1
|
New JS, Fucile CF, Callahan AR, Burke JN, Davis RS, Duck WL, Rosenberg AF, Kearney JF, King RG. Human Anti-Glycan Reactivity is Driven by the Selection of B cells Utilizing Private Antibody Gene Rearrangements that are Affinity Maturated in Germinal Centers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618486. [PMID: 39464096 PMCID: PMC11507706 DOI: 10.1101/2024.10.15.618486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The human antibody repertoire is broadly reactive with carbohydrate antigens represented in the universe of all living things, including both the host/self- as well as the commensal microflora-derived glycomes. Here we have used BCR receptor cloning and expression together with single-cell transcriptomics to analyze the B cell repertoire to the ubiquitous N-acetyl-D-glucosamine (GlcNAc) epitope in human cohorts and dissect the immune phylogeny of this predominant class of antibodies. We find that circulating anti-GlcNAc B cells exhibiting canonical BMem phenotypes emerge rapidly after birth and couple this observation with evidence for germinal center-dependent affinity maturation of carbohydrate-specific B cell receptors in situ during early childhood. Direct analysis of individual B cell clonotypes reveals they exhibit strikingly distinct fine-specificity profiles for palettes of GlcNAc containing moieties. These results suggest that a generalized exposure to complex environmental glycans drives the steady state anti-glycan repertoire.
Collapse
Affiliation(s)
- J. Stewart New
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA
| | - Christopher F. Fucile
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amanda R. Callahan
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA
| | - Julia N. Burke
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Wayne L. Duck
- Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | | | - John F. Kearney
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA
| | - R. Glenn King
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA
- Lead Contact
| |
Collapse
|
2
|
Hjálmsdóttir Á, Hasler F, Waeckerle-Men Y, Duda A, López-Deber MP, Pihlgren M, Vukicevic M, Kündig TM, Johansen P. T cell independent antibody responses with class switch and memory using peptides anchored on liposomes. NPJ Vaccines 2024; 9:115. [PMID: 38909055 PMCID: PMC11193769 DOI: 10.1038/s41541-024-00902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/23/2024] [Indexed: 06/24/2024] Open
Abstract
Vaccines generally require T lymphocytes for B-cell activation and immunoglobulin class switching in response to peptide or protein antigens. In the absence of T cells, limited IgG class switch takes place, germinal centers are short-lived, and the B cells lack memory. Here, immunization of mice with liposomes containing 15mer peptides and monophosphoryl lipid A (MPLA) as adjuvant, induced T-cell independent (TI) IgG class switch within three days, as well as germinal center formation. The antibody responses were long-lived, strictly dependent on Toll-like receptor 4 (TLR4) signaling, partly dependent on Bruton's tyrosine kinase (BTK) signal transmission, and independent of signaling through T-cell receptors, MHC class II and inflammasome. The antibody response showed characteristics of both TI type 1 and TI type 2. All IgG subclasses could be boosted months after primary immunization, and the biological function of the secreted antibodies was demonstrated in murine models of allergic anaphylaxis and of bacterial infection. Moreover, antibody responses after immunization with peptide- and MPLA-loaded liposomes could be triggered in neonatal mice and in mice receiving immune-suppressants. This study demonstrates T-cell independent endogenous B-cell memory and recall responses in vivo using a peptide antigen. The stimulation of these antibody responses required a correct and dense assembly and administration of peptide and adjuvant on the surface of liposomes. In the future, TI vaccines may prove beneficial in pathological conditions in which T-cell immunity is compromised through disease or medicines or when rapid, antibody-mediated immune protection is needed.
Collapse
Affiliation(s)
| | - Fabio Hasler
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | | | - Agathe Duda
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Maria Pihlgren
- AC Immune SA, EPFL Innovation Park EPFL, Lausanne, Switzerland
| | | | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Zurich, Switzerland.
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Callahan D, Smita S, Joachim S, Hoehn K, Kleinstein S, Weisel F, Chikina M, Shlomchik M. Memory B cell subsets have divergent developmental origins that are coupled to distinct imprinted epigenetic states. Nat Immunol 2024; 25:562-575. [PMID: 38200277 DOI: 10.1038/s41590-023-01721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Memory B cells (MBCs) are phenotypically and functionally diverse, but their developmental origins remain undefined. Murine MBCs can be divided into subsets by expression of CD80 and PD-L2. Upon re-immunization, CD80/PD-L2 double-negative (DN) MBCs spawn germinal center B cells (GCBCs), whereas CD80/PD-L2 double-positive (DP) MBCs generate plasmablasts but not GCBCs. Using multiple approaches, including generation of an inducible GCBC-lineage reporter mouse, we demonstrate in a T cell-dependent response that DN cells formed independently of the germinal center (GC), whereas DP cells exhibited either extrafollicular (DPEX) or GCBC (DPGC) origins. Chromatin and transcriptional profiling revealed similarity of DN cells with an early memory precursor. Reciprocally, GCBC-derived DP cells shared distinct genomic features with GCBCs, while DPEX cells had hybrid features. Upon restimulation, DPEX cells were more prone to divide, while DPGC cells differentiated toward IgG1+ plasmablasts. Thus, MBC functional diversity is generated through distinct developmental histories, which imprint characteristic epigenetic patterns onto their progeny, thereby programming them for divergent functional responses.
Collapse
Affiliation(s)
- Derrick Callahan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shuchi Smita
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephen Joachim
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Steven Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Florian Weisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Maria Chikina
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Budeus B, Kibler A, Küppers R. Human IgM-expressing memory B cells. Front Immunol 2023; 14:1308378. [PMID: 38143767 PMCID: PMC10748387 DOI: 10.3389/fimmu.2023.1308378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
A hallmark of T cell dependent (TD) humoral immune responses is the generation of long-lived memory B cells. The generation of these cells occurs primarily in the germinal center (GC) reaction, where antigen-activated B cells undergo affinity maturation as a major consequence of the combined processes of proliferation, somatic hypermutation of their immunoglobulin V (IgV) region genes, and selection for improved affinity of their B-cell antigen receptors. As many B cells also undergo class-switching to IgG or IgA in these TD responses, there was traditionally a focus on class-switched memory B cells in both murine and human studies on memory B cells. However, it has become clear that there is also a large subset of IgM-expressing memory B cells, which have important phenotypic and functional similarities but also differences to class-switched memory B cells. There is an ongoing discussion about the origin of distinct subsets of human IgM+ B cells with somatically mutated IgV genes. We argue here that the vast majority of human IgM-expressing B cells with somatically mutated IgV genes in adults is indeed derived from GC reactions, even though a generation of some mostly lowly mutated IgM+ B cells from other differentiation pathways, mainly in early life, may exist.
Collapse
Affiliation(s)
| | | | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg–Essen, Essen, Germany
| |
Collapse
|
5
|
Linterman MA. Age-dependent changes in T follicular helper cells shape the humoral immune response to vaccination. Semin Immunol 2023; 69:101801. [PMID: 37379670 DOI: 10.1016/j.smim.2023.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Vaccination is an excellent strategy to limit the morbidity and mortality associated with infectious disease. Vaccination creates protective, long-lived antibody-mediated immunity by inducing the germinal centre response, an intricate immune reaction that produces memory B cells and long-lived antibody-secreting plasma cells that provide protection against (re)infection. The magnitude and quality of the germinal centre response declines with age, contributing to poor vaccine-induced immunity in older individuals. T follicular helper cells are essential for the formation and function of the germinal centre response. This review will discuss how age-dependent changes in T follicular helper cells influence the germinal centre response, and the evidence that age-dependent changes need not be a barrier to successful vaccination in the later years of life.
Collapse
Affiliation(s)
- Michelle A Linterman
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom.
| |
Collapse
|
6
|
Matz HC, McIntire KM, Ellebedy AH. 'Persistent germinal center responses: slow-growing trees bear the best fruits'. Curr Opin Immunol 2023; 83:102332. [PMID: 37150126 PMCID: PMC10829534 DOI: 10.1016/j.coi.2023.102332] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
Germinal centers (GCs) are key microanatomical sites in lymphoid organs where responding B cells mature and undergo affinity-based selection. The duration of the GC reaction has long been assumed to be relatively brief, but recent studies in humans, nonhuman primates, and mice indicate that GCs can last for weeks to months after initial antigen exposure. This review examines recent studies investigating the factors that influence GC duration, including antigen persistence, T-follicular helper cells, and mode of immunization. Potential mechanisms for how persistent GCs influence the B-cell repertoire are considered. Overall, these studies provide a blueprint for how to design better vaccines that elicit persistent GC responses.
Collapse
Affiliation(s)
- Hanover C Matz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Katherine M McIntire
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, USA.
| |
Collapse
|
7
|
Liu X, Liu B, Qi H. Germinal center reaction and output: recent advances. Curr Opin Immunol 2023; 82:102308. [PMID: 37018876 DOI: 10.1016/j.coi.2023.102308] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 04/05/2023]
Abstract
The germinal center (GC) reaction is unique in that it incorporates clonal expansion, somatic mutagenesis, affinity-based selection, and differentiation events all in one tightly packed but highly dynamic microenvironment to produce affinity-matured plasma cells (PCs) or memory B cells (MBCs). Here, we review recent advances in our understanding of how cyclic expansion and selection are orchestrated, how stringency and efficiency of selection are maintained, and how external signals are integrated in B cells to promote post-GC development of PCs and MBCs.
Collapse
Affiliation(s)
- Xin Liu
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Changping Laboratory, Beijing, China
| | - Bo Liu
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Changping Laboratory, Beijing, China
| | - Hai Qi
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Changping Laboratory, Beijing, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Rivera CE, Zhou Y, Chupp DP, Yan H, Fisher AD, Simon R, Zan H, Xu Z, Casali P. Intrinsic B cell TLR-BCR linked coengagement induces class-switched, hypermutated, neutralizing antibody responses in absence of T cells. SCIENCE ADVANCES 2023; 9:eade8928. [PMID: 37115935 PMCID: PMC10146914 DOI: 10.1126/sciadv.ade8928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Maturation of antibody responses entails somatic hypermutation (SHM), class-switch DNA recombination (CSR), plasma cell differentiation, and generation of memory B cells, and it is thought to require T cell help. We showed that B cell Toll-like receptor 4 (TLR4)-B cell receptor (BCR) (receptor for antigen) coengagement by 4-hydroxy-3-nitrophenyl acetyl (NP)-lipopolysaccharide (LPS) (Escherichia coli lipid A polysaccharide O-antigen) or TLR5-BCR coengagement by Salmonella flagellin induces mature antibody responses to NP and flagellin in Tcrβ-/-Tcrδ-/- and NSG/B mice. TLR-BCR coengagement required linkage of TLR and BCR ligands, "linked coengagement." This induced B cell CSR/SHM, germinal center-like differentiation, clonal expansion, intraconal diversification, plasma cell differentiation, and an anamnestic antibody response. In Tcrβ-/-Tcrδ-/- mice, linked coengagement of TLR4-BCR by LPS or TLR5-BCR by flagellin induced protective antibodies against E. coli or Salmonella Typhimurium. Our findings unveiled a critical role of B cell TLRs in inducing neutralizing antibody responses, including those to microbial pathogens, without T cell help.
Collapse
Affiliation(s)
- Carlos E. Rivera
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Yulai Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Daniel P. Chupp
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Hui Yan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Amanda D. Fisher
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Raphael Simon
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hong Zan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Zhenming Xu
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Paolo Casali
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
- Department of Medicine, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
9
|
Garg AK, Mitra T, Schips M, Bandyopadhyay A, Meyer-Hermann M. Amount of antigen, T follicular helper cells and affinity of founder cells shape the diversity of germinal center B cells: A computational study. Front Immunol 2023; 14:1080853. [PMID: 36993964 PMCID: PMC10042134 DOI: 10.3389/fimmu.2023.1080853] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
A variety of B cell clones seed the germinal centers, where a selection stringency expands the fitter clones to generate higher affinity antibodies. However, recent experiments suggest that germinal centers often retain a diverse set of B cell clones with a range of affinities and concurrently carry out affinity maturation. Amid a tendency to flourish germinal centers with fitter clones, how several B cell clones with differing affinities can be concurrently selected remains poorly understood. Such a permissive selection may allow non-immunodominant clones, which are often rare and of low-affinity, to somatically hypermutate and result in a broad and diverse B cell response. How the constituent elements of germinal centers, their quantity and kinetics may modulate diversity of B cells, has not been addressed well. By implementing a state-of-the-art agent-based model of germinal center, here, we study how these factors impact temporal evolution of B cell clonal diversity and its underlying balance with affinity maturation. While we find that the extent of selection stringency dictates clonal dominance, limited antigen availability on follicular dendritic cells is shown to expedite the loss of diversity of B cells as germinal centers mature. Intriguingly, the emergence of a diverse set of germinal center B cells depends on high affinity founder cells. Our analysis also reveals a substantial number of T follicular helper cells to be essential in balancing affinity maturation with clonal diversity, as a low number of T follicular helper cells impedes affinity maturation and also contracts the scope for a diverse B cell response. Our results have implications for eliciting antibody responses to non-immunodominant specificities of the pathogens by controlling the regulators of the germinal center reaction, thereby pivoting a way for vaccine development to generate broadly protective antibodies.
Collapse
Affiliation(s)
- Amar K. Garg
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tanmay Mitra
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- *Correspondence: Tanmay Mitra, ; Michael Meyer-Hermann,
| | - Marta Schips
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Arnab Bandyopadhyay
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Tanmay Mitra, ; Michael Meyer-Hermann,
| |
Collapse
|
10
|
Sollid LM, Iversen R. Tango of B cells with T cells in the making of secretory antibodies to gut bacteria. Nat Rev Gastroenterol Hepatol 2023; 20:120-128. [PMID: 36056203 DOI: 10.1038/s41575-022-00674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 02/03/2023]
Abstract
Polymeric IgA and IgM are transported across the epithelial barrier from plasma cells in the lamina propria to exert a function in the gut lumen as secretory antibodies. Many secretory antibodies are reactive with the gut bacteria, and mounting evidence suggests that these antibodies are important for the host to control gut bacterial communities. However, we have incomplete knowledge of how bacteria-reactive secretory antibodies are formed. Antibodies from gut plasma cells often show bacterial cross-species reactivity, putting the degree of specificity behind anti-bacterial antibody responses into question. Such cross-species reactive antibodies frequently recognize non-genome-encoded membrane glycan structures. On the other hand, the T cell epitopes are peptides encoded in the bacterial genomes, thereby allowing a higher degree of predictable specificity on the T cell side of anti-bacterial immune responses. In this Perspective, we argue that the production of bacteria-reactive secretory antibodies is mainly controlled by the antigen specificity of T cells, which provide help to B cells. To be able to harness this system (for instance, for manipulation with vaccines), we need to obtain insight into the bacterial epitopes recognized by T cells in addition to characterizing the reactivity of the antibodies.
Collapse
Affiliation(s)
- Ludvig M Sollid
- K.G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| | - Rasmus Iversen
- K.G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| |
Collapse
|
11
|
Arulraj T, Binder SC, Meyer-Hermann M. Investigating the Mechanism of Germinal Center Shutdown. Front Immunol 2022; 13:922318. [PMID: 35911680 PMCID: PMC9329532 DOI: 10.3389/fimmu.2022.922318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Germinal centers (GCs) are transient structures where affinity maturation of B cells gives rise to high affinity plasma and memory cells. The mechanism of GC shutdown is unclear, despite being an important phenomenon maintaining immune homeostasis. In this study, we used a mathematical model to identify mechanisms that can independently promote contraction of GCs leading to shutdown. We show that GC shutdown can be promoted by antigen consumption by B cells, antigen masking by soluble antibodies, alterations in follicular dendritic cell (FDC) network area, modulation of immune complex cycling rate constants, alterations in T follicular helper signaling, increased terminal differentiation and reduced B cell division capacity. Proposed mechanisms promoted GC contraction by ultimately decreasing the number of B cell divisions and recycling cells. Based on the in-silico predictions, we suggest a combination of experiments that can be potentially employed by future studies to unravel the mechanistic basis of GC shutdown such as measurements of the density of pMHC presentation of B cells, FDC network size per B cell, fraction of cells expressing differentiation markers. We also show that the identified mechanisms differentially affect the efficiency of GC reaction estimated based on the quantity and quality of resulting antibodies.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian C. Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Michael Meyer-Hermann,
| |
Collapse
|
12
|
Choi SC, Li W, Zhang X, Kanda N, Zeumer-Spataro L, Teng X, Morel L. Pharmacologically Inferred Glycolysis and Glutaminolysis Requirement of B Cells in Lupus-Prone Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2098-2108. [PMID: 35387839 PMCID: PMC9050845 DOI: 10.4049/jimmunol.2100356] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022]
Abstract
Several studies have shown an enhanced metabolism in the CD4+ T cells of lupus patients and lupus-prone mice. Little is known about the metabolism of B cells in lupus. In this study, we compared the metabolism of B cells between lupus-prone B6.Sle1.Sle2.Sle3 triple-congenic mice and C57BL/6 controls at steady state relative to autoantibody production, as well as during T cell-dependent (TD) and T cell-independent (TI) immunizations. Starting before the onset of autoimmunity, B cells from triple-congenic mice showed an elevated glycolysis and mitochondrial respiration, which were normalized in vivo by inhibiting glycolysis with a 2-deoxy-d-glucose (2DG) treatment. 2DG greatly reduced the production of TI-Ag-specific Abs, but showed minimal effect with TD-Ags. In contrast, the inhibition of glutaminolysis with 6-diazo-5-oxo-l-norleucine had a greater effect on TD than TI-Ag-specific Abs in both strains. Analysis of the TI and TD responses in purified B cells in vitro suggests, however, that the glutaminolysis requirement is not B cell-intrinsic. Thus, B cells have a greater requirement for glycolysis in TI than TD responses, as inferred from pharmacological interventions. B cells from lupus-prone and control mice have different intrinsic metabolic requirements or different responses toward 2DG and 6-diazo-5-oxo-l-norleucine, which mirrors our previous results obtained with follicular Th cells. Overall, these results predict that targeting glucose metabolism may provide an effective therapeutic approach for systemic autoimmunity by eliminating both autoreactive follicular Th and B cells, although it may also impair TI responses.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Xiaojuan Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Nathalie Kanda
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Leilani Zeumer-Spataro
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Xiangyu Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
13
|
Zhang Y, Toellner KM. Germinal center derived B cell memory without T cells. J Exp Med 2022; 219:e20220012. [PMID: 35171242 PMCID: PMC8932542 DOI: 10.1084/jem.20220012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Liu et al. (2022. J. Exp. Med.https://doi.org/10.1084/jem.20210527) in this issue show that T cell-independent germinal centers (GCs) can produce long-lived memory and plasma cell output. This may help explain how polysaccharide antigens provide long-term protection.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham Medical School, Birmingham, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham Medical School, Birmingham, UK
| |
Collapse
|
14
|
Liu X, Zhao Y, Qi H. T-independent antigen induces humoral memory through germinal centers. J Exp Med 2022; 219:212958. [PMID: 35019947 PMCID: PMC8759593 DOI: 10.1084/jem.20210527] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022] Open
Abstract
T-dependent humoral responses generate long-lived memory B cells and plasma cells (PCs) predominantly through germinal center (GC) reaction. In human and mouse, memory B cells and long-lived PCs are also generated during immune responses to T-independent antigen, including bacterial polysaccharides, although the underlying mechanism for such T-independent humoral memory is not clear. While T-independent antigen can induce GCs, they are transient and thought to be nonproductive. Unexpectedly, by genetic fate-mapping, we find that these GCs actually output memory B cells and PCs. Using a conditional BCL6 deletion approach, we show memory B cells and PCs fail to last when T-independent GCs are precluded, suggesting that the GC experience per se is important for programming longevity of T-independent memory B cells and PCs. Consistent with the fact that infants cannot mount long-lived humoral memory to T-independent antigen, B cells from young animals intrinsically fail to form T-independent GCs. Our results suggest that T-independent GCs support humoral memory, and GC induction may be key to effective vaccines with T-independent antigen.
Collapse
Affiliation(s)
- Xin Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China.,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yongshan Zhao
- Tsinghua-Peking Center for Life Sciences, Beijing, China.,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China.,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Moysi E, Paris RM, Le Grand R, Koup RA, Petrovas C. Human lymph node immune dynamics as driver of vaccine efficacy: an understudied aspect of immune responses. Expert Rev Vaccines 2022; 21:633-644. [PMID: 35193447 DOI: 10.1080/14760584.2022.2045198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION During the last century, changes in hygiene, sanitation, and the advent of childhood vaccination have resulted in profound reductions in mortality from infectious diseases. Despite this success, infectious diseases remain an enigmatic public health threat, where effective vaccines for influenza, human immunodeficiency virus (HIV), tuberculosis, and malaria, among others remain elusive. AREA COVERED In addition to the immune evasion tactics employed by complex pathogens, our understanding of immunopathogenesis and the development of effective vaccines is also complexified by the inherent variability of human immune responses. Lymph nodes (LNs) are the anatomical sites where B cell responses develop. An important, but understudied component of immune response complexity is variation in LN immune dynamics and in particular variation in germinal center follicular helper T cells (Tfh) and B cells which can be impacted by genetic variation, aging, the microbiome and chronic infection. EXPERT OPINION This review describes the contribution of genetic variation, aging, microbiome and chronic infection on LN immune dynamics and associated Tfh responses and offers perspective on how inclusion of LN immune subset and cytoarchitecture analyses, along with peripheral blood biomarkers can supplement systems vaccinology or immunology approaches for the development of vaccines or other interventions to prevent infectious diseases.
Collapse
Affiliation(s)
- Eirini Moysi
- Tissue Analysis Core, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | | | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA.,Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Tsubata T. Role of inhibitory B cell co-receptors in B cell self-tolerance to non-protein antigens. Immunol Rev 2022; 307:53-65. [PMID: 34989000 DOI: 10.1111/imr.13059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Antibodies to non-protein antigens such as nucleic acids, polysaccharides, and glycolipids play important roles in both host defense against microbes and development of autoimmune diseases. Although non-protein antigens are not recognized by T cells, antibody production to non-protein antigens involve T cell-independent mechanisms such as signaling through TLR7 and TLR9 in antibody production to nucleic acids. Although self-reactive B cells are tolerized by various mechanisms including deletion, anergy, and receptor editing, T cell tolerance is also crucial in self-tolerance of B cells to protein self-antigen because self-reactive T cells induce autoantibody production to these self-antigens. However, presence of T cell-independent mechanism suggests that T cell tolerance is not able to maintain B cell tolerance to non-protein self-antigens. Lines of evidence suggest that B cell response to non-protein self-antigens such as nucleic acids and gangliosides, sialic acid-containing glycolipids, are suppressed by inhibitory B cell co-receptors CD72 and Siglec-G, respectively. These inhibitory co-receptors recognize non-protein self-antigens and suppress BCR signaling induced by these antigens, thereby inhibiting B cell response to these self-antigens. Inhibitory B cell co-receptors appear to be involved in B cell self-tolerance to non-protein self-antigens that can activate B cells by T cell-independent mechanisms.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
17
|
Rauschmeier R, Reinhardt A, Gustafsson C, Glaros V, Artemov AV, Dunst J, Taneja R, Adameyko I, Månsson R, Busslinger M, Kreslavsky T. Bhlhe40 function in activated B and TFH cells restrains the GC reaction and prevents lymphomagenesis. J Exp Med 2021; 219:212923. [PMID: 34919144 PMCID: PMC8689665 DOI: 10.1084/jem.20211406] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/01/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022] Open
Abstract
The generation of high-affinity antibodies against pathogens and vaccines requires the germinal center (GC) reaction, which relies on a complex interplay between specialized effector B and CD4 T lymphocytes, the GC B cells and T follicular helper (TFH) cells. Intriguingly, several positive key regulators of the GC reaction are common for both cell types. Here, we report that the transcription factor Bhlhe40 is a crucial cell-intrinsic negative regulator affecting both the B and T cell sides of the GC reaction. In activated CD4 T cells, Bhlhe40 was required to restrain proliferation, thus limiting the number of TFH cells. In B cells, Bhlhe40 executed its function in the first days after immunization by selectively restricting the generation of the earliest GC B cells but not of early memory B cells or plasmablasts. Bhlhe40-deficient mice with progressing age succumbed to a B cell lymphoma characterized by the accumulation of monoclonal GC B-like cells and polyclonal TFH cells in various tissues.
Collapse
Affiliation(s)
- René Rauschmeier
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Annika Reinhardt
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Gustafsson
- Center for Hematology and Regenerative Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vassilis Glaros
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Artem V. Artemov
- Department of Neuroimmunology, Medical University of Vienna, Vienna, Austria
- Endocrinology Research Centre, Moscow, Russian Federation
| | - Josefine Dunst
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Igor Adameyko
- Department of Neuroimmunology, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Månsson
- Center for Hematology and Regenerative Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Taras Kreslavsky
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Bemark M, Angeletti D. Know your enemy or find your friend?-Induction of IgA at mucosal surfaces. Immunol Rev 2021; 303:83-102. [PMID: 34331314 PMCID: PMC7612940 DOI: 10.1111/imr.13014] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Most antibodies produced in the body are of the IgA class. The dominant cell population producing them are plasma cells within the lamina propria of the gastrointestinal tract, but many IgA-producing cells are also found in the airways, within mammary tissues, the urogenital tract and inside the bone marrow. Most IgA antibodies are transported into the lumen by epithelial cells as part of the mucosal secretions, but they are also present in serum and other body fluids. A large part of the commensal microbiota in the gut is covered with IgA antibodies, and it has been demonstrated that this plays a role in maintaining a healthy balance between the host and the bacteria. However, IgA antibodies also play important roles in neutralizing pathogens in the gastrointestinal tract and the upper airways. The distinction between the two roles of IgA - protective and balance-maintaining - not only has implications on function but also on how the production is regulated. Here, we discuss these issues with a special focus on gut and airways.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Arulraj T, Binder SC, Robert PA, Meyer-Hermann M. Germinal Centre Shutdown. Front Immunol 2021; 12:705240. [PMID: 34305944 PMCID: PMC8293096 DOI: 10.3389/fimmu.2021.705240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Germinal Centres (GCs) are transient structures in secondary lymphoid organs, where affinity maturation of B cells takes place following an infection. While GCs are responsible for protective antibody responses, dysregulated GC reactions are associated with autoimmune disease and B cell lymphoma. Typically, ‘normal’ GCs persist for a limited period of time and eventually undergo shutdown. In this review, we focus on an important but unanswered question – what causes the natural termination of the GC reaction? In murine experiments, lack of antigen, absence or constitutive T cell help leads to premature termination of the GC reaction. Consequently, our present understanding is limited to the idea that GCs are terminated due to a decrease in antigen access or changes in the nature of T cell help. However, there is no direct evidence on which biological signals are primarily responsible for natural termination of GCs and a mechanistic understanding is clearly lacking. We discuss the present understanding of the GC shutdown, from factors impacting GC dynamics to changes in cellular interactions/dynamics during the GC lifetime. We also address potential missing links and remaining questions in GC biology, to facilitate further studies to promote a better understanding of GC shutdown in infection and immune dysregulation.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian C Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Immunology, University of Oslo, Oslo, Norway
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
20
|
Dynamic regulation of T FH selection during the germinal centre reaction. Nature 2021; 591:458-463. [PMID: 33536617 PMCID: PMC7979475 DOI: 10.1038/s41586-021-03187-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 12/24/2020] [Indexed: 01/02/2023]
Abstract
The germinal center is a dynamic microenvironment wherein B cells expressing high affinity antibody variants produced by somatic hypermutation are selected for clonal expansion by limiting numbers of T follicular helper cells 1,2. Although much is known about the mechanisms that control B cell selection in the germinal center, far less is understood about the clonal behavior of the T follicular helper cells that regulate this process. Here we report on the dynamic behavior of T follicular helper cell clones during the germinal center reaction. We find that like germinal center B cells, T follicular helper cells undergo antigen dependent selection throughout the germinal center reaction resulting in differential proliferative expansion and contraction. Increasing the amount of antigen presented in the germinal center leads to increased T follicular helper cell division. Competition between T follicular helper cell clones is mediated by T cell receptor affinity for peptide-MHC ligand. T cells expanding preferentially in the germinal center show increased expression of genes downstream of the T cell receptor, genes required for metabolic reprogramming, cell division and cytokine production. These dynamic changes lead to dramatic remodeling of the functional T follicular helper cell repertoire during the germinal center reaction.
Collapse
|
21
|
Leadbetter EA, Karlsson MCI. Invariant natural killer T cells balance B cell immunity. Immunol Rev 2021; 299:93-107. [PMID: 33438287 DOI: 10.1111/imr.12938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
Invariant natural killer T (iNKT) cells mediate rapid immune responses which bridge the gap between innate and adaptive responses to pathogens while also providing key regulation to maintain immune homeostasis. Both types of important iNKT immune responses are mediated through interactions with innate and adaptive B cells. As such, iNKT cells sit at the decision-making fulcrum between regulating inflammatory or autoreactive B cells and supporting protective or regulatory B cell populations. iNKT cells interpret the signals in their environment to set the tone for subsequent adaptive responses, with outcomes ranging from getting licensed to maintain homeostasis as an iNKT regulatory cell (iNKTreg ) or being activated to become an iNKT follicular helper (iNKTFH ) cell supporting pathogen-specific effector B cells. Here we review iNKT and B cell cooperation across the spectrum of immune outcomes, including during allergy and autoimmune disease, tumor surveillance and immunotherapy, or pathogen defense and vaccine responses. Because of their key role as influencers, iNKT cells provide a valuable target for therapeutic interventions. Understanding the nature of the interactions between iNKT and B cells will enable the development of clinical interventions to strategically target regulatory iNKT and B cell populations or inflammatory ones, depending on the circumstance.
Collapse
Affiliation(s)
- Elizabeth A Leadbetter
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Enhanced BCR signaling inflicts early plasmablast and germinal center B cell death. iScience 2021; 24:102038. [PMID: 33532715 PMCID: PMC7822941 DOI: 10.1016/j.isci.2021.102038] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023] Open
Abstract
It is still not clear how B cell receptor (BCR) signaling intensity affects plasma cell (PC) and germinal center (GC) B cell differentiation. We generated Cγ1 Cre/wt Ptpn6 fl/fl mice where SHP-1, a negative regulator of BCR signaling, is deleted rapidly after B cell activation. Although immunization with T-dependent antigens increased BCR signaling, it led to PC reduction and increased apoptosis. Dependent on the antigen, the early GC B cell response was equally reduced and apoptosis increased. At the same time, a higher proportion of GC B cells expressed cMYC, suggesting GC B cell-Tfh cell interactions may be increased. GC B cell numbers returned to normal at later stages, whereas affinity maturation was suppressed in the long term. This confirms that BCR signaling not only directs affinity-dependent B cell selection but also, without adequate further stimulation, can inflict cell death, which may be important for the maintenance of B cell tolerance.
Collapse
|
23
|
Reading the room: iNKT cells influence B cell responses. Mol Immunol 2020; 130:49-54. [PMID: 33360376 DOI: 10.1016/j.molimm.2020.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022]
Abstract
Rapid immune responses regulated by invariant Natural Killer T (iNKT) cells bridge the gap between innate and adaptive responses to pathogens, while also providing key regulation to maintain immune homeostasis. iNKT immune protection and immune regulation are both mediated through interactions with innate and adaptive B cell populations that express CD1d. Recent studies have expanded our understanding of the position of iNKT cells at the fulcrum between regulating inflammatory and autoreactive B cells. Environmental signals influence iNKT cells to set the tone for subsequent adaptive responses, ranging from maintaining homeostasis as an iNKT regulatory cell (iNKTreg) or supporting pathogen-specific effector B cells as an iNKT follicular helper (iNKTFH). Here we review recent advances in iNKT and B cell cooperation during autoimmunity and sterile inflammation. Understanding the nature of the interactions between iNKT and B cells will enable the development of clinical interventions to strategically target regulatory iNKT and B cell populations or inflammatory ones, across a range of indications.
Collapse
|
24
|
Elsner RA, Shlomchik MJ. IL-12 Blocks Tfh Cell Differentiation during Salmonella Infection, thereby Contributing to Germinal Center Suppression. Cell Rep 2020; 29:2796-2809.e5. [PMID: 31775046 DOI: 10.1016/j.celrep.2019.10.069] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/21/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
Germinal centers (GC) are crucial for the formation of long-lived humoral immunity. Many pathogens suppress GC, including Salmonella enterica serovar Typhimurium (STm), but the mechanisms driving suppression remain unknown. We report that neither plasmablasts nor STm-specific B cells are required for GC suppression in mice. Rather, we identify that interleukin-12 (IL-12), but not interferon-γ (IFN-γ), directly suppresses T follicular helper (Tfh) cell differentiation of T cells intrinsically. Administering recombinant IL-12 during nitrophenyl-Chicken Gamma Globulin (NP-CGG) immunization also suppresses Tfh cell differentiation and GC B cells, indicating that IL-12 is sufficient to suppress Tfh cell differentiation independent of STm infection. Recombinant IL-12 induces high levels of T-bet, and T-bet is necessary for Tfh cell suppression. Therefore, IL-12 induced during STm infection in mice contributes to GC suppression via suppression of Tfh cell differentiation. More broadly, these data suggest that IL-12 can tailor the proportions of humoral (Tfh cell) and cellular (T helper type 1 [Th1] cell) immunity to the infection, with implications for IL-12 targeting therapies in autoimmunity and vaccination.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
25
|
Olson WJ, Jakic B, Hermann‐Kleiter N. Regulation of the germinal center response by nuclear receptors and implications for autoimmune diseases. FEBS J 2020; 287:2866-2890. [PMID: 32246891 PMCID: PMC7497069 DOI: 10.1111/febs.15312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023]
Abstract
The immune system plays an essential role in protecting the host from infectious diseases and cancer. Notably, B and T lymphocytes from the adaptive arm of the immune system can co-operate to form long-lived antibody responses and are therefore the main target in vaccination approaches. Nevertheless, protective immune responses must be tightly regulated to avoid hyper-responsiveness and responses against self that can result in autoimmunity. Nuclear receptors (NRs) are perfectly adapted to rapidly alter transcriptional cellular responses to altered environmental settings. Their functional role is associated with both immune deficiencies and autoimmunity. Despite extensive linking of nuclear receptor function with specific CD4 T helper subsets, research on the functional roles and mechanisms of specific NRs in CD4 follicular T helper cells (Tfh) and germinal center (GC) B cells during the germinal center reaction is just emerging. We review recent advances in our understanding of NR regulation in specific cell types of the GC response and discuss their implications for autoimmune diseases such as systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- William J. Olson
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| | - Bojana Jakic
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
- Department of Immunology, Genetics and PathologyUppsala UniversitySweden
| | - Natascha Hermann‐Kleiter
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| |
Collapse
|
26
|
Robinson MJ, Webster RH, Tarlinton DM. How intrinsic and extrinsic regulators of plasma cell survival might intersect for durable humoral immunity. Immunol Rev 2020; 296:87-103. [DOI: 10.1111/imr.12895] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Marcus J. Robinson
- Department of Immunology & Pathology Alfred Medical Research and Education Precinct Monash University Melbourne Vic. Australia
| | - Rosela H. Webster
- Department of Immunology & Pathology Alfred Medical Research and Education Precinct Monash University Melbourne Vic. Australia
| | - David M. Tarlinton
- Department of Immunology & Pathology Alfred Medical Research and Education Precinct Monash University Melbourne Vic. Australia
| |
Collapse
|
27
|
Nelson AN, Lin WHW, Shivakoti R, Putnam NE, Mangus L, Adams RJ, Hauer D, Baxter VK, Griffin DE. Association of persistent wild-type measles virus RNA with long-term humoral immunity in rhesus macaques. JCI Insight 2020; 5:134992. [PMID: 31935196 DOI: 10.1172/jci.insight.134992] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/08/2020] [Indexed: 01/21/2023] Open
Abstract
Recovery from measles results in life-long protective immunity. To understand induction of long-term immunity, rhesus macaques were studied for 6 months after infection with wild-type measles virus (MeV). Infection caused viremia and rash, with clearance of infectious virus by day 14. MeV RNA persisted in PBMCs for 30-90 days and in lymphoid tissue for 6 months most often in B cells but was rarely detected in BM. Antibody with neutralizing activity and binding specificity for MeV nucleocapsid (N), hemagglutinin (H), and fusion proteins appeared with the rash and avidity matured over 3-4 months. Lymph nodes had increasing numbers of MeV-specific antibody-secreting cells (ASCs) and germinal centers with late hyalinization. ASCs appeared in circulation with the rash and continued to appear along with peripheral T follicular helper cells for the study duration. ASCs in lymph nodes and PBMCs produced antibody against both H and N, with more H-specific ASCs in BM. During days 14-21, 20- to 100-fold more total ASCs than MeV-specific ASCs appeared in circulation, suggesting mobilization of preexisting ASCs. Therefore, persistence of MeV RNA in lymphoid tissue was accompanied by continued germinal center formation, ASC production, avidity maturation, and accumulation of H-specific ASCs in BM to sustain neutralizing antibody and protective immunity.
Collapse
Affiliation(s)
- Ashley N Nelson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Wen-Hsuan W Lin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rupak Shivakoti
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nicole E Putnam
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lisa Mangus
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert J Adams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Debra Hauer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Victoria K Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Pabst O, Slack E. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol 2020; 13:12-21. [PMID: 31740744 PMCID: PMC6914667 DOI: 10.1038/s41385-019-0227-4] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 02/04/2023]
Abstract
Secretory IgA has long been a divisive molecule. Some immunologists point to the mild phenotype of IgA deficiency to justify ignoring it, while some consider its abundance and evolutionary history as grounds for its importance. Further, there is extensive and growing disagreement over the relative importance of affinity-matured, T cell-dependent IgA vs. "natural" and T cell-independent IgA in both microbiota and infection control. As with all good arguments, there is good data supporting different opinions. Here we revisit longstanding questions in IgA biology. We start the discussion from the question of intestinal IgA antigen specificity and critical definitions regarding IgA induction, specificity, and function. These definitions must then be tessellated with the cellular and molecular pathways shaping IgA responses, and the mechanisms by which IgA functions. On this basis we propose how IgA may contribute to the establishment and maintenance of beneficial interactions with the microbiota.
Collapse
Affiliation(s)
- Oliver Pabst
- 0000 0001 0728 696Xgrid.1957.aInstitute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Emma Slack
- 0000 0001 2156 2780grid.5801.cInstitute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
29
|
Chen Z, Wholey WY, Hassani Najafabadi A, Moon JJ, Grigorova I, Chackerian B, Cheng W. Self-Antigens Displayed on Liposomal Nanoparticles above a Threshold of Epitope Density Elicit Class-Switched Autoreactive Antibodies Independent of T Cell Help. THE JOURNAL OF IMMUNOLOGY 2019; 204:335-347. [PMID: 31836655 DOI: 10.4049/jimmunol.1801677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Epitope density has a profound impact on B cell responses to particulate Ags, the molecular mechanisms of which remain to be explored. To dissect the role of epitope density in this process, we have synthesized a series of liposomal particles, similar to the size of viruses, that display a model self-antigen peptide at defined surface densities. Immunization of C57BL/6J mice using these particles elicited both IgM and class-switched IgG1, IgG2b, and IgG3 autoreactive Abs that depended on the epitope density. In C57BL/6 gene knockout mice lacking either functional TCRs or MHC class II molecules on B cells, the liposomal particles also elicited IgM, IgG1, IgG2b, and IgG3 responses that were comparable in magnitudes to wild-type mice, suggesting that this B cell response was independent of cognate T cell help. Notably, the titer of the IgG in wild-type animals could be increased by more than 200-fold upon replacement of liposomes with bacteriophage Qβ virus-like particles that displayed the same self-antigen peptide at comparable epitope densities. This enhancement was lost almost completely in gene knockout mice lacking either TCRs or MHC class II molecules on B cells. In conclusion, epitope density above a threshold on particulate Ags can serve as a stand-alone signal to trigger secretion of autoreactive and class-switched IgG in vivo in the absence of cognate T cell help or any adjuvants. The extraordinary immunogenicity of Qβ viral-like particles relies, in large part, on their ability to effectively recruit T cell help after B cell activation.
Collapse
Affiliation(s)
- Zhilin Chen
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Wei-Yun Wholey
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109
| | | | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Irina Grigorova
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM 87131; and
| | - Wei Cheng
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109; .,Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
30
|
Abstract
The importance of B cell and antibody-mediated immune response in the acute and long-term persistence of transplanted solid organs has become increasingly evident in recent years. A variety of therapeutic innovations target antibodies directed toward HLA or blood groups (ABO) to allow better allocation and posttransplant longevity of organs. Antibodies originate from plasma cells (PCs), which are terminally differentiated B cells. Long-term production and persistence of these antibodies is partly due to fast reactivation of previously generated memory B cells; however, there is increasing evidence that some differentiated PCs can persist independently in the bone marrow for years or even decades, producing specific antibodies or even experiencing regeneration without proliferation without need to be replaced by newly differentiating B cells. This review outlines the currently presumed pathways of differentiation, antibody, and memory generation on both B-cell and PC levels. On this background, current therapeutic concepts for antibody reduction before and after solid organ transplantation are considered, to better understand their mechanisms, possible synergisms, and specific risks. Specific differences in regards to ABO versus HLA antibodies as well as practical relevance for generation of desensitization and posttransplant antibody-directed therapy protocols are discussed.
Collapse
|
31
|
Martin K, Touil R, Kolb Y, Cvijetic G, Murakami K, Israel L, Duraes F, Buffet D, Glück A, Niwa S, Bigaud M, Junt T, Zamurovic N, Smith P, McCoy KD, Ohashi PS, Bornancin F, Calzascia T. Malt1 Protease Deficiency in Mice Disrupts Immune Homeostasis at Environmental Barriers and Drives Systemic T Cell-Mediated Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2019; 203:2791-2806. [PMID: 31659015 DOI: 10.4049/jimmunol.1900327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
The paracaspase Malt1 is a key regulator of canonical NF-κB activation downstream of multiple receptors in both immune and nonimmune cells. Genetic disruption of Malt1 protease function in mice and MALT1 mutations in humans results in reduced regulatory T cells and a progressive multiorgan inflammatory pathology. In this study, we evaluated the altered immune homeostasis and autoimmune disease in Malt1 protease-deficient (Malt1PD) mice and the Ags driving disease manifestations. Our data indicate that B cell activation and IgG1/IgE production is triggered by microbial and dietary Ags preferentially in lymphoid organs draining mucosal barriers, likely as a result of dysregulated mucosal immune homeostasis. Conversely, the disease was driven by a polyclonal T cell population directed against self-antigens. Characterization of the Malt1PD T cell compartment revealed expansion of T effector memory cells and concomitant loss of a CD4+ T cell population that phenotypically resembles anergic T cells. Therefore, we propose that the compromised regulatory T cell compartment in Malt1PD animals prevents the efficient maintenance of anergy and supports the progressive expansion of pathogenic, IFN-γ-producing T cells. Overall, our data revealed a crucial role of the Malt1 protease for the maintenance of intestinal and systemic immune homeostasis, which might provide insights into the mechanisms underlying IPEX-related diseases associated with mutations in MALT1.
Collapse
Affiliation(s)
- Kea Martin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Ratiba Touil
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Yeter Kolb
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Grozdan Cvijetic
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Kiichi Murakami
- The Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Laura Israel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Fernanda Duraes
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - David Buffet
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Anton Glück
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Satoru Niwa
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Marc Bigaud
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Natasa Zamurovic
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Philip Smith
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Kathy D McCoy
- Department of Clinical Research, University Clinic for Visceral Surgery and Medicine, University Hospital, 3010 Bern, Switzerland; and
| | - Pamela S Ohashi
- The Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Frédéric Bornancin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Thomas Calzascia
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland;
| |
Collapse
|
32
|
Jansen JM, Gerlach T, Elbahesh H, Rimmelzwaan GF, Saletti G. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J Clin Virol 2019; 119:44-52. [DOI: 10.1016/j.jcv.2019.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023]
|
33
|
Abstract
De novo donor-specific antibody (DSA) formation is a major problem in transplantation, and associated with long-term graft decline and loss as well as sensitization, limiting future transplant options. Forming high-affinity, long-lived antibody responses involves a process called the germinal center (GC) reaction, and requires interaction between several cell types, including GC B cells, T follicular helper (Tfh) and T follicular regulatory (Tfr) cells. T follicular regulatory cells are an essential component of the GC reaction, limiting its size and reducing nonspecific or self-reactive responses.An imbalance between helper function and regulatory function can lead to excessive antibody production. High proportions of Tfh cells have been associated with DSA formation in transplantation; therefore, Tfr cells are likely to play an important role in limiting DSA production. Understanding the signals that govern Tfr cell development and the balance between helper and regulatory function within the GC is key to understanding how these cells might be manipulated to reduce the risk of DSA development.This review discusses the development and function of Tfr cells and their relevance to transplantation. In particular how current and future immunosuppressive strategies might allow us to skew the ratio between Tfr and Tfh cells to increase or decrease the risk of de novo DSA formation.
Collapse
|
34
|
Allman D, Wilmore JR, Gaudette BT. The continuing story of T-cell independent antibodies. Immunol Rev 2019; 288:128-135. [PMID: 30874357 PMCID: PMC6653682 DOI: 10.1111/imr.12754] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
The purpose of this article is to review the role of extrafollicular and T-cell independent antibody responses in humoral immunity. We consider two interrelated questions: (a) do T-cell independent antibody responses dominated by IgM and/or IgA play unique functions in immunity and homeostasis; and (b) is it typical for these responses to result in lifelong protection? In addressing these questions, we consider the established advantages of T-cell driven responses including the unique role played by germinal center reactions in these responses, and contrast the processes and outcomes of germinal center-centric responses with germinal center- and T-cell independent antibodies. We suggest that T-independent and other extrafollicular responses contribute substantially to highly stable antibody repertoires in both the serum and the intestine, providing relatively constitutive humoral barriers with the collective dual function of protecting against invading pathogens and regulating the composition of non-pathogenic microbial communities.
Collapse
Affiliation(s)
- David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Joel R Wilmore
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Complementary Role of CD4+ T Cells in Response to Pneumococcal Polysaccharide Vaccines in Humans. Vaccines (Basel) 2019; 7:vaccines7010018. [PMID: 30754689 PMCID: PMC6466080 DOI: 10.3390/vaccines7010018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/29/2019] [Indexed: 01/14/2023] Open
Abstract
Bacterial pathogens expressing capsular polysaccharides are common causes of mucosal infections (pneumonia, intestinal), as well as often fatal, invasive infections (meningitis, bloodstream infections) in children and adults worldwide. These chemically simple but structurally complex carbohydrate structures on the bacterial surface confer resistance to recognition and clearance by the immune system through a range of mechanisms. Such recognition of capsular polysaccharides may be reduced by their limited ability to directly stimulate B cells and the T cells that may facilitate these humoral responses. The capsules may promote the evasion of complement deposition and activation and may sterically shield the recognition of other subjacent protein antigens by innate factors. Antibodies to capsular polysaccharides, elicited by infection and vaccines, may overcome these obstacles and facilitate bacterial agglutination at mucosal surfaces, as well as the opsonization and clearance of these organisms in tissues and the systemic compartment. However, the immunogenicity of these antigens may be limited by their lack of direct recognition by T cells (“T-independent” antigens) and their restricted ability to generate effective memory responses. In this review, we consider the mechanisms by which polysaccharides may initiate B cell responses and specific antibody responses and the role of T cells, particularly CD4+ follicular helper (TFH) cells to support this process. In addition, we also consider more recent counterintuitive data that capsular polysaccharides themselves may bind major histocompatibility antigen HLA class II to provide a more physiologic mechanism of T cell enhancement of B cell responses to capsular polysaccharides. Defining the contributions of T cells in the generation of effective humoral responses to the capsular polysaccharides will have important implications for understanding and translating this immunobiology for the development of more effective vaccines, to prevent the morbidity and mortality associated with these common mucosal and invasive pathogens in populations at risk.
Collapse
|
36
|
Patel SR, Gibb DR, Girard-Pierce K, Zhou X, Rodrigues LC, Arthur CM, Bennett AL, Jajosky RP, Fuller M, Maier CL, Zerra PE, Chonat S, Smith NH, Tormey CA, Hendrickson JE, Stowell SR. Marginal Zone B Cells Induce Alloantibody Formation Following RBC Transfusion. Front Immunol 2018; 9:2516. [PMID: 30505302 PMCID: PMC6250814 DOI: 10.3389/fimmu.2018.02516] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
Red blood cell (RBC) alloimmunization represents a significant immunological challenge for some patients. While a variety of immune constituents likely contribute to the initiation and orchestration of alloantibodies to RBC antigens, identification of key immune factors that initiate alloantibody formation may aid in the development of a therapeutic modality to minimize or prevent this process. To define the immune factors that may be important in driving alloimmunization to an RBC antigen, we determined the specific immune compartment and distinct cells that may initially engage transfused RBCs and facilitate subsequent alloimmunization. Our findings demonstrate that the splenic compartment is essential for formation of anti-KEL antibodies following KEL RBC transfusion. Within the spleen, transfused KEL RBCs are found within the marginal sinus, where they appear to specifically co-localize with marginal zone (MZ) B cells. Consistent with this, removal of MZ B cells completely prevented alloantibody formation following KEL RBC transfusion. While MZ B cells can mediate a variety of key downstream immune pathways, depletion of follicular B cells or CD4 T cells failed to similarly impact the anti-KEL antibody response, suggesting that MZ B cells may play a key role in the development of anti-KEL IgM and IgG following KEL RBC transfusion. These findings highlight a key contributor to KEL RBC-induced antibody formation, wherein MZ B cells facilitate antibody formation following RBC transfusion.
Collapse
Affiliation(s)
- Seema R Patel
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - David R Gibb
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Kathryn Girard-Pierce
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaoxi Zhou
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Lilian Cataldi Rodrigues
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M Arthur
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ashley L Bennett
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ryan P Jajosky
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Megan Fuller
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Cheryl L Maier
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Patricia E Zerra
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - Nicole H Smith
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher A Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
37
|
Amitai A, Chakraborty AK, Kardar M. The low spike density of HIV may have evolved because of the effects of T helper cell depletion on affinity maturation. PLoS Comput Biol 2018; 14:e1006408. [PMID: 30161121 PMCID: PMC6150518 DOI: 10.1371/journal.pcbi.1006408] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/21/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
The spikes on virus surfaces bind receptors on host cells to propagate infection. High spike densities (SDs) can promote infection, but spikes are also targets of antibody-mediated immune responses. Thus, diverse evolutionary pressures can influence virus SDs. HIV's SD is about two orders of magnitude lower than that of other viruses, a surprising feature of unknown origin. By modeling antibody evolution through affinity maturation, we find that an intermediate SD maximizes the affinity of generated antibodies. We argue that this leads most viruses to evolve high SDs. T helper cells, which are depleted during early HIV infection, play a key role in antibody evolution. We find that T helper cell depletion results in high affinity antibodies when SD is high, but not if SD is low. This special feature of HIV infection may have led to the evolution of a low SD to avoid potent immune responses early in infection.
Collapse
Affiliation(s)
- Assaf Amitai
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Arup K. Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
38
|
Terminal Deoxynucleotidyl Transferase Is Not Required for Antibody Response to Polysaccharide Vaccines against Streptococcus pneumoniae and Salmonella enterica Serovar Typhi. Infect Immun 2018; 86:IAI.00211-18. [PMID: 29967094 DOI: 10.1128/iai.00211-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/26/2018] [Indexed: 11/20/2022] Open
Abstract
B cell antigen receptor (BCR) diversity increases by several orders of magnitude due to the action of terminal deoxynucleotidyl transferase (TdT) during V(D)J recombination. Unlike adults, infants have limited BCR diversity, in part due to reduced expression of TdT. Since human infants and young mice respond poorly to polysaccharide vaccines, such as the pneumococcal polysaccharide vaccine Pneumovax23 and Vi polysaccharide (ViPS) of Salmonella enterica serovar Typhi, we tested the contribution of TdT-mediated BCR diversity in response to these vaccines. We found that TdT+/- and TdT-/- mice generated comparable antibody responses to Pneumovax23 and survived Streptococcus pneumoniae challenge. Moreover, passive immunization of B cell-deficient mice with serum from Pneumovax23-immunized TdT+/- or TdT-/- mice conferred protection. TdT+/- and TdT-/- mice generated comparable levels of anti-ViPS antibodies and antibody-dependent, complement-mediated bactericidal activity against S Typhi in vitro To test the protective immunity conferred by ViPS immunization in vivo, TdT+/- and TdT-/- mice were challenged with a chimeric Salmonella enterica serovar Typhimurium strain expressing ViPS, since mice are nonpermissive hosts for S Typhi infection. Compared to their unimmunized counterparts, immunized TdT+/- and TdT-/- mice challenged with ViPS-expressing S Typhimurium exhibited a significant reduction in the bacterial burden and liver pathology. These data suggest that the impaired antibody response to the Pneumovax23 and ViPS vaccines in the young is not due to limited TdT-mediated BCR diversification.
Collapse
|
39
|
Understanding and Manipulating Viral Immunity: Antibody Immunodominance Enters Center Stage. Trends Immunol 2018; 39:549-561. [PMID: 29789196 DOI: 10.1016/j.it.2018.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
Abstract
Adaptive immune responses against antigenically variable viruses and cellular pathogens are efficient in many cases, but largely limited to the infecting or immunizing strain. A major factor that limits immunity is immunodominance (ID), the hierarchical focusing of adaptive immune responses on a subset of antigenic determinants. While CD8+ T cell ID has been extensively studied, studies of basic mechanisms of B cell ID are limited, despite the importance of antibodies (Abs) for durable protection against pathogens. Here, we review recent progress in understanding the basic rules and mechanisms of B cell ID, compare B and CD8+ T cell ID, and outline challenges to overcoming ID to develop Ab-based 'universal' vaccines for influenza A and other highly variable viruses.
Collapse
|
40
|
Pandya KD, Palomo-Caturla I, Walker JA, K Sandilya V, Zhong Z, Alugupalli KR. An Unmutated IgM Response to the Vi Polysaccharide of Salmonella Typhi Contributes to Protective Immunity in a Murine Model of Typhoid. THE JOURNAL OF IMMUNOLOGY 2018; 200:4078-4084. [PMID: 29743315 DOI: 10.4049/jimmunol.1701348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/16/2018] [Indexed: 11/19/2022]
Abstract
T cell-dependent B cell responses typically develop in germinal centers. Abs generated during such responses are isotype switched and have a high affinity to the Ag because of somatic hypermutation of Ab genes. B cell responses to purified polysaccharides are T cell independent and do not result in the formation of bona fide germinal centers, and the dominant Ab isotype produced during such responses is IgM with very few or no somatic mutations. Activation-induced cytidine deaminase (AID) is required for both somatic hypermutation and Ig isotype switching in humans and mice. To test the extent to which unmutated polysaccharide-specific IgM confers protective immunity, we immunized wildtype and AID-/- mice with either heat-killed Salmonella enterica serovar Typhi (S. Typhi) or purified Vi polysaccharide (ViPS). We found that wildtype and AID-/- mice immunized with heat-killed S. Typhi generated similar anti-ViPS IgM responses. As expected, wildtype, but not AID-/- mice generated ViPS-specific IgG. However, the differences in the Ab-dependent killing of S. Typhi mediated by the classical pathway of complement activation were not statistically significant. In ViPS-immunized wildtype and AID-/- mice, the ViPS-specific IgM levels and S. Typhi bactericidal Ab titers at 7 but not at 28 d postimmunization were also comparable. To test the protective immunity conferred by these immunizations, mice were challenged with a chimeric S. Typhimurium strain expressing ViPS. Compared with their naive counterparts, immunized wildtype and AID-/- mice exhibited significantly reduced bacterial burden regardless of the route of infection. These data indicate that an unmutated IgM response to ViPS contributes to protective immunity to S. Typhi.
Collapse
Affiliation(s)
- Kalgi D Pandya
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Isabel Palomo-Caturla
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Justin A Walker
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Vijay K Sandilya
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Zhijiu Zhong
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Kishore R Alugupalli
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107; and .,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
41
|
Toellner KM, Sze DMY, Zhang Y. What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? A Role for Antibody Feedback. Cold Spring Harb Perspect Biol 2018. [PMID: 28630078 DOI: 10.1101/cshperspect.a028795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We discuss the impact of antibody feedback on affinity maturation of B cells. Competition from epitope-specific antibodies produced earlier during the immune response leads to immune complex formation, which is essential for transport and deposition of antigen onto follicular dendritic cells (FDCs). It also reduces the concentration of free epitopes into the μm to nm range, which is essential for B-cell receptors (BCRs) to sense affinity-dependent changes in binding capacity. Antibody feedback may also induce epitope spreading, leading to a broader selection of epitopes recognized by newly emerging B-cell clones. This may be exploitable, providing ways to manipulate epitope usage induced by vaccination.
Collapse
Affiliation(s)
- Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Daniel M-Y Sze
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
42
|
Weiser C, Petkova MV, Rengstl B, Döring C, von Laer D, Hartmann S, Küppers R, Hansmann ML, Newrzela S. Ectopic expression of transcription factor BATF3 induces B-cell lymphomas in a murine B-cell transplantation model. Oncotarget 2018; 9:15942-15951. [PMID: 29662618 PMCID: PMC5882309 DOI: 10.18632/oncotarget.24639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 02/24/2018] [Indexed: 12/03/2022] Open
Abstract
The mechanisms involved in malignant transformation of mature B and T lymphocytes are still poorly understood. In a previous study, we compared gene expression profiles of the tumor cells of Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL) to their normal cellular counterparts and found the basic leucine zipper protein ATF-like 3 (BATF3) to be significantly upregulated in the tumor cells of both entities. To assess the oncogenic potential of BATF3 in lymphomagenesis and to dissect the molecular interactions of BATF3 in lymphoma cells, we retrovirally transduced murine mature T and B cells with a BATF3-encoding viral vector and transplanted each population into Rag1-deficient recipients. Intriguingly, BATF3-expressing B lymphocytes readily induced B-cell lymphomas after characteristic latencies, whereas T-cell transplanted animals remained healthy throughout the observation time. Further analyses revealed a germinal center B-cell-like phenotype of most BATF3-initiated lymphomas. In a multiple myeloma cell line, BATF3 inhibited BLIMP1 expression, potentially illuminating an oncogenic action of BATF3 in B-cell lymphomagenesis. In conclusion, BATF3 overexpression induces malignant transformation of mature B cells and might serve as a potential target in B-cell lymphoma treatment.
Collapse
Affiliation(s)
- Christian Weiser
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany
| | - Mina V Petkova
- Experimental and Clinical Research Center (ECRC), Medical Faculty of the Charité and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Benjamin Rengstl
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany
| | - Dorothee von Laer
- Division of Virology, Department of Hygiene, Microbiology, Social Medicine Medical University IBK, Innsbruck, Austria
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sebastian Newrzela
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany
| |
Collapse
|
43
|
IgG Responses to Porins and Lipopolysaccharide within an Outer Membrane-Based Vaccine against Nontyphoidal Salmonella Develop at Discordant Rates. mBio 2018; 9:mBio.02379-17. [PMID: 29511082 PMCID: PMC5844998 DOI: 10.1128/mbio.02379-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antibodies acquired after vaccination or natural infection with Gram-negative bacteria, such as invasive Salmonella enterica serovar Typhimurium, can protect against disease. Immunization with naturally shed outer membrane vesicles from Gram-negative bacteria is being studied for its potential to protect against many infections, since antigens within vesicles maintain their natural conformation and orientation. Shedding can be enhanced through genetic modification, and the resulting particles, generalized modules for membrane antigens (GMMA), not only offer potential as vaccines but also can facilitate the study of B-cell responses to bacterial antigens. Here we show that the response to immunization with GMMA from S. Typhimurium (STmGMMA) provides B-cell-dependent protection and induces antibodies to two immunodominant antigens, lipopolysaccharide (LPS) and porins. Antibodies to LPS O antigen (O-Ag) markedly enhance protection in the spleen, but this effect is less marked in the liver. Strikingly, IgG responses to LPS and porins develop with distinct kinetics. In the first week after immunization, there is a dramatic T-cell-independent B1b-cell-associated induction of all IgG isotypes, except IgG1, to porins but not to LPS. In contrast, production of IgG1 to either antigen was delayed and T cell dependent. Nevertheless, after 1 month, cells in the bone marrow secreting IgG against porins or LPS were present at a similar frequency. Unexpectedly, immunization with O-Ag-deficient STmGMMA did not substantially enhance the anti-porin response. Therefore, IgG switching to all antigens does not develop synchronously within the same complex and so the rate of IgG switching to a single component does not necessarily reflect its frequency within the antigenic complex. Vaccines save millions of lives, yet for some infections there are none. This includes some types of Salmonella infections, killing hundreds of thousands of people annually. We show how a new type of vaccine, called GMMA, that is made from blebs shed from the Salmonella cell wall, works to protect against infection in mice by inducing host proteins (antibodies) specifically recognizing bacterial components (antigens). The rate of development of IgG antibody to antigens within GMMA occurred with different kinetics. However, the antibody response to GMMA persists and is likely to provide prolonged protection for those who need it. These results help show how antibody responses to bacterial antigens develop and how vaccines like GMMA can work and help prevent infection.
Collapse
|
44
|
Abstract
Germinal centers (GCs) are organized lymphoid tissue microstructures where B cells proliferate and differentiate into memory B cells and plasma cells. A few distinctive subsets of highly specialized T cells gain access to the GCs by expressing the B cell zone–homing C-X-C chemokine receptor type 5 (CXCR5) while losing the T cell zone–homing chemokine receptor CCR7. Help from T cells is critical to induce B cell proliferation and somatic hyper mutation and to limit GC reactions. CD4+ T follicular helper (TFH) cells required for the formation of GCs and for the generation of long-lived, high-affinity B cells. Regulatory CD4+ (TFR) and CD8+ T cells co-localize with TFH cells and keep their expansion in check, thus limiting GC reactions. A cytotoxic CXCR5pos CD8+ T cell subset has been described in GCs in humans: although low in number, GC CD8+ T cells can expand rapidly during certain viral infections. Because these subsets find their home in secondary lymphoid tissues (lymph nodes and spleen) that are difficult to obtain in humans, GC–homing T cells have been extensively studied in mice. Nevertheless, significant limitations in using this model, such as evolutionary divergences between mice and humans and the lack of an optimal mouse model for certain human diseases, have prompted investigators to characterize GC–homing T cells in macaques instead. This review will focus on discoveries made in macaques, particularly in the non-human primate models of simian immunodeficiency virus and simian–human immunodeficiency virus infection. Indeed, experimental studies in these models have allowed researchers to gain insight into the relative role of follicular T cell subsets in HIV progression, virus persistence, and specific B cell responses induced by HIV vaccines. These discoveries have prompted the testing of novel approaches aimed to manipulate follicular T cells to increase the efficacy of HIV vaccines and to eliminate HIV reservoirs.
Collapse
Affiliation(s)
- Monica Vaccari
- Animal Models and Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
45
|
Chen P, Liu X, Sun Y, Zhou P, Wang Y, Zhang Y. Dendritic cell targeted vaccines: Recent progresses and challenges. Hum Vaccin Immunother 2017; 12:612-22. [PMID: 26513200 DOI: 10.1080/21645515.2015.1105415] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches.
Collapse
Affiliation(s)
- Pengfei Chen
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Xinsheng Liu
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Yuefeng Sun
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Peng Zhou
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Yonglu Wang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Yongguang Zhang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| |
Collapse
|
46
|
Wilmore JR, Allman D. Here, There, and Anywhere? Arguments for and against the Physical Plasma Cell Survival Niche. THE JOURNAL OF IMMUNOLOGY 2017; 199:839-845. [PMID: 28739594 DOI: 10.4049/jimmunol.1700461] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/18/2017] [Indexed: 12/25/2022]
Abstract
To maintain Ab titers, individual plasma cells must survive for extended periods, perhaps even for the life of the host. Although it is clear that plasma cell survival requires cell extrinsic signals, the nature and source of these signals remains open for debate. It is commonly postulated that plasma cells only gain access to these signals within specialized regulatory microenvironments, or niches, in the bone marrow or in the gut. In this review we discuss current concepts and information surrounding plasma cell survival niches, and consider two opposing models to explain long-term serologic immunity.
Collapse
Affiliation(s)
- Joel R Wilmore
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
47
|
Marginal zone B cells are critical to factor VIII inhibitor formation in mice with hemophilia A. Blood 2017; 130:2559-2568. [PMID: 28978569 DOI: 10.1182/blood-2017-05-782912] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
Although factor VIII (FVIII) replacement therapy can be lifesaving for patients with hemophilia A, neutralizing alloantibodies to FVIII, known as inhibitors, develop in a significant number of patients and actively block FVIII activity, making bleeding difficult to control and prevent. Although a variety of downstream immune factors likely regulate inhibitor formation, the identification and subsequent targeting of key initiators in inhibitor development may provide an attractive approach to prevent inhibitor formation before amplification of the FVIII immune response occurs. As the initial steps in FVIII inhibitor development remain incompletely understood, we sought to define early regulators of FVIII inhibitor formation. Our results demonstrate that FVIII localizes in the marginal sinus of the spleen of FVIII-deficient mice shortly after injection, with significant colocalization with marginal zone (MZ) B cells. FVIII not only colocalizes with MZ B cells, but specific removal of MZ B cells also completely prevented inhibitor development following FVIII infusion. Subsequent rechallenge with FVIII following MZ B-cell reconstitution resulted in a primary antibody response, demonstrating that MZ B-cell depletion did not result in FVIII tolerance. Although recipient exposure to the viral-like adjuvant polyinosinic:polycytidylic acid enhanced anti-FVIII antibody formation, MZ B-cell depletion continued to display similar effectiveness in preventing inhibitor formation following FVIII infusion in this inflammatory setting. These data strongly suggest that MZ B cells play a critical role in initiating FVIII inhibitor formation and suggest a potential strategy to prevent anti-FVIII alloantibody formation in patients with hemophilia A.
Collapse
|
48
|
D'Souza L, Gupta SL, Bal V, Rath S, George A. CD73 expression identifies a subset of IgM + antigen-experienced cells with memory attributes that is T cell and CD40 signalling dependent. Immunology 2017; 152:602-612. [PMID: 28746783 DOI: 10.1111/imm.12800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022] Open
Abstract
B-cell memory was long characterized as isotype-switched, somatically mutated and germinal centre (GC)-derived. However, it is now clear that the memory pool is a complex mixture that includes unswitched and unmutated cells. Further, expression of CD73, CD80 and CD273 has allowed the categorization of B-cell memory into multiple subsets, with combinatorial expression of the markers increasing with GC progression, isotype-switching and acquisition of somatic mutations. We have extended these findings to determine whether these markers can be used to identify IgM memory phenotypically as arising from T-dependent versus T-independent responses. We report that CD73 expression identifies a subset of antigen-experienced IgM+ cells that share attributes of functional B-cell memory. This subset is reduced in the spleens of T-cell-deficient and CD40-deficient mice and in mixed marrow chimeras made with mutant and wild-type marrow, the proportion of CD73+ IgM memory is restored in the T-cell-deficient donor compartment but not in the CD40-deficient donor compartment, indicating that CD40 ligation is involved in its generation. We also report that CD40 signalling supports optimal expression of CD73 on splenic T cells and age-associated B cells (ABCs), but not on other immune cells such as neutrophils, marginal zone B cells, peritoneal cavity B-1 B cells and regulatory T and B cells. Our data indicate that in addition to promoting GC-associated memory generation during B-cell differentiation, CD40-signalling can influence the composition of the unswitched memory B-cell pool. They also raise the possibility that a fraction of ABCs may represent T-cell-dependent IgM memory.
Collapse
Affiliation(s)
| | | | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
| | | | - Anna George
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
49
|
Fisher CR, Sutton HJ, Kaczmarski JA, McNamara HA, Clifton B, Mitchell J, Cai Y, Dups JN, D'Arcy NJ, Singh M, Chuah A, Peat TS, Jackson CJ, Cockburn IA. T-dependent B cell responses to Plasmodium induce antibodies that form a high-avidity multivalent complex with the circumsporozoite protein. PLoS Pathog 2017; 13:e1006469. [PMID: 28759640 PMCID: PMC5552345 DOI: 10.1371/journal.ppat.1006469] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/10/2017] [Accepted: 06/13/2017] [Indexed: 11/18/2022] Open
Abstract
The repeat region of the Plasmodium falciparum circumsporozoite protein (CSP) is a major vaccine antigen because it can be targeted by parasite neutralizing antibodies; however, little is known about this interaction. We used isothermal titration calorimetry, X-ray crystallography and mutagenesis-validated modeling to analyze the binding of a murine neutralizing antibody to Plasmodium falciparum CSP. Strikingly, we found that the repeat region of CSP is bound by multiple antibodies. This repeating pattern allows multiple weak interactions of single FAB domains to accumulate and yield a complex with a dissociation constant in the low nM range. Because the CSP protein can potentially cross-link multiple B cell receptors (BCRs) we hypothesized that the B cell response might be T cell independent. However, while there was a modest response in mice deficient in T cell help, the bulk of the response was T cell dependent. By sequencing the BCRs of CSP-repeat specific B cells in inbred mice we found that these cells underwent somatic hypermutation and affinity maturation indicative of a T-dependent response. Last, we found that the BCR repertoire of responding B cells was limited suggesting that the structural simplicity of the repeat may limit the breadth of the immune response. Vaccines aim to protect by inducing the immune system to make molecules called antibodies that can recognize molecules on the surface of invading pathogens. In the case of malaria, our most advanced vaccine candidates aim to promote the production of antibodies that recognize the circumsporozoite protein (CSP) molecule on the surface of the invasive parasite stage called the sporozoite. In this report we use X-ray crystallography to determine the structure of CSP-binding antibodies at the atomic level. We use other techniques such as isothermal titration calorimetry and structural modeling to examine how this antibody interacts with the CSP molecule. Strikingly, we found that each CSP molecule could bind 6 antibodies. This finding has implications for the immune response and may explain why high titers of antibody are needed for protection. Moreover, because the structure of the CSP repeat is quite simple we determined that the number of different kinds of antibodies that could bind this molecule are quite small. However a high avidity interaction between those antibodies and CSP can result from a process called affinity maturation that allows the body to learn how to make improved antibodies specific for pathogen molecules. These data show that while it is challenging for the immune system to recognize and neutralize CSP, it should be possible to generate viable vaccines targeting this molecule.
Collapse
Affiliation(s)
- Camilla R. Fisher
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Henry J. Sutton
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Joe A. Kaczmarski
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hayley A. McNamara
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ben Clifton
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Joshua Mitchell
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yeping Cai
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Johanna N. Dups
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Nicholas J. D'Arcy
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Mandeep Singh
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Aaron Chuah
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Thomas S. Peat
- CSIRO Biomedical Manufacturing Program, Parkville, Victoria, Australia
| | - Colin J. Jackson
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (CJJ); (IAC)
| | - Ian A. Cockburn
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (CJJ); (IAC)
| |
Collapse
|
50
|
Willcox A, Richardson SJ, Walker LSK, Kent SC, Morgan NG, Gillespie KM. Germinal centre frequency is decreased in pancreatic lymph nodes from individuals with recent-onset type 1 diabetes. Diabetologia 2017; 60:1294-1303. [PMID: 28213757 PMCID: PMC5487689 DOI: 10.1007/s00125-017-4221-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/13/2016] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic lymph nodes (PLNs) are critical sites for the initial interaction between islet autoantigens and autoreactive lymphocytes, but the histology of PLNs in tissue from individuals with type 1 diabetes has not been analysed in detail. The aim of this study was to examine PLN tissue sections from healthy donors compared with those at risk of, or with recent-onset and longer-duration type 1 diabetes. METHODS Immunofluorescence staining was used to examine PLN sections from the following donor groups: non-diabetic (n=15), non-diabetic islet autoantibody-positive (n=5), recent-onset (≤1.5 years duration) type 1 diabetes (n=13), and longer-duration type 1 diabetes (n=15). Staining for CD3, CD20 and Ki67 was used to detect primary and secondary (germinal centre-containing) follicles and CD21 and CD35 to detect follicular dendritic cell networks. RESULTS The frequency of secondary follicles was lower in the recent-onset type 1 diabetes group compared with the non-diabetic control group. The presence of insulitis (as evidence of ongoing beta cell destruction) and diagnosis of type 1 diabetes at a younger age, however, did not appear to be associated with a lower frequency of secondary follicles. A higher proportion of primary B cell follicles were observed to lack follicular dendritic cell networks in the recent-onset type 1 diabetes group. CONCLUSIONS/INTERPRETATION Histological analysis of rare PLNs from individuals with type 1 diabetes suggests a previously unrecognised phenotype comprising decreased primary B cell follicle frequency and fewer follicular dendritic cell networks in recent-onset type 1 diabetes.
Collapse
Affiliation(s)
- Abby Willcox
- Diabetes and Metabolism, Level 2 Learning and Research, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Lucy S K Walker
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, Royal Free Campus, London, UK
| | - Sally C Kent
- Division of Diabetes, Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Kathleen M Gillespie
- Diabetes and Metabolism, Level 2 Learning and Research, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK.
| |
Collapse
|