (15 healthy individuals and 35 periodontitis subjects). The periodontal examination and plaque sampling were carried out for all patients. Candida albicans identification was based on culture, direct examination, and polymerase chain reaction. The statistical analysis was performed by SPSS 20 (SPSS Inc., Chicago, IL, USA). Results Twenty percent of the diseased group harbored Candida albicans which was slightly higher than in the healthy group (7%), suggesting that, under normal conditions, yeast does not grow easily in subgingival sites. However, no significant difference between the healthy and periodontitis groups (p=0.23) was found. Our results also indicated that the presence of Candida albicans was neither gender nor age related in the studied groups. Conclusion The results of this study suggest that Candida albicans occurs in periodontitis. More studies are needed to clarify the potential role of this yeast in different stages and forms of the disease.
Collapse
|
18
|
Kanpittaya K, Teerakapong A, Morales NP, Hormdee D, Priprem A, Weera-archakul W, Damrongrungruang T. Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans. Molecules 2021; 26:2405. [PMID: 33919066 PMCID: PMC8122479 DOI: 10.3390/molecules26092405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
This study focuses on the role of photosensitizers in photodynamic therapy. The photosensitizers were prepared in combinations of 110/220 µM erythrosine and/or 10/20 µM demethoxy/bisdemethoxy curcumin with/without 10% (w/w) nano-titanium dioxide. Irradiation was performed with a dental blue light in the 395-480 nm wavelength range, with a power density of 3200 mW/cm2 and yield of 72 J/cm2. The production of ROS and hydroxyl radical was investigated using an electron paramagnetic resonance spectrometer for each individual photosensitizer or in photosensitizer combinations. Subsequently, a PrestoBlue® toxicity test of the gingival fibroblast cells was performed at 6 and 24 h on the eight highest ROS-generating photosensitizers containing curcumin derivatives and erythrosine 220 µM. Finally, the antifungal ability of 22 test photosensitizers, Candida albicans (ATCC 10231), were cultured in biofilm form at 37 °C for 48 h, then the colonies were counted in colony-forming units (CFU/mL) via the drop plate technique, and then the log reduction was calculated. The results showed that at 48 h the test photosensitizers could simultaneously produce both ROS types. All test photosensitizers demonstrated no toxicity on the fibroblast cells. In total, 18 test photosensitizers were able to inhibit Candida albicans similarly to nystatin. Conclusively, 20 µM bisdemethoxy curcumin + 220 µM erythrosine + 10% (w/w) nano-titanium dioxide exerted the highest inhibitory effect on Candida albicans.
Collapse
Affiliation(s)
- Kasama Kanpittaya
- Division of Periodontology, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand; (K.K.); (A.T.); (D.H.)
- Dental Department, Chumphae Hospital, Khon Kaen 40130, Thailand
| | - Aroon Teerakapong
- Division of Periodontology, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand; (K.K.); (A.T.); (D.H.)
- Laser in Dentistry Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Doosadee Hormdee
- Division of Periodontology, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand; (K.K.); (A.T.); (D.H.)
| | - Aroonsri Priprem
- Faculty of Pharmacy, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | - Wilawan Weera-archakul
- Division of Dental Public Health, Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Teerasak Damrongrungruang
- Laser in Dentistry Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
- Research and Academic Services, Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Oral Diagnosis, Department of Oral Biomedical Sciences, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
19
|
Moorhouse AJ, Moreno-Lopez R, Gow NAR, Hijazi K. Clonal evolution of Candida albicans, Candida glabrata and Candida dubliniensis at oral niche level in health and disease. J Oral Microbiol 2021; 13:1894047. [PMID: 33796227 PMCID: PMC7971237 DOI: 10.1080/20002297.2021.1894047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background:Candida species have long been recognised as aetiological agents of opportunistic infections of the oral mucosa, and more recently, as players of polymicrobial interactions driving caries, periodontitis and oral carcinogenesis. Methods: We studied the clonal structure of Candida spp. at oral niche resolution in patients (n = 20) with a range of oral health profiles over 22 months. Colonies from oral micro-environments were examined with multilocus sequencing typing. Results:Candida spp. identified were C. albicans, C. glabrata and C. dubliniensis. Increased propensity for micro-variations giving rise to multiple diploid strain types (DST), as a result of loss of heterozygosity, was observed among C. albicans clade 1 isolates compared to other clades. Micro-variations among isolates were also observed in C. dubliniensis contra to expectations of stable population structures for this species. Multiple sequence types were retrieved from patients without clinical evidence of oral candidosis, while single sequence types were isolated from oral candidosis patients. Conclusion: This is the first study to describe the clonal population structure, persistence and stability of Candida spp. at oral niche level. Future research investigating links between Candida spp. clonality and oral disease should recognise the propensity to micro-variations amongst oral niches in C. albicans and C. dubliniensis identified here.
Collapse
Affiliation(s)
- Alexander J Moorhouse
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Rosa Moreno-Lopez
- Institute of Dentistry, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Neil A R Gow
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.,Medical Research Council Centre for Medical Mycology at The University of Exeter, University of Exeter, UK
| | - Karolin Hijazi
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.,Institute of Dentistry, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
20
|
Rapone B, Ferrara E, Corsalini M, Qorri E, Converti I, Lorusso F, Delvecchio M, Gnoni A, Scacco S, Scarano A. Inflammatory Status and Glycemic Control Level of Patients with Type 2 Diabetes and Periodontitis: A Randomized Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063018. [PMID: 33804123 PMCID: PMC7998112 DOI: 10.3390/ijerph18063018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
Background: Based on the holistic approach to prevention diabetic disease, the role of periodontal inflammation in type 2 diabetes mellitus (T2DM) is under intensive scrutiny. Data from clinical trials have shown benefit from a periodontal therapy in providing patients with type 2 diabetes improvement despite relatively disappointing long-terms response rates. The aim of this study was to investigate the short-term glycemic control level and systemic inflammatory status after periodontal therapy. Methods: This was a randomized trial with a 6-months follow-up. Participants aged 56.4 ± 7.9 years with diagnosed type 2 diabetes and periodontitis were enrolled. Among the 187 type 2 diabetic patients, 93 were randomly assigned to receive non-surgical periodontal treatment immediately and 94 to receive the delayed treatment. Within and between groups comparison was done during the study period, and the differences between groups were assessed. Results: The difference between HbA1c values at baseline (Mdn = 7.7) and 6 months after non-surgical periodontal treatment (Mdn = 7.2) was statistically significant, U = 3174.5, p = 0.012, r = 0.187. However, although technically a positive correlation, the relationship between the glycated hemoglobin value and periodontal variables was weak. The differences between both the groups over 6 months were not statistically considerable, failing to reach statistical significance. At 6 months the difference between groups about the C-reactive protein (CRP) levels was statistically significant, U=1839.5, p = 0, r = 0.472, with a lower concentration for the intervention group. Furthermore, the intervention group showed a statistically significant difference between baseline and 6 months evaluation (U = 2606.5, p = 0, r = 0.308). Conclusions: The periodontal intervention potentially may allow individuals with type 2 diabetes to improve glycemic control and CRP concentrations, and diabetes alters the periodontal status.
Collapse
Affiliation(s)
- Biagio Rapone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70121 Bari, Italy; (A.G.); (S.S.)
- Correspondence: ; Tel.: +39-3477619817
| | - Elisabetta Ferrara
- Complex Operative Unit of Odontostomatology, Hospital S.S. Annunziata, 66100 Chieti, Italy;
| | - Massimo Corsalini
- Interdisciplinary Department of Medicine, University of Bari, 70121 Bari, Italy;
| | - Erda Qorri
- Dean Faculty of Medical Sciences, Albanian University, Bulevardi Zogu I, 1001 Tirana, Albania;
| | - Ilaria Converti
- Department of Emergency and Organ Transplantation, Division of Plastic and Reconstructive Surgery, “Aldo Moro” University of Bari, 70121 Bari, Italy;
| | - Felice Lorusso
- Department of Oral Science, Nano and Biotechnology and CeSi-Met University of Chieti-Pescara, 66100 Chieti, Italy; (F.L.); (A.S.)
| | - Maurizio Delvecchio
- Department of Metabolic and Genetic Diseases, Giovanni XXIII Children’s Hospital, 70126 Bari, Italy;
| | - Antonio Gnoni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70121 Bari, Italy; (A.G.); (S.S.)
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70121 Bari, Italy; (A.G.); (S.S.)
| | - Antonio Scarano
- Department of Oral Science, Nano and Biotechnology and CeSi-Met University of Chieti-Pescara, 66100 Chieti, Italy; (F.L.); (A.S.)
| |
Collapse
|
21
|
Hajishengallis G, Lamont RJ. Polymicrobial communities in periodontal disease: Their quasi-organismal nature and dialogue with the host. Periodontol 2000 2021; 86:210-230. [PMID: 33690950 DOI: 10.1111/prd.12371] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
In health, indigenous polymicrobial communities at mucosal surfaces maintain an ecological balance via both inter-microbial and host-microbial interactions that promote their own and the host's fitness, while preventing invasion by exogenous pathogens. However, genetic and acquired destabilizing factors (including immune deficiencies, immunoregulatory defects, smoking, diet, obesity, diabetes and other systemic diseases, and aging) may disrupt this homeostatic balance, leading to selective outgrowth of species with the potential for destructive inflammation. This process, known as dysbiosis, underlies the development of periodontitis in susceptible hosts. The pathogenic process is not linear but involves a positive-feedback loop between dysbiosis and the host inflammatory response. The dysbiotic community is essentially a quasi-organismal entity, where constituent organisms communicate via sophisticated physical and chemical signals and display functional specialization (eg, accessory pathogens, keystone pathogens, pathobionts), which enables polymicrobial synergy and dictates the community's pathogenic potential or nososymbiocity. In this review, we discuss early and recent studies in support of the polymicrobial synergy and dysbiosis model of periodontal disease pathogenesis. According to this concept, disease is not caused by individual "causative pathogens" but rather by reciprocally reinforced interactions between physically and metabolically integrated polymicrobial communities and a dysregulated host inflammatory response.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
22
|
Willis JR, Iraola-Guzmán S, Saus E, Ksiezopolska E, Cozzuto L, Bejarano LA, Andreu-Somavilla N, Alloza-Trabado M, Puig-Sola A, Blanco A, Broglio E, Carolis C, Hecht J, Ponomarenko J, Gabaldón T. Oral microbiome in down syndrome and its implications on oral health. J Oral Microbiol 2020; 13:1865690. [PMID: 33456723 PMCID: PMC7782466 DOI: 10.1080/20002297.2020.1865690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction: The oral cavity harbors an abundant and diverse microbial community (i.e. the microbiome), whose composition and roles in health and disease have been the focus of intense research. Down syndrome (DS) is associated with particular characteristics in the oral cavity, and with a lower incidence of caries and higher incidence of periodontitis and gingivitis compared to control populations. However, the overall composition of the oral microbiome in DS and how it varies with diverse factors like host age or the pH within the mouth are still poorly understood. Methods: Using a Citizen-Science approach in collaboration with DS associations in Spain, we performed 16S rRNA metabarcoding and high-throughput sequencing, combined with culture and proteomics-based identification of fungi to survey the bacterial and fungal oral microbiome in 27 DS persons (age range 7–55) and control samples matched by geographical distribution, age range, and gender. Results: We found that DS is associated with low salivary pH and less diverse oral microbiomes, which were characterized by lower levels of Alloprevotella, Atopobium, Candidatus Saccharimonas, and higher amounts of Kingella, Staphylococcus, Gemella, Cardiobacterium, Rothia, Actinobacillus, and greater prevalence of Candida. Conclusion: Altogether, our study provides a first global snapshot of the oral microbiome in DS. Future studies are required to establish whether the observed differences are related to differential pathology in the oral cavity in DS.
Collapse
Affiliation(s)
- Jesse R Willis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Barcelona Supercomputing Centre (BSC-CNS) and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susana Iraola-Guzmán
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Barcelona Supercomputing Centre (BSC-CNS) and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Barcelona Supercomputing Centre (BSC-CNS) and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Barcelona Supercomputing Centre (BSC-CNS) and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luis A Bejarano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nuria Andreu-Somavilla
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Miriam Alloza-Trabado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Puig-Sola
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrea Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elisabetta Broglio
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlo Carolis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Barcelona Supercomputing Centre (BSC-CNS) and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
23
|
Guo Y, Wang Y, Wang Y, Jin Y, Wang C. Heme Competition Triggers an Increase in the Pathogenic Potential of Porphyromonas gingivalis in Porphyromonas gingivalis-Candida albicans Mixed Biofilm. Front Microbiol 2020; 11:596459. [PMID: 33343538 PMCID: PMC7738433 DOI: 10.3389/fmicb.2020.596459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
As one of the main pathogens of periodontitis, Porphyromonas gingivalis often forms mixed biofilms with other bacteria or fungi under the gingiva, such as Candida albicans. Heme is an important iron source for P. gingivalis and C. albicans that supports their growth in the host. From the perspective of heme competition, this study aims to clarify that the competition for heme enhances the pathogenic potential of P. gingivalis during the interaction between P. gingivalis and C. albicans. Porphyromonas gingivalis single-species biofilm and P. gingivalis-C. albicans dual-species biofilm were established in a low- and high-heme environment. The results showed that the vitality of P. gingivalis was increased in the dual-species biofilm under the condition of low heme, and the same trend was observed under a laser confocal microscope. Furthermore, the morphological changes in P. gingivalis were observed by electron microscope, and the resistance of P. gingivalis in dual-species biofilm was stronger against the killing effect of healthy human serum and antibiotics. The ability of P. gingivalis to agglutinate erythrocyte was also enhanced in dual-species biofilm. These changes disappeared when heme was sufficient, which confirmed that heme competition was the cause of thepathogenicy change in P. gingivalis. Gene level analysis showed that P. gingivalis was in a superior position in the competition relationship by increasing the expression of heme utilization-related genes, such as HmuY, HmuR, HusA, and Tlr. In addition, the expression of genes encoding gingipains (Kgp, RgpA/B) was also significantly increased. They not only participate in the process of utilizing heme, but also are important components of the virulence factors of P. gingivalis. In conclusion, our results indicated that the pathogenic potential of P. gingivalis was enhanced by C. albicans through heme competition, which ultimately promoted the occurrence and development of periodontitis and, therefore, C. albicans subgingival colonization should be considered as a factor in assessing the risk of periodontitis.
Collapse
Affiliation(s)
- Yanyang Guo
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yijin Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yabing Jin
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Chen Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Černáková L, Rodrigues CF. Microbial interactions and immunity response in oral Candida species. Future Microbiol 2020; 15:1653-1677. [PMID: 33251818 DOI: 10.2217/fmb-2020-0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral candidiasis are among the most common noncommunicable diseases, related with serious local and systemic illnesses. Although these infections can occur in all kinds of patients, they are more recurrent in immunosuppressed ones such as patients with HIV, hepatitis, cancer or under long antimicrobial treatments. Candida albicans continues to be the most frequently identified Candida spp. in these disorders, but other non-C. albicans Candida are rising. Understanding the immune responses involved in oral Candida spp. infections is a key feature to a successful treatment and to the design of novel therapies. In this review, we performed a literature search in PubMed and WoS, in order to examine and analyze common oral Candida spp.-bacteria/Candida-Candida interactions and the host immunity response in oral candidiasis.
Collapse
Affiliation(s)
- Lucia Černáková
- Department of Microbiology & Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Célia F Rodrigues
- Department of Chemical Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering, University of Porto, Portugal
| |
Collapse
|
25
|
Shokeen B, Dinis MDB, Haghighi F, Tran NC, Lux R. Omics and interspecies interaction. Periodontol 2000 2020; 85:101-111. [PMID: 33226675 DOI: 10.1111/prd.12354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interspecies interactions are key determinants in biofilm behavior, ecology, and architecture. The cellular responses of microorganisms to each other at transcriptional, proteomic, and metabolomic levels ultimately determine the characteristics of biofilm and the corresponding implications for health and disease. Advances in omics technologies have revolutionized our understanding of microbial community composition and their activities as a whole. Large-scale analyses of the complex interaction between the many microbial species residing within a biofilm, however, are currently still hampered by technical and bioinformatics challenges. Thus, studies of interspecies interactions have largely focused on the transcriptional and proteomic changes that occur during the contact of a few prominent species, such as Porphyromonas gingivalis, Streptococcus mutans, Candida albicans, and a few others, with selected partner species. Expansion of available tools is necessary to grow the revealing, albeit limited, insight these studies have provided into a profound understanding of the nature of individual microbial responses to the presence of others. This will allow us to answer important questions including: Which intermicrobial interactions orchestrate the myriad of cooperative, synergistic, antagonistic, manipulative, and other types of relationships and activities in the complex biofilm environment, and what are the implications for oral health and disease?
Collapse
Affiliation(s)
- Bhumika Shokeen
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Marcia Dalila Botelho Dinis
- Section of Pediatric Dentistry, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Farnoosh Haghighi
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Nini Chaichanasakul Tran
- Section of Pediatric Dentistry, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Renate Lux
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Suresh Unniachan A, Krishnavilasom Jayakumari N, Sethuraman S. Association between Candida species and periodontal disease: A systematic review. Curr Med Mycol 2020; 6:63-68. [PMID: 33628985 PMCID: PMC7888513 DOI: 10.18502/cmm.6.2.3420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Periodontal diseases result in the inflammation of the supporting structures of the teeth, thereby leading to attachment loss and bone loss. One of the main etiological factors responsible for this condition is the presence of subgingival biofilms, comprising microorganisms, namely bacteria, viruses, and fungi. Candida species is one of the fungi reported to be found in periodontal disease which is suggestive of the presence of an association between these variables. The aim of this systematic review was to evaluate the association of Candida species with periodontal disease and determine the prevalence of these species in the patients affected with this disease. The articles related to the subject of interest were searched in several databases, including the PubMed, Web of Science, Google Scholar Medline, Embase, Cochrane Library, and Scopus. The search process was accomplished using three keywords, namely ‘‘Candida species’’, ‘‘Chronic periodontitis’’, and ‘‘Gingivitis’’. All the identified studies were comprehensively evaluated for the association of Candida species with periodontal disease. This systematic review included 23 articles, which assessed the prevalence of Candida species in periodontal diseases. The results of 21 studies were indicative of a positive association between Candida species and periodontal diseases. Accordingly, it was concluded that there is a strong association between the presence of Candida species and periodontal diseases
Collapse
Affiliation(s)
- Anjana Suresh Unniachan
- Department of Periodontics, Vydehi Institute of Dental Sciences and Research Center, Bangalore, India
| | | | - Shruthi Sethuraman
- Department of Periodontics, Vydehi Institute of Dental Sciences and Research Center, Bangalore, India
| |
Collapse
|
27
|
Peptidylarginine Deiminase of Porphyromonas gingivalis Modulates the Interactions between Candida albicans Biofilm and Human Plasminogen and High-Molecular-Mass Kininogen. Int J Mol Sci 2020; 21:ijms21072495. [PMID: 32260245 PMCID: PMC7177930 DOI: 10.3390/ijms21072495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Microorganisms that create mixed-species biofilms in the human oral cavity include, among others, the opportunistic fungus Candida albicans and the key bacterial pathogen in periodontitis, Porphyromonas gingivalis. Both species use arsenals of virulence factors to invade the host organism and evade its immune system including peptidylarginine deiminase that citrullinates microbial and host proteins, altering their function. We assessed the effects of this modification on the interactions between the C. albicans cell surface and human plasminogen and kininogen, key components of plasma proteolytic cascades related to the maintenance of hemostasis and innate immunity. Mass spectrometry was used to identify protein citrullination, and microplate tests to quantify the binding of modified plasminogen and kininogen to C. albicans cells. Competitive radioreceptor assays tested the affinity of citrullinated kinins to their specific cellular receptors. The citrullination of surface-exposed fungal proteins reduced the level of unmodified plasminogen binding but did not affect unmodified kininogen binding. However, the modification of human proteins did not disrupt their adsorption to the unmodified fungal cells. In contrast, the citrullination of kinins exerted a significant impact on their interactions with cellular receptors reducing their affinity and thus affecting the role of kinin peptides in the development of inflammation.
Collapse
|
28
|
Bartnicka D, Gonzalez-Gonzalez M, Sykut J, Koziel J, Ciaston I, Adamowicz K, Bras G, Zawrotniak M, Karkowska-Kuleta J, Satala D, Kozik A, Zyla E, Gawron K, Lazarz-Bartyzel K, Chomyszyn-Gajewska M, Rapala-Kozik M. Candida albicans Shields the Periodontal Killer Porphyromonas gingivalis from Recognition by the Host Immune System and Supports the Bacterial Infection of Gingival Tissue. Int J Mol Sci 2020; 21:E1984. [PMID: 32183255 PMCID: PMC7139284 DOI: 10.3390/ijms21061984] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a pathogenic fungus capable of switching its morphology between yeast-like cells and filamentous hyphae and can associate with bacteria to form mixed biofilms resistant to antibiotics. In these structures, the fungal milieu can play a protective function for bacteria as has recently been reported for C. albicans and a periodontal pathogen-Porphyromonas gingivalis. Our current study aimed to determine how this type of mutual microbe protection within the mixed biofilm affects the contacting host cells. To analyze C. albicans and P. gingivalis persistence and host infection, several models for host-biofilm interactions were developed, including microbial exposure to a representative monocyte cell line (THP1) and gingival fibroblasts isolated from periodontitis patients. For in vivo experiments, a mouse subcutaneous chamber model was utilized. The persistence of P. gingivalis cells was observed within mixed biofilm with C. albicans. This microbial co-existence influenced host immunity by attenuating macrophage and fibroblast responses. Cytokine and chemokine production decreased compared to pure bacterial infection. The fibroblasts isolated from patients with severe periodontitis were less susceptible to fungal colonization, indicating a modulation of the host environment by the dominating bacterial infection. The results obtained for the mouse model in which a sequential infection was initiated by the fungus showed that this host colonization induced a milder inflammation, leading to a significant reduction in mouse mortality. Moreover, high bacterial counts in animal organisms were noted on a longer time scale in the presence of C. albicans, suggesting the chronic nature of the dual-species infection.
Collapse
Affiliation(s)
- Dominika Bartnicka
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Joanna Sykut
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (J.K.); (I.C.); (K.A.)
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (J.K.); (I.C.); (K.A.)
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (J.K.); (I.C.); (K.A.)
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.S.); (A.K.)
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.S.); (A.K.)
| | - Edyta Zyla
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland;
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland;
| | - Katarzyna Lazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University, Medical College, 31-155 Krakow, Poland; (K.L.-B.); (M.C.-G.)
| | - Maria Chomyszyn-Gajewska
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University, Medical College, 31-155 Krakow, Poland; (K.L.-B.); (M.C.-G.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| |
Collapse
|
29
|
Santhana Krishnan G, Naik D, Uppoor A, Nayak S, Baliga S, Maddi A. Candidal carriage in saliva and subgingival plaque among smokers and non-smokers with chronic periodontitis-a cross-sectional study. PeerJ 2020; 8:e8441. [PMID: 32030324 PMCID: PMC6995268 DOI: 10.7717/peerj.8441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Background and Objectives Studies of gum or periodontal disease have focused mainly on bacterial pathogens. However, information related to fungal species in the saliva and subgingival mileu is particularly lacking in smokers with periodontitis. This cross-sectional study compared the prevalence of various Candida species in saliva and subgingival plaque samples of smokers and non-smokers with periodontal disease. Methodology Study subjects were recruited into three group-Group 1: Smokers with chronic periodontitis (N = 30), Group 2: Non-smokers with chronic periodontitis (N = 30) and Group 3: Healthy controls (N = 30). Clinical parameters recorded included plaque index (PI), gingival index (GI), periodontal probing depth (PPD) and clinical attachment loss (CAL). Saliva and subgingival plaque samples were collected from subjects from the above groups. The collected samples were processed for isolation and identification of various Candida species using CHROMagar chromogenic media. Additionally, antifungal susceptibility tests were performed for the isolated Candida species in order to assess antifungal drug resistance to fluconazole and voriconazole. Results Prevalence of Candida species in saliva samples was quantified as 76.6% in Group 1, 73.3% in Group 2 and 36.6% in Group 3 and statistically significant differences were observed between groups 1 & 3. Prevalence of Candida species in subgingival plaque samples was quantified as 73.3% in Group 1, 66.6% in Group 2 and 60% in Group 3 and no statistically significant differences were observed between groups. Candida albicans was the most frequently isolated species followed by Candida krusei and Candida tropicalis. A positive correlation was observed for smoking exposure, pack years and Candida colonization. A marginally significant positive correlation was observed between Candida colonization and increasing pocket depth and attachment loss. Antifungal drug resistance was mainly observed for Candida krusei in both saliva and subgingival plaque samples. Conclusion Based on the results we can conclude that oral candidal carriage is significantly increased in smokers with periodontal disease. Mechanistic studies are needed to understand the importance of Candida species in periodontal disease.
Collapse
Affiliation(s)
- Gayathri Santhana Krishnan
- Department of Periodontology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Dilip Naik
- Department of Periodontology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ashita Uppoor
- Department of Periodontology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sangeeta Nayak
- Department of Periodontology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shrikala Baliga
- Department of Microbiology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Abhiram Maddi
- Periodontics & Endodontics, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| |
Collapse
|
30
|
Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Oral Candidiasis: A Disease of Opportunity. J Fungi (Basel) 2020; 6:jof6010015. [PMID: 31963180 PMCID: PMC7151112 DOI: 10.3390/jof6010015] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Oral candidiasis, commonly referred to as “thrush,” is an opportunistic fungal infection that commonly affects the oral mucosa. The main causative agent, Candida albicans, is a highly versatile commensal organism that is well adapted to its human host; however, changes in the host microenvironment can promote the transition from one of commensalism to pathogen. This transition is heavily reliant on an impressive repertoire of virulence factors, most notably cell surface adhesins, proteolytic enzymes, morphologic switching, and the development of drug resistance. In the oral cavity, the co-adhesion of C. albicans with bacteria is crucial for its persistence, and a wide range of synergistic interactions with various oral species were described to enhance colonization in the host. As a frequent colonizer of the oral mucosa, the host immune response in the oral cavity is oriented toward a more tolerogenic state and, therefore, local innate immune defenses play a central role in maintaining Candida in its commensal state. Specifically, in addition to preventing Candida adherence to epithelial cells, saliva is enriched with anti-candidal peptides, considered to be part of the host innate immunity. The T helper 17 (Th17)-type adaptive immune response is mainly involved in mucosal host defenses, controlling initial growth of Candida and inhibiting subsequent tissue invasion. Animal models, most notably the mouse model of oropharyngeal candidiasis and the rat model of denture stomatitis, are instrumental in our understanding of Candida virulence factors and the factors leading to host susceptibility to infections. Given the continuing rise in development of resistance to the limited number of traditional antifungal agents, novel therapeutic strategies are directed toward identifying bioactive compounds that target pathogenic mechanisms to prevent C. albicans transition from harmless commensal to pathogen.
Collapse
Affiliation(s)
- Taissa Vila
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Ahmed S. Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-0508; Fax: +1-410-706-0519
| |
Collapse
|
31
|
Hajishengallis G, Diaz PI. Porphyromonas gingivalis: Immune subversion activities and role in periodontal dysbiosis. ACTA ACUST UNITED AC 2020; 7:12-21. [PMID: 33344104 DOI: 10.1007/s40496-020-00249-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of review This review summarizes mechanisms by which Porphyromonas gingivalis interacts with community members and the host so that it can persist in the periodontium under inflammatory conditions that drive periodontal disease. Recent findings Recent advances indicate that, in great part, the pathogenicity of P. gingivalis is dependent upon its ability to establish residence in the subgingival environment and to subvert innate immunity in a manner that uncouples the nutritionally favorable (for the bacteria) inflammatory response from antimicrobial pathways. While the initial establishment of P. gingivalis is dependent upon interactions with early colonizing bacteria, the immune subversion strategies of P. gingivalis in turn benefit co-habiting species. Summary Specific interspecies interactions and subversion of the host response contribute to the emergence and persistence of dysbiotic communities and are thus targets of therapeutic approaches for the treatment of periodontitis.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40 Street, Philadelphia, PA 19104, USA
| | - Patricia I Diaz
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
32
|
The Qualitative and Quantitative Structure of Oral Microbiocenosis in Rats with Periodontitis in a Setting of Hyper- and Hypothyroidism. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2019. [DOI: 10.2478/rjdnmd-2019-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Background and aims. Oral microbial flora is a highly sensitive indicator system producing qualitative and quantitative responses to changes in various individual organs and systems. The aim of study was to perform a comparative analysis of qualitative and quantitative structure of oral microbiocenosis in rats with comorbidity-free periodontitis and in animals with periodontitis in a setting of hyper- and hypothyroidism.
Material and methods. Experimental studies were conducted on 48 mature male white rats. Samples for microbiological tests were taken from dental surfaces (on the border between hard tissue and gums in the interdental spaces). The isolated pure cultures were identified by their morphological, tinctorial, cultural and biochemical properties and the signs of pathogenecity.
Results. We found that the oral dysbiosis occurring in a setting of periodontitis in rats is chiefly characterized by increased quantity of coccal forms and by increased candidal inoculation; these organisms cumulatively inhibit the growth of normal microbial flora, such as Lactobacilli, bacteroids and Bifidobacteria. Thyroid dysfunction exacerbates changes in the qualitative and quantitative structure of oral microbiocenosis.
Conclusions. The periodontitis in a setting of thyroid dysfunction increases both the species variety and the quantitative counts of oral microbial flora, with predominance of such microbial organisms as Staph. aureus, E. coli, E. faecalis, Candida albicans and P. aeruginosa.
Collapse
|
33
|
Alsahhaf A, Al‐Aali KA, Alshagroud RS, Alshiddi IF, Alrahlah A, Abduljabbar T, Javed F, Vohra F. Comparison of yeast species in the subgingival oral biofilm of individuals with type 2 diabetes and peri‐implantitis and individuals with peri‐implantitis without diabetes. J Periodontol 2019; 90:1383-1389. [DOI: 10.1002/jper.19-0091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/22/2019] [Accepted: 04/13/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Abdulaziz Alsahhaf
- Department of Prosthetic Dental ScienceCollege of DentistryKing Saud University Riyadh Saudi Arabia
| | - Khulud Abdulrahman Al‐Aali
- Department of Clinical Dental SciencesCollege of DentistryPrincess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Rana Saud Alshagroud
- Department of Oral Medicine and Diagnostic SciencesCollege of DentistryKing Saud University Riyadh Saudi Arabia
| | - Ibraheem F. Alshiddi
- Department of Prosthetic Dental ScienceCollege of DentistryKing Saud University Riyadh Saudi Arabia
| | - Ali Alrahlah
- Department of Restorative Dental SciencesCollege of DentistryKing Saud University Riyadh Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral RehabilitationCollege of DentistryKing Saud University Riyadh Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental ScienceCollege of DentistryKing Saud University Riyadh Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral RehabilitationCollege of DentistryKing Saud University Riyadh Saudi Arabia
| | - Fawad Javed
- Department of PeriodontologyStony Brook University Stony Brook NY USA
- Laboratory for Periodontal‐, Implant‐, Phototherapy (LA‐PIP)School of Dental MedicineStony Brook University Stony Brook NY USA
| | - Fahim Vohra
- Department of Prosthetic Dental ScienceCollege of DentistryKing Saud University Riyadh Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral RehabilitationCollege of DentistryKing Saud University Riyadh Saudi Arabia
| |
Collapse
|
34
|
Alrabiah M, Alshagroud RS, Alsahhaf A, Almojaly SA, Abduljabbar T, Javed F. Presence of Candida species in the subgingival oral biofilm of patients with peri-implantitis. Clin Implant Dent Relat Res 2019; 21:781-785. [PMID: 30908836 DOI: 10.1111/cid.12760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 03/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND There are no studies that have investigated the presence of Candida species in the subgingival oral biofilm (OB) of patients with peri-implantitis. PURPOSE The aim was to assess the presence of Candida species in the subgingival OB of patients with peri-implantitis. MATERIALS AND METHODS Individuals with (group A) and without (group B) peri-implantitis were included. Life style related and demographic data were collected using a questionnaire. In both groups, peri-implant plaque-index (PI), bleeding-on-probing (BOP), and probing-depth (PD) were evaluated and crestal bone loss (CBL) were measured on digital bitewing radiographs. In both groups, subgingival OB samples were collected using sterile paper points. Identification of Candida species was performed using ChromAgar medium and colony forming units per milliliter (CFU/mL) were determined. Statistical analysis was performed, and level of significance was set at P < 0.05. RESULTS The mean age of individuals in groups A (n = 43) and B (n = 41) were 52.2 ± 4.4 and 55.1 ± 2.3 years, respectively. All participants were male. In groups A and B, implants were in function for 7.4 ± 1.3 and 6.8 ± 0.6 years, respectively. Scores of peri-implant PI (P < 0.001), BOP (P < 0.001), PD (P < 0.001), and CBL (P < 0.001) were significantly higher in group A than group B. Subgingival Candida was isolated from the OB of 33 (76.7%) patients in group A and 5 (12.2%) individuals in group B. The most common yeast species was Candida albicans, which was isolated from 67.4% to 60% individuals in groups A and B, respectively. The number of subgingival oral yeasts CFU/mL were significantly higher in group A (3147.54 ± 1052.6 CFU/mL) compared with group B (496.68 ± 100.2 CFU/mL; P < 0.01). CONCLUSION Candida species (predominantly C. albicans) are present in the subgingival OB of patients with peri-implantitis. Community-based efforts toward routine oral hygiene maintenance are needed to improve oral health and minimize the risks of peri-implant diseases in populations.
Collapse
Affiliation(s)
- Mohammed Alrabiah
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Rana S Alshagroud
- Department of Oral Medicine and Diagnostic Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alsahhaf
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Saud A Almojaly
- Department of Dentistry, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.,Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Fawad Javed
- Department of Periodontology, Stony Brook University, Stony Brook, New York.,Laboratory for Periodontal-, Implant-, Phototherapy (LA-PIP), School of Dental Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
35
|
Bartnicka D, Karkowska-Kuleta J, Zawrotniak M, Satała D, Michalik K, Zielinska G, Bochenska O, Kozik A, Ciaston I, Koziel J, Dutton LC, Nobbs AH, Potempa B, Baster Z, Rajfur Z, Potempa J, Rapala-Kozik M. Adhesive protein-mediated cross-talk between Candida albicans and Porphyromonas gingivalis in dual species biofilm protects the anaerobic bacterium in unfavorable oxic environment. Sci Rep 2019; 9:4376. [PMID: 30867500 PMCID: PMC6416349 DOI: 10.1038/s41598-019-40771-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
The oral cavity contains different types of microbial species that colonize human host via extensive cell-to-cell interactions and biofilm formation. Candida albicans-a yeast-like fungus that inhabits mucosal surfaces-is also a significant colonizer of subgingival sites in patients with chronic periodontitis. It is notable however that one of the main infectious agents that causes periodontal disease is an anaerobic bacterium-Porphyromonas gingivalis. In our study, we evaluated the different strategies of both pathogens in the mutual colonization of an artificial surface and confirmed that a protective environment existed for P. gingivalis within developed fungal biofilm formed under oxic conditions where fungal cells grow mainly in their filamentous form i.e. hyphae. A direct physical contact between fungi and P. gingivalis was initiated via a modulation of gene expression for the major fungal cell surface adhesin Als3 and the aspartic proteases Sap6 and Sap9. Proteomic identification of the fungal surfaceome suggested also an involvement of the Mp65 adhesin and a "moonlighting" protein, enolase, as partners for the interaction with P. gingivalis. Using mutant strains of these bacteria that are defective in the production of the gingipains-the proteolytic enzymes that also harbor hemagglutinin domains-significant roles of these proteins in the formation of bacteria-protecting biofilm were clearly demonstrated.
Collapse
Affiliation(s)
- Dominika Bartnicka
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satała
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kinga Michalik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Gabriela Zielinska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Lindsay C Dutton
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Barbara Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Zbigniew Baster
- Institute of Physics; Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Zenon Rajfur
- Institute of Physics; Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
36
|
Candida sp. Infections in Patients with Diabetes Mellitus. J Clin Med 2019; 8:jcm8010076. [PMID: 30634716 PMCID: PMC6352194 DOI: 10.3390/jcm8010076] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023] Open
Abstract
Candidiasis has increased substantially worldwide over recent decades and is a significant cause of morbidity and mortality, especially among critically ill patients. Diabetes mellitus (DM) is a metabolic disorder that predisposes individuals to fungal infections, including those related to Candida sp., due to a immunosuppressive effect on the patient. This review aims to discuss the latest studies regarding the occurrence of candidiasis on DM patients and the pathophysiology and etiology associated with these co-morbidities. A comprehensive review of the literature was undertaken. PubMed, Scopus, Elsevier’s ScienceDirect, and Springer’s SpringerLink databases were searched using well-defined search terms. Predefined inclusion and exclusion criteria were applied to classify relevant manuscripts. Results of the review show that DM patients have an increased susceptibility to Candida sp. infections which aggravates in the cases of uncontrolled hyperglycemia. The conclusion is that, for these patients, the hospitalization periods have increased and are commonly associated with the prolonged use of indwelling medical devices, which also increase the costs associated with disease management.
Collapse
|
37
|
Matic Petrovic S, Radunovic M, Barac M, Kuzmanovic Pficer J, Pavlica D, Arsic Arsenijevic V, Pucar A. Subgingival areas as potential reservoirs of different Candida spp in type 2 diabetes patients and healthy subjects. PLoS One 2019; 14:e0210527. [PMID: 30629672 PMCID: PMC6328191 DOI: 10.1371/journal.pone.0210527] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/26/2018] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES The aim of this cross-sectional observational study was to compare the prevalence of different oral Candida spp. in patients with Type 2 Diabetes and chronic periodontitis in two oral sites: dorsal surface of the tongue and subgingival area. In order to determine subgingival areas as potential reservoirs of yeasts, this study aimed to find differences in the yeasts' detection between the dorsum of the tongue, as the oral site most commonly inhabited with microorganisms, and subgingival samples. Additionally, potential predictors for the yeasts prevalence were determined. MATERIAL AND METHODS Subjects (N = 146) were divided into four groups: group A- healthy individuals without periodontitis, group B- healthy individuals with chronic periodontitis, group C- Type 2 Diabetes patients with good glycoregulation and Chronic periodontitis and group D- Type 2 Diabetes patients with poor glycoregulation and Chronic periodontitis. Samples were obtained from the tongue by swabbing. Subgingival plaque samples were taken by paper points and periodontal curette. Isolation and identification of different Candida spp. was done using ChromAgar medium. In addition, germ-tube production and carbohydrate assimilation tests were performed. RESULTS The prevalence of Candida spp. was higher in diabetics with poor glycoregulation. The most frequently isolated species was Candida albicans followed by Candida glabrata and Candida tropicalis. In 15.6% of cases, Candida spp. was present in the subgingival area while absent on the tongue. Multivariate regression model showed that HbA1c was Candida spp. predictor for both locations. CONCLUSIONS Our results confirmed that there are Candida spp. carriers among subjects with clinically healthy oral mucosa. Also, this study identified subgingival areas as potential reservoirs of these pathogenic species. Glycoregulation has been recognized as a positive predictor factor of Candida spp.
Collapse
Affiliation(s)
- Sanja Matic Petrovic
- Department of Oral Medicine and Periodontology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Milena Radunovic
- Department of Microbiology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
- * E-mail: (AP); (MR)
| | - Milena Barac
- Department of Oral Medicine and Periodontology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jovana Kuzmanovic Pficer
- Department for Medical Statistics and Informatics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Dusan Pavlica
- Department of Microbiology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Ana Pucar
- Department of Oral Medicine and Periodontology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
- * E-mail: (AP); (MR)
| |
Collapse
|
38
|
Trained Innate Immunity and Its Implications for Mucosal Immunity and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:11-26. [PMID: 31732931 DOI: 10.1007/978-3-030-28524-1_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The long-standing dogma that immunological memory is the exclusive prerogative of the adaptive immune system has been challenged by emerging evidence that innate immunity can also maintain memory of past events. Such immunological imprinting takes two forms, trained innate immunity and tolerance. Trained immunity involves metabolic and epigenetic adaptations in innate immune cells and their progenitors in the bone marrow upon exposure to certain microbial and/or inflammatory stimuli so that the "trained" cells would be poised to respond much faster and stronger to a subsequent challenge (e.g., a new infection that is not necessarily the same as the earlier one). Conversely, tolerance leads to attenuated immune responses to secondary stimuli. This review focuses on trained immunity and discusses evidence for its existence from lower organisms to humans, its mechanistic underpinnings, and its translational ramifications. Although trained immunity can be considered as an evolutionarily conserved beneficial response against reinfections, in the setting of modern societies with high prevalence of chronic mucosal and systemic inflammatory diseases, trained immunity could also promote maladaptive immune responses that aggravate pathology. Thus, depending on context, innate immune memory could be therapeutically manipulated using defined agonists to either promote innate immune responses (particularly useful for the treatment of infections or chemotherapy-induced myelosuppression) or suppress excessive inflammation in inflammatory and autoimmune diseases.
Collapse
|
39
|
Montelongo-Jauregui D, Lopez-Ribot JL. Candida Interactions with the Oral Bacterial Microbiota. J Fungi (Basel) 2018; 4:jof4040122. [PMID: 30400279 PMCID: PMC6308928 DOI: 10.3390/jof4040122] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
The human oral cavity is normally colonized by a wide range of microorganisms, including bacteria, fungi, Archaea, viruses, and protozoa. Within the different oral microenvironments these organisms are often found as part of highly organized microbial communities termed biofilms, which display consortial behavior. Formation and maintenance of these biofilms are highly dependent on the direct interactions between the different members of the microbiota, as well as on the released factors that influence the surrounding microbial populations. These complex biofilm dynamics influence oral health and disease. In the latest years there has been an increased recognition of the important role that interkingdom interactions, in particular those between fungi and bacteria, play within the oral cavity. Candida spp., and in particular C. albicans, are among the most important fungi colonizing the oral cavity of humans and have been found to participate in these complex microbial oral biofilms. C. albicans has been reported to interact with individual members of the oral bacterial microbiota, leading to either synergistic or antagonistic relationships. In this review we describe some of the better characterized interactions between Candida spp. and oral bacteria.
Collapse
Affiliation(s)
- Daniel Montelongo-Jauregui
- Department of Biology, South Texas Center for Emerging Infections Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Jose L Lopez-Ribot
- Department of Biology, South Texas Center for Emerging Infections Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
40
|
Green Tea Polyphenols and Padma Hepaten Inhibit Candida albicans Biofilm Formation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1690747. [PMID: 30363861 PMCID: PMC6186370 DOI: 10.1155/2018/1690747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/06/2018] [Indexed: 12/02/2022]
Abstract
Candida albicans (C. albicans) is the most prevalent opportunistic human pathogenic fungus and can cause mucosal membrane infections and invade the blood. In the oral cavity, it can ferment dietary sugars, produce organic acids and therefore has a role in caries development. In this study, we examined whether the polyphenol rich extractions Polyphenon from green tea (PPFGT) and Padma Hepaten (PH) can inhibit the caries-inducing properties of C. albicans. Biofilms of C. albicans were grown in the presence of PPFGT and PH. Formation of biofilms was tested spectrophotometrically after crystal violet staining. Exopolysaccharides (EPS) secretion was quantified using confocal scanning laser microscopy (CSLM). Treated C. albicans morphology was demonstrated using scanning electron microscopy (SEM). Expression of virulence-related genes was tested using qRT-PCR. Development of biofilm was also tested on an orthodontic surface (Essix) to assess biofilm inhibition ability on such appliances. Both PPFGT and PH dose-dependently inhibited biofilm formation, with no inhibition on planktonic growth. The strongest inhibition was obtained using the combination of the substances. Crystal violet staining showed a significant reduction of 45% in biofilm formation using a concentration of 2.5mg/ml PPFGT and 0.16mg/ml PH. A concentration of 1.25 mg/ml PPFGT and 0.16 mg/ml PH inhibited candidal growth by 88% and EPS secretion by 74% according to CSLM. A reduction in biofilm formation and in the transition from yeast to hyphal morphotype was observed using SEM. A strong reduction was found in the expression of hwp1, eap1, and als3 virulence associated genes. These results demonstrate the inhibitory effect of natural PPFGT polyphenolic extraction on C. albicans biofilm formation and EPS secretion, alone and together with PH. In an era of increased drug resistance, the use of phytomedicine to constrain biofilm development, without killing host cells, may pave the way to a novel therapeutic concept, especially in children as orthodontic patients.
Collapse
|
41
|
De-La-Torre J, Quindós G, Marcos-Arias C, Marichalar-Mendia X, Gainza ML, Eraso E, Acha-Sagredo A, Aguirre-Urizar JM. Oral Candida colonization in patients with chronic periodontitis. Is there any relationship? Rev Iberoam Micol 2018; 35:134-139. [PMID: 30082174 DOI: 10.1016/j.riam.2018.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/13/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Candida can be implicated in the pathology of chronic periodontitis. AIMS To analyze the oral Candida carriage in patients suffering from chronic periodontitis (CP) and its correlation with the severity of this condition. METHODS Microbiological samples were taken from 155 patients using the oral rinse (OR) technique and by using paper points in the periodontal pockets (GPP). These patients were divided into 3 groups: 89 patients without CP (control), 47 with moderate CP, and 19 with severe CP. Samples were cultured in a Candida chromogenic agar for Candida. Species were identified by microbiological and molecular methods. RESULTS Candida was isolated in the OR of 45 (50.6%), 21 (44.7%), and 11 (57.9%) patients, respectively, and in the GPP of 32 (36%), 14 (29.2%), and 10 (42.6%) patients from the control, moderate CP and severe CP groups, respectively. Candida was isolated more frequently and in a greater burden in OR than in GPP (p<0.01). Candida albicans was the most prevalent species. GPP of patients with CP had poor fungal biodiversity (p<0.01). CONCLUSIONS Colonization by Candida was present in the samples of patients without CP, and with both moderate and severe CP. Nonetheless, patients with severe CP had a higher rate of Candida colonization, especially by C. albicans.
Collapse
Affiliation(s)
- Janire De-La-Torre
- Department of Immunology, Microbiology and Parasitology, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain; Department of Stomatology II, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain.
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Cristina Marcos-Arias
- Department of Immunology, Microbiology and Parasitology, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Xabier Marichalar-Mendia
- Department of Stomatology II, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - María Luisa Gainza
- Department of Dental Surgery, Faculty of Dental Surgery, University of Malta, Malta
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Amelia Acha-Sagredo
- Department of Stomatology II, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - José Manuel Aguirre-Urizar
- Department of Stomatology II, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| |
Collapse
|
42
|
Abstract
The pleiomorphic yeast Candida albicans is a significant pathogen in immunocompromised individuals. In the oral cavity, C. albicans is an inhabitant of polymicrobial communities, and interspecies interactions promote hyphal formation and biofilm formation. C. albicans colonizes the subgingival area, and the frequency of colonization increases in periodontal disease. In this study, we investigated the interactions between C. albicans and the periodontal pathogen Porphyromonas gingivalisC. albicans and P. gingivalis were found to coadhere in both the planktonic and sessile phases. Loss of the internalin-family protein InlJ abrogated adhesion of P. gingivalis to C. albicans, and recombinant InlJ protein competitively inhibited interspecies binding. A mutant of C. albicans deficient in expression of major hyphal protein Als3 showed diminished binding to P. gingivalis, and InlJ interacted with Als3 heterologously expressed in Saccharomyces cerevisiae Transcriptional profiling by RNA sequencing (RNA-Seq) established that 57 genes were uniquely upregulated in an InlJ-dependent manner in P. gingivalis-C. albicans communities, with overrepresentation of those corresponding to 31 gene ontology terms, including those associated with growth and division. Of potential relevance to the disease process, C. albicans induced upregulation of components of the type IX secretion apparatus. Collectively, these findings indicate that InlJ-Als3-dependent binding facilitates interdomain community development between C. albicans and P. gingivalis and that P. gingivalis has the potential for increased virulence within such communities.IMPORTANCE Many diseases involve the concerted actions of microorganisms assembled in polymicrobial communities. Inflammatory periodontal diseases are among the most common infections of humans and result in destruction of gum tissue and, ultimately, in loss of teeth. In periodontal disease, pathogenic communities can include the fungus Candida albicans; however, the contribution of C. albicans to the synergistic virulence of the community is poorly understood. Here we characterize the interactions between C. albicans and the keystone bacterial pathogen Porphyromonas gingivalis and show that coadhesion mediated by specific proteins results in major changes in gene expression by P. gingivalis, which could serve to increase pathogenic potential. The work provides significant insights into interdomain interactions that can enhance our understanding of diseases involving a multiplicity of microbial pathogens.
Collapse
|
43
|
Klimesova K, Jiraskova Zakostelska Z, Tlaskalova-Hogenova H. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis. Front Microbiol 2018; 9:774. [PMID: 29731748 PMCID: PMC5920026 DOI: 10.3389/fmicb.2018.00774] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/05/2018] [Indexed: 12/31/2022] Open
Abstract
Host's physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distinct epithelial layers organization and different oxygen levels. A few obligate anaerobic strains inhabiting the oral cavity are involved in the pathogenesis of oral diseases. Interestingly, these microbiota components are also enriched in gut inflammatory and tumor tissue. An altered microbiota composition - dysbiosis - and formation of polymicrobial biofilms seem to play important roles in the development of oral diseases and colorectal cancer. In this review, we describe the differences in composition of commensal microbiota in the oral cavity and large intestine and the mechanisms by which microbiota affect the inflammatory and carcinogenic response of the host.
Collapse
Affiliation(s)
- Klara Klimesova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, Prague, Czechia
| | | | | |
Collapse
|
44
|
Gomes CC, Guimarães LS, Pinto LCC, Camargo GADCG, Valente MIB, Sarquis MIDM. Investigations of the prevalence and virulence of Candida albicans in periodontal and endodontic lesions in diabetic and normoglycemic patients. J Appl Oral Sci 2017; 25:274-281. [PMID: 28678946 PMCID: PMC5482250 DOI: 10.1590/1678-7757-2016-0432] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/29/2016] [Indexed: 11/23/2022] Open
Abstract
Pulpal and periodontal tissues have similar microbiota that allows cross-contamination between the pulp and periodontal tissues.
Collapse
Affiliation(s)
- Cinthya Cristina Gomes
- Universidade Federal Fluminense, Faculdade de Odontologia, Departamento de Formação Específica, Nova Friburgo, RJ, Brasil
| | - Ludmila Silva Guimarães
- Universidade Federal Fluminense, Faculdade de Odontologia, Programa de Pós-graduação em Odontologia, Nova Friburgo, RJ, Brasil
| | - Larissa Christina Costa Pinto
- Universidade Federal Fluminense, Faculdade de Odontologia, Programa de Pós-graduação em Odontologia, Nova Friburgo, RJ, Brasil
| | | | - Maria Isabel Bastos Valente
- Universidade Federal Fluminense, Faculdade de Odontologia, Departamento de Formação Específica, Nova Friburgo, RJ, Brasil
| | - Maria Inêz de Moura Sarquis
- Instituto Osvaldo Cruz, Departamento de Micologia, Laboratório de Taxonomia, Bioquímica e Prospecção de Fungos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
45
|
Peters BA, Wu J, Hayes RB, Ahn J. The oral fungal mycobiome: characteristics and relation to periodontitis in a pilot study. BMC Microbiol 2017; 17:157. [PMID: 28701186 PMCID: PMC5508751 DOI: 10.1186/s12866-017-1064-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/01/2017] [Indexed: 01/22/2023] Open
Abstract
Background The oral fungal microbiome (mycobiome) is not well characterized, particularly in relation to oral diseases such as periodontal disease. We aimed to describe and compare the oral mycobiome of subjects with and without periodontal disease. Results We characterized the oral mycobiome in 30 adult subjects (15 with periodontal disease, 15 with good oral health) by sequencing the taxonomically informative pan-fungal internal transcribed spacer (ITS) gene in DNA extracted from oral wash samples. We observed at least 81 genera and 154 fungal species across all samples. Candida and Aspergillus were the most frequently observed genera (isolated from 100% of participants), followed by Penicillium (97%), Schizophyllum (93%), Rhodotorula (90%), and Gibberella (83%). Candida and Aspergillus were also the most highly abundant genera in the samples (median relative abundance = 21% and 44%, respectively). Aspergillus niger was the most highly abundant species in the samples (median relative abundance = 44%). We did not observe significant differences in overall oral mycobiome diversity or composition between participants with periodontal disease and participants with good oral health, nor did we observe significant differences in phylum through species level taxon relative abundance or carriage between the two groups. Genus Candida, previously associated with periodontal disease in culture-based studies, had higher median relative abundance in participants with periodontal disease (33.2%) compared to participants with oral health (2.2%), though the difference was not significant (p = 0.52). Additionally, within the periodontal disease group, median relative abundance of Candida increased with increasing number of permanent teeth lost (1–2 teeth lost: 3.2%; 3–4 teeth lost: 16.6%; ≥5 teeth lost: 73.9%; p = 0.11), though sample size was small for this analysis. Conclusions In this first study comprehensively characterizing the oral mycobiome of adults with periodontal disease or good oral health, we observed trends of higher Candida abundance in participants with periodontal disease, and participants with greater tooth loss. Small sample size may have limited the power to detect significant associations. Larger studies including subgingival samples may further establish the core oral mycobiome in health, and relate it to periodontal disease.
Collapse
Affiliation(s)
- Brandilyn A Peters
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, 650 First Ave, New York, NY, 10016, USA
| | - Jing Wu
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, 650 First Ave, New York, NY, 10016, USA.,Present address: Microbiology section, New York City Public Health Laboratory, New York, NY, USA
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, 650 First Ave, New York, NY, 10016, USA.,NYU Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Jiyoung Ahn
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, 650 First Ave, New York, NY, 10016, USA. .,NYU Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
46
|
De-la-Torre J, Ortiz-Samperio ME, Marcos-Arias C, Marichalar-Mendia X, Eraso E, Echebarria-Goicouria MÁ, Aguirre-Urizar JM, Quindós G. In Vitro Antifungal Susceptibility of Oral Candida Isolates from Patients Suffering from Caries and Chronic Periodontitis. Mycopathologia 2017; 182:471-485. [PMID: 28124220 DOI: 10.1007/s11046-017-0112-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Caries and chronic periodontitis are common oral diseases where a higher Candida colonization is reported. Antifungal agents could be adjuvant drugs for the therapy of both clinical conditions. The aim of the current study has been to evaluate the in vitro activities of conventional and new antifungal drugs against oral Candida isolates from patients suffering from caries and/or chronic periodontitis. In vitro activities of amphotericin B, fluconazole, itraconazole, miconazole, nystatin, posaconazole and voriconazole against 126 oral Candida isolates (75 Candida albicans, 18 Candida parapsilosis, 11 Candida dubliniensis, six Candida guilliermondii, five Candida lipolytica, five Candida glabrata, four Candida tropicalis and two Candida krusei) from 61 patients were tested by the CLSI M27-A3 method. Most antifungal drugs were highly active, and resistance was observed in less than 5% of tested isolates. Miconazole was the most active antifungal drug, being more than 98% of isolates susceptible. Fluconazole, itraconazole, and the new triazoles, posaconazole and voriconazole, were also very active. Miconazole, fluconazole and voriconazole have excellent in vitro activities against all Candida isolates and could represent suitable treatment for a hypothetically adjunctive therapy of caries and chronic periodontitis.
Collapse
Affiliation(s)
- Janire De-la-Torre
- Laboratorio de Micología Médica, Departamento de Inmunología, Microbiología y Parasitología, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Apartado 699, 48080, Bilbao, Spain
- Unidad de Medicina Bucal, Servicio Clínica Odontológica, Departamento de Estomatología II, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Bilbao, Spain
| | - María Esther Ortiz-Samperio
- Laboratorio de Micología Médica, Departamento de Inmunología, Microbiología y Parasitología, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Apartado 699, 48080, Bilbao, Spain
| | - Cristina Marcos-Arias
- Laboratorio de Micología Médica, Departamento de Inmunología, Microbiología y Parasitología, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Apartado 699, 48080, Bilbao, Spain
| | - Xabier Marichalar-Mendia
- Unidad de Medicina Bucal, Servicio Clínica Odontológica, Departamento de Estomatología II, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Bilbao, Spain
| | - Elena Eraso
- Laboratorio de Micología Médica, Departamento de Inmunología, Microbiología y Parasitología, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Apartado 699, 48080, Bilbao, Spain
| | - María Ángeles Echebarria-Goicouria
- Unidad de Medicina Bucal, Servicio Clínica Odontológica, Departamento de Estomatología II, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Bilbao, Spain
| | - José Manuel Aguirre-Urizar
- Unidad de Medicina Bucal, Servicio Clínica Odontológica, Departamento de Estomatología II, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Bilbao, Spain
| | - Guillermo Quindós
- Laboratorio de Micología Médica, Departamento de Inmunología, Microbiología y Parasitología, UFI 11/25, Facultad de Medicina y Enfermería, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Apartado 699, 48080, Bilbao, Spain.
| |
Collapse
|
47
|
Lozano Moraga CP, Rodríguez Martínez GA, Lefimil Puente CA, Morales Bozo IC, Urzúa Orellana BR. Prevalence of Candida albicans and carriage of Candida non-albicans in the saliva of preschool children, according to their caries status. Acta Odontol Scand 2017; 75:30-35. [PMID: 27796162 DOI: 10.1080/00016357.2016.1244560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study was conducted to establish associations among the Candida carriage rate, the diversity of Candida species carried and the different caries status of preschool children. MATERIALS AND METHODS Sixty-one children between 2 and 5 years of age were examined by a single expert examiner and were divided into three groups, the caries-free, moderate caries and severe caries groups, according to the criteria of the International Caries Detection and Assessment System II (ICDAS). Saliva samples were obtained from the members of each group and were plated on Sabouraud agar plates to assess the Candida carriage rates. CHROMagar Candida medium was used for the preliminary screening. Biochemical testing or PCR/sequencing was conducted to identify the different Candida species in the samples. The differences observed were considered significant if the p value was <0.05. RESULTS The Candida carriage rate and the number of species of this fungus carried were higher in the group with the highest level of caries severity (p < 0.05). Whereas Candida albicans was the most predominant Candida species in the saliva of all of the children, C. dubliniensis was identified only in the most caries-affected group in addition to other rare species of Candida non-albicans. CONCLUSIONS A high salivary Candida carriage rate and the presence of specific species of this fungus (such as C. albicans and C. dubliniensis) appear to be related to the severity of caries experienced by preschool children.
Collapse
|
48
|
Camargo GADCG, Abreu MGL, Cordeiro RDS, Wenderoscky LDF, Duque C. Prevalence of periodontopathogens and Candida spp. in smokers after nonsurgical periodontal therapy - a pilot study. Braz Oral Res 2016; 30:e92. [PMID: 27556680 DOI: 10.1590/1807-3107bor-2016.vol30.0092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/30/2016] [Indexed: 11/21/2022] Open
Abstract
This pilot study aimed to evaluate the influence of smoking on clinical and microbiological parameters after nonsurgical periodontal therapy. Forty-eight subjects were grouped into smokers (SM, n = 24) and nonsmokers (NS, n = 24) and paired according to gender, age, ethnicity, and periodontal status. Both groups received oral hygiene education and scaling and root planing. Clinical evaluation was performed using plaque index (PI), bleeding on probing (BOP), pocket probing depth (PPD), gingival recession (GR), and clinical attachment level (CAL) before instrumentation (baseline) and at 3 and 6 months. The prevalence of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Candida albicans, Candida glabrata, Candida tropicalis, and Candida dubliniensis in subgingival biofilm was determined by polymerase chain reaction. The data were statistically analyzed considering p < 0.05. Clinical conditions improved between baseline and 3 months after periodontal treatment. However, NS had a better clinical response, presenting greater PPD reduction and CAL increase in comparison to SM. Periodontal treatment reduced the levels of P. gingivalis, A. actinomycetemcomitans, and T. forsythia individually after 3 months for the NS group and after 6 months for both groups. The prevalence of Candida species was markedly higher in SM than in NS at all time points evaluated. Periodontopathogens associated or not with C. albicans or C. dubliniensis were more prevalent in SM than in NS at baseline and after 3 months. It was concluded that smoking impairs clinical and microbiological responses to periodontal therapy. Periodontopathogens combined or not with some Candida species are resistant to short-term periodontal therapy in SM.
Collapse
Affiliation(s)
| | | | | | | | - Cristiane Duque
- Universidade Estadual Paulista - UNESP, Araçatuba Dental School, Department of Pediatric Dentistry and Public Health, Araçatuba, SP, Brazil
| |
Collapse
|
49
|
Cavalcanti I, Del Bel Cury A, Jenkinson H, Nobbs A. Interactions betweenStreptococcus oralis,Actinomyces oris, andCandida albicansin the development of multispecies oral microbial biofilms on salivary pellicle. Mol Oral Microbiol 2016; 32:60-73. [DOI: 10.1111/omi.12154] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2016] [Indexed: 12/24/2022]
Affiliation(s)
- I.M.G. Cavalcanti
- Department of Prosthodontics and Periodontology; Piracicaba Dental School - University of Campinas; Piracicaba São Paulo Brazil
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - A.A. Del Bel Cury
- Department of Prosthodontics and Periodontology; Piracicaba Dental School - University of Campinas; Piracicaba São Paulo Brazil
| | - H.F. Jenkinson
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - A.H. Nobbs
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| |
Collapse
|
50
|
De-la-Torre J, Marichalar-Mendia X, Varona-Barquin A, Marcos-Arias C, Eraso E, Aguirre-Urizar JM, Quindós G. Caries andCandidacolonisation in adult patients in Basque Country (Spain). Mycoses 2016; 59:234-240. [DOI: 10.1111/myc.12453] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Janire De-la-Torre
- Departamento de Inmunología; Microbiología y Parasitología; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
- Departamento de Estomatología II; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - Xabier Marichalar-Mendia
- Departamento de Estomatología II; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - Aketza Varona-Barquin
- Departamento de Inmunología; Microbiología y Parasitología; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - Cristina Marcos-Arias
- Departamento de Inmunología; Microbiología y Parasitología; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - Elena Eraso
- Departamento de Inmunología; Microbiología y Parasitología; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - José Manuel Aguirre-Urizar
- Departamento de Estomatología II; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - Guillermo Quindós
- Departamento de Inmunología; Microbiología y Parasitología; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| |
Collapse
|