1
|
Zhang W, Sun H, Zhao W, Li J, Meng H. Suppression of JNK pathway protects neurons from oxidative injury via attenuating parthanatos in glutamate-treated HT22 neurons. Sci Rep 2024; 14:25793. [PMID: 39468165 PMCID: PMC11519538 DOI: 10.1038/s41598-024-76640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Oxidative stress causes diverse neurological disorders. Parthanatos is a type of programmed cell death, characterised by strong activation of poly (ADP-ribose) (PAR) polymerase-1 (PARP-1), PAR polymer accumulation, and nuclear translocation of apoptosis-inducing factor (AIF), and is involved in cellular oxidative injury. Signalling by c-Jun-N-terminal protein kinase (JNK) is activated by reactive oxygen species (ROS), and this also contributes to ROS production. However, the exact relationship between JNK signalling and parthanatos in neurological disorders triggered by oxidative stress is unclear. In this study, glutamate-treated HT22 neurons were used to investigate whether the signalling by JNK contributes a regulatory role to parthanatos in oxidative stress-related neurological disease. JNK signalling was activated in glutamate-treated HT22 neurons, demonstrated via upregulation of p-JNK levels. Pre-treatment with SP600125 markedly inhibited JNK signalling, increased cell viability, and significantly reversed PARP-1 overproduction, PAR polymer accumulation, and nuclear AIF translocation. In addition, inhibition of JNK signalling severely reduced the production of both intracellular ROS and mitochondria superoxide. This study indicated that parthanatos in glutamate-treated HT22 neurons could be suppressed by JNK signalling inhibition. JNK activation participated in parthanatos via an increase in intracellular ROS levels.
Collapse
Affiliation(s)
- Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Weixuan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Jiaai Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
2
|
Yang L, Guttman L, Dawson VL, Dawson TM. Parthanatos: Mechanisms, modulation, and therapeutic prospects in neurodegenerative disease and stroke. Biochem Pharmacol 2024; 228:116174. [PMID: 38552851 PMCID: PMC11410548 DOI: 10.1016/j.bcp.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Parthanatos is a cell death signaling pathway that has emerged as a compelling target for pharmaceutical intervention. It plays a pivotal role in the neuron loss and neuroinflammation that occurs in Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS), and stroke. There are currently no treatments available to humans to prevent cell death in any of these diseases. This review provides an in-depth examination of the current understanding of the Parthanatos mechanism, with a particular focus on its implications in neuroinflammation and various diseases discussed herein. Furthermore, we thoroughly review potential intervention targets within the Parthanatos pathway. We dissect recent progress in inhibitory strategies, complimented by a detailed structural analysis of key Parthanatos executioners, PARP-1, AIF, and MIF, along with an assessment of their established inhibitors. We hope to introduce a new perspective on the feasibility of targeting components within the Parthanatos pathway, emphasizing its potential to bring about transformative outcomes in therapeutic interventions. By delineating therapeutic opportunities and known targets, we seek to emphasize the imperative of blocking Parthanatos as a precursor to developing disease-modifying treatments. This comprehensive exploration aims to catalyze a paradigm shift in our understanding of potential neurodegenerative disease therapeutics, advocating for the pursuit of effective interventions centered around Parthanatos inhibition.
Collapse
Affiliation(s)
- Liu Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Guttman
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Martins-Silva C, Anderson CL, Boyce AKJ, Andrade TES, Tizziani T, Lopes KHS, Micke GA, Cregan SP, Dos Santos ARS, Thompson RJ. The Ethanolic Extract of Polygala paniculata L. Blocks Panx1 Channels and Reduces Ischemic Brain Infarct in a Dose- and Sex-Dependent Way. Mol Neurobiol 2024:10.1007/s12035-024-04453-5. [PMID: 39271622 DOI: 10.1007/s12035-024-04453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Polygala paniculata L. is a native plant from tropical America. The therapeutic potential of the hydroalcoholic extract of P. paniculata (HEPp) has been scientifically explored due to folk medicine reports on its action against several afflictions. HEPp contains several bioactive molecules with neuroprotective activities, making it a promising candidate for stroke treatment. This study used electrophysiological, biochemical, and in vivo experiments to evaluate the molecular mechanisms underlying HEPp as a neuroprotective therapy for stroke targeting Pannexin-1 (Panx1). Panx1 is a non-selective channel that opens during ischemia and contributes to neuronal death. HEPp was not toxic to cortical neurons and pre-treatment with the extract reduced neuronal death promoted by oxygen and glucose deprivation in a dose-dependent manner. Additionally, HEPp blocked Panx1 currents in a dose-dependent manner and the effect, which was shown to be partially due to rutin. Animals submitted to photothrombosis and post-treated with HEPp had reduced infarct volume, and the effective dose was lower in males (1 mg/kg) than in females (10 mg/kg). On the other hand, in Panx1 KD mice (50% Panx1 levels), the acute treatment reduced the infarct volume only in males. Upon chronic treatment with HEPp, a reduction in Panx1 protein levels was observed. The current study provides reliable evidence of the neuroprotective properties of HEPp in both in vitro and in vivo models of stroke. The underlying mechanism involves, at least in part, the inhibition of Panx1 channel function and possibly downregulation of protein levels, suppressing the secondary events that lead to apoptosis and inflammation.
Collapse
Affiliation(s)
- Cristina Martins-Silva
- Department of Physiological Sciences, Health Sciences Center, Laboratory of Neurochemistry and Behaviour (LabNeC), Graduate Program in Biochemistry, Federal University of Espirito Santo, Vitoria, ES, 29043910, Brazil.
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 1N4, Canada.
| | - Connor L Anderson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Andrew K J Boyce
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Tassiane E S Andrade
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Neuroscience Program, Department of Physiology and Pharmacology, University of Western Ontario, Robarts Research Institute, University of Western Ontario, 100 Perth Dr, London, ON, N6A 5K8, Canada
| | - Tiago Tizziani
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Kheytiany H S Lopes
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Gustavo A Micke
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Sean P Cregan
- Neuroscience Program, Department of Physiology and Pharmacology, University of Western Ontario, Robarts Research Institute, University of Western Ontario, 100 Perth Dr, London, ON, N6A 5K8, Canada
| | - Adair Roberto Soares Dos Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
4
|
El-Derby AM, Khedr MA, Ghoneim NI, Gabr MM, Khater SM, El-Badri N. Plasma-derived extracellular matrix for xenofree and cost-effective organoid modeling for hepatocellular carcinoma. J Transl Med 2024; 22:487. [PMID: 38773585 PMCID: PMC11110239 DOI: 10.1186/s12967-024-05230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) causes significant cancer mortality worldwide. Cancer organoids can serve as useful disease models by high costs, complexity, and contamination risks from animal-derived products and extracellular matrix (ECM) that limit its applications. On the other hand, synthetic ECM alternatives also have limitations in mimicking native biocomplexity. This study explores the development of a physiologically relevant HCC organoid model using plasma-derived extracellular matrix as a scaffold and nutritive biomatrix with different cellularity components to better mimic the heterogenous HCC microenvironment. Plasma-rich platelet is recognized for its elevated levels of growth factors, which can promote cell proliferation. By employing it as a biomatrix for organoid culture there is a potential to enhance the quality and functionality of organoid models for diverse applications in biomedical research and regenerative medicine and to better replicate the heterogeneous microenvironment of HCC. METHOD To generate the liver cancer organoids, HUH-7 hepatoma cells were cultured alone (homogenous model) or with human bone marrow-derived mesenchymal stromal cells and human umbilical vein endothelial cells (heterogeneous model) in plasma-rich platelet extracellular matrix (ECM). The organoids were grown for 14 days and analyzed for cancer properties including cell viability, invasion, stemness, and drug resistance. RESULTS HCC organoids were developed comprising HUH-7 hepatoma cells with or without human mesenchymal stromal and endothelial cells in plasma ECM scaffolds. Both homogeneous (HUH-7 only) and heterogeneous (mixed cellularity) organoids displayed viability, cancer hallmarks, and chemoresistance. The heterogeneous organoids showed enhanced invasion potential, cancer stem cell populations, and late-stage HCC genetic signatures versus homogeneous counterparts. CONCLUSION The engineered HCC organoids system offers a clinically relevant and cost-effective model to study liver cancer pathogenesis, stromal interactions, and drug resistance. The plasma ECM-based culture technique could enable standardized and reproducible HCC modeling. It could also provide a promising option for organoid culture and scaling up.
Collapse
Affiliation(s)
- Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Mennatallah A Khedr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Nehal I Ghoneim
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Mahmoud M Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Sherry M Khater
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt.
| |
Collapse
|
5
|
Yu XX, Zhang YR, Li SS, Zheng GD, Zou SM. Effects of hypoxia on the gill morphological structure, apoptosis and hypoxia-related gene expression in blunt snout bream (Megalobrama amblycephala). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:939-949. [PMID: 37632644 DOI: 10.1007/s10695-023-01233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
The blunt snout bream (Megalobrama amblycephala) is a typical hypoxia-sensitive fish, and hypoxia stress leads to reduced vitality and yield during aquaculture. To explore the specific adaptation mechanism under hypoxia, the blunt snout bream was treated with hypoxia (DO = 2.0 ± 0.1 mg/L) for 24 h, followed by 3 h of recovery. Our results depicted that the gill filament structure of blunt snout bream changed after hypoxia. During hypoxia for 24 h, the gill filament structure was altered, including a more than 80% expansion of the lamellar respiratory surface area and a proportionate apoptosis decrease in interlamellar cell mass (ILCM) volume. Thus, the water-blood diffusion distance was shortened to less than 46%. During hypoxia for 24 h, the activity of ROS in gill tissue increased significantly (p < 0.05), while the mitochondrial membrane potential decreased significantly (p < 0.05). During hypoxia, mRNA expression level of anti-apoptotic gene Bcl-2 in the gills of blunt snout bream decreased significantly (p < 0.05), while the expression of pro-apoptotic gene Bax mRNA increased significantly (p < 0.05). Thus, the ratio of Bax/Bcl-2 mRNA increased in the gills of blunt snout bream to promote the activity of Caspase-3. Together, our results indicated hypoxia-induced apoptosis in the gills of blunt snout bream through the mitochondrial pathway. In addition, a decreased expression of Phd1 and an increased expression of Hif-1α in gills under hypoxia stress indicates that blunt snout bream may cope with hypoxia-induced apoptosis by enhancing the HIF pathway. These results provide new insights into fish's adaptation strategies and mechanisms of hypoxia.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yan-Rui Zhang
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Shan-Shan Li
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guo-Dong Zheng
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
7
|
Xiong C, Ling H, Hao Q, Zhou X. Cuproptosis: p53-regulated metabolic cell death? Cell Death Differ 2023; 30:876-884. [PMID: 36755067 PMCID: PMC10070433 DOI: 10.1038/s41418-023-01125-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 02/10/2023] Open
Abstract
Cuproptosis is a novel type of copper-induced cell death that primarily occurs in cells that utilize oxidative phosphorylation as the main metabolic pathway to produce energy. Copper directly associates with the lipoylated proteins of the tricarboxylic acid cycle, leading to the disulfide-bond-dependent aggregation of these lipoylated proteins, destabilization of the iron-sulfur cluster proteins, and consequent proteotoxic stress. Cancer cells prefer glycolysis (Warburg effect) to oxidative phosphorylation for producing intermediate metabolites and energy, thereby achieving resistance to cuproptosis. Interestingly, the tumor suppressor p53 is a crucial metabolic regulator that inhibits glycolysis and drives a metabolic switch towards oxidative phosphorylation in cancer cells. Additionally, p53 regulates the biogenesis of iron-sulfur clusters and the copper chelator glutathione, which are two critical components of the cuproptotic pathway, suggesting that this tumor suppressor might play a role in cuproptosis. Furthermore, the possible roles of mutant p53 in regulating cuproptosis are discussed. In this essay, we review the recent progress in the understanding of the mechanism underlying cuproptosis, revisit the roles of p53 in metabolic regulation and iron-sulfur cluster and glutathione biosynthesis, and propose several potential mechanisms for wild-type and mutant p53-mediated cuproptosis regulation.
Collapse
Affiliation(s)
- Chen Xiong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong Ling
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Xanthotoxin modulates oxidative stress, inflammation, and MAPK signaling in a rotenone-induced Parkinson's disease model. Life Sci 2022; 310:121129. [DOI: 10.1016/j.lfs.2022.121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
|
9
|
Jeon SJ, Chung KC. Covalent conjugation of ubiquitin-like ISG15 to apoptosis inducing factor exacerbates toxic stimuli-induced apoptotic cell death. J Biol Chem 2022; 298:102464. [PMID: 36075291 PMCID: PMC9547223 DOI: 10.1016/j.jbc.2022.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrion-localized flavoprotein with NADH oxidase activity. AIF normally acts as an oxidoreductase to catalyze the transfer of electrons between molecules, but it can also kill cells when exposed to certain stimuli. For example, intact AIF is cleaved upon exposure to DNA-damaging agents such as etoposide, and truncated AIF (tAIF) is released from the mitochondria to the cytoplasm and translocated to the nucleus where it induces apoptosis. Although the serial events during tAIF-mediated apoptosis and the transition of AIF function have been widely studied from various perspectives, their underlying regulatory mechanisms and the factors involved are not fully understood. Here, we demonstrated that tAIF is a target of the covalent conjugation of the ubiquitin-like moiety ISG15 (referred to as ISGylation), which is mediated by the ISG15 E3 ligase HERC5. In addition, ISGylation increases the stability of tAIF protein as well as its K6-linked polyubiquitination. Moreover, we found that ISGylation increases the nuclear translocation of tAIF upon cytotoxic etoposide treatment, subsequently causing apoptotic cell death in human lung A549 carcinoma cells. Collectively, these results suggest that HERC5-mediated ISG15 conjugation is a key factor in the positive regulation of tAIF-mediated apoptosis, highlighting a novel role of posttranslational ISG15 modification as a switch that allows cells to live or die under the stress that triggers tAIF release.
Collapse
Affiliation(s)
- Seo Jeong Jeon
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
10
|
Yang J, Serrano P, Yin X, Sun X, Lin Y, Chen SX. Functionally distinct NPAS4-expressing somatostatin interneuron ensembles critical for motor skill learning. Neuron 2022; 110:3339-3355.e8. [PMID: 36099920 DOI: 10.1016/j.neuron.2022.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
During motor learning, dendritic spines on pyramidal neurons (PNs) in the primary motor cortex (M1) undergo reorganization. Intriguingly, the inhibition from local somatostatin-expressing inhibitory neurons (SST-INs) plays an important role in regulating the PN plasticity and thus new motor skill acquisition. However, the molecular mechanisms underlying this process remain unclear. Here, we identified that the early-response transcription factor, NPAS4, is selectively expressed in SST-INs during motor learning. By utilizing in vivo two-photon imaging in mice, we found that cell-type-specific deletion of Npas4 in M1 disrupted learning-induced spine reorganization among PNs and impaired motor learning. In addition, NPAS4-expressing SST-INs exhibited lower neuronal activity during task-related movements, and chemogenetically increasing the activity of NPAS4-expressing ensembles was sufficient to mimic the effects of Npas4 deletion. Together, our results reveal an instructive role of NPAS4-expressing SST-INs in modulating the inhibition to downstream task-related PNs to allow proper spine reorganization that is critical for motor learning.
Collapse
Affiliation(s)
- Jungwoo Yang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pablo Serrano
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xuming Yin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xiaochen Sun
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Yingxi Lin
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Simon X Chen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Center for Neural Dynamics, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
11
|
Acute cytotoxicity, genotoxicity, and apoptosis induced by petroleum VOC emissions in A549 cell line. Toxicol In Vitro 2022; 83:105409. [DOI: 10.1016/j.tiv.2022.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
|
12
|
Paron F, Barattucci S, Cappelli S, Romano M, Berlingieri C, Stuani C, Laurents D, Mompeán M, Buratti E. Unravelling the toxic effects mediated by the neurodegenerative disease-associated S375G mutation of TDP-43 and its S375E phosphomimetic variant. J Biol Chem 2022; 298:102252. [PMID: 35835219 PMCID: PMC9364110 DOI: 10.1016/j.jbc.2022.102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/05/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a nucleic acid–binding protein found in the nucleus that accumulates in the cytoplasm under pathological conditions, leading to proteinopathies, such as frontotemporal dementia and ALS. An emerging area of TDP-43 research is represented by the study of its post-translational modifications, the way they are connected to disease-associated mutations, and what this means for pathological processes. Recently, we described a novel mutation in TDP-43 in an early onset ALS case that was affecting a potential phosphorylation site in position 375 (S375G). A preliminary characterization showed that both the S375G mutation and its phosphomimetic variant, S375E, displayed altered nuclear–cytoplasmic distribution and cellular toxicity. To better investigate these effects, here we established cell lines expressing inducible WT, S375G, and S375E TDP-43 variants. Interestingly, we found that these mutants do not seem to affect well-studied aspects of TDP-43, such as RNA splicing or autoregulation, or protein conformation, dynamics, or aggregation, although they do display dysmorphic nuclear shape and cell cycle alterations. In addition, RNA-Seq analysis of these cell lines showed that although the disease-associated S375G mutation and its phosphomimetic S375E variant regulate distinct sets of genes, they have a common target in mitochondrial apoptotic genes. Taken together, our data strongly support the growing evidence that alterations in TDP-43 post-translational modifications can play a potentially important role in disease pathogenesis and provide a further link between TDP-43 pathology and mitochondrial health.
Collapse
Affiliation(s)
- Francesca Paron
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy
| | - Simone Barattucci
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy
| | - Sara Cappelli
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Christian Berlingieri
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy
| | - Cristiana Stuani
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy
| | - Douglas Laurents
- "Rocasolano" Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006, Madrid, Spain
| | - Miguel Mompeán
- "Rocasolano" Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006, Madrid, Spain
| | - Emanuele Buratti
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
13
|
Overexpression of Bcl2 and Bcl2L1 Can Suppress Betanodavirus-Induced Type III Cell Death and Autophagy Induction in GF-1 Cells. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Betanodavirus infection induces viral nervous necrosis (VNN) in fish. However, the role of cell death and autophagy in the pathogenesis of VNN remains unknown. This study aimed to investigate the effect of red-spotted grouper nervous necrosis virus (RGNNV) infection on Bcl2 downregulation and overexpression on asymmetric interaction between cell death and autophagy. The mRFP-LC3 reporter system was used to identify autophagosome formation in GF-1 (Grouper fin-1) fish cells. We found that the RGNNV could strongly induce autophagosome formation 36 h post-infection (hpi) after autophagy inhibitor 3-MA had downregulated anti-apoptotic genes such as Bcl2 and Bcl2L1 (Bcl-xL). We proposed that the overexpression of Bcl2 and Bcl2L1 can modulate both cell death and autophagy. Then, we found that it can also reduce either type III cell death or autophagy, which are mildly correlated with reduced viral replication. Our data suggest that RGNNV-induced Bcl2 downregulation correlates with the asymmetrical interaction between cell death induction and the autophagy process, which resembles viral replication.
Collapse
|
14
|
Wang Y, Pleasure D, Deng W, Guo F. Therapeutic Potentials of Poly (ADP-Ribose) Polymerase 1 (PARP1) Inhibition in Multiple Sclerosis and Animal Models: Concept Revisiting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102853. [PMID: 34935305 PMCID: PMC8844485 DOI: 10.1002/advs.202102853] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/12/2021] [Indexed: 05/05/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) plays a fundamental role in DNA repair and gene expression. Excessive PARP1 hyperactivation, however, has been associated with cell death. PARP1 and/or its activity are dysregulated in the immune and central nervous system of multiple sclerosis (MS) patients and animal models. Pharmacological PARP1 inhibition is shown to be protective against immune activation and disease severity in MS animal models while genetic PARP1 deficiency studies reported discrepant results. The inconsistency suggests that the function of PARP1 and PARP1-mediated PARylation may be complex and context-dependent. The article reviews PARP1 functions, discusses experimental findings and possible interpretations of PARP1 in inflammation, neuronal/axonal degeneration, and oligodendrogliopathy, three major pathological components cooperatively determining MS disease course and neurological progression, and points out future research directions. Cell type specific PARP1 manipulations are necessary for revisiting the role of PARP1 in the three pathological components prior to moving PARP1 inhibition into clinical trials for MS therapy.
Collapse
Affiliation(s)
- Yan Wang
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCA95817USA
- Institute for Pediatric Regenerative MedicineUC Davis School of Medicine/Shriners Hospitals for ChildrenSacramentoCAUSA
| | - David Pleasure
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCA95817USA
- Institute for Pediatric Regenerative MedicineUC Davis School of Medicine/Shriners Hospitals for ChildrenSacramentoCAUSA
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510006China
| | - Fuzheng Guo
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCA95817USA
- Institute for Pediatric Regenerative MedicineUC Davis School of Medicine/Shriners Hospitals for ChildrenSacramentoCAUSA
| |
Collapse
|
15
|
AMPK inhibitor BML-275 induces neuroprotection through decreasing cyt c and AIF expression after transient brain ischemia. Bioorg Med Chem 2021; 52:116522. [PMID: 34837819 DOI: 10.1016/j.bmc.2021.116522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022]
Abstract
Stroke is a major public health problem with an imperative need for a more effective and tolerated therapy. Neuroprotective therapy may be an effective therapeutic intervention for stroke. The morbidity and mortality of stroke-induced secondary brain injury is mainly caused by neuronal apoptosis, which can be executed in a caspase-dependent or apoptosis inducing factor (AIF)-dependent manner. As apoptosis is an energy-dependent process with a relative time delay, abnormal energy metabolism could be a significant and fundamental pathophysiological basis of stroke. To our knowledge, convincible evidences that AMPK inhibition exerts neuroprotection in cerebral ischemia injury via anti-apoptosis remain to be investigated. Accordingly, the aims of this study were to investigate the protective effects of AMPK inhibitor BML-275 on cerebral ischemic/reperfusion (I/R) injury and to elucidate the underlying mechanisms. Cerebral ischemia was induced by transient middle cerebral artery occlusion (tMCAO) in male C57BL/6 mice. The therapeutic effects of BML-275 were evaluated by infarct sizes, neurological scores and the proportion of apoptotic neurons after 24 h of reperfusion. The cell apoptosis markers cyt c and AIF were also evaluated. The results showed that intraperitoneally administration of BML-275 alleviate the cerebral infarction, neurological deficit and neuronal apoptosis induced by MCAO. BML-275 simultaneously induces anti-apoptosis and decreases the expression of cyt c and AIF. This study supports the hypothesis that anti-apoptosis is one of potential neuroprotective strategies for the treatment of stroke.
Collapse
|
16
|
Russo L, Mascanzoni F, Farina B, Dolga AM, Monti A, Caporale A, Culmsee C, Fattorusso R, Ruvo M, Doti N. Design, Optimization, and Structural Characterization of an Apoptosis-Inducing Factor Peptide Targeting Human Cyclophilin A to Inhibit Apoptosis Inducing Factor-Mediated Cell Death. J Med Chem 2021; 64:11445-11459. [PMID: 34338510 DOI: 10.1021/acs.jmedchem.1c00777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Blocking the interaction between the apoptosis-inducing factor (AIF) and cyclophilin A (CypA) by the AIF fragment AIF(370-394) is protective against glutamate-induced neuronal cell death and brain injury in mice. Starting from AIF(370-394), we report the generation of the disulfide-bridged and shorter variant AIF(381-389) and its structural characterization by nuclear magnetic resonance (NMR) in the free and CypA-bound state. AIF(381-389) in both the free and bound states assumes a β-hairpin conformation similar to that of the fragment in the AIF protein and shows a highly reduced conformational flexibility. This peptide displays a similar in vitro affinity for CypA, an improved antiapoptotic activity in cells and an enhanced proteolytic stability compared to the parent peptide. The NMR-based 3D model of the AIF(381-389)/CypA complex provides a better understanding of the binding hot spots on both the peptide and the protein and can be exploited to design AIF/CypA inhibitors with improved pharmacokinetic and pharmacodynamics features.
Collapse
Affiliation(s)
- Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Fabiola Mascanzoni
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Biancamaria Farina
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Amalia Mihaela Dolga
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany.,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Research School of Behavioural and Cognitive Neurosciences (BCN), Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Andrea Caporale
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone, 16, 80134 Napoli, Italy
| |
Collapse
|
17
|
Shahsavani N, Alizadeh A, Kataria H, Karimi-Abdolrezaee S. Availability of neuregulin-1beta1 protects neurons in spinal cord injury and against glutamate toxicity through caspase dependent and independent mechanisms. Exp Neurol 2021; 345:113817. [PMID: 34314724 DOI: 10.1016/j.expneurol.2021.113817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) causes sensorimotor and autonomic impairment that partly reflects extensive, permanent loss of neurons at the epicenter and penumbra of the injury. Strategies aimed at enhancing neuronal protection are critical to attenuate neurodegeneration and improve neurological recovery after SCI. In rat SCI, we previously uncovered that the tissue levels of neuregulin-1beta 1 (Nrg-1β1) are acutely and persistently downregulated in the injured spinal cord. Nrg-1β1 is well-known for its critical roles in the development, maintenance and physiology of neurons and glia in the developing and adult spinal cord. However, despite this pivotal role, Nrg-1β1 specific effects and mechanisms of action on neuronal injury remain largely unknown in SCI. In the present study, using a clinically-relevant model of compressive/contusive SCI in rats and an in vitro model of glutamate toxicity in primary neurons, we demonstrate Nrg-1β1 provides early neuroprotection through attenuation of reactive oxygen species, lipid peroxidation, necrosis and apoptosis in acute and subacute stages of SCI. Mechanistically, availability of Nrg-1β1 following glutamate challenge protects neurons from caspase-dependent and independent cell death that is mediated by modulation of mitochondria associated apoptotic cascades and MAP kinase and AKT signaling pathways. Altogether, our work provides novel insights into the role and mechanisms of Nrg-1β1 in neuronal injury after SCI and introduces its potential as a new neuroprotective target for this debilitating neurological condition.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
18
|
Demmings MD, Tennyson EC, Petroff GN, Tarnowski-Garner HE, Cregan SP. Activating transcription factor-4 promotes neuronal death induced by Parkinson's disease neurotoxins and α-synuclein aggregates. Cell Death Differ 2021; 28:1627-1643. [PMID: 33277577 PMCID: PMC8167173 DOI: 10.1038/s41418-020-00688-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra resulting in severe and progressive motor impairments. However, the mechanisms underlying this neuronal loss remain largely unknown. Oxidative stress and ER stress have been implicated in PD and these factors are known to activate the integrated stress response (ISR). Activating transcription factor 4 (ATF4), a key mediator of the ISR, and has been reported to induce the expression of genes involved in cellular homeostasis. However, during prolonged activation ATF4 can also induce the expression of pro-death target genes. Therefore, in the present study, we investigated the role of ATF4 in neuronal cell death in models of PD. We demonstrate that PD neurotoxins (MPP+ and 6-OHDA) and α-synuclein aggregation induced by pre-formed human alpha-synuclein fibrils (PFFs) cause sustained upregulation of ATF4 expression in mouse cortical and mesencephalic dopaminergic neurons. Furthermore, we demonstrate that PD neurotoxins induce the expression of the pro-apoptotic factors Chop, Trb3, and Puma in dopaminergic neurons in an ATF4-dependent manner. Importantly, we have determined that PD neurotoxin and α-synuclein PFF induced neuronal death is attenuated in ATF4-deficient dopaminergic neurons. Furthermore, ectopic expression of ATF4 but not transcriptionally defective ATF4ΔRK restores sensitivity of ATF4-deficient neurons to PD neurotoxins. Finally, we demonstrate that the eIF2α kinase inhibitor C16 suppresses MPP+ and 6-OHDA induced ATF4 activation and protects against PD neurotoxin induced dopaminergic neuronal death. Taken together these results indicate that ATF4 promotes dopaminergic cell death induced by PD neurotoxins and pathogenic α-synuclein aggregates and highlight the ISR factor ATF4 as a potential therapeutic target in PD.
Collapse
Affiliation(s)
- Matthew D Demmings
- Neuroscience Program, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- University of Western Ontario, London, ON, Canada
| | - Elizabeth C Tennyson
- Neuroscience Program, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- University of Western Ontario, London, ON, Canada
| | - Gillian N Petroff
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Heather E Tarnowski-Garner
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- University of Western Ontario, London, ON, Canada
| | - Sean P Cregan
- Neuroscience Program, University of Western Ontario, London, ON, Canada.
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.
- University of Western Ontario, London, ON, Canada.
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
19
|
Yagudin T, Zhao Y, Gao H, Zhang Y, Yang Y, Zhang X, Ma W, Daba TM, Ishmetov V, Kang K, Yang B, Pan Z. iASPP protects the heart from ischemia injury by inhibiting p53 expression and cardiomyocyte apoptosis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:102-111. [PMID: 33128543 DOI: 10.1093/abbs/gmaa104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 11/12/2022] Open
Abstract
Currently, there remains a great need to elucidate the molecular mechanism of acute myocardial infarction in order to facilitate the development of novel therapy. Inhibitor of apoptosis-stimulating protein of p53 (iASPP) is a member of the ASPP family proteins and an evolutionarily preserved inhibitor of p53 that is involved in many cellular processes, including apoptosis of cancer cells. The purpose of this study was to investigate the possible role of iASPP in acute myocardial infarction. The protein level of iASPP was markedly reduced in the ischemic hearts in vivo and hydrogen peroxide-exposed cardiomyocytes in vitro. Overexpression of iASPP reduced the infarct size and cardiomyocyte apoptosis of mice subjected to 24 h of coronary artery ligation. Echocardiography showed that cardiac function was improved as indicated by the increase in ejection fraction and fractional shortening. In contrast, knockdown of iASPP exacerbated cardiac injury as manifested by impaired cardiac function, increased infarct size, and apoptosis rate. Mechanistically, overexpression of iASPP inhibited, while knockdown of iASPP increased the expressions of p53 and Bax, the key regulators of apoptosis. Taken together, our results suggested that iASPP is an important regulator of cardiomyocyte apoptosis, which represents a potential target in the therapy of myocardial infarction.
Collapse
Affiliation(s)
- Timur Yagudin
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Department of Hospital Surgery, Bashkir State Medical University, Ufa 450008, Russian Federation
| | - Yue Zhao
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Haiyu Gao
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Yang Zhang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ying Yang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Xiaofang Zhang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Wenbo Ma
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Tolessa Muleta Daba
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Vladimir Ishmetov
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Department of Cardiovascular Surgery in Clinic, Hospital of Bashkir State Medical University, Ufa 450059, Russian Federation
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Baofeng Yang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Zhenwei Pan
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
20
|
Bondad SEC, Kurasaki M. Analysis of Cadmium, Epigallocatechin Gallate, and Vitamin C Co-exposure on PC12 Cellular Mechanisms. Biol Trace Elem Res 2020; 198:627-635. [PMID: 32128694 DOI: 10.1007/s12011-020-02097-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
Exposure to cadmium (Cd) is a risk factor to health impairments, wherein its cytotoxicity is attributed to induction of oxidative stress. Usage of anti-oxidants, however, can help lessen the damaging effects of Cd. The effect of Cd interaction with low concentration of dietary anti-oxidants, L-ascorbic acid and (-)-epigallocatechin gallate (EGCG), to PC12 cellular mechanisms was examined. The expected toxicity of Cd was observed on PC12 cells but addition of L-ascorbic acid ameliorated this effect. On the other hand, addition of EGCG was able to increase the cytotoxicity of Cd and to decrease the protective effect of L-ascorbic acid against Cd. Increase in LDH activity and decrease in free sulfhydryl levels indicated cell membrane damage and oxidative stress, respectively, in Cd- and EGCG-Cd-treated cells. Downregulation of pro-apoptotic proteins (pro-caspase-9, p53, and ERK1) was observed in cells treated with Cd alone and EGCG-Cd, while upregulation of autophagy-linked proteins (p62 and pBeclin1) was found on L-ascorbic acid-Cd combination treatments. These findings indicate that Cd causes cells to undergo an autophagy-enhanced cell death; low-concentration EGCG and L-ascorbic acid promotes cell survival individually; however, interaction of EGCG with Cd showed enhancement of Cd toxicity and antagonism of L-ascorbic acid efficiency.
Collapse
Affiliation(s)
- Serene Ezra C Bondad
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
21
|
Morse PT, Goebel DJ, Wan J, Tuck S, Hakim L, Hüttemann CL, Malek MH, Lee I, Sanderson TH, Hüttemann M. Cytochrome c oxidase-modulatory near-infrared light penetration into the human brain: Implications for the noninvasive treatment of ischemia/reperfusion injury. IUBMB Life 2020; 73:554-567. [PMID: 33166061 DOI: 10.1002/iub.2405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 11/10/2022]
Abstract
Near-infrared light (IRL) has been evaluated as a therapeutic for a variety of pathological conditions, including ischemia/reperfusion injury of the brain, which can be caused by an ischemic stroke or cardiac arrest. Strategies have focused on modulating the activity of mitochondrial electron transport chain (ETC) enzyme cytochrome c oxidase (COX), which has copper centers that broadly absorb IRL between 700 and 1,000 nm. We have recently identified specific COX-inhibitory IRL wavelengths that are profoundly neuroprotective in rodent models of brain ischemia/reperfusion through the following mechanism: COX inhibition by IRL limits mitochondrial membrane potential hyperpolarization during reperfusion, which otherwise causes reactive oxygen species (ROS) production and cell death. Prior to clinical application of IRL on humans, IRL penetration must be tested, which may be wavelength dependent. In the present study, four fresh (unfixed) cadavers and isolated cadaver tissues were used to examine the transmission of infrared light through human biological tissues. We conclude that the transmission of 750 and 940 nm IRL through 4 cm of cadaver head supports the viability of IRL to treat human brain ischemia/reperfusion injury and is similar for skin with different skin pigmentation. We discuss experimental difficulties of working with fresh cadavers and strategies to overcome them as a guide for future studies.
Collapse
Affiliation(s)
- Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Dennis J Goebel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, Michigan, USA
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Samuel Tuck
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA.,Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lara Hakim
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Charlotte L Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Moh H Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Republic of Korea
| | - Thomas H Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
22
|
Zhang YM, Zhang LY, Zhou H, Li YY, Wei KX, Li CH, Zhou T, Wang JF, Wei WJ, Hua JR, He Y, Hong T, Liu YQ. Astragalus polysaccharide inhibits radiation-induced bystander effects by regulating apoptosis in Bone Mesenchymal Stem Cells (BMSCs). Cell Cycle 2020; 19:3195-3207. [PMID: 33121344 DOI: 10.1080/15384101.2020.1838793] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The purpose of this study was to investigate the effects of astragalus polysaccharides (APS) on the proliferation and apoptosis of bone marrow mesenchymal stem cells (BMSCs) induced by X-ray radiation-induced A549 cells bystander effect (RIBE), and to explore their mechanisms. In this study, APS increased the reduced cell proliferation rate induced by RIBE and inhibiting the apoptosis of bystander cells. In terms of mechanism, APS up-regulates the proteins Bcl-2, Bcl-xl, and down-regulates the proteins Bax and Bak, which induces a decrease in mitochondrial membrane potential, which induces the release of Cyt-c and AIF, which leads to caspase-dependent and caspase-independent pathway to cause apoptosis. In addition, we believe that ROS may be the main cause of these protein changes. APS can inhibit the generation of ROS in bystander cells and thus inhibit the activation of the mitochondrial pathway, further preventing cellular damage caused by RIBE.
Collapse
Affiliation(s)
- Yi-Ming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine , Lanzhou, China
| | - Li-Ying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine , Lanzhou, China
| | - Heng Zhou
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou, China
| | - Yang-Yang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine , Lanzhou, China
| | - Kong-Xi Wei
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine , Lanzhou, China
| | - Cheng-Hao Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine , Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine , Lanzhou, China
| | - Ju-Fang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou, China
| | - Wen-Jun Wei
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou, China
| | - Jun-Rui Hua
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou, China
| | - Yun He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine , Lanzhou, China
| | - Tao Hong
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine , Lanzhou, China
| | - Yong-Qi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine , Lanzhou, China
| |
Collapse
|
23
|
Olivares-González L, Velasco S, Millán JM, Rodrigo R. Intravitreal administration of adalimumab delays retinal degeneration in rd10 mice. FASEB J 2020; 34:13839-13861. [PMID: 32816354 DOI: 10.1096/fj.202000044rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal dystrophies characterized by the progressive and irreversible loss of vision. We previously found that intraperitoneal administration of Adalimumab, a monoclonal anti-TNFα antibody, slowed down retinal degeneration in the murine model of RP, the rd10 mice. The aims of this study were to improve its neuroprotective effect and to deepen understanding of the molecular mechanisms involved in this effect. We analyzed (i) the in vitro effect of Adalimumab on the TNFα-mediated cell death in retinal cells; (ii) the effect of a single intravitreal injection of Adalimumab on retinal degeneration in rd10 mice at postnatal day (P) 23. In vitro studies showed that TNFα induced caspase and poly ADP ribose polymerase (PARP) activation, downregulation of (kinase receptor-interacting protein 1) RIPK1 and upregulation of RIPK3 in retinal cells. Adalimumab reduced cell death probably through the inhibition of caspase 3 activation. In vivo studies suggested that PARP and NLRP3 inflammasome are mainly activated and to a lesser extent caspase-dependent mechanisms in rd10 retinas at P23. Necroptosis seems to be inhibited by the downregulation of RIPK1. Adalimumab prevented from retinal degeneration without affecting caspase -dependent mechanisms but decreasing PARP activation, microglia activation as well as NLRP3 inflammasome.
Collapse
Affiliation(s)
- Lorena Olivares-González
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center, Valencia, Spain
| | - Sheyla Velasco
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center, Valencia, Spain
| | - José María Millán
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Madrid, Spain.,Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain.,Molecular, Cellular and Genomic Biomedicine, Health Research Institute La Fe, Valencia, Spain
| | - Regina Rodrigo
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center, Valencia, Spain.,Rare Diseases Networking Biomedical Research Centre (CIBERER), Madrid, Spain.,Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain
| |
Collapse
|
24
|
Attenuated Salmonella engineered with an apoptosis-inducing factor (AIF) eukaryotic expressing system enhances its anti-tumor effect in melanoma in vitro and in vivo. Appl Microbiol Biotechnol 2020; 104:3517-3528. [DOI: 10.1007/s00253-020-10485-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
|
25
|
Park H, Kam TI, Dawson TM, Dawson VL. Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:1-29. [PMID: 32381174 DOI: 10.1016/bs.ircmb.2019.12.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Disruption of cellular functions with aging-induced accumulation of neuronal stressors causes cell death which is a common feature of neurodegenerative diseases. Studies in a variety of neurodegenerative disease models demonstrate that poly (ADP-ribose) (PAR)-dependent cell death, also named parthanatos, is responsible for neuronal loss in neurological diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Parthanatos has distinct features that differ from caspase-dependent apoptosis, necrosis or autophagic cell death. Parthanatos can be triggered by the accumulation of PAR due to overactivation of PAR polymerase-1 (PARP-1). Excess PAR, induces the mitochondrial release apoptosis-inducing factor (AIF), which binds to macrophage migration inhibitory factor (MIF) carrying MIF into the nucleus where it cleaves genomic DNA into large fragments. In this review, we will discuss the molecular mechanisms of parthanatos and their role in neurodegenerative diseases. Furthermore, we will discuss promising therapeutic interventions within the pathological PAR signaling cascade that could be designed to halt the progression of neurodegeneration.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
26
|
Possible Involvement of Caspase-Independent Pathway in Neuronal Death After Subarachnoid Hemorrhage in Mice. ACTA NEUROCHIRURGICA SUPPLEMENT 2020; 127:43-46. [DOI: 10.1007/978-3-030-04615-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
27
|
Xiao H, Xue Q, Zhang Q, Li C, Liu X, Liu J, Li H, Yang J. How Ginsenosides Trigger Apoptosis in Human Lung Adenocarcinoma Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1737-1754. [PMID: 31795742 DOI: 10.1142/s0192415x19500885] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Panax ginseng is a natural medicine that has been used globally for a long time. Moreover, several studies have reported the effective activity of ginseng in treating malignancies. Various agents containing ginseng were widely used as an antitumor treatment nowadays. Lung cancer is the most common fatal cancer in China, and lung adenocarcinoma is the most common histological type of non-small cell lung cancer (NSCLC). What's worse, many patients may have a failed response to conventional therapy including chemotherapy, radiotherapy, or molecule-targeted therapy due to drug resistance. Apoptosis is a highly ordered cellular suicidal process that plays an essential role in maintaining normal homeostasis. The pharmacological mechanism of many antineoplastic drugs involves triggering of apoptotic process. In several recent studies, ginsenosides are regarded as major active components of ginseng that have the potential to control lung cancer. Most of these results have proved that ginsenosides induce apoptosis in lung cancer cells through many different signaling pathways such as PI3K/Akt, NF-κB, EGFR, and so on. This study is aimed at reviewing the signaling pathways that underlie ginsenosides-triggered apoptotic process and encourage further studies to target promising agents against lung cancer treatment.
Collapse
Affiliation(s)
- Han Xiao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qianfei Xue
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qinghua Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chunyan Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xiaoqiu Liu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jing Liu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Han Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
28
|
Ongnok B, Chattipakorn N, Chattipakorn SC. Doxorubicin and cisplatin induced cognitive impairment: The possible mechanisms and interventions. Exp Neurol 2019; 324:113118. [PMID: 31756316 DOI: 10.1016/j.expneurol.2019.113118] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/18/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022]
Abstract
Chemotherapy has significantly increased the number of cancer survivors. However, chemotherapy itself carries various adverse effects that limit the efficacy of treatment and quality of life of the cancer patients. Most patients who have received chemotherapy report some cognitive deficit characterized by dysfunction in memory, learning, concentration, and reasoning. The phenomenon of cognitive decline developed from chemotherapy treatment is referred to as chemotherapy-induced cognitive impairment (CICI) or chemobrain. The two most common cancers occurring worldwide are lung and breast cancer. The predominant chemotherapeutic drugs used to treat lung and breast cancer are doxorubicin and cisplatin. There is evidence to suggest that both drugs potentially induce chemobrain. The evidence around the proposed pathogenesis of chemobrain caused by these two drugs is inconsistent. Understanding the underlying mechanisms involved in the development of chemobrain would aid in the prevention or treatment of the adverse effects of chemotherapy on brain. This review will summarize and discuss controversial findings and possible mechanisms involved in the development of chemobrain and the interventions which could limit it from in vitro, in vivo, and clinical studies.
Collapse
Affiliation(s)
- Benjamin Ongnok
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
29
|
Erfani S, Moghimi A, Aboutaleb N, Khaksari M. Protective Effects of Nucleobinding-2 After Cerebral Ischemia Via Modulating Bcl-2/Bax Ratio and Reducing Glial Fibrillary Acid Protein Expression. Basic Clin Neurosci 2019; 10:451-459. [PMID: 32284834 PMCID: PMC7149952 DOI: 10.32598/bcn.10.5.451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/10/2019] [Accepted: 10/13/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction Nucleobinding-2 (NUCB2) or nesfatin-1, a newly identified anorexigenic peptide, has antioxidant, anti-inflammatory, and anti-apoptotic properties. Brain ischemiareperfusion induces irreversible damages, especially in the hippocampus area. However, the therapeutic effects of NUCB2 have not been well investigated in cerebral ischemia. This study was designed for the first time to investigate the protective effects of NUCB2/Nesfatin-1 on the expression of apoptosis-related proteins and reactive astrogliosis level in the CA1 area of hippocampus in an experimental model of transient global cerebral ischemia. Methods The male Wistar rats were randomly allocated into 4 groups (sham, NUCB2, ischemia-reperfusion, and ischemia-reperfusion+NUCB21) (n =7). The model of cerebral ischemia was prepared by common carotid arteries occlusion for 20 minutes. Nesfatin-1 (20 μg/kg) and saline (as a vehicle) were injected (intraperitoneally) at the beginning of the reperfusion period. The assessment of the protein expression levels was performed by immunofluorescence and immunohistochemical staining. Results NUCB2 significantly reduced the Bax and GFAP protein levels in the CA1 area after ischemia (P<0.05). Also, NUCB2 increased Bcl-2 protein level (P<0.05). NUCB2 exerted protective effects against ischemic injury by the inhibition of astrocytes activation as an inflammatory response and decreased neuronal cell apoptosis. Conclusion The present study provides the possible neuroprotective view of nesfatin-1 in the treatment of ischemia injury model in rat hippocampus.
Collapse
Affiliation(s)
- Sohaila Erfani
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Moghimi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nahid Aboutaleb
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
30
|
LncRNA DILC participates in rheumatoid arthritis by inducing apoptosis of fibroblast-like synoviocytes and down-regulating IL-6. Biosci Rep 2019; 39:BSR20182374. [PMID: 30944206 PMCID: PMC6499449 DOI: 10.1042/bsr20182374] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 11/17/2022] Open
Abstract
IL-6 produced by human fibroblast-like synoviocytes (HFLS) promotes rheumatoid arthritis (RA), while lncRNA DILC regulates liver cancer stem cells by inhibiting IL-6. Therefore, lncRNA DILC may participate in RA. In the present study, we found that plasma lncRNA DILC was down-regulated, while IL-6 was up-regulated in RA patients than in healthy controls. Plasma levels of lncRNA DILC and IL-6 were significantly and inversely correlated only in RA patients. Overexpression of lncRNA DILC resulted in promoted apoptosis of HFLS isolated from RA patients, while lncRNA DILC siRNA silencing played an opposite role. In addition, overexpression of lncRNA DILC also resulted in inhibited IL-6 expression in HFLS isolated from RA patients. Therefore, lncRNA DILC may participate in RA by inducing apoptosis of HFLS and down-regulating IL-6.
Collapse
|
31
|
Yamada K, Yoshida K. Mechanical insights into the regulation of programmed cell death by p53 via mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:839-848. [DOI: 10.1016/j.bbamcr.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 02/08/2023]
|
32
|
Xu J, Mo J, Liu X, Marshall B, Atherton SS, Dong Z, Smith S, Zhang M. Depletion of the Receptor-Interacting Protein Kinase 3 (RIP3) Decreases Photoreceptor Cell Death During the Early Stages of Ocular Murine Cytomegalovirus Infection. Invest Ophthalmol Vis Sci 2019; 59:2445-2458. [PMID: 29847649 PMCID: PMC5957522 DOI: 10.1167/iovs.18-24086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose The purpose of this study was to determine if the receptor-interacting protein kinase 3 (RIP3) plays a significant role in innate immune responses and death of bystander retinal neurons during murine cytomegalovirus (MCMV) retinal infection, by comparing the innate immune response and cell death in RIP3-depleted mice (Rip3−/−) and Rip3+/+ control mice. Methods Rip3−/− and Rip3+/+ mice were immunosuppressed (IS) and inoculated with MCMV via the supraciliary route. Virus-injected and mock-injected control eyes were removed at days 4, 7, and 10 post infection (p.i.) and markers of innate immunity and cell death were analyzed. Results Compared to Rip3+/+ mice, significantly more MCMV was recovered and more MCMV-infected RPE cells were observed in injected eyes of Rip3−/− mice at days 4 and 7 p.i. In contrast, fewer TUNEL-stained photoreceptors were observed in Rip3−/− eyes than in Rip3+/+ eyes at these times. Electron microscopy showed that significantly more apoptotic photoreceptor cells were present in Rip3+/+ mice than in Rip3−/− mice. Immunohistochemistry showed that the majority of TUNEL-stained photoreceptors died via mitochondrial flavoprotein apoptosis-inducing factor (AIF)-mediated, caspase 3–independent apoptosis. The majority of RIP3-expressing cells in infected eyes were RPE cells, microglia/macrophages, and glia, whereas retinal neurons contained much lower amounts of RIP3. Western blots showed significantly higher levels of activated nuclear factor–κB and caspase 1 were present in Rip3+/+ eyes compared to Rip3−/− eyes. Conclusions Our results suggest that RIP3 enhances innate immune responses against ocular MCMV infection via activation of the inflammasome and nuclear factor–κB, which also leads to inflammation and death of bystander cells by multiple pathways including apoptosis and necroptosis.
Collapse
Affiliation(s)
- Jinxian Xu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Juan Mo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Xinglou Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Sally S Atherton
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Sylvia Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
33
|
Gowsalya R, Ravi C, Kannan M, Nachiappan V. FSH3 mediated cell death is dependent on NUC1 in Saccharomyces cerevisiae. FEMS Yeast Res 2019; 19:5333309. [DOI: 10.1093/femsyr/foz017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 02/17/2019] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Family of Serine Hydrolases (FSH) members FSH1, FSH2 and FSH3 in Saccharomyces cerevisiae share conserved sequences with the human candidate tumor suppressor OVCA2. In this study, hydrogen peroxide (H2O2) exposure increased the expression of both mRNA and protein levels of FSH3 in wild-type (WT) yeast cells. The deletion of FSH3 improved the yeast growth rate under H2O2-induction as compared to WT control cells. The overexpression of FSH3 in WT yeast cells caused an apoptotic phenotype, including accumulation of reaction oxygen species, decreased cell viability and cell death. The double deletions fsh1Δ fsh2Δ, fsh1Δ fsh3Δ and fsh2Δ fsh3Δ displayed increased growth compared to WT cells. However, the overexpression of FSH3 effectively inhibited cell growth in all double deletions. Moreover, the overexpression of FSH3 in cells lacking NUC1 did not cause any growth defect in the presence or absence of H2O2. Our results suggest that FSH3 induced apoptosis of yeast in a NUC1 dependent manner.
Collapse
Affiliation(s)
- Ramachandran Gowsalya
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli – 620 024, Tamil Nadu, India
| | - Chidambaram Ravi
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli – 620 024, Tamil Nadu, India
| | - Muthukumar Kannan
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Vasanthi Nachiappan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli – 620 024, Tamil Nadu, India
| |
Collapse
|
34
|
Cui Y, Amarsanaa K, Lee JH, Rhim JK, Kwon JM, Kim SH, Park JM, Jung SC, Eun SY. Neuroprotective mechanisms of dieckol against glutamate toxicity through reactive oxygen species scavenging and nuclear factor-like 2/heme oxygenase-1 pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:121-130. [PMID: 30820156 PMCID: PMC6384196 DOI: 10.4196/kjpp.2019.23.2.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/23/2018] [Accepted: 01/16/2019] [Indexed: 12/27/2022]
Abstract
Glutamate toxicity-mediated mitochondrial dysfunction and neuronal cell death are involved in the pathogenesis of several neurodegenerative diseases as well as acute brain ischemia/stroke. In this study, we investigated the neuroprotective mechanism of dieckol (DEK), one of the phlorotannins isolated from the marine brown alga Ecklonia cava, against glutamate toxicity. Primary cortical neurons (100 µM, 24 h) and HT22 neurons (5 mM, 12 h) were stimulated with glutamate to induce glutamate toxic condition. The results demonstrated that DEK treatment significantly increased cell viability in a dose-dependent manner (1–50 µM) and recovered morphological deterioration in glutamate-stimulated neurons. In addition, DEK strongly attenuated intracellular reactive oxygen species (ROS) levels, mitochondrial overload of Ca2+ and ROS, mitochondrial membrane potential (ΔΨm) disruption, adenine triphosphate depletion. DEK showed free radical scavenging activity in the cell-free system. Furthermore, DEK enhanced protein expression of heme oxygenase-1 (HO-1), an important anti-oxidant enzyme, via the nuclear translocation of nuclear factor-like 2 (Nrf2). Taken together, we conclude that DEK exerts neuroprotective activities against glutamate toxicity through its direct free radical scavenging property and the Nrf-2/HO-1 pathway activation.
Collapse
Affiliation(s)
- Yanji Cui
- Department of Physiology, Jeju National University School of Medicine, Jeju 63243, Korea.,Neurology 1, The Second Affiliated Hospital of Xinxiang Medical University, Henan 453002, China
| | - Khulan Amarsanaa
- Department of Physiology, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Ji Hyung Lee
- Department of Physiology, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Jong-Kook Rhim
- Department of Neurosurgery, Jeju National University School of Medicine, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| | - Jung Mi Kwon
- Division of Hematology-Oncology, Department of Internal Medicine, Jeju National University School of Medicine, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| | | | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), KAIST, Daejeon 34126, Korea.,University of Science and Technology, Daejeon 34113, Korea
| | - Sung-Cherl Jung
- Department of Physiology, Jeju National University School of Medicine, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| | - Su-Yong Eun
- Department of Physiology, Jeju National University School of Medicine, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
35
|
DJ-1 modulates the unfolded protein response and cell death via upregulation of ATF4 following ER stress. Cell Death Dis 2019; 10:135. [PMID: 30755590 PMCID: PMC6372623 DOI: 10.1038/s41419-019-1354-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 11/26/2022]
Abstract
The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress is a feature of many neurodegenerative diseases including Alzheimer’s disease, Huntington’s disease and Parkinson’s disease (PD). Although the vast majority of PD is sporadic, mutations in a number of genes including PARK7 which encodes the protein DJ-1 have been linked to early-onset, familial PD. In this regard, both PD of sporadic and genetic origins exhibit markers of ER stress-induced UPR. However, the relationship between pathogenic mutations in PARK7 and ER stress-induced UPR in PD pathogenesis remains unclear. In most contexts, DJ-1 has been shown to protect against neuronal injury. However, we find that DJ-1 deficiency ameliorates death in the context of acute ER stress in vitro and in vivo. DJ-1 loss decreases protein and transcript levels of ATF4, a transcription factor critical to the ER response and reduces the levels of CHOP and BiP, its downstream effectors. The converse is observed with DJ-1 over-expression. Importantly, we find that over-expression of wild-type and PD-associated mutant form of PARK7L166P, enhances ER stress-induced neuronal death by regulating ATF4 transcription and translation. Our results demonstrate a previously unreported role for wild-type and mutant DJ-1 in the regulation of UPR and provides a potential link to PD pathogenesis.
Collapse
|
36
|
Lee JS, Kim WY, Jeon YJ, Lee SK, Son CG. Aquilariae Lignum extract attenuates glutamate-induced neuroexcitotoxicity in HT22 hippocampal cells. Biomed Pharmacother 2018; 106:1031-1038. [PMID: 30119168 DOI: 10.1016/j.biopha.2018.07.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 01/08/2023] Open
|
37
|
Yu JS, Roh HS, Baek KH, Lee S, Kim S, So HM, Moon E, Pang C, Jang TS, Kim KH. Bioactivity-guided isolation of ginsenosides from Korean Red Ginseng with cytotoxic activity against human lung adenocarcinoma cells. J Ginseng Res 2018; 42:562-570. [PMID: 30337817 PMCID: PMC6190500 DOI: 10.1016/j.jgr.2018.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. In this study, we used a bioactivity-guided isolation technique to identify constituents of Korean Red Ginseng (KRG) with antiproliferative activity against human lung adenocarcinoma cells. METHODS Bioactivity-guided fractionation and preparative/semipreparative HPLC purification were used with LC/MS analysis to separate the bioactive constituents. Cell viability and apoptosis in human lung cancer cell lines (A549, H1264, H1299, and Calu-6) after treatment with KRG extract fractions and constituents thereof were assessed using the water-soluble tetrazolium salt (WST-1) assay and terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, respectively. Caspase activation was assessed by detecting its surrogate marker, cleaved poly adenosine diphosphate (ADP-ribose) polymerase, using an immunoblot assay. The expression and subcellular localization of apoptosis-inducing factor were assessed using immunoblotting and immunofluorescence, respectively. RESULTS AND CONCLUSION Bioactivity-guided fractionation of the KRG extract revealed that its ethyl acetate-soluble fraction exerts significant cytotoxic activity against all human lung cancer cell lines tested by inducing apoptosis. Chemical investigation of the ethyl acetatesoluble fraction led to the isolation of six ginsenosides, including ginsenoside Rb1 (1), ginsenoside Rb2 (2), ginsenoside Rc (3), ginsenoside Rd (4), ginsenoside Rg1 (5), and ginsenoside Rg3 (6). Among the isolated ginsenosides, ginsenoside Rg3 exhibited the most cytotoxic activity against all human lung cancer cell lines examined, with IC50 values ranging from 161.1 μM to 264.6 μM. The cytotoxicity of ginsenoside Rg3 was found to be mediated by induction of apoptosis in a caspase-independent manner. These findings provide experimental evidence for a novel biological activity of ginsenoside Rg3 against human lung cancer cells.
Collapse
Affiliation(s)
- Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyun-Soo Roh
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kwan-Hyuck Baek
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Seul Lee
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Sil Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hae Min So
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eunjung Moon
- Charmzone R&D Center, Charmzone Co. LTD., Seoul, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tae Su Jang
- Institute of Green Bio Science & Technology, Seoul National University, Pyeong Chang, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
38
|
Scott AJ, Walker SA, Krank JJ, Wilkinson AS, Johnson KM, Lewis EM, Wilkinson JC. AIF promotes a JNK1-mediated cadherin switch independently of respiratory chain stabilization. J Biol Chem 2018; 293:14707-14722. [PMID: 30093403 DOI: 10.1074/jbc.ra118.004022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/26/2018] [Indexed: 12/18/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein occasionally involved in cell death that primarily regulates mitochondrial energy metabolism under normal cellular conditions. AIF catalyzes the oxidation of NADH in vitro, yet the significance of this redox activity in cells remains unclear. Here, we show that through its enzymatic activity AIF is a critical factor for oxidative stress-induced activation of the mitogen-activated protein kinases JNK1 (c-Jun N-terminal kinase), p38, and ERK (extracellular signal-regulated kinase). AIF-dependent JNK1 signaling culminates in the cadherin switch, and genetic reversal of this switch leads to apoptosis when AIF is suppressed. Notably, this widespread ability of AIF to promote JNK signaling can be uncoupled from its more limited role in respiratory chain stabilization. Thus, AIF is a transmitter of extra-mitochondrial signaling cues with important implications for human development and disease.
Collapse
Affiliation(s)
- Andrew J Scott
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Sierra A Walker
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Joshua J Krank
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Amanda S Wilkinson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Kaitlyn M Johnson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Eric M Lewis
- the Department of Chemistry, Mathematics and Physics, Clarion University of Pennsylvania, Clarion, Pennsylvania 16214
| | - John C Wilkinson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| |
Collapse
|
39
|
Binding mode of AIF(370-394) peptide to CypA: insights from NMR, label-free and molecular docking studies. Biochem J 2018; 475:2377-2393. [PMID: 29891613 DOI: 10.1042/bcj20180177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 01/16/2023]
Abstract
The complex formation between the proteins apoptosis-inducing factor (AIF) and cyclophilin A (CypA) following oxidative stress in neuronal cells has been suggested as a main target for reverting ischemia-stroke damage. Recently, a peptide encompassing AIF residues 370-394 has been developed to target the AIF-binding site on CypA, to prevent the association between the two proteins and suppress glutamate-induced cell death in neuronal cells. Using a combined approach based on NMR spectroscopy, synthesis and in vitro testing of all Ala-scan mutants of the peptide and molecular docking/molecular dynamics, we have generated a detailed model of the AIF (370-394)/CypA complex. The model suggests us that the central region of the peptide spanning residues V374-K384 mostly interacts with the protein and that for efficient complex inhibition and preservation of CypA activity, it is bent around amino acids F46-G75 of the protein. The model is consistent with experimental data also from previous works and supports the concept that the peptide does not interfere with other CypA activities unrelated to AIF activation; therefore, it may serve as an ideal template for generating future non-peptidic antagonists.
Collapse
|
40
|
Verma DK, Gupta S, Biswas J, Joshi N, Singh A, Gupta P, Tiwari S, Sivarama Raju K, Chaturvedi S, Wahajuddin M, Singh S. New therapeutic activity of metabolic enhancer piracetam in treatment of neurodegenerative disease: Participation of caspase independent death factors, oxidative stress, inflammatory responses and apoptosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2078-2096. [DOI: 10.1016/j.bbadis.2018.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/26/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
|
41
|
Xing B, Brink LE, Maers K, Sullivan ML, Bodnar RJ, Stolz DB, Cambi F. Conditional depletion of GSK3b protects oligodendrocytes from apoptosis and lessens demyelination in the acute cuprizone model. Glia 2018; 66:1999-2012. [PMID: 29761559 DOI: 10.1002/glia.23453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 02/04/2023]
Abstract
Apoptosis is recognized as the main mechanism of oligodendrocyte loss in Multiple Sclerosis caused either by immune mediated injury (Barnett & Prineas, ) or a direct degenerative process (oligodendrogliapathy; Lucchinetti et al., ). Cuprizone induced demyelination is the result of non-immune mediated apoptosis of oligodendrocytes (OL) and represents a model of oligodendrogliapathy (Simmons, Pierson, Lee, & Goverman, ). Glycogen Synthase Kinase (GSK) 3b has been shown to be pro-apoptotic for cells other than OL. Here, we sought to investigate whether GSK3b plays a role in cuprizone-induced apoptosis of OL by using a novel inducible conditional knockout (cKO) of GSK3b in mature OL. While depletion of GSK3b has no effect on survival of uninjured OL, it increases survival of mature OL exposed to cuprizone. We show that GSK3b-deficient OLs are protected against caspase-dependent, but not against caspase-independent apoptosis. Active GSK3b is present in the nuclei of OL at peak of caspase-dependent apoptosis. Significant preservation of myelinated axons is associated with GSK3b depletion and glial cell activation is markedly reduced. Collectively, the data show that GSK3b is pro-apoptotic for caspase-dependent cell death, likely through activation of nuclear GSK3b and its depletion promotes survival of oligodendrocytes and attenuates myelin loss.
Collapse
Affiliation(s)
- Bin Xing
- Veterans Administration Pittsburgh, University Drive C Bldg 30, Pittsburgh, Pennsylvania
| | - Lauren E Brink
- Veterans Administration Pittsburgh, University Drive C Bldg 30, Pittsburgh, Pennsylvania
| | - Kelly Maers
- Veterans Administration Pittsburgh, University Drive C Bldg 30, Pittsburgh, Pennsylvania
| | - Mara L Sullivan
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richard J Bodnar
- Veterans Administration Pittsburgh, University Drive C Bldg 30, Pittsburgh, Pennsylvania
| | - Donna B Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Franca Cambi
- Veterans Administration Pittsburgh, University Drive C Bldg 30, Pittsburgh, Pennsylvania.,Department of Neurology/PIND, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, Pennsylvania.,Department of Neurology, University of Kentucky, 800 Rose St, Lexington, Kentucky
| |
Collapse
|
42
|
Hosseinzadeh L, Soheili S, Ghiasvand N, Ahmadi F, shokoohinia Y. Fatty Acid Mixtures from Nigella sativa Protects PC12 Cells from Oxidative Stress and Apoptosis Induced by Doxorubicin. PHARMACEUTICAL SCIENCES 2018. [DOI: 10.15171/ps.2018.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
43
|
Madungwe NB, Feng Y, Lie M, Tombo N, Liu L, Kaya F, Bopassa JC. Mitochondrial inner membrane protein (mitofilin) knockdown induces cell death by apoptosis via an AIF-PARP-dependent mechanism and cell cycle arrest. Am J Physiol Cell Physiol 2018; 315:C28-C43. [PMID: 29489384 DOI: 10.1152/ajpcell.00230.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitofilin is an inner membrane protein that has been defined as a mitochondria-shaping protein in controlling and maintaining mitochondrial cristae structure and remodeling. We determined the role of mitofilin in cell survival by investigating the mechanism underlying mitofilin knockdown-induced cell death by apoptosis. Cultured H9c2 myoblasts and HEK 293 cells were treated with mitofilin siRNA or scrambled siRNA for 24 h. Cell death (apoptosis), caspase 3 activity and cell cycle phases were assessed by flow cytometry, while cytochrome c release and intracellular ATP production were measured by ELISA. Mitofilin, apoptosis-inducing factor (AIF) and poly(ADP-ribose) polymerase (PARP) expression were measured by Western blot analysis and calpain activity was assessed using a calpain activity kit. Mitochondrial images were taken using electron microscopy. We found that mitofilin knockdown increases apoptosis mainly via activation of the AIF-PARP pathway leading to nuclear fragmentation that is correlated with S phase arrest of the cell cycle. Knockdown of mitofilin also led to mitochondrial swelling and damage of cristae that is associated with the increase in reactive oxygen species production and mitochondrial calpain activity, as well as a marked decrease in intracellular ATP production and mitochondrial membrane potential. Together, these results indicate that mitofilin knockdown by siRNA increases calpain activity that presumably leads to mitochondrial structural degradation resulting in a critical reduction of mitochondrial function that is responsible for the increase in cell death by apoptosis via an AIF-PARP mechanism and associated with nuclear fragmentation, and S phase arrest of the cell cycle.
Collapse
Affiliation(s)
- Ngonidzashe B Madungwe
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas
| | - Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Mihaela Lie
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Nathalie Tombo
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Li Liu
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Ferdinand Kaya
- Department of Ophthalmology, University of California , Davis, California
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
44
|
Mukherjee S, Kumar G, Patnaik R. Identification of potential inhibitors of PARP-1, a regulator of caspase-independent cell death pathway, from Withania somniferaphytochemicals for combating neurotoxicity: A structure-based in-silicostudy. JOURNAL OF THEORETICAL AND COMPUTATIONAL CHEMISTRY 2017; 16:1750062. [DOI: 10.1142/s0219633617500626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) reverses DNA damage by repairing DNA nicks and breaks in the normal cellular environment. However, during abnormal conditions like stroke and other neurological disorders, overactivation of PARP-1 leads to neuronal cell death via a caspase-independent programmed cell death pathway. Strategies involving inhibition or knockout of PARP-1 have proved beneficial in combating neuro-cytotoxicity. In this study, we performed in-silico analysis of 27 phytochemicals of Withania somnifera (Ashwagandha), to investigate their inhibition efficiency against PARP-1. Out of 27 phytochemicals, we report 12 phytochemicals binding to the catalytic domain of PARP-1 with an affinity higher than FR257517, PJ34 and Talazoparib (highly potent inhibitors of the enzyme). Among these 12 compounds, five phytochemicals namely Stigmasterol, Withacnistin, Withaferin A, Withanolide G and Withanolide B show an exceptionally high binding affinity for the catalytic domain of PARP-1 and bind to the enzyme with similar hydrogen bond formation and hydrophobic interaction pattern as their inhibitors. All of these phytochemicals are BBB permeable so that they can be further developed into potential future neuro-therapeutic drugs against neurodegenerative disorders involving neuronal cell death.
Collapse
Affiliation(s)
- Sumedha Mukherjee
- Electrophysiology Lab, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Gaurav Kumar
- Electrophysiology Lab, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ranjana Patnaik
- Electrophysiology Lab, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
45
|
Margulies CM, Chaim IA, Mazumder A, Criscione J, Samson LD. Alkylation induced cerebellar degeneration dependent on Aag and Parp1 does not occur via previously established cell death mechanisms. PLoS One 2017; 12:e0184619. [PMID: 28886188 PMCID: PMC5590993 DOI: 10.1371/journal.pone.0184619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/28/2017] [Indexed: 01/25/2023] Open
Abstract
Alkylating agents are ubiquitous in our internal and external environments, causing DNA damage that contributes to mutations and cell death that can result in aging, tissue degeneration and cancer. Repair of methylated DNA bases occurs primarily through the base excision repair (BER) pathway, a multi-enzyme pathway initiated by the alkyladenine DNA glycosylase (Aag, also known as Mpg). Previous work demonstrated that mice treated with the alkylating agent methyl methanesulfonate (MMS) undergo cerebellar degeneration in an Aag-dependent manner, whereby increased BER initiation by Aag causes increased tissue damage that is dependent on activation of poly (ADP-ribose) polymerase 1 (Parp1). Here, we dissect the molecular mechanism of cerebellar granule neuron (CGN) sensitivity to MMS using primary ex vivo neuronal cultures. We first established a high-throughput fluorescent imaging method to assess primary neuron sensitivity to treatment with DNA damaging agents. Next, we verified that the alkylation sensitivity of CGNs is an intrinsic phenotype that accurately recapitulates the in vivo dependency of alkylation-induced CGN cell death on Aag and Parp1 activity. Finally, we show that MMS-induced CGN toxicity is independent of all the cellular events that have previously been associated with Parp-mediated toxicity, including mitochondrial depolarization, AIF translocation, calcium fluxes, and NAD+ consumption. We therefore believe that further investigation is needed to adequately describe all varieties of Parp-mediated cell death.
Collapse
Affiliation(s)
- Carrie M. Margulies
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Isaac Alexander Chaim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Aprotim Mazumder
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - June Criscione
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Leona D. Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
46
|
Global gene expression profile of cerebral ischemia-reperfusion injury in rat MCAO model. Oncotarget 2017; 8:74607-74622. [PMID: 29088811 PMCID: PMC5650366 DOI: 10.18632/oncotarget.20253] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/30/2017] [Indexed: 12/19/2022] Open
Abstract
It is well-established that reperfusion following cerebral ischemic injury gives rise to secondary injury accompanied by structural and functional damage. However, it remains unclear how global genes changes in cerebral ischemia-reperfusion injury (IRI). This study investigated global gene expression in the hippocampi of Wistar rats following transient cerebral IRI using an RNA-sequencing strategy. The results revealed ≥2-fold up-regulation of 156 genes and ≥2-fold down-regulation of 26 genes at 24 h post-reperfusion. Fifteen differentially expressed genes were selected to confirm the RNA-sequencing results. Gene expression levels were dynamic, with the peak expression level of each gene occurring at different time points post-reperfusion. Gene Ontology (GO) analysis classified the differentially expressed genes as mainly involved in inflammation, stress and immune response, glucose metabolism, proapoptosis, antiapoptosis, and biological processes. KEGG pathway analysis suggested that IRI activated different signaling pathways, including focal adhesion, regulation of actin cytoskeleton, cytokine-cytokine receptor interaction, MAPK signaling, and Jak-STAT signaling. This study describes global gene expression profiles in the hippocampi of Wistar rats using the middle cerebral artery occlusion (MCAO) model. These findings provide new insights into the molecular pathogenesis of IRI and potential drug targets for the prevention and treatment of IRI in the future.
Collapse
|
47
|
Jang JY, Lee HK, Yoo HS, Seong YH. Phytoceramide ameliorates ß-amyloid protein-induced memory impairment and neuronal death in mice. Arch Pharm Res 2017; 40:760-771. [PMID: 28600733 DOI: 10.1007/s12272-017-0893-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
Abstract
The present study was performed to investigate the protective effect of phytoceramide against ß-amyloid protein (Aβ) (25-35)-induced memory impairment and its underlying mechanisms in mice. Memory impairment in mice was induced by intracerebroventricular injection of 15 nmol Aβ (25-35) and measured by the passive avoidance test and Morris water maze test. Chronic administration of phytoceramide (10, 25 and 50 mg/kg, p.o.) resulted in significantly less Aβ (25-35)-induced memory loss and hippocampal neuronal death in treated mice compared to controls. The decrease of glutathione level and increase of lipid peroxidation in brain tissue following injection of Aβ (25-35) was reduced by phytoceramide. Alteration of apoptosis-related proteins, increase of inflammatory factors, and phosphorylation of mitogen activated proteins kinases (MAPKs) in Aβ (25-35)-administered mice hippocampus were inhibited by phytoceramide. Phosphatidylinositol 3'-kinase (PI3K)/Akt pathway and phosphorylation of cyclic AMP response element-binding protein (CREB) were suppressed, while phosphorylation of tau (p-tau) was increased in Aß (25-35)-treated mice brain; these effects were significantly inhibited by administration of phytoceramide. These results suggest that phytoceramide has a possible therapeutic role in managing cognitive impairment associated with Alzheimer's disease. The underlying mechanism might involve inhibition of p-tau formation via anti-apoptosis and anti-inflammation activity and promotion of PI3K/Akt/CREB signaling process.
Collapse
Affiliation(s)
- Ji Yeon Jang
- College of Veterinary Medicine and Veterinary Medical Center, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hong Kyu Lee
- College of Veterinary Medicine and Veterinary Medical Center, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hwan-Su Yoo
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Yeon Hee Seong
- College of Veterinary Medicine and Veterinary Medical Center, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
48
|
Zhang L, Yan J, Liu Y, Zhao Q, Di C, Chao S, Jie L, Liu Y, Zhang H. Contribution of caspase-independent pathway to apoptosis in malignant glioma induced by carbon ion beams. Oncol Rep 2017; 37:2994-3000. [PMID: 28350112 DOI: 10.3892/or.2017.5529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/28/2016] [Indexed: 11/05/2022] Open
Abstract
High linear energy transfer (LET) carbon ion beam (CIB) is becoming the best tool for external radiotherapy of inoperable tumors because of its greater cell killing than conventional low LET gamma or X-rays. In the present study, whether the caspase-independent pathway exerts the important contribution in CIB-induced cell apoptosis was explored. Herein we showed, despite the absence of caspase activity using a pan caspase inhibitor Z-VAD-FMK, that apoptosis induced by high LET CIB were clearly observed in the glioma cells. Simultaneously, the increased 8-OHdG level, PARP-1 activity and AIF translocation occurred in response to CIB irradiation. Moreover, it was distinctly higher in the nuclear translocation frequency along with PARP-1 activation when the caspase protease cascade was suppressed in the irradiated glioma cells. Nuclear colocalization between PARP-1 and AIF as well as a positive association of the PARP-1 mRNA expression with AIF translocation frequency indicated that PARP-1 activation controlled the translocation of AIF to the nucleus. Our findings strongly demonstrated that caspase-independent cell apoptosis provided a prominent compensation in the glioma cell death involving the PARP-1/AIF signaling pathway at 24 h after CIB exposure, and likely triggered by oxidative damage to DNA. The knowledge on the molecular mechanism of AIF-mediated cell death may be very useful for the improvement of the therapeutic efficacy of malignant gliomas with heavy charged particles.
Collapse
Affiliation(s)
- Luwei Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Jiawei Yan
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Yang Liu
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Qiuyue Zhao
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Cuixia Di
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Sun Chao
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Li Jie
- School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yuanyuan Liu
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
49
|
AKT2 Blocks Nucleus Translocation of Apoptosis-Inducing Factor (AIF) and Endonuclease G (EndoG) While Promoting Caspase Activation during Cardiac Ischemia. Int J Mol Sci 2017; 18:ijms18030565. [PMID: 28272306 PMCID: PMC5372581 DOI: 10.3390/ijms18030565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 02/04/2023] Open
Abstract
The AKT (protein kinase B, PKB) family has been shown to participate in diverse cellular processes, including apoptosis. Previous studies demonstrated that protein kinase B2 (AKT2−/−) mice heart was sensitized to apoptosis in response to ischemic injury. However, little is known about the mechanism and apoptotic signaling pathway. Here, we show that AKT2 inhibition does not affect the development of cardiomyocytes but increases cell death during cardiomyocyte ischemia. Caspase-dependent apoptosis of both the extrinsic and intrinsic pathway was inactivated in cardiomyocytes with AKT2 inhibition during ischemia, while significant mitochondrial disruption was observed as well as intracytosolic translocation of cytochrome C (Cyto C) together with apoptosis-inducing factor (AIF) and endonuclease G (EndoG), both of which are proven to conduct DNA degradation in a range of cell death stimuli. Therefore, mitochondria-dependent cell death was investigated and the results suggested that AIF and EndoG nucleus translocation causes cardiomyocyte DNA degradation during ischemia when AKT2 is blocked. These data are the first to show a previous unrecognized function and mechanism of AKT2 in regulating cardiomyocyte survival during ischemia by inducing a unique mitochondrial-dependent DNA degradation pathway when it is inhibited.
Collapse
|
50
|
Mosley M, Shah C, Morse KA, Miloro SA, Holmes MM, Ahern TH, Forger NG. Patterns of cell death in the perinatal mouse forebrain. J Comp Neurol 2017; 525:47-64. [PMID: 27199256 PMCID: PMC5116296 DOI: 10.1002/cne.24041] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022]
Abstract
The importance of cell death in brain development has long been appreciated, but many basic questions remain, such as what initiates or terminates the cell death period. One obstacle has been the lack of quantitative data defining exactly when cell death occurs. We recently created a "cell death atlas," using the detection of activated caspase-3 (AC3) to quantify apoptosis in the postnatal mouse ventral forebrain and hypothalamus, and found that the highest rates of cell death were seen at the earliest postnatal ages in most regions. Here we have extended these analyses to prenatal ages and additional brain regions. We quantified cell death in 16 forebrain regions across nine perinatal ages from embryonic day (E) 17 to postnatal day (P) 11 and found that cell death peaks just after birth in most regions. We found greater cell death in several regions in offspring delivered vaginally on the day of parturition compared with those of the same postconception age but still in utero at the time of collection. We also found massive cell death in the oriens layer of the hippocampus on P1 and in regions surrounding the anterior crossing of the corpus callosum on E18 as well as the persistence of large numbers of cells in those regions in adult mice lacking the pro-death Bax gene. Together these findings suggest that birth may be an important trigger of neuronal cell death and identify transient cell groups that may undergo wholesale elimination perinatally. J. Comp. Neurol. 525:47-64, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Morgan Mosley
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, 30302
| | - Charisma Shah
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, 30302
| | - Kiriana A Morse
- Department of Psychology, Center for Behavioral Neuroscience, Quinnipiac University, Hamden, Connecticut, 06518
| | - Stephen A Miloro
- Department of Psychology, Center for Behavioral Neuroscience, Quinnipiac University, Hamden, Connecticut, 06518
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Todd H Ahern
- Department of Psychology, Center for Behavioral Neuroscience, Quinnipiac University, Hamden, Connecticut, 06518
| | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, 30302
| |
Collapse
|