1
|
Rajabifar N, Rostami A, Afshar S, Mosallanezhad P, Zarrintaj P, Shahrousvand M, Nazockdast H. Wound Dressing with Electrospun Core-Shell Nanofibers: From Material Selection to Synthesis. Polymers (Basel) 2024; 16:2526. [PMID: 39274158 PMCID: PMC11398146 DOI: 10.3390/polym16172526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Skin, the largest organ of the human body, accounts for protecting against external injuries and pathogens. Despite possessing inherent self-regeneration capabilities, the repair of skin lesions is a complex and time-consuming process yet vital to preserving its critical physiological functions. The dominant treatment involves the application of a dressing to protect the wound, mitigate the risk of infection, and decrease the likelihood of secondary injuries. Pursuing solutions for accelerating wound healing has resulted in groundbreaking advancements in materials science, from hydrogels and hydrocolloids to foams and micro-/nanofibers. Noting the convenience and flexibility in design, nanofibers merit a high surface-area-to-volume ratio, controlled release of therapeutics, mimicking of the extracellular matrix, and excellent mechanical properties. Core-shell nanofibers bring even further prospects to the realm of wound dressings upon separate compartments with independent functionality, adapted release profiles of bioactive agents, and better moisture management. In this review, we highlight core-shell nanofibers for wound dressing applications featuring a survey on common materials and synthesis methods. Our discussion embodies the wound healing process, optimal wound dressing characteristics, the current organic and inorganic material repertoire for multifunctional core-shell nanofibers, and common techniques to fabricate proper coaxial structures. We also provide an overview of antibacterial nanomaterials with an emphasis on their crystalline structures, properties, and functions. We conclude with an outlook for the potential offered by core-shell nanofibers toward a more advanced design for effective wound healing.
Collapse
Affiliation(s)
- Nariman Rajabifar
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Amir Rostami
- Department of Chemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran
| | - Shahnoosh Afshar
- Department of Polymer Engineering, Islamic Azad University-Mahshahr Campus, Mahshahr P.O. Box 63511-41111, Iran
| | - Pezhman Mosallanezhad
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rasht P.O. Box 43841-119, Iran
| | - Hossein Nazockdast
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| |
Collapse
|
2
|
Huang K, Si Y, Guo C, Hu J. Recent advances of electrospun strategies in topical products encompassing skincare and dermatological treatments. Adv Colloid Interface Sci 2024; 331:103236. [PMID: 38917594 DOI: 10.1016/j.cis.2024.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
As the potential applications of electrospinning in healthcare continue to be explored, along with advancements in industrial-scale solutions and the emergence of portable electrospinning devices, some researchers have explored electrospinning technology in topical products, including its application in skincare, such as facial masks, beauty patches, sunscreen, and dermatological treatments for conditions like atopic dermatitis, psoriasis, acne, skin cancer, etc. In this review, we first outline the fundamental principles of electrospinning and provide an overview of existing solutions for large-scale production and the components and functionalities of portable spinning devices. Based on the essential functionalities required for skincare products and the mechanisms and treatment methods for the aforementioned dermatological diseases, we summarize the potential advantages of electrospinning technology in these areas, including encapsulation, sustained release, large surface area, and biocompatibility, among others. Furthermore, considering the further commercialization and clinical development of electrospinning technology, we offer our insights on current challenges and future perspectives in these areas, including issues such as ingredients, functionality, residue concerns, environmental impact, and efficiency issues.
Collapse
Affiliation(s)
- Kaisong Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China
| | - Chunxia Guo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China.
| |
Collapse
|
3
|
Chen L, Mei S, Fu K, Zhou J. Spinning the Future: The Convergence of Nanofiber Technologies and Yarn Fabrication. ACS NANO 2024; 18:15358-15386. [PMID: 38837241 DOI: 10.1021/acsnano.4c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The rapid advancement in nanofiber technologies has revolutionized the domain of yarn materials, marking a significant leap in textile technology. This review dissects the nexus between cutting-edge nanofiber technologies and yarn manufacturing, aiming to illuminate the pathway toward engineering advanced textiles with unparalleled functionality. It first discusses the fundamentals of nanofiber assemblies and spinning techniques, primarily focusing on electrospinning, centrifugal spinning, and blow spinning. Additionally, the study delves into integrating nanofiber spinning technologies with traditional and modern yarn fabrication principles, elucidating the design principles that underlie the creation of yarns incorporating nanofibers. Twisting technologies are explored to examine how they can be optimized and adapted for incorporating nanofibers, thus enabling the production of innovative nanofiber-based yarns. Special attention is given to scalable strategies like centrifugal and blow spinning, which are spotlighted for their efficiency and scalability in fabricating nanofiber yarns. This review further analyses recently developed nanofiber yarn applications, including wearable sensors, biomedical devices, moisture management textiles, and energy harvesting and storage devices. We finally present a forward-looking perspective to address unresolved issues in nanofiber-based yarn technologies.
Collapse
Affiliation(s)
- Long Chen
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan, Hubei 430200, China
- The Advanced Textile Technology Innovation Center (Jianhu Laboratory), Shaoxing 312000, China
- School of Material Science and Engineering, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, State Key Laboratory for Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Laboratory of Advanced Electronic and Fiber Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shunqi Mei
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan, Hubei 430200, China
- The Advanced Textile Technology Innovation Center (Jianhu Laboratory), Shaoxing 312000, China
| | - Kelvin Fu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jian Zhou
- School of Material Science and Engineering, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, State Key Laboratory for Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Laboratory of Advanced Electronic and Fiber Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
4
|
Ahmed J, Gultekinoglu M, Edirisinghe M. Recent developments in the use of centrifugal spinning and pressurized gyration for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1916. [PMID: 37553260 DOI: 10.1002/wnan.1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023]
Abstract
Centrifugal spinning is a technology used to generate small diameter fibers and has been extensively studied for its vast applications in biomedical engineering. Centrifugal spinning is known for its rapid production rate and has inspired the creation of other technologies which leverage the high-speed rotation, namely Pressurized Gyration. Pressurized gyration incorporates a unique applied gas pressure which serves to provide additional control over the fiber production process. The resulting fibers are uniquely suitable for a range of healthcare-related applications that are thoroughly discussed in this work, which involve scaffolds for tissue engineering, solid dispersions for drug delivery, antimicrobial meshes for filtration and bandage-like fibrous coverings for wound healing. In this review, the notable recent developments in centrifugal spinning and pressurized gyration are presented and how these technologies are being used to further the range of uses of biomaterials engineering, for example the development of core-sheath fabrication techniques for multi-layered fibers and the combination with electrospinning to produce advanced fiber mats. The enormous potential of these technologies and their future advancements highlights how important they are in the biomedical discipline. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Jubair Ahmed
- Department of Mechanical Engineering, University College London, London, UK
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
5
|
Bitay E, Gergely AL, Szabó ZI. One-Step Preparation of Fiber-Based Chlorzoxazone Solid Dispersion by Centrifugal Spinning. Polymers (Basel) 2023; 16:123. [PMID: 38201788 PMCID: PMC10781139 DOI: 10.3390/polym16010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
An amorphous fiber-based solid dispersion of chlorzoxazone was prepared for the first time by employing centrifugal spinning, using polyvinylpyrrolidone as the fiber-forming polymer. After optimization of the spinning parameters, the obtained fibers were characterized using a set of analytical techniques, both in a solid- and solution-state. Morphological characterization revealed a slightly aligned, defect-free fibrous structure with an average fiber diameter of d = 3.07 ± 1.32 μm. The differential scanning calorimetric results indicated a crystalline-to-amorphous transition of the active substance during the centrifugal spinning process, while gas chromatographic determinations revealed a residual ethanol content of 0.42 ± 0.04%. UV spectroscopy indicated the incorporation of chlorzoxazone in the fibrous structures, with an average active substance content of 15.91 ± 0.36 w/w%. During small-volume dissolution studies, the prepared fiber mats presented immediate disintegration upon contact with the dissolution media, followed by rapid dissolution of the active substance, with 84.8% dissolved at 1 min and 93.7% at 3 min, outperforming the micronized, pure chlorzoxazone. The obtained results indicate that centrifugal spinning is a low-cost, high-yield, viable alternative to the currently used methods to prepare fiber-based amorphous solid dispersions of poorly soluble drugs. The prepared chlorzoxazone-loaded microfibers could be used as a buccal dosage form for the systematic delivery of chlorzoxazone and could potentially lead to a rapid onset of action and longer efficacy of the muscle relaxant drug.
Collapse
Affiliation(s)
- Enikő Bitay
- Department of Mechanical Engineering, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Calea Sighișoarei nr. 2, 540485 Târgu-Mureş, Romania;
- Bánki Donát Faculty of Mechanical and Safety Engineering, Óbuda University, Népszínház u. 8, 1081 Budapest, Hungary
- Research Institute of the Transylvanian Museum Society, 2–4 Napoca Street, 400009 Cluj-Napoca, Romania
| | - Attila Levente Gergely
- Department of Mechanical Engineering, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Calea Sighișoarei nr. 2, 540485 Târgu-Mureş, Romania;
| | - Zoltán-István Szabó
- Department of Drugs Industry and Pharmaceutical Management, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gh. Marinescu 38, 540485 Târgu-Mureş, Romania;
- Sz-imfidum Ltd., Lunga nr. 504, 525401 Covasna, Romania
| |
Collapse
|
6
|
Chajanovsky I, Cohen S, Muthukumar D, Shtenberg G, Suckeveriene RY. Enhancement of integrated nano-sensor performance comprised of electrospun PANI/carbonaceous material fibers for phenolic detection in aqueous solutions. WATER RESEARCH 2023; 246:120709. [PMID: 37871374 DOI: 10.1016/j.watres.2023.120709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/19/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
The detection of trace levels of organic residue in water samples is a key health issue. This manuscript describes the fabrication of integrated nano-sensors composed of electrospun microfibers consisting of a nanocomposite of carbonaceous materials (CNMs) containing polyaniline (PANI) and polycaprolactone (PCL) for phenolic detection in aqueous solutions. The morphology of the resulting microfiber composite was characterized by scanning electron microscopy. It revealed elongated fibers with a highly interconnected web-like pattern in the presence of reduced graphene oxide (rGO). Shorter microfibers were observed in the composite filled with multi-walled carbon nanotubes (MWCNTs), whereas large agglomerates were formed upon the incorporation of single-walled CNTs (SWCNTs) and graphene 300 (G300). Comparative analysis showed that the PANI/CNM sensors exhibited the best electrochemical properties, in particular in the presence of rGO and MWCNTs, where greater electrical conductivity was achieved, i.e., 4.33 × 10-3 and 7.22 × 10-4 S/cm, respectively, as compared to the PANI-PCL sensor (3.79 × 10-4 S/cm). All the PANI/CNM sensors exhibited high sensitivity. Notably, PANI/rGO was found to have a detection limit of 8.34 × 10-3 µM for aminophenol. All the sensors exhibited good selectivity in the presence of interference to detecting phenolic compounds in aqueous solutions, thus confirming their value for industrial applications.
Collapse
Affiliation(s)
- Itamar Chajanovsky
- Department of Water Industry Engineering, Kinneret Academic College on the Sea of Galilee, Zemach 15132, Israel
| | - Sarah Cohen
- Department of Water Industry Engineering, Kinneret Academic College on the Sea of Galilee, Zemach 15132, Israel
| | - Divagar Muthukumar
- Institute of Agricultural Engineering, ARO, The Volcani Center, Bet Dagan 7505101, Israel
| | - Giorgi Shtenberg
- Institute of Agricultural Engineering, ARO, The Volcani Center, Bet Dagan 7505101, Israel
| | - R Y Suckeveriene
- Department of Water Industry Engineering, Kinneret Academic College on the Sea of Galilee, Zemach 15132, Israel.
| |
Collapse
|
7
|
Zhang B, Jiang Z, Li X, Wu Z, Liu Y, Hu J, Zhang C, Chen J, Zhou Y, Rao J, Liu X. Facile preparation of biocompatible and antibacterial water-soluble films using polyvinyl alcohol/carboxymethyl chitosan blend fibers via centrifugal spinning. Carbohydr Polym 2023; 317:121062. [PMID: 37364950 DOI: 10.1016/j.carbpol.2023.121062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Water-soluble polyvinyl alcohol/carboxymethyl chitosan (PVA/CMCS) blend fiber films were successfully prepared using a plane-collection centrifugal spinning machine. The addition of CMCS significantly increased the shear viscosity of the PVA/CMCS blend solution. The effects of spinning temperature on the shear viscosity and the centrifugal spinnability of PVA/CMCS blend solution were discussed. The PVA/CMCS blend fibers were uniform, and their average diameters ranged from 1.23 μm to 29.01 μm. It was found that the CMCS was distributed evenly in the PVA matrix and increased the crystallinity of PVA/CMCS blend fiber films. The hydrogen bonds between the hydroxyl group of PVA and the carboxymethyl group of CMCS were also detected. An in vitro cell study of human skin fibroblast cells on the PVA/CMCS blend fiber films confirmed biocompatibility. The maximum tensile strength and elongation at break of PVA/CMCS blend fiber films could reach 3.28 MPa and 29.52 %, respectively. The colony-plate-count tests indicated that the PVA16-CMCS2 presented 72.05 % and 21.36 % antibacterial rates against Staphylococcus aureus (104 CFU/mL) and Escherichia coli (103 CFU/mL), respectively. These values indicated that the newly prepared PVA/CMCS blend fiber films are promising materials for cosmetic and dermatological applications.
Collapse
Affiliation(s)
- Bowen Zhang
- College of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Zhan Jiang
- SKL of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xing Li
- College of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Zhiyu Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yuemei Liu
- College of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Jun Hu
- College of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Chunhua Zhang
- College of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Junyi Chen
- School of Nursing, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingshan Zhou
- College of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Jue Rao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Xin Liu
- College of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
8
|
Banerjee R, Ray SS. Role of Rheology in Morphology Development and Advanced Processing of Thermoplastic Polymer Materials: A Review. ACS OMEGA 2023; 8:27969-28001. [PMID: 37576638 PMCID: PMC10413379 DOI: 10.1021/acsomega.3c03310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
This review presents fundamental knowledge and recent advances pertaining to research on the role of rheology in polymer processing, highlights the knowledge gap between the function of rheology in various processing operations and the importance of rheology in the development, characterization, and assessment of the morphologies of polymeric materials, and offers ideas for enhancing the processabilities of polymeric materials in advanced processing operations. Rheology plays a crucial role in the morphological evolution of polymer blends and composites, influencing the type of morphology in the case of blends and the quality of dispersion in the cases of both blends and composites. The rheological characteristics of multiphase polymeric materials provide valuable information on the morphologies of these materials, thereby rendering rheology an important tool for morphological assessment. Although rheology extensively affects the processabilities of polymeric materials in all processing operations, this review focuses on the roles of rheology in film blowing, electrospinning, centrifugal jet spinning, and the three-dimensional printing of polymeric materials, which are advanced processing operations that have gained significant research interest. This review offers a comprehensive overview of the fundamentals of morphology development and the aforementioned processing techniques; moreover, it covers all vital aspects related to the tailoring of the rheological characteristics of polymeric materials for achieving superior morphologies and high processabilities of these materials in advanced processing operations. Thus, this article provides a direction for future advancements in polymer processing. Furthermore, the superiority of elongational flow over shear flow in enhancing the quality of dispersion in multiphase polymeric materials and the role of extensional rheology in the advanced processing operations of these materials, which have rarely been discussed in previous reviews, have been critically analyzed in this review. In summary, this article offers new insights into the use of rheology in material and product development during advanced polymer-processing operations.
Collapse
Affiliation(s)
- Ritima Banerjee
- Department
of Chemical Engineering, Calcutta Institute
of Technology, Banitabla, Uluberia, Howrah, 711316 West Bengal, India
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Suprakas Sinha Ray
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|
9
|
Xia M, Ji S, Fu Y, Dai J, Zhang J, Ma X, Liu R. Alumina Ceramic Nanofibers: An Overview of the Spinning Gel Preparation, Manufacturing Process, and Application. Gels 2023; 9:599. [PMID: 37623054 PMCID: PMC10453887 DOI: 10.3390/gels9080599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
As an important inorganic material, alumina ceramic nanofibers have attracted more and more attention because of their excellent thermal stability, high melting point, low thermal conductivity, and good chemical stability. In this paper, the preparation conditions for alumina spinning gel, such as the experimental raw materials, spin finish aid, aging time, and so on, are briefly introduced. Then, various methods for preparing the alumina ceramic nanofibers are described, such as electrospinning, solution blow spinning, centrifugal spinning, and some other preparation processes. In addition, the application of alumina ceramic nanofibers in thermal insulation, high-temperature filtration, catalysis, energy storage, water restoration, sound absorption, bioengineering, and other fields are described. The wide application prospect of alumina ceramic nanofibers highlights its potential as an advanced functional material with various applications. This paper aims to provide readers with valuable insights into the design of alumina ceramic nanofibers and to explore their potential applications, contributing to the advancement of various technologies in the fields of energy, environment, and materials science.
Collapse
Affiliation(s)
- Meng Xia
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China; (M.X.); (S.J.); (Y.F.); (J.D.)
| | - Shuyu Ji
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China; (M.X.); (S.J.); (Y.F.); (J.D.)
| | - Yijun Fu
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China; (M.X.); (S.J.); (Y.F.); (J.D.)
| | - Jiamu Dai
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China; (M.X.); (S.J.); (Y.F.); (J.D.)
| | - Junxiong Zhang
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China; (M.X.); (S.J.); (Y.F.); (J.D.)
| | - Xiaomin Ma
- National Equipment New Material & Technology (Jiangsu) Co., Ltd., Suzhou 215100, China;
| | - Rong Liu
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China; (M.X.); (S.J.); (Y.F.); (J.D.)
| |
Collapse
|
10
|
Su X, Jia C, Xiang H, Zhu M. Research progress in preparation, properties, and applications of medical protective fiber materials. APPLIED MATERIALS TODAY 2023; 32:101792. [PMID: 36937335 PMCID: PMC10001160 DOI: 10.1016/j.apmt.2023.101792] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 05/11/2023]
Abstract
A variety of public health events seriously threaten human life and health, especially the outbreak of COVID-19 at the end of 2019 has caused a serious impact on human production and life. Wearing personal protective equipment (PPE) is one of the most effective ways to prevent infection and stop the spread of the virus. Medical protective fiber materials have become the first choice for PPE because of their excellent barrier properties and breathability. In this article, we systematically review the latest progress in preparation technologies, properties, and applications of medical protective fiber materials. We first summarize the technological characteristics of different fiber preparation methods and compare their advantages and disadvantages. Then the barrier properties, comfort, and mechanical properties of the medical protective fiber materials used in PPE are discussed. After that, the applications of medical protective fibers in PPE are introduced, and protective clothing and masks are discussed in detail. Finally, the current status, future development trend, and existing challenges of medical protective fiber materials are summarized.
Collapse
Affiliation(s)
- Xiaolong Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
11
|
Hou T, Li X, Lu Y, Zhou J, Zhang X, Liu S, Yang B. Fabrication of hierarchical porous ethyl cellulose fibrous membrane by electro-centrifugal spinning for drug delivery systems with excellent integrated properties. Int J Biol Macromol 2023:125141. [PMID: 37247705 DOI: 10.1016/j.ijbiomac.2023.125141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Drug delivery systems (DDSs) based on micro-and nano- fibrous membrane have been developed for decades, in which great attention has been focused on achieving controlled drug release. However, the study on the integrated performance of these drug-loaded membranes in the use of in-vitro drug delivery dressing is lacking, as clinical medication also needs consideration from the perspectives of wound safety and patient convenience. Herein, a trilayered hierarchical porous ethyl cellulose (EC) fibrous membrane based DDS (EC-DDS) was developed by electro-centrifugal spinning. Significantly, the hierarchical porous structure of the EC-DDSs with high specific surface area (34.3 m2g-1) and abundant long-regulative micro-and nano- channels demonstrated its merits in improving the hydrophobicity (long-term splash resistance (CA > 130°) and prolonging the drug release (the release time of ~80 % tetracycline hydrochloride (TCH) prolonged from 10 min to 24 h). Meanwhile, the trilayered EC-DDS also revealed excellent biocompatibility, antibacterial activity, air permeability, moisture permeability, water absorption capacity, mechanical strength, and flexibility. With these excellent integrated features, the EC-DDS could prevent external fluids, avoid infection, and provide comfort. Furthermore, this work also provides a new guide for the high-efficiency fabrication of porous fibrous membranes.
Collapse
Affiliation(s)
- Teng Hou
- National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 310018, China
| | - Xianglong Li
- National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 310018, China
| | - Yishen Lu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 310018, China
| | - Jing Zhou
- National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 310018, China
| | - Xianggui Zhang
- National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 310018, China
| | - Shu Liu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 310018, China
| | - Bin Yang
- National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, 310018, China.
| |
Collapse
|
12
|
Venkataraman D, Shabani E, Park JH. Advancement of Nonwoven Fabrics in Personal Protective Equipment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3964. [PMID: 37297096 PMCID: PMC10253991 DOI: 10.3390/ma16113964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
While nonwoven fabrics have existed for several decades, their usage in personal protective equipment (PPE) has been met with a rapid surge of demands, in part due to the recent COVID-19 pandemic. This review aims to critically examine the current state of nonwoven PPE fabrics by exploring (i) the material constituents and processing steps to produce fibers and bond them, and (ii) how each fabric layer is integrated into a textile, and how the assembled textiles are used as PPE. Firstly, filament fibers are manufactured via dry, wet, and polymer-laid fiber spinning methods. Then the fibers are bonded via chemical, thermal, and mechanical means. Emergent nonwoven processes such as electrospinning and centrifugal spinning to produce unique ultrafine nanofibers are discussed. Nonwoven PPE applications are categorized as filters, medical usage, and protective garments. The role of each nonwoven layer, its role, and textile integration are discussed. Finally, the challenges stemming from the single-use nature of nonwoven PPEs are discussed, especially in the context of growing concerns over sustainability. Then, emerging solutions to address sustainability issues with material and processing innovations are explored.
Collapse
Affiliation(s)
- Dhanya Venkataraman
- Department of Biomedical and Biotechnology, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Elnaz Shabani
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Jay H. Park
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| |
Collapse
|
13
|
Park D, Lee SJ, Choi DK, Park JW. Therapeutic Agent-Loaded Fibrous Scaffolds for Biomedical Applications. Pharmaceutics 2023; 15:pharmaceutics15051522. [PMID: 37242764 DOI: 10.3390/pharmaceutics15051522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Tissue engineering is a sophisticated field that involves the integration of various disciplines, such as clinical medicine, material science, and life science, to repair or regenerate damaged tissues and organs. To achieve the successful regeneration of damaged or diseased tissues, it is necessary to fabricate biomimetic scaffolds that provide structural support to the surrounding cells and tissues. Fibrous scaffolds loaded with therapeutic agents have shown considerable potential in tissue engineering. In this comprehensive review, we examine various methods for fabricating bioactive molecule-loaded fibrous scaffolds, including preparation methods for fibrous scaffolds and drug-loading techniques. Additionally, we delved into the recent biomedical applications of these scaffolds, such as tissue regeneration, inhibition of tumor recurrence, and immunomodulation. The aim of this review is to discuss the latest research trends in fibrous scaffold manufacturing methods, materials, drug-loading methods with parameter information, and therapeutic applications with the goal of contributing to the development of new technologies or improvements to existing ones.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Dong Kyu Choi
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
14
|
Wang S, Zhang P, Li Y, Li J, Li X, Yang J, Ji M, Li F, Zhang C. Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydr Polym 2023; 307:120627. [PMID: 36781278 DOI: 10.1016/j.carbpol.2023.120627] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
Starch is regarded as one of the most promising sustainable materials due to its abundant yield and excellent biodegradability. From the perspective of practical engineering applications, this paper systematically describes the development of starch-based bio-composites in the past decade. Packaging properties, processing characteristics, and current challenges for the efficient processing of starch-based bio-composites are reviewed in industrial packaging. Green coatings, binders, adsorbents, flocculants, flame retardants, and emulsifiers are used as examples to illustrate the versatility of starch-based bio-composites in chemical agent applications. In addition, the work compares the application of starch-based bio-composites in conventional spinning with emerging spinning technologies and describes the challenges of electrostatic spinning for preparing nanoscale starch-based fibers. In terms of flexible electronics, the starch-based bio-composites are regard as a solid polymer electrolyte and easily modified porous material. Moreover, we describe the applications of the starch-based gels in tissue engineering, controlled drug release, and medical dressings. Finally, the theoretical input and technical guidance in the advanced sustainable engineering application of the starch-based bio-composites are provided in the work.
Collapse
Affiliation(s)
- Shen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Pengfei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Junru Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Xinlin Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Jihua Yang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Maocheng Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Fangyi Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanwei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
15
|
Ma Y, Cai K, Xu G, Xie Y, Huang P, Zeng J, Zhu Z, Luo J, Hu H, Zhao K, Chen M, Zheng K. Large-Scale and Highly Efficient Production of Ultrafine PVA Fibers by Electro-Centrifugal Spinning for NH 3 Adsorption. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2903. [PMID: 37049196 PMCID: PMC10095733 DOI: 10.3390/ma16072903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Ultrafine Polyvinyl alcohol (PVA) fibers have an outstanding potential in various applications, especially in absorbing fields. In this manuscript, an electrostatic-field-assisted centrifugal spinning system was designed to improve the production efficiency of ultrafine PVA fibers from PVA aqueous solution for NH3 adsorption. It was established that the fiber production efficiency using this self-designed system could be about 1000 times higher over traditional electrospinning system. The produced PVA fibers establish high morphology homogeneity. The impact of processing variables of the constructed spinning system including rotation speed, needle size, liquid feeding rate, and voltage on fiber morphology and diameter was systematically investigated by SEM studies. To acquire homogeneous ultrafine PVA fiber membranes, the orthogonal experiment was also conducted to optimize the spinning process parameters. The impact weight of different studied parameters on the spinning performance was thus provided. The experimental results showed that the morphology of micro/nano-fibers can be well controlled by adjusting the spinning process parameters. Ultrafine PVA fibers with the diameter of 2.55 μm were successfully obtained applying the parameters, including rotation speed (6500 rpm), needle size (0.51 mm), feeding rate (3000 mL h-1), and voltage (20 kV). Furthermore, the obtained ultrafine PVA fiber mat was demonstrated to be capable of selectively adsorbing NH3 gas relative to CO2, thus making it promising for NH3 storage and other environmental purification applications.
Collapse
Affiliation(s)
- Youye Ma
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China; (Y.M.); (K.C.); (Y.X.); (P.H.); (H.H.); (K.Z.); (M.C.)
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Kanghui Cai
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China; (Y.M.); (K.C.); (Y.X.); (P.H.); (H.H.); (K.Z.); (M.C.)
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
- China Foshan Nanofiberlabs Co., Ltd., Foshan 528225, China; (G.X.); (J.Z.); (Z.Z.)
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530005, China
| | - Guojie Xu
- China Foshan Nanofiberlabs Co., Ltd., Foshan 528225, China; (G.X.); (J.Z.); (Z.Z.)
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yueling Xie
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China; (Y.M.); (K.C.); (Y.X.); (P.H.); (H.H.); (K.Z.); (M.C.)
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Peng Huang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China; (Y.M.); (K.C.); (Y.X.); (P.H.); (H.H.); (K.Z.); (M.C.)
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Jun Zeng
- China Foshan Nanofiberlabs Co., Ltd., Foshan 528225, China; (G.X.); (J.Z.); (Z.Z.)
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Ziming Zhu
- China Foshan Nanofiberlabs Co., Ltd., Foshan 528225, China; (G.X.); (J.Z.); (Z.Z.)
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie Luo
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China; (Y.M.); (K.C.); (Y.X.); (P.H.); (H.H.); (K.Z.); (M.C.)
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Huawen Hu
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China; (Y.M.); (K.C.); (Y.X.); (P.H.); (H.H.); (K.Z.); (M.C.)
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Kai Zhao
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China; (Y.M.); (K.C.); (Y.X.); (P.H.); (H.H.); (K.Z.); (M.C.)
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Min Chen
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China; (Y.M.); (K.C.); (Y.X.); (P.H.); (H.H.); (K.Z.); (M.C.)
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Kun Zheng
- Department of Hydrogen Energy, Faculty of Energy and Fuels, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
- AGH Centre of Energy, AGH University of Science and Technology, ul. Czarnowiejska 36, 30-054 Krakow, Poland
| |
Collapse
|
16
|
Ye P, Guo Q, Zhang Z, Xu Q. High-Speed Centrifugal Spinning Polymer Slip Mechanism and PEO/PVA Composite Fiber Preparation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1277. [PMID: 37049370 PMCID: PMC10096941 DOI: 10.3390/nano13071277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Composite nanofibers with excellent physical and chemical properties are widely used in new energy, biomedical, environmental, electronic, and other fields. Their preparation methods have been investigated extensively by many experts. High-speed centrifugal spinning is a novel method used to fabricate composite nanofibers. The slip mechanism of polymer solution flows is an important factor affecting the morphology and quality of composite nanofibers prepared by high-speed centrifugal spinning. As the polymer solution flows, the liquid wall slip occurs inside the nozzle, followed by liquid-liquid interface slip and gas-liquid interface slip. The factors affecting polymer slip were investigated by developing a mathematical model in the nozzle. This suggests that the magnitude of the velocity is an important factor that affects polymer slip and determines fiber quality and morphology. Under the same rotational speed, the smaller the nozzle diameter, the greater the concentration of velocity distribution and the smaller the diameter of the produced composite nanofibers. Finally, PEO/PVA composite nanofibers were prepared using high-speed centrifugal spinning equipment at 900-5000 rpm and nozzle diameters of 0.2 mm, 0.4 mm, 0.6 mm, and 0.8 mm. The morphology and quality of the collected PEO/PVA composite nanofibers were analyzed using scanning electron microscopy (SEM) and TG experiments. Then, the optimal parameters for the preparation of PEO/PVA composite nanofibers by high-speed centrifugal spinning were obtained by combining the external environmental factors in the preparation process. Theoretical evaluation and experimental data were provided for the centrifugal composite spinning slip mechanism and for the preparation of composite nanofibers.
Collapse
Affiliation(s)
- Peiyan Ye
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430200, China
| | - Qinghua Guo
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430200, China
| | - Zhiming Zhang
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430200, China
| | - Qiao Xu
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
17
|
Uzel E, Durgun ME, Esentürk-Güzel İ, Güngör S, Özsoy Y. Nanofibers in Ocular Drug Targeting and Tissue Engineering: Their Importance, Advantages, Advances, and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15041062. [PMID: 37111550 PMCID: PMC10145046 DOI: 10.3390/pharmaceutics15041062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Nanofibers are frequently encountered in daily life as a modern material with a wide range of applications. The important advantages of production techniques, such as being easy, cost effective, and industrially applicable are important factors in the preference for nanofibers. Nanofibers, which have a broad scope of use in the field of health, are preferred both in drug delivery systems and tissue engineering. Due to the biocompatible materials used in their construction, they are also frequently preferred in ocular applications. The fact that they have a long drug release time as a drug delivery system and have been used in corneal tissue studies, which have been successfully developed in tissue engineering, stand out as important advantages of nanofibers. This review examines nanofibers, their production techniques and general information, nanofiber-based ocular drug delivery systems, and tissue engineering concepts in detail.
Collapse
Affiliation(s)
- Egemen Uzel
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul 34010, Türkiye
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34126, Türkiye
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34126, Türkiye
| | - İmren Esentürk-Güzel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Türkiye
| | - Sevgi Güngör
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34126, Türkiye
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34126, Türkiye
- Correspondence: ; Tel.: +90-212-4400000 (ext. 13498)
| |
Collapse
|
18
|
Mary SA, Ariram N, Gopinath A, Chinnaiyan SK, Raja IS, Sahu B, Giri Dev VR, Han DW, Madhan B. Investigation on Centrifugally Spun Fibrous PCL/3-Methyl Mannoside Mats for Wound Healing Application. Polymers (Basel) 2023; 15:polym15051293. [PMID: 36904532 PMCID: PMC10007593 DOI: 10.3390/polym15051293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Fibrous structures, in general, have splendid advantages in different forms of micro- and nanomembranes in various fields, including tissue engineering, filtration, clothing, energy storage, etc. In the present work, we develop a fibrous mat by blending the bioactive extract of Cassia auriculata (CA) with polycaprolactone (PCL) using the centrifugal spinning (c-spinning) technique for tissue-engineered implantable material and wound dressing applications. The fibrous mats were developed at a centrifugal speed of 3500 rpm. The PCL concentration for centrifugal spinning with CA extract was optimized at 15% w/v of PCL to achieve better fiber formation. Increasing the extract concentration by more than 2% resulted in crimping of fibers with irregular morphology. The development of fibrous mats using a dual solvent combination resulted in fine pores on the fiber structure. Scanning electron microscope (SEM) images showed that the surface morphology of the fibers in the produced fiber mats (PCL and PCL-CA) was highly porous. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the CA extract contained 3-methyl mannoside as the predominant component. The in vitro cell line studies using NIH3T3 fibroblasts demonstrated that the CA-PCL nanofiber mat was highly biocompatible, supporting cell proliferation. Hence, we conclude that the c-spun, CA-incorporating nanofiber mat can be employed as a tissue-engineered construct for wound healing applications.
Collapse
Affiliation(s)
- Soloman Agnes Mary
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute Adyar, Chennai 600020, India
| | - Naisini Ariram
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute Adyar, Chennai 600020, India
| | - Arun Gopinath
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute Adyar, Chennai 600020, India
| | - Senthil Kumar Chinnaiyan
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute Adyar, Chennai 600020, India
| | | | - Bindia Sahu
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute Adyar, Chennai 600020, India
| | | | - Dong-Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (D.-W.H.); (B.M.)
| | - Balaraman Madhan
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute Adyar, Chennai 600020, India
- Correspondence: (D.-W.H.); (B.M.)
| |
Collapse
|
19
|
Centrifugal Force-Spinning to Obtain Multifunctional Fibers of PLA Reinforced with Functionalized Silver Nanoparticles. Polymers (Basel) 2023; 15:polym15051240. [PMID: 36904481 PMCID: PMC10006974 DOI: 10.3390/polym15051240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
The design and development of multifunctional fibers awakened great interest in biomaterials and food packaging materials. One way to achieve these materials is by incorporating functionalized nanoparticles into matrices obtained by spinning techniques. Here, a procedure for obtaining functionalized silver nanoparticles through a green protocol, using chitosan as a reducing agent, was implemented. These nanoparticles were incorporated into PLA solutions to study the production of multifunctional polymeric fibers by centrifugal force-spinning. Multifunctional PLA-based microfibers were obtained with nanoparticle concentrations varying from 0 to 3.5 wt%. The effect of the incorporation of nanoparticles and the method of preparation of the fibers on the morphology, thermomechanical properties, biodisintegration, and antimicrobial behavior, was investigated. The best balance in terms of thermomechanical behavior was obtained for the lowest amount of nanoparticles, that is 1 wt%. Furthermore, functionalized silver nanoparticles confer antibacterial activity to the PLA fibers, with a percentage of killing bacteria between 65 and 90%. All the samples turned out to be disintegrable under composting conditions. Additionally, the suitability of the centrifugal force-spinning technique for producing shape-memory fiber mats was tested. Results demonstrate that with 2 wt% of nanoparticles a good thermally activated shape-memory effect, with high values of fixity and recovery ratios, is obtained. The results obtained show interesting properties of the nanocomposites to be applied as biomaterials.
Collapse
|
20
|
Fabrication of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Fibers Using Centrifugal Fiber Spinning: Structure, Properties and Application Potential. Polymers (Basel) 2023; 15:polym15051181. [PMID: 36904422 PMCID: PMC10006915 DOI: 10.3390/polym15051181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Biobased and biodegradable polyhydroxyalkanoates (PHAs) are currently gaining momentum. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) polymer has a useful processing window for extrusion and injection molding of packaging, agricultural and fishery applications with required flexibility. Processing PHBHHx into fibers using electrospinning or centrifugal fiber spinning (CFS) can further broaden the application area, although CFS remains rather unexplored. In this study, PHBHHx fibers are centrifugally spun from 4-12 wt.% polymer/chloroform solutions. Beads and beads-on-a-string (BOAS) fibrous structures with an average diameter (ϕav) between 0.5 and 1.6 µm form at 4-8 wt.% polymer concentrations, while more continuous fibers (ϕav = 3.6-4.6 µm) with few beads form at 10-12 wt.% polymer concentrations. This change is correlated with increased solution viscosity and enhanced mechanical properties of the fiber mats (strength, stiffness and elongation values range between 1.2-9.4 MPa, 11-93 MPa, and 102-188%, respectively), though the crystallinity degree of the fibers remains constant (33.0-34.3%). In addition, PHBHHx fibers are shown to anneal at 160 °C in a hot press into 10-20 µm compact top-layers on PHBHHx film substrates. We conclude that CFS is a promising novel processing technique for the production of PHBHHx fibers with tunable morphology and properties. Subsequent thermal post-processing as a barrier or active substrate top-layer offers new application potential.
Collapse
|
21
|
Abadi PGS, Irani M, Rad LR. Mechanisms of the removal of the metal ions, dyes, and drugs from wastewaters by the electrospun nanofiber membranes. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Preparation of Copper Ion Adsorbed Modified Montmorillonite/Cellulose Acetate Porous Composite Fiber Membrane by Centrifugal Spinning. Polymers (Basel) 2022; 14:polym14245458. [PMID: 36559826 PMCID: PMC9785991 DOI: 10.3390/polym14245458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The natural adsorption material montmorillonite (MMT) was selected, and cellulose acetate (CA) was used as the loading substrate to design and prepare a kind of green and environment-friendly recyclable porous composite fiber membrane with good heavy metal ion adsorption performance. Acetic acid modified montmorillonite (HCl-MMT), sodium dodecyl sulfonate modified montmorillonite (SDS-MMT), and chitosan modified montmorillonite (CTS-MMT) were prepared by inorganic modification and organic modification, and the porous MMT/CA composite fiber membrane was constructed by centrifugal spinning equipment. The morphological and structural changes of MMT before and after modification and their effects on porous composite fiber membranes were investigated. The morphology, structure, and adsorption properties of the composite fibers were characterized by scanning electron microscopy (SEM) and atomic absorption spectrometry (ASS). The experimental results showed that the maximum adsorption capacity of Cu2+ on the prepared 5 wt% CTS-MMT composite fiber membrane was 60.272 mg/g after 10 h static adsorption. The adsorption of Cu2+ by a porous composite fiber membrane conforms to the quasi-second-order kinetic model and Langmuir isothermal adsorption model. The main factor of the Cu2+ adsorption rate is chemical adsorption, and the adsorption mechanism is mainly monolayer adsorption.
Collapse
|
23
|
Matharu RK, Ahmed J, Seo J, Karu K, Golshan MA, Edirisinghe M, Ciric L. Antibacterial Properties of Honey Nanocomposite Fibrous Meshes. Polymers (Basel) 2022; 14:polym14235155. [PMID: 36501550 PMCID: PMC9740266 DOI: 10.3390/polym14235155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Natural substances are increasingly being developed for use in health-related applications. Honey has attracted significant interest, not only for its physical and chemical properties, but also for its antibacterial activity. For the first time, suspensions of Black Forest honeydew honey and manuka honey UMF 20+ were examined for their antibacterial properties against Escherichia coli and Staphylococcus epidermidis using flow cytometry. The inhibitory effect of honey on bacterial growth was evident at concentrations of 10, 20 and 30 v/v%. The minimum inhibitory effects of both honey types against each bacterium were also investigated and reported. Electrospray ionisation (ESI) mass spectrometry was performed on both Black Forest honeydew honey and manuka honey UMF 20+. Manuka honey had a gluconic concentration of 2519 mg/kg, whilst Black Forest honeydew honey had a concentration of 2195 mg/kg. Manuka honey demonstrated the strongest potency when compared to Black Forest honeydew honey; therefore, it was incorporated into nanofiber scaffolds using pressurised gyration and 10, 20 and 30 v/v% manuka honey-polycaprolactone solutions. Composite fibres were analysed for their morphology and topography using scanning electron microscopy. The average fibre diameter of the manuka honey-polycaprolactone scaffolds was found to range from 437 to 815 nm. The antibacterial activity of the 30 v/v% scaffolds was studied using S. epidermidis. Strong antibacterial activity was observed with a bacterial reduction rate of over 90%. The results show that honey composite fibres formed using pressurised gyration can be considered a natural therapeutic agent for various medicinal purposes, including wound-healing applications.
Collapse
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
- Correspondence:
| | - Jubair Ahmed
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Jegak Seo
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Kersti Karu
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Mitra Ashrafi Golshan
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Lena Ciric
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
24
|
Bahú JO, Melo de Andrade LR, Crivellin S, Khouri NG, Sousa SO, Fernandes LMI, Souza SDA, Concha LSC, Schiavon MIRB, Benites CI, Severino P, Souto EB, Concha VOC. Rotary Jet Spinning (RJS): A Key Process to Produce Biopolymeric Wound Dressings. Pharmaceutics 2022; 14:pharmaceutics14112500. [PMID: 36432691 PMCID: PMC9699276 DOI: 10.3390/pharmaceutics14112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Wounds result from different causes (e.g., trauma, surgeries, and diabetic ulcers), requiring even extended periods of intensive care for healing, according to the patient's organism and treatment. Currently, wound dressings generated by polymeric fibers at micro and nanometric scales are promising for healing the injured area. They offer great surface area and porosity, mimicking the fibrous extracellular matrix structure, facilitating cell adhesion, migration, and proliferation, and accelerating the wound healing process. Such properties resulted in countless applications of these materials in biomedical and tissue engineering, also as drug delivery systems for bioactive molecules to help tissue regeneration. The techniques used to engineer these fibers include spinning methods (electro-, rotary jet-), airbrushing, and 3D printing. These techniques have important advantages, such as easy-handle procedure and process parameters variability (type of polymer), but encounter some scalability problems. RJS is described as a simple and low-cost technique resulting in high efficiency and yield for fiber production, also capable of bioactive agents' incorporation to improve the healing potential of RJS wound dressings. This review addresses the use of RJS to produce polymeric fibers, describing the concept, type of configuration, comparison to other spinning techniques, most commonly used polymers, and the relevant parameters that influence the manufacture of the fibers, for the ultimate use in the development of wound dressings.
Collapse
Affiliation(s)
- Juliana O. Bahú
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
- Correspondence: (J.O.B.); (E.B.S.)
| | - Lucas R. Melo de Andrade
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Mato Grosso do Sul, Brazil
| | - Sara Crivellin
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
| | - Nadia G. Khouri
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
| | - Sara O. Sousa
- Institute of Environmental, Chemical and Pharmaceutical Science, School of Chemical Engineering, Federal University of São Paulo (UNIFESP), São Nicolau St., Jd. Pitangueiras, Diadema 09913-030, São Paulo, Brazil
| | - Luiza M. I. Fernandes
- Institute of Environmental, Chemical and Pharmaceutical Science, School of Chemical Engineering, Federal University of São Paulo (UNIFESP), São Nicolau St., Jd. Pitangueiras, Diadema 09913-030, São Paulo, Brazil
| | - Samuel D. A. Souza
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
| | - Luz S. Cárdenas Concha
- Graduate School, Sciences and Engineering, National University of Trujillo, Av. Juan Pablo II S/N Urb. San Andrés, Trujillo 13011, La Libertad, Peru
| | - Maria I. R. B. Schiavon
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
| | - Cibelem I. Benites
- Federal Laboratory of Agricultural and Livestock Defense (LFDA-SP), Ministry of Agriculture, Livestock and Food Supply (MAPA), Campinas 70043-900, São Paulo, Brazil
| | - Patrícia Severino
- Technology and Research Institute (ITP), Tiradentes University (UNIT), Murilo Dantas Ave., Farolândia, nº 300, Aracaju 49032-490, Sergipe, Brazil
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto (FFUP), Rua Jorge de Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, de Jorge Viterbo Ferreira, nº. 228, 4050-313 Porto, Portugal
- Correspondence: (J.O.B.); (E.B.S.)
| | - Viktor O. Cárdenas Concha
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
- Institute of Environmental, Chemical and Pharmaceutical Science, School of Chemical Engineering, Federal University of São Paulo (UNIFESP), São Nicolau St., Jd. Pitangueiras, Diadema 09913-030, São Paulo, Brazil
| |
Collapse
|
25
|
Kulkarni D, Musale S, Panzade P, Paiva-Santos AC, Sonwane P, Madibone M, Choundhe P, Giram P, Cavalu S. Surface Functionalization of Nanofibers: The Multifaceted Approach for Advanced Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3899. [PMID: 36364675 PMCID: PMC9655053 DOI: 10.3390/nano12213899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 05/13/2023]
Abstract
Nanocarriers are gaining significant importance in the modern era of drug delivery. Nanofiber technology is one of the prime paradigms in nanotechnology for various biomedical and theranostic applications. Nanofibers obtained after successful electrospinning subjected to surface functionalized for drug delivery, biomedical, tissue engineering, biosensing, cell imaging and wound dressing application. Surface functionalization entirely changes physicochemical and biological properties of nanofibers. In physicochemical properties, wettability, melting point, glass transition temperature, and initial decomposition temperature significantly change offer several advantageous for nanofibers. Similarly, biological properties include cell adhesion, biocompatibility, and proliferation, also changes by functionalization of nanofibers. Various natural and synthetic materials polymers, metals, carbon materials, functional groups, proteins, and peptides, are currently used for surface modification of nanofibers. Various research studies across the globe demonstrated the usefulness of surface functionalized nanofibers in tissue engineering, wound healing, skin cancers, melanoma, and disease diagnosis. The delivery of drug through surface functionalized nanofibers results in improved permeation and bioavailability of drug which is important for better targeting of disease and therapeutic efficacy. This review provides a comprehensive insight about various techniques of surface functionalization of nanofibers along with its biomedical applications, toxicity assessment and global patent scenario.
Collapse
Affiliation(s)
- Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India
| | - Shubham Musale
- Formulation and Development Department, Aculife Healthcare Pvt. Ltd., Sachana, Ahmedabad 382150, India
| | - Prabhakar Panzade
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3004-531 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Pratiksha Sonwane
- Department of Chemistry, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India
| | - Monika Madibone
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India
| | - Puja Choundhe
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India
| | - Prabhanjan Giram
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
26
|
Zhang X, Wang X, Jiao W, Liu Y, Yu J, Ding B. Evolution from microfibers to nanofibers toward next-generation ceramic matrix composites: A review. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Ganesan A, Jaiganesh R. A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Bose S, Padilla V, Salinas A, Ahmad F, Lodge TP, Ellison CJ, Lozano K. Hierarchical Design Strategies to Produce Internally Structured Nanofibers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2132509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Saptasree Bose
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Victoria Padilla
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Alexandra Salinas
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Fariha Ahmad
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Timothy P. Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher J. Ellison
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| |
Collapse
|
29
|
Rihova M, Lepcio P, Cicmancova V, Frumarova B, Hromadko L, Bureš F, Vojtova L, Macak JM. The centrifugal spinning of vitamin doped natural gum fibers for skin regeneration. Carbohydr Polym 2022; 294:119792. [DOI: 10.1016/j.carbpol.2022.119792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
|
30
|
Xu G, Zhou B, Guo J, Zeng J, Zhang R, Cai N, Li Y, Wu P, Chen X, Wang H, Ruso JM, Liu Z. Research on the Mechanism of Multi-Domain Coupling Centrifugal Electrostatic Blowing Flying Deposition. MICROMACHINES 2022; 13:1378. [PMID: 36144001 PMCID: PMC9505459 DOI: 10.3390/mi13091378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
The centrifugal electrostatic blowing process proposed in this paper solves the difficult continuous and stable deposition problem in the traditional centrifugal electrostatic spinning process. By establishing a flight deposition model of the centrifugal electrostatic spraying process, CFD is used to simulate and analyze the electrohydrodynamic effect of centrifugal jets, and the driving mechanism is explored. Subsequently, MATLAB is used to obtain the optimal solution conditions, and finally, the establishment of a two-dimensional flight trajectory model is completed and experimentally verified. In addition, the deposition model of the jet is established to clarify the flight trajectory under the multi-field coupling, the stable draft area of the jet is found according to this, and the optimal drafting station is clarified. This research provides new ideas and references for the exploration of the deposition mechanism of the centrifugal electrostatic blowing and electrostatic spinning process.
Collapse
Affiliation(s)
- Guojie Xu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Foshan Nanofiberlabs Co., Ltd., Foshan 528225, China
| | - Bei Zhou
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Guo
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun Zeng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Foshan Nanofiberlabs Co., Ltd., Foshan 528225, China
| | | | - Nian Cai
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongxing Li
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Peixuan Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Xun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Han Wang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA
| |
Collapse
|
31
|
High-efficiency production of core-sheath nanofiber membrane via co-axial electro-centrifugal spinning for controlled drug release. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Chen A, Luo Y, Xu J, Guan X, He H, Xuan X, Wu J. Latest on biomaterial-based therapies for topical treatment of psoriasis. J Mater Chem B 2022; 10:7397-7417. [PMID: 35770701 DOI: 10.1039/d2tb00614f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Psoriasis is an autoimmune inflammatory disease which is fundamentally different from dermatitis. Its treatments include topical medications and systemic drugs depending on different stages of the disease. However, these commonly used therapies are falling far short of clinical needs due to various drawbacks. More precise therapeutic strategies with minimized side effects and improved compliance are highly demanded. Recently, the rapid development of biomaterial-based therapies has made it possible and promising to attain topical psoriasis treatment. In this review, we briefly describe the significance and challenges of the topical treatment of psoriasis and emphatically overview the latest progress in novel biomaterial-based topical therapies for psoriasis including microneedles, nanoparticles, nanofibers, and hydrogels. Current clinical trials related to each biomaterial are also summarized and discussed.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuting Luo
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Xu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xueran Guan
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Xuan Xuan
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jiang Wu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
33
|
Zhang X, Tang S, Wu Z, Chen Y, Li Z, Wang Z, Zhou J. Centrifugal Spinning Enables the Formation of Silver Microfibers with Nanostructures. NANOMATERIALS 2022; 12:nano12132145. [PMID: 35807981 PMCID: PMC9268077 DOI: 10.3390/nano12132145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022]
Abstract
Silver nanowires (AgNWs) have received much attention and application in transparent electrodes, wearable electronic devices, and sensors. The hope is for these nanowires to eventually replace the most commonly used transparent electrode material—indium tin oxide (ITO). However, electrospinning used for the preparation of AgNWs on a large scale is limited by its low productivity and high electric field, while the alcohol-thermal method is limited to mixing by-product silver nanoparticles in silver nanowires. We demonstrate a novel and simple centrifugal spinning approach in order to successfully fabricate ultra-long silver microfibers based on AgNO3 and polyvinyl pyrrolidone (PVP). The centrifugal-spun precursor fiber and silver fiber can be prepared to as thin as 390 and 310 nm, respectively. Annealed fibers show typical nanostructures with grains down to a minimum size of 51 nm. Combinations of different parameters, including concentrations of PVP, needle size, and annealing temperature are also investigated, in order to optimize the spinning process of ultra-long silver microfibers. The feasibility of preparing silver microfibers by centrifugal spinning is preliminarily verified, examining prospects for mass production. Furthermore, numerous strategies related to assisting the creation of silver nanofibers using centrifugal spinning are presented as possibilities in future development.
Collapse
Affiliation(s)
- Xujing Zhang
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, State Key Laboratory for Optoelectronic Materials and Technologies, School of Material Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.Z.); (S.T.); (Z.W.)
| | - Songsong Tang
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, State Key Laboratory for Optoelectronic Materials and Technologies, School of Material Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.Z.); (S.T.); (Z.W.)
- School of Textiles and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhaokun Wu
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, State Key Laboratory for Optoelectronic Materials and Technologies, School of Material Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.Z.); (S.T.); (Z.W.)
| | - Ye Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 200051, China;
| | - Zhen Li
- Foshan City Zhongrou Material Technology Co., Ltd., Foshan 528225, China;
| | - Zongqian Wang
- School of Textiles and Garment, Anhui Polytechnic University, Wuhu 241000, China
- Correspondence: (Z.W.); (J.Z.)
| | - Jian Zhou
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, State Key Laboratory for Optoelectronic Materials and Technologies, School of Material Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.Z.); (S.T.); (Z.W.)
- Correspondence: (Z.W.); (J.Z.)
| |
Collapse
|
34
|
Yun HS, Kim DH, Kwon HG, Choi HK. Centrifugal Force-Induced Alignment in the Self-Assembly of Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyun Su Yun
- Division of Advanced Materials Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Dong Hwan Kim
- Division of Advanced Materials Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Hong Gu Kwon
- Division of Advanced Materials Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Hong Kyoon Choi
- Center for Advanced Materials and Parts of Powder, Kongju National University, Cheonan 31080, Republic of Korea
| |
Collapse
|
35
|
Oxidized Chitosan-Tobramycin (OCS-TOB) Submicro-Fibers for Biomedical Applications. Pharmaceutics 2022; 14:pharmaceutics14061197. [PMID: 35745770 PMCID: PMC9227200 DOI: 10.3390/pharmaceutics14061197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Chitosan (CS) is a biodegradable, biocompatible, and non-toxic natural amino-poly-saccharide with antibacterial ability, owing to its positively charged amino groups. However, the low charge density leads to poor antibacterial efficiency which cannot meet the biomedical application requirements. In this study, Tobramycin (TOB) was grafted onto the backbone of oxidized chitosan (OCS) to synthesize oxidized chitosan-tobramycin (OCS-TOB). FTIR, 1H NMR and elemental analysis results demonstrated that OCS-TOB was successfully synthesized. OCS-TOB/PEO composite fibrous materials were produced by a self-made centrifugal spinning machine. In vitro experiments showed that cells proliferated on the submicro-fibrous OCS-TOB/PEO of appropriate concentration, and the antibacterial ability of OCS-TOB was much improved, compared with pristine CS. The results demonstrated that OCS-TOB/PEO nanofibrous materials could potentially be used for biomedical applications.
Collapse
|
36
|
dos Santos Gomes D, de Sousa Victor R, de Sousa BV, de Araújo Neves G, de Lima Santana LN, Menezes RR. Ceramic Nanofiber Materials for Wound Healing and Bone Regeneration: A Brief Review. MATERIALS 2022; 15:ma15113909. [PMID: 35683207 PMCID: PMC9182284 DOI: 10.3390/ma15113909] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023]
Abstract
Ceramic nanofibers have been shown to be a new horizon of research in the biomedical area, due to their differentiated morphology, nanoroughness, nanotopography, wettability, bioactivity, and chemical functionalization properties. Therefore, considering the impact caused by the use of these nanofibers, and the fact that there are still limited data available in the literature addressing the ceramic nanofiber application in regenerative medicine, this review article aims to gather the state-of-the-art research concerning these materials, for potential use as a biomaterial for wound healing and bone regeneration, and to analyze their characteristics when considering their application.
Collapse
Affiliation(s)
- Déborah dos Santos Gomes
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Correspondence: (D.d.S.G.); (R.d.S.V.); (R.R.M.); Tel.: +55-083-2101-1183 (R.R.M.)
| | - Rayssa de Sousa Victor
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Correspondence: (D.d.S.G.); (R.d.S.V.); (R.R.M.); Tel.: +55-083-2101-1183 (R.R.M.)
| | - Bianca Viana de Sousa
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil;
| | - Gelmires de Araújo Neves
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
| | - Lisiane Navarro de Lima Santana
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Correspondence: (D.d.S.G.); (R.d.S.V.); (R.R.M.); Tel.: +55-083-2101-1183 (R.R.M.)
| |
Collapse
|
37
|
AL-MOALEMI HAFEDHAHMED, IZWAN ABD RAZAK SAIFUL, BOHARI SITIPAULIENAMOHD. ELECTROSPUN SODIUM ALGINATE/POLY(ETHYLENE OXIDE) NANOFIBERS FOR WOUND HEALING APPLICATIONS: CHALLENGES AND FUTURE DIRECTIONS. CELLULOSE CHEMISTRY AND TECHNOLOGY 2022; 56:251-270. [DOI: 10.35812/cellulosechemtechnol.2022.56.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Alginate is an interesting natural biopolymer to be considered for biomedical applications due to its advantages and good biological properties. These biological properties make electrospun alginate nanofibers suitable for various uses in the biomedical field, such as wound healing dressings, drug delivery systems, or both. Unfortunately, the fabrication of alginate nanofibers by electrospinning is very challenging because of the high viscosity of the solution, high surface tension and rigidity in water due to hydrogen bonding, and also their diaxial linkages. This review presents an overview of the factors affecting the electrospinning process of sodium alginate/poly(ethylene oxide) (SA/PEO), the application of SA/PEO in drug delivery systems for wound healing applications, and the degradation and swelling properties of SA/PEO. The challenges and future directions of SA/PEO in the medical field are also discussed.
Collapse
|
38
|
The Effect of Solvent and Pressure on Polycaprolactone Solutions for Particle and Fibre Formation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Agarwal A, Rao GK, Majumder S, Shandilya M, Rawat V, Purwar R, Verma M, Srivastava CM. Natural protein-based electrospun nanofibers for advanced healthcare applications: progress and challenges. 3 Biotech 2022; 12:92. [PMID: 35342680 PMCID: PMC8921418 DOI: 10.1007/s13205-022-03152-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Electrospinning is an electrostatic fiber fabrication technique that operates by the application of a strong electric field on polymer solution or melts. It is used to fabricate fibers whose size lies in the range of few microns to the nanometer range. Historic development of electrospinning has evinced attention due to its outstanding attributes such as small diameter, excellent pore inter-connectivity, high porosity, and high surface-to-volume ratio. This review aims to highlight the theory behind electrospinning and the machine setup with a detailed discussion about the processing parameters. It discusses the latest innovations in natural protein-based electrospun nanofibers for health care applications. Various plant- and animal-based proteins have been discussed with detailed sample preparation and corresponding processing parameters. The usage of these electrospun nanofibers in regenerative medicine and drug delivery has also been discussed. Some technical innovations in electrospinning techniques such as emulsion electrospinning and coaxial electrospinning have been highlighted. Coaxial electrospun core-shell nanofibers have the potential to be utilized as an advanced nano-architecture for sustained release targeted delivery as well as for regenerative medicine. Healthcare applications of nanofibers formed via emulsion and coaxial electrospinning have been discussed briefly. Electrospun nanofibers have still much scope for commercialization on large scale. Some of the available wound-dressing materials have been discussed in brief.
Collapse
Affiliation(s)
- Anushka Agarwal
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Gyaneshwar K. Rao
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Sudip Majumder
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Manish Shandilya
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Varun Rawat
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Roli Purwar
- Department of Applied Chemistry, Delhi Technological University, New Delhi, Delhi 110042 India
| | - Monu Verma
- Department of Environmental Engineering, University of Seoul, Seoul, 130743 South Korea
| | - Chandra Mohan Srivastava
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
- Centre for Polymer Technology, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| |
Collapse
|
40
|
Frank A, Weber M, Hils C, Mansfeld U, Kreger K, Schmalz H, Schmidt HW. Functional Mesostructured Electrospun Polymer Nonwovens with Supramolecular Nanofibers. Macromol Rapid Commun 2022; 43:e2200052. [PMID: 35320608 DOI: 10.1002/marc.202200052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Indexed: 11/09/2022]
Abstract
Functional, hierarchically mesostructured nonwovens are of fundamental importance because complex fiber morphologies increase the active surface area and functionality allowing for the effective immobilization of metal nanoparticles. Such complex functional fiber morphologies clearly widen the property profile and enable the preparation of more efficient and selective filter media. Here, we demonstrate the realization of hierarchically mesostructured nonwovens with barbed wire-like morphology by combining electrospun polystyrene fibers, decorated with patchy worm-like micelles, with solution-processed supramolecular short fibers composed of 1,3,5-benzenetricarboxamides with peripheral N,N-diisopropylaminoethyl substituents. The worm-like micelles with a patchy microphase-separated corona were prepared by crystallization-driven self-assembly of a polyethylene based triblock terpolymer and deposited on top of the polystyrene fibers by coaxial electrospinning. The micelles were designed in a way that their patches promote the directed self-assembly of the 1,3,5-benzenetricarboxamide and the fixation of the supramolecular nanofibers on the supporting polystyrene fibers. Functionality of the mesostructured nonwoven is provided by the peripheral N,N-diisopropylaminoethyl substituents of the 1,3,5-benzenetricarboxamide and proven by the effective immobilization of individual palladium nanoparticles on the supramolecular nanofibers. The preparation of hierarchically mesostructured nonwovens and their shown functionality demonstrate that such systems are attractive candidates to be used for example in filtration, selective separation and heterogenous catalysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andreas Frank
- Macromolecular Chemistry I and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Melina Weber
- Macromolecular Chemistry I and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Christian Hils
- Macromolecular Chemistry II and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Ulrich Mansfeld
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Klaus Kreger
- Macromolecular Chemistry I and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Holger Schmalz
- Macromolecular Chemistry II and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Hans-Werner Schmidt
- Macromolecular Chemistry I and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| |
Collapse
|
41
|
Li Z, Cui Z, Zhao L, Hussain N, Zhao Y, Yang C, Jiang X, Li L, Song J, Zhang B, Cheng Z, Wu H. High-throughput production of kilogram-scale nanofibers by Kármán vortex solution blow spinning. SCIENCE ADVANCES 2022; 8:eabn3690. [PMID: 35294239 PMCID: PMC8926350 DOI: 10.1126/sciadv.abn3690] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 05/25/2023]
Abstract
The interaction between gas flow and liquid flow, governed by fluid dynamic principles, is of substantial importance in both fundamental science and practical applications. For instance, a precisely designed gas shearing on liquid solution may lead to efficacious production of advanced nanomaterials. Here, we devised a needleless Kármán vortex solution blow spinning system that uses a roll-to-roll nylon thread to deliver spinning solution, coupled with vertically blowing airflow to draw high-quality nanofibers with large throughput. A wide variety of nanofibers including polymers, carbon, ceramics, and composites with tunable diameters were fabricated at ultrahigh rates. The system can be further upgraded from single thread to multiple parallel threads and to the meshes, boosting the production of nanofibers to kilogram scale without compromising their quality.
Collapse
Affiliation(s)
- Ziwei Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiwen Cui
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Lihao Zhao
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Naveed Hussain
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yanzhen Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Cheng Yang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xinyu Jiang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Lei Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jianan Song
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Baopu Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zekun Cheng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Munir MU, Mikucioniene D, Khanzada H, Khan MQ. Development of Eco-Friendly Nanomembranes of Aloe vera/PVA/ZnO for Potential Applications in Medical Devices. Polymers (Basel) 2022; 14:1029. [PMID: 35267852 PMCID: PMC8912846 DOI: 10.3390/polym14051029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the current COVID-19 pandemic, there is a crucial need for the development of antimicrobial and antiviral personal protective equipment such as facemasks and gowns. Therefore, in this research we fabricated electrospun nanofibers composite with polyvinyl alcohol, aloe vera, and zinc oxide nanoparticles for end application in medical devices. Electrospun nanofibers were made with varying concentrations of aloe vera (1%, 2%, 3%, 4%) having a constant concentration of ZnO (0.5%) with varying concentrations of ZnO nanoparticles (1%, 2%, 3%, 4%) having a constant concentration of aloe vera (0.5%). To check the morphology and composition, all prepared nanofibers were subjected to different characterization techniques, such as Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR). In addition, its antimicrobial activity was checked both with qualitative and quantitative approaches against gram-positive (Staphylococcus aureus) bacteria and gram-negative (Escherichia coli) bacteria. The results suggest that increasing ZnO concentration kills and inhibits bacterial growth more proficiently compared to increasing aloe vera concentration in electrospun nanofibers; the highest antimicrobial was found with 4% ZnO, killing almost 100% of gram-positive (Staphylococcus aureus) bacteria and 99.2% of gram-negative (Escherichia coli) bacteria. These fabricated nanofibers have potential applications in medical devices and would help control the spread of many diseases.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, LT-51424 Kaunas, Lithuania;
| | - Daiva Mikucioniene
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, LT-51424 Kaunas, Lithuania;
| | - Haleema Khanzada
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, LT-51424 Kaunas, Lithuania;
| | - Muhammad Qamar Khan
- Nanotechnology Research Lab, Department of Textile and Clothing, Faculty of Engineering and Technology, National Textile University Karachi Campus, Karachi 74900, Pakistan;
| |
Collapse
|
43
|
Segala BN, Bertuol DA, Tanabe EH. Production of polyacrylonitrile nanofibres modified with Cyanex 272 for recovery of gallium from solution. ENVIRONMENTAL TECHNOLOGY 2022; 43:737-750. [PMID: 32727287 DOI: 10.1080/09593330.2020.1803991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The objectives of this work were to develop polyacrylonitrile nanofibres modified with the commercial Cyanex 272 extractor and apply them for the recovery of gallium present in aqueous solution. The nanofibres were produced using the centrifugation technique, employing Forcespinning® equipment. The average nanofibre diameter ranged from 530 to 840 nm. The highest adsorption of gallium was achieved at pH 2.5, with a pseudo-second order kinetic model and the Freundlich equilibrium isotherm model providing the best fits of the experimental data. The thermodynamic parameters showed that the adsorption was spontaneous, favourable, and endothermic. The maximum capacity of the PAN/Cyanex 272 nanofibres for the recovery of gallium was 38.93 mg g-1. In successive reuse cycles, the nanofibres showed a small decrease of the adsorption capacity for the metal after the first cycle, while the efficiency remained constant in the subsequent cycles. The desorption efficiency remained constant throughout the cycles, with values in the range 80%-90%. The findings demonstrated that PAN/Cyanex 272 nanofibres have excellent potential for use as adsorbents, providing good capacity for the recovery of gallium and satisfactory stability during reuse in several cycles.
Collapse
Affiliation(s)
- Bibiane N Segala
- Environmental Processes Laboratory (LAPAM), Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Daniel A Bertuol
- Environmental Processes Laboratory (LAPAM), Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Eduardo H Tanabe
- Environmental Processes Laboratory (LAPAM), Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
44
|
Gonzalez G, Hasan MT, Ramirez D, Parsons J, Alcoutlabi M. Synthesis of
SnO
2
/
TiO
2
micro belt fibers from polymer composite precursors and their applications in Li‐ion batteries*. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gabriel Gonzalez
- Department of Mechanical Engineering University of Texas Edinburg Texas USA
| | - Md Toukir Hasan
- Department of Mechanical Engineering University of Texas Edinburg Texas USA
| | - Daniel Ramirez
- Department of Chemistry University of Texas Brownsville Texas USA
| | - Jason Parsons
- Department of Chemistry University of Texas Brownsville Texas USA
| | - Mataz Alcoutlabi
- Department of Mechanical Engineering University of Texas Edinburg Texas USA
| |
Collapse
|
45
|
Zhang L, Narita C, Himeda Y, Honma H, Yamada K. Development of highly oil-absorbent polylactic-acid microfibers with a nanoporous structure via simple one-step centrifugal spinning. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Merchiers J, Reddy NK, Sharma V. Extensibility-Enriched Spinnability and Enhanced Sorption and Strength of Centrifugally Spun Polystyrene Fiber Mats. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jorgo Merchiers
- Institute for Materials research (IMO-IMOMEC), Hasselt University, B-3590 Diepenbeek, Belgium
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Naveen K. Reddy
- Institute for Materials research (IMO-IMOMEC), Hasselt University, B-3590 Diepenbeek, Belgium
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
47
|
Priyanto A, Hapidin DA, Suciati T, Khairurrijal K. Current Developments on Rotary Forcespun Nanofibers and Prospects for Edible Applications. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-021-09304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Jia C, Xu Z, Luo D, Xiang H, Zhu M. Flexible Ceramic Fibers: Recent Development in Preparation and Application. ADVANCED FIBER MATERIALS 2022; 4:573-603. [PMID: 35359823 PMCID: PMC8831880 DOI: 10.1007/s42765-022-00133-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/03/2022] [Indexed: 05/14/2023]
Abstract
Flexible ceramic fibers (FCFs) have been developed for various advanced applications due to their superior mechanical flexibility, high temperature resistance, and excellent chemical stability. In this article, we present an overview on the recent progress of FCFs in terms of materials, fabrication methods, and applications. We begin with a brief introduction to FCFs and the materials for preparation of FCFs. After that, various methods for preparation of FCFs are discussed, including centrifugal spinning, electrospinning, solution blow spinning, self-assembly, chemical vapor deposition, atomic layer deposition, and polymer conversion. Recent applications of FCFs in various fields are further illustrated in detail, including thermal insulation, air filtration, water treatment, sound absorption, electromagnetic wave absorption, battery separator, catalytic application, among others. Finally, some perspectives on the future directions and opportunities for the preparation and application of FCFs are highlighted. We envision that this review will provide readers with some meaningful guidance on the preparation of FCFs and inspire them to explore more potential applications.
Collapse
Affiliation(s)
- Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Zhe Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Dianfeng Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| |
Collapse
|
49
|
Arican F, Uzuner-Demir A, Polat O, Sancakli A, Ismar E. Fabrication of gelatin nanofiber webs via centrifugal spinning for N95 respiratory filters. BULLETIN OF MATERIALS SCIENCE 2022; 45:93. [PMCID: PMC9126750 DOI: 10.1007/s12034-022-02668-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/28/2021] [Indexed: 01/10/2024]
Abstract
Due to the impact of the Covid-19 pandemic, the usage of numerous protective face masks has faced an explosion in demand around the world. Therefore, the need to reduce the environmental pollution caused by disposable single-use face masks has become vital. Recently, alternative raw material solutions have been discussed to eliminate the consumption of single-use plastics. Within this research, gelatin nanofibers were fabricated via centrifugal spinning technique, and filtration media were investigated in terms of air permeability and filtration efficiency. In addition, morphological properties were examined with scanning electron microscopy. Fabricated fibers have a changing average diameter range from 232 to 778 nm, and targeted 95% filtration efficiency was achieved in several compositions. It was proven that biodegradable gelatin nanofibers could be a sustainable alternative for disposable N95 respiratory filters.
Collapse
Affiliation(s)
- Fatih Arican
- Kazlicesme R&D Center and Test Laboratories, 34956 Tuzla, Turkey
- Department of Chemistry, Sakarya University, 54050 Serdivan, Turkey
| | - Aysegul Uzuner-Demir
- Kazlicesme R&D Center and Test Laboratories, 34956 Tuzla, Turkey
- Department of Polymer Science and Technology, 41000 Kocaeli, Turkey
| | - Oguzhan Polat
- Kazlicesme R&D Center and Test Laboratories, 34956 Tuzla, Turkey
| | - Aykut Sancakli
- Kazlicesme R&D Center and Test Laboratories, 34956 Tuzla, Turkey
- Department of Leather Engineering, Ege University, 35040 Izmir, Turkey
| | - Ezgi Ismar
- Kazlicesme R&D Center and Test Laboratories, 34956 Tuzla, Turkey
| |
Collapse
|
50
|
Nadaf A, Gupta A, Hasan N, Fauziya, Ahmad S, Kesharwani P, Ahmad FJ. Recent update on electrospinning and electrospun nanofibers: current trends and their applications. RSC Adv 2022; 12:23808-23828. [PMID: 36093244 PMCID: PMC9396637 DOI: 10.1039/d2ra02864f] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 12/26/2022] Open
Abstract
Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made in techniques for creating electro-spun and non-electro-spun nanofibers. Nanofibers were the center of attention for industries and researchers due to their simplicity in manufacture and setup. The review discusses a thorough overview of both electrospinning and non-electrospinning processes, including their setup, fabrication process, components, and applications. The review starts with an overview of the field of nanotechnology, the background of electrospinning, the surge in demand for nanofiber production, the materials needed to make nanofibers, and the critical process variables that determine the characteristics of nanofibers. Additionally, the diverse applications of electrospun nanofibers, such as smart mats, catalytic supports, filtration membranes, energy storage/heritage components, electrical devices (batteries), and biomedical scaffolds, are then covered. Further, the review concentrates on the most recent and pertinent developments in nanofibers that are connected to the use of nanofibers, focusing on the most illustrative cases. Finally, challenges and their possible solutions, marketing, and the future prospects of nanofiber development are discussed. Electrospinning is a versatile and viable technique for generating ultrathin fibers.![]()
Collapse
Affiliation(s)
- Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Akash Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Fauziya
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Farhan J. Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|