1
|
Fan T, Shi T, Sui R, Wang J, Kang H, Yu Y, Zhu Y. The chromatin remodeler ERCC6 and the histone chaperone NAP1 are involved in apurinic/apyrimidinic endonuclease-mediated DNA repair. THE PLANT CELL 2024; 36:2238-2252. [PMID: 38367203 PMCID: PMC11132878 DOI: 10.1093/plcell/koae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
During base excision repair (BER), the apurinic or apyrimidinic (AP) site serves as an intermediate product following base excision. In plants, APE-redox protein (ARP) represents the major AP site of cleavage activity. Despite the well-established understanding that the nucleosomal structure acts as a barrier to various DNA-templated processes, the regulatory mechanisms underlying BER at the chromatin level remain elusive, especially in plants. In this study, we identified plant chromatin remodeler Excision Repair Cross-Complementing protein group 6 (ERCC6) and histone chaperone Nucleosome Assembly Protein 1 (NAP1) as interacting proteins with ARP. The catalytic ATPase domain of ERCC6 facilitates its interaction with both ARP and NAP1. Additionally, ERCC6 and NAP1 synergistically contribute to nucleosome sliding and exposure of hindered endonuclease cleavage sites. Loss-of-function mutations in Arabidopsis (Arabidopsis thaliana) ERCC6 or NAP1 resulted in arp-dependent plant hypersensitivity to 5-fluorouracil, a toxic agent inducing BER, and the accumulation of AP sites. Furthermore, similar protein interactions are also found in yeast cells, suggesting a conserved recruitment mechanism employed by the AP endonuclease to overcome chromatin barriers during BER progression.
Collapse
Affiliation(s)
- Tianyi Fan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tianfang Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Ran Sui
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jingqi Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Huijia Kang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Szepanowski LP, Wruck W, Kapr J, Rossi A, Fritsche E, Krutmann J, Adjaye J. Cockayne Syndrome Patient iPSC-Derived Brain Organoids and Neurospheres Show Early Transcriptional Dysregulation of Biological Processes Associated with Brain Development and Metabolism. Cells 2024; 13:591. [PMID: 38607030 PMCID: PMC11011893 DOI: 10.3390/cells13070591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Cockayne syndrome (CS) is a rare hereditary autosomal recessive disorder primarily caused by mutations in Cockayne syndrome protein A (CSA) or B (CSB). While many of the functions of CSB have been at least partially elucidated, little is known about the actual developmental dysregulation in this devasting disorder. Of particular interest is the regulation of cerebral development as the most debilitating symptoms are of neurological nature. We generated neurospheres and cerebral organoids utilizing Cockayne syndrome B protein (CSB)-deficient induced pluripotent stem cells derived from two patients with distinct severity levels of CS and healthy controls. The transcriptome of both developmental timepoints was explored using RNA-Seq and bioinformatic analysis to identify dysregulated biological processes common to both patients with CS in comparison to the control. CSB-deficient neurospheres displayed upregulation of the VEGFA-VEGFR2 signalling pathway, vesicle-mediated transport and head development. CSB-deficient cerebral organoids exhibited downregulation of brain development, neuron projection development and synaptic signalling. We further identified the upregulation of steroid biosynthesis as common to both timepoints, in particular the upregulation of the cholesterol biosynthesis branch. Our results provide insights into the neurodevelopmental dysregulation in patients with CS and strengthen the theory that CS is not only a neurodegenerative but also a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Leon-Phillip Szepanowski
- Institute for Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Duesseldorf, Germany; (L.-P.S.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Duesseldorf, Germany; (L.-P.S.)
| | - Julia Kapr
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Andrea Rossi
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Jean Krutmann
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Duesseldorf, Germany; (L.-P.S.)
- Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London (UCL)—EGA Institute for Women’s Health, 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
3
|
Sabharwal A, Gupta V, Kv S, Kumar Manokaran R, Verma A, Mishra A, Bhoyar RC, Jain A, Sivadas A, Rawat S, Jolly B, Mohanty S, Gulati S, Gupta N, Kabra M, Scaria V, Sivasubbu S. Whole genome sequencing followed by functional analysis of genomic deletion encompassing ERCC8 and NDUFAF2 genes in a non-consanguineous Indian family reveals dysfunctional mitochondrial bioenergetics leading to infant mortality. Mitochondrion 2024; 75:101844. [PMID: 38237647 DOI: 10.1016/j.mito.2024.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 12/07/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Genomic investigations on an infant who presented with a putative mitochondrial disorder led to identification of compound heterozygous deletion with an overlapping region of ∼142 kb encompassing two nuclear encoded genes namely ERCC8 and NDUFAF2. Investigations on fetal-derived fibroblast culture demonstrated impaired bioenergetics and mitochondrial dysfunction, which explains the phenotype and observed infant mortality in the present study. The genetic findings from this study extended the utility of whole-genome sequencing as it led to development of a MLPA-based assay for carrier screening in the extended family and the prenatal testing aiding in the birth of two healthy children.
Collapse
Affiliation(s)
- Ankit Sabharwal
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States.
| | - Vishu Gupta
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shamsudheen Kv
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Ankit Verma
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Anushree Mishra
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Rahul C Bhoyar
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Abhinav Jain
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ambily Sivadas
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonali Rawat
- Stem Cell Facility, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Bani Jolly
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Sheffali Gulati
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Neerja Gupta
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Madhulika Kabra
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Delhi, India.
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Garaycoechea JI, Quinlan C, Luijsterburg MS. Pathological consequences of DNA damage in the kidney. Nat Rev Nephrol 2023; 19:229-243. [PMID: 36702905 DOI: 10.1038/s41581-022-00671-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/27/2023]
Abstract
DNA lesions that evade repair can lead to mutations that drive the development of cancer, and cellular responses to DNA damage can trigger senescence and cell death, which are associated with ageing. In the kidney, DNA damage has been implicated in both acute and chronic kidney injury, and in renal cell carcinoma. The susceptibility of the kidney to chemotherapeutic agents that damage DNA is well established, but an unexpected link between kidney ciliopathies and the DNA damage response has also been reported. In addition, human genetic deficiencies in DNA repair have highlighted DNA crosslinks, DNA breaks and transcription-blocking damage as lesions that are particularly toxic to the kidney. Genetic tools in mice, as well as advances in kidney organoid and single-cell RNA sequencing technologies, have provided important insights into how specific kidney cell types respond to DNA damage. The emerging view is that in the kidney, DNA damage affects the local microenvironment by triggering a damage response and cell proliferation to replenish injured cells, as well as inducing systemic responses aimed at reducing exposure to genotoxic stress. The pathological consequences of DNA damage are therefore key to the nephrotoxicity of DNA-damaging agents and the kidney phenotypes observed in human DNA repair-deficiency disorders.
Collapse
Affiliation(s)
- Juan I Garaycoechea
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Catherine Quinlan
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Nephrology, Royal Children's Hospital, Melbourne, Australia
- Department of Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Australia
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| |
Collapse
|
5
|
The ATRX splicing variant c.21-1G>A is asymptomatic. Hum Genome Var 2022; 9:33. [PMID: 36104326 PMCID: PMC9474544 DOI: 10.1038/s41439-022-00212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023] Open
Abstract
The ATRX variant c.21-1G>A was detected by an exome analysis of a patient with Cockayne syndrome without alpha thalassemia X-linked intellectual disability syndrome (ATR-XS). In addition, variants in ERCC6 were detected. ATRX c.21-1G>A is localized at the splicing acceptor site of intron 1. This splicing event, NM_000489.6: c.21_133del p.S7Rfs*1, induces exon 2 deletion and early termination. The start codon in exon 3 of ATRX is presumed to produce a slightly shorter but functional ATRX protein.
Collapse
|
6
|
Paccosi E, Balajee AS, Proietti-De-Santis L. A matter of delicate balance: Loss and gain of Cockayne syndrome proteins in premature aging and cancer. FRONTIERS IN AGING 2022; 3:960662. [PMID: 35935726 PMCID: PMC9351357 DOI: 10.3389/fragi.2022.960662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022]
Abstract
DNA repair genes are critical for preserving genomic stability and it is well established that mutations in DNA repair genes give rise to progeroid diseases due to perturbations in different DNA metabolic activities. Cockayne Syndrome (CS) is an autosomal recessive inheritance caused by inactivating mutations in CSA and CSB genes. This review will primarily focus on the two Cockayne Syndrome proteins, CSA and CSB, primarily known to be involved in Transcription Coupled Repair (TCR). Curiously, dysregulated expression of CS proteins has been shown to exhibit differential health outcomes: lack of CS proteins due to gene mutations invariably leads to complex premature aging phenotypes, while excess of CS proteins is associated with carcinogenesis. Thus it appears that CS genes act as a double-edged sword whose loss or gain of expression leads to premature aging and cancer. Future mechanistic studies on cell and animal models of CS can lead to potential biological targets for interventions in both aging and cancer development processes. Some of these exciting possibilities will be discussed in this review in light of the current literature.
Collapse
Affiliation(s)
- Elena Paccosi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo, Italy
- *Correspondence: Elena Paccosi, ; Adayabalam S. Balajee, ; Luca Proietti-De-Santis,
| | - Adayabalam S. Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute of Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States
- *Correspondence: Elena Paccosi, ; Adayabalam S. Balajee, ; Luca Proietti-De-Santis,
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo, Italy
- *Correspondence: Elena Paccosi, ; Adayabalam S. Balajee, ; Luca Proietti-De-Santis,
| |
Collapse
|
7
|
Whole-exome sequencing revealed a novel ERCC6 variant in a Vietnamese patient with Cockayne syndrome. Hum Genome Var 2022; 9:21. [PMID: 35668072 PMCID: PMC9170721 DOI: 10.1038/s41439-022-00200-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 01/11/2023] Open
Abstract
We describe a case of Cockayne syndrome without photosensitivity in a Vietnamese family. This lack of photosensitivity prevented the establishment of a confirmed medical clinical diagnosis for 16 years. Whole-exome sequencing (WES) identified a novel missense variant combined with a known nonsense variant in the ERCC6 gene, NM_000124.4: c.[2839C>T;2936A>G], p.[R947*;K979R]. This case emphasizes the importance of WES in investigating the etiology of a disease when patients do not present the complete clinical phenotypes of Cockayne syndrome.
Collapse
|
8
|
Yan C, Dodd T, Yu J, Leung B, Xu J, Oh J, Wang D, Ivanov I. Mechanism of Rad26-assisted rescue of stalled RNA polymerase II in transcription-coupled repair. Nat Commun 2021; 12:7001. [PMID: 34853308 PMCID: PMC8636621 DOI: 10.1038/s41467-021-27295-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
Transcription-coupled repair is essential for the removal of DNA lesions from the transcribed genome. The pathway is initiated by CSB protein binding to stalled RNA polymerase II. Mutations impairing CSB function cause severe genetic disease. Yet, the ATP-dependent mechanism by which CSB powers RNA polymerase to bypass certain lesions while triggering excision of others is incompletely understood. Here we build structural models of RNA polymerase II bound to the yeast CSB ortholog Rad26 in nucleotide-free and bound states. This enables simulations and graph-theoretical analyses to define partitioning of this complex into dynamic communities and delineate how its structural elements function together to remodel DNA. We identify an allosteric pathway coupling motions of the Rad26 ATPase modules to changes in RNA polymerase and DNA to unveil a structural mechanism for CSB-assisted progression past less bulky lesions. Our models allow functional interpretation of the effects of Cockayne syndrome disease mutations.
Collapse
Affiliation(s)
- Chunli Yan
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA USA ,grid.256304.60000 0004 1936 7400Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA USA
| | - Thomas Dodd
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA USA ,grid.256304.60000 0004 1936 7400Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA USA
| | - Jina Yu
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA USA ,grid.256304.60000 0004 1936 7400Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA USA
| | - Bernice Leung
- grid.266100.30000 0001 2107 4242Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Jun Xu
- grid.266100.30000 0001 2107 4242Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Juntaek Oh
- grid.266100.30000 0001 2107 4242Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA. .,Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA. .,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA. .,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Lin CM, Yang JH, Lee HJ, Lin YP, Tsai LP, Hsu CS, Luxton GWG, Hu CF. Whole Exome Sequencing Identifies a Novel Homozygous Missense Mutation in the CSB Protein-Encoding ERCC6 Gene in a Taiwanese Boy with Cockayne Syndrome. Life (Basel) 2021; 11:life11111230. [PMID: 34833108 PMCID: PMC8618937 DOI: 10.3390/life11111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Cockayne syndrome (CS) is a rare form of dwarfism that is characterized by progressive premature aging. CS is typically caused by mutations in the excision repair cross-complementing protein group 6 (ERCC6) gene that encodes the CS group B (CSB) protein. Using whole exome sequencing, we recently identified a novel homozygous missense mutation (Leu536Trp) in CSB in a Taiwanese boy with CS. Since the current database (Varsome) interprets this variant as likely pathogenic, we utilized a bioinformatic tool to investigate the impact of Leu536Trp as well as two other variants (Arg453Ter, Asp532Gly) in similar articles on the CSB protein structure stability. Methods: We used iterative threading assembly refinement (I-TASSER) to generate a predictive 3D structure of CSB. We calculated the change of mutation energy after residues substitution on the protein stability using I-TASSER as well as the artificial intelligence program Alphafold. Results: The Asp532Gly variant destabilized both modeled structures, while the Leu536Trp variant showed no effect on I-TASSER’s model but destabilized the Alphafold’s modeled structure. Conclusions: We propose here the first case of CS associated with a novel homozygous missense mutation (Leu536Trp) in CSB. Furthermore, we suggest that the Asp532Gly and Leu536Trp variants are both pathogenic after bioinformatic analysis of protein stability.
Collapse
Affiliation(s)
- Ching-Ming Lin
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Pediatrics, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Jay-How Yang
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA;
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yu-Pang Lin
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Li-Ping Tsai
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan;
| | - Chih-Sin Hsu
- Genomics Center for Clinical and Biotechnological Applications of Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA 95616, USA
- Correspondence: (G.W.G.L.); (C.-F.H.); Tel.: +1-530-754-6083 (G.W.G.L.); +886-2-8792-7293 (C.-F.H.)
| | - Chih-Fen Hu
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
- Correspondence: (G.W.G.L.); (C.-F.H.); Tel.: +1-530-754-6083 (G.W.G.L.); +886-2-8792-7293 (C.-F.H.)
| |
Collapse
|
10
|
Forrest IS, Chaudhary K, Vy HMT, Bafna S, Kim S, Won HH, Loos RJ, Cho J, Pasquale LR, Nadkarni GN, Rocheleau G, Do R. Genetic pleiotropy of ERCC6 loss-of-function and deleterious missense variants links retinal dystrophy, arrhythmia, and immunodeficiency in diverse ancestries. Hum Mutat 2021; 42:969-977. [PMID: 34005834 PMCID: PMC8295228 DOI: 10.1002/humu.24220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/27/2021] [Accepted: 05/15/2021] [Indexed: 11/08/2022]
Abstract
Biobanks with exomes linked to electronic health records (EHRs) enable the study of genetic pleiotropy between rare variants and seemingly disparate diseases. We performed robust clinical phenotyping of rare, putatively deleterious variants (loss-of-function [LoF] and deleterious missense variants) in ERCC6, a gene implicated in inherited retinal disease. We analyzed 213,084 exomes, along with a targeted set of retinal, cardiac, and immune phenotypes from two large-scale EHR-linked biobanks. In the primary analysis, a burden of deleterious variants in ERCC6 was strongly associated with (1) retinal disorders; (2) cardiac and electrocardiogram perturbations; and (3) immunodeficiency and decreased immunoglobulin levels. Meta-analysis of results from the BioMe Biobank and UK Biobank showed a significant association of deleterious ERCC6 burden with retinal dystrophy (odds ratio [OR] = 2.6, 95% confidence interval [CI]: 1.5-4.6; p = 8.7 × 10-4 ), atypical atrial flutter (OR = 3.5, 95% CI: 1.9-6.5; p = 6.2 × 10-5 ), arrhythmia (OR = 1.5, 95% CI: 1.2-2.0; p = 2.7 × 10-3 ), and lymphocyte immunodeficiency (OR = 3.8, 95% CI: 2.1-6.8; p = 5.0 × 10-6 ). Carriers of ERCC6 LoF variants who lacked a diagnosis of these conditions exhibited increased symptoms, indicating underdiagnosis. These results reveal a unique genetic link among retinal, cardiac, and immune disorders and underscore the value of EHR-linked biobanks in assessing the full clinical profile of carriers of rare variants.
Collapse
Affiliation(s)
- Iain S. Forrest
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kumardeep Chaudhary
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ha My T. Vy
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shantanu Bafna
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Soyeon Kim
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Ruth J.F. Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Eye and Vision Research Institute, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| | - Girish N. Nadkarni
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ghislain Rocheleau
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Do
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Cockayne Syndrome Group B (CSB): The Regulatory Framework Governing the Multifunctional Protein and Its Plausible Role in Cancer. Cells 2021; 10:cells10040866. [PMID: 33920220 PMCID: PMC8068816 DOI: 10.3390/cells10040866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Cockayne syndrome (CS) is a DNA repair syndrome characterized by a broad spectrum of clinical manifestations such as neurodegeneration, premature aging, developmental impairment, photosensitivity and other symptoms. Mutations in Cockayne syndrome protein B (CSB) are present in the vast majority of CS patients and in other DNA repair-related pathologies. In the literature, the role of CSB in different DNA repair pathways has been highlighted, however, new CSB functions have been identified in DNA transcription, mitochondrial biology, telomere maintenance and p53 regulation. Herein, we present an overview of identified structural elements and processes that impact on CSB activity and its post-translational modifications, known to balance the different roles of the protein not only during normal conditions but most importantly in stress situations. Moreover, since CSB has been found to be overexpressed in a number of different tumors, its role in cancer is presented and possible therapeutic targeting is discussed.
Collapse
|
12
|
Tiwari V, Baptiste BA, Okur MN, Bohr VA. Current and emerging roles of Cockayne syndrome group B (CSB) protein. Nucleic Acids Res 2021; 49:2418-2434. [PMID: 33590097 DOI: 10.1093/nar/gkab085] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cockayne syndrome (CS) is a segmental premature aging syndrome caused primarily by defects in the CSA or CSB genes. In addition to premature aging, CS patients typically exhibit microcephaly, progressive mental and sensorial retardation and cutaneous photosensitivity. Defects in the CSB gene were initially thought to primarily impair transcription-coupled nucleotide excision repair (TC-NER), predicting a relatively consistent phenotype among CS patients. In contrast, the phenotypes of CS patients are pleiotropic and variable. The latter is consistent with recent work that implicates CSB in multiple cellular systems and pathways, including DNA base excision repair, interstrand cross-link repair, transcription, chromatin remodeling, RNAPII processing, nucleolin regulation, rDNA transcription, redox homeostasis, and mitochondrial function. The discovery of additional functions for CSB could potentially explain the many clinical phenotypes of CSB patients. This review focuses on the diverse roles played by CSB in cellular pathways that enhance genome stability, providing insight into the molecular features of this complex premature aging disease.
Collapse
Affiliation(s)
- Vinod Tiwari
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Beverly A Baptiste
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
13
|
Cao Y, Li P, Zhang G, Kang L, Zhou T, Wu J, Wang Y, Wang Y, Chen X, Guan H. MicroRNA Let-7c-5p-Mediated Regulation of ERCC6 Disrupts Autophagic Flux in Age-Related Cataract via the Binding to VCP. Curr Eye Res 2021; 46:1353-1362. [PMID: 33703976 DOI: 10.1080/02713683.2021.1900273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: DNA damage contributes to the pathogenesis of age-related cataract (ARC) and is repaired through the nucleotide excision repair (NER) pathway, which includes ERCC6. Evidence has demonstrated that defective autophagy leads to lens organelle degradation and cataract. This study aimed to investigate the effects of ERCC6 on autophagy and determine its mechanisms in ARC.Methods: The clinical case-control study comprised 30 patients with ARC and 30 age-matched controls who received transparent lens extraction. Transmission electron microscopy was used to assess the ultrastructure of autophagic vesicles in lens anterior capsule tissues and lens epithelial cell line (SRA01/04). Real-time polymerase chain reaction and western blot analyses were performed to measure relative gene expression levels. Gene expression levels and localization were assessed by immunofluorescence. A coimmunoprecipitation assay was used to investigate the relationship between CSB which encoded by ERCC6 and VCP. ERCC6-siRNA and let-7 c-5p mimic were used to alter the expression of ERCC6 and let-7 c-5p.Results: Autophagy induction occurred in lens anterior capsule tissues of patients with ARC and in UVB-induced SRA01/04 cells, where the number of LC3B puncta was increased. Consistent with this result, the expression of beclin1 (BECN1) and LC3B, in addition to that of p62, was increased. Additionally, ERCC6 expression decreased, and silencing ERCC6 induced increases in the expression of BECN1, LC3B and p62. Moreover, CSB interacted with VCP, and let-7 c-5p induced dysregulation of autophagy by targeting ERCC6.Conclusion: In ARC, Let-7 c-5p-mediated downregulation of ERCC6 might prevent the degradation of autophagic vacuoles. CSB binds to VCP, inducing autophagosomes to combine with lysosomes and be degraded.
Collapse
Affiliation(s)
- Yu Cao
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Tianqiu Zhou
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jian Wu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ying Wang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaojuan Chen
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
14
|
Lee TL, Lin PH, Chen PL, Hong JB, Wu CC. Hereditary Hearing Impairment with Cutaneous Abnormalities. Genes (Basel) 2020; 12:43. [PMID: 33396879 PMCID: PMC7823799 DOI: 10.3390/genes12010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Syndromic hereditary hearing impairment (HHI) is a clinically and etiologically diverse condition that has a profound influence on affected individuals and their families. As cutaneous findings are more apparent than hearing-related symptoms to clinicians and, more importantly, to caregivers of affected infants and young individuals, establishing a correlation map of skin manifestations and their underlying genetic causes is key to early identification and diagnosis of syndromic HHI. In this article, we performed a comprehensive PubMed database search on syndromic HHI with cutaneous abnormalities, and reviewed a total of 260 relevant publications. Our in-depth analyses revealed that the cutaneous manifestations associated with HHI could be classified into three categories: pigment, hyperkeratosis/nail, and connective tissue disorders, with each category involving distinct molecular pathogenesis mechanisms. This outline could help clinicians and researchers build a clear atlas regarding the phenotypic features and pathogenetic mechanisms of syndromic HHI with cutaneous abnormalities, and facilitate clinical and molecular diagnoses of these conditions.
Collapse
Affiliation(s)
- Tung-Lin Lee
- Department of Medical Education, National Taiwan University Hospital, Taipei City 100, Taiwan;
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Jin-Bon Hong
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Dermatology, National Taiwan University Hospital, Taipei City 100, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Medical Research, National Taiwan University Biomedical Park Hospital, Hsinchu City 300, Taiwan
| |
Collapse
|
15
|
Krokidis MG, D’Errico M, Pascucci B, Parlanti E, Masi A, Ferreri C, Chatgilialoglu C. Oxygen-Dependent Accumulation of Purine DNA Lesions in Cockayne Syndrome Cells. Cells 2020; 9:cells9071671. [PMID: 32664519 PMCID: PMC7407219 DOI: 10.3390/cells9071671] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cockayne Syndrome (CS) is an autosomal recessive neurodegenerative premature aging disorder associated with defects in nucleotide excision repair (NER). Cells from CS patients, with mutations in CSA or CSB genes, present elevated levels of reactive oxygen species (ROS) and are defective in the repair of a variety of oxidatively generated DNA lesions. In this study, six purine lesions were ascertained in wild type (wt) CSA, defective CSA, wtCSB and defective CSB-transformed fibroblasts under different oxygen tensions (hyperoxic 21%, physioxic 5% and hypoxic 1%). In particular, the four 5′,8-cyclopurine (cPu) and the two 8-oxo-purine (8-oxo-Pu) lesions were accurately quantified by LC-MS/MS analysis using isotopomeric internal standards after an enzymatic digestion procedure. cPu levels were found comparable to 8-oxo-Pu in all cases (3–6 lesions/106 nucleotides), slightly increasing on going from hyperoxia to physioxia to hypoxia. Moreover, higher levels of four cPu were observed under hypoxia in both CSA and CSB-defective cells as compared to normal counterparts, along with a significant enhancement of 8-oxo-Pu. These findings revealed that exposure to different oxygen tensions induced oxidative DNA damage in CS cells, repairable by NER or base excision repair (BER) pathways. In NER-defective CS patients, these results support the hypothesis that the clinical neurological features might be connected to the accumulation of cPu. Moreover, the elimination of dysfunctional mitochondria in CS cells is associated with a reduction in the oxidative DNA damage.
Collapse
Affiliation(s)
- Marios G. Krokidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
- Institute of Nanoscience and Nanotechnology, N.C.S.R. “Demokritos”, 15310 Agia Paraskevi Attikis, Athens, Greece
| | - Mariarosaria D’Errico
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.D.); (B.P.); (E.P.)
| | - Barbara Pascucci
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.D.); (B.P.); (E.P.)
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy
| | - Eleonora Parlanti
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.D.); (B.P.); (E.P.)
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznań, Poland
- Correspondence: ; Tel.: +39-051-639-8309
| |
Collapse
|
16
|
Okur MN, Lee JH, Osmani W, Kimura R, Demarest TG, Croteau DL, Bohr VA. Cockayne syndrome group A and B proteins function in rRNA transcription through nucleolin regulation. Nucleic Acids Res 2020; 48:2473-2485. [PMID: 31970402 PMCID: PMC7049711 DOI: 10.1093/nar/gkz1242] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
Cockayne Syndrome (CS) is a rare neurodegenerative disease characterized by short stature, accelerated aging and short lifespan. Mutations in two human genes, ERCC8/CSA and ERCC6/CSB, are causative for CS and their protein products, CSA and CSB, while structurally unrelated, play roles in DNA repair and other aspects of DNA metabolism in human cells. Many clinical and molecular features of CS remain poorly understood, and it was observed that CSA and CSB regulate transcription of ribosomal DNA (rDNA) genes and ribosome biogenesis. Here, we investigate the dysregulation of rRNA synthesis in CS. We report that Nucleolin (Ncl), a nucleolar protein that regulates rRNA synthesis and ribosome biogenesis, interacts with CSA and CSB. In addition, CSA induces ubiquitination of Ncl, enhances binding of CSB to Ncl, and CSA and CSB both stimulate the binding of Ncl to rDNA and subsequent rRNA synthesis. CSB and CSA also increase RNA Polymerase I loading to the coding region of the rDNA and this is Ncl dependent. These findings suggest that CSA and CSB are positive regulators of rRNA synthesis via Ncl regulation. Most CS patients carry mutations in CSA and CSB and present with similar clinical features, thus our findings provide novel insights into disease mechanism.
Collapse
Affiliation(s)
- Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jong-Hyuk Lee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Wasif Osmani
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Risako Kimura
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Danish Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
17
|
Bhatia S, Wells PG. Quantifying Activity for Repair of the DNA Lesion 8-Oxoguanine by Oxoguanine Glycosylase 1 (OGG1) in Mouse Adult and Fetal Brain Nuclear Extracts Using Biotin-Labeled DNA. Methods Mol Biol 2019; 1965:329-349. [PMID: 31069685 DOI: 10.1007/978-1-4939-9182-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactive oxygen species (ROS)-initiated DNA lesion 8-oxoguanine (8-oxoG) is commonly used as a biomarker to measure oxidative stress levels in tissue samples from animals and humans. This lesion also can play a pathogenic role in cancer, birth defects, and neurodegeneration, among other disorders. The level of 8-oxoG may be enhanced due to ROS-initiating environmental factors (e.g., drugs, gamma radiation, microbial infection) or due to a decrease in the activity of oxoguanine glycosylase 1 (OGG1), an enzyme that repairs this lesion. Measurement of the activity of OGG1 can be useful in elucidating mechanisms and complements measurements of 8-oxoG levels in tissues of interest. This protocol describes an assay for measuring the activity of 8-oxoG in mouse adult and fetal brain tissues. Briefly, a synthetic duplex containing the 8-oxoG residue in one of the nucleotides (49-mer), labeled with biotin at the 3'-end, is incubated with protein extract from the tissue of interest containing OGG1, which cleaves the 8-oxoG residue producing a cleavage product of ~27-mer. The percent cleavage quantifies the activity of OGG1 in that tissue. The biotin tag allows rapid and sensitive detection of the cleavage product via chemiluminescence, avoiding the problems of safety and short half-lives of radionuclides encountered in assays employing a radioactively-labeled substrate.
Collapse
Affiliation(s)
- Shama Bhatia
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, University of Toronto, Toronto, ON, Canada
| | - Peter G Wells
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, University of Toronto, Toronto, ON, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Molecular basis of chromatin remodeling by Rhp26, a yeast CSB ortholog. Proc Natl Acad Sci U S A 2019; 116:6120-6129. [PMID: 30867290 DOI: 10.1073/pnas.1818163116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CSB/ERCC6 belongs to an orphan subfamily of SWI2/SNF2-related chromatin remodelers and plays crucial roles in gene expression, DNA damage repair, and the maintenance of genome integrity. The molecular basis of chromatin remodeling by Cockayne syndrome B protein (CSB) is not well understood. Here we investigate the molecular mechanism of chromatin remodeling by Rhp26, a Schizosaccharomyces pombe CSB ortholog. The molecular basis of chromatin remodeling and nucleosomal epitope recognition by Rhp26 is distinct from that of canonical chromatin remodelers, such as imitation switch protein (ISWI). We reveal that the remodeling activities are bidirectionally regulated by CSB-specific motifs: the N-terminal leucine-latch motif and the C-terminal coupling motif. Rhp26 remodeling activities depend mainly on H4 tails and to a lesser extent on H3 tails, but not on H2A and H2B tails. Rhp26 promotes the disruption of histone cores and the release of free DNA. Finally, we dissected the distinct contributions of two Rhp26 C-terminal regions to chromatin remodeling and DNA damage repair.
Collapse
|
19
|
Sanchez-Roman I, Lautrup S, Aamann MD, Neilan EG, Østergaard JR, Stevnsner T. Two Cockayne Syndrome patients with a novel splice site mutation - clinical and metabolic analyses. Mech Ageing Dev 2018; 175:7-16. [PMID: 29944916 DOI: 10.1016/j.mad.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/11/2018] [Accepted: 06/06/2018] [Indexed: 01/03/2023]
Abstract
Cockayne Syndrome (CS) is a rare autosomal recessive disorder, which leads to neurodegeneration, growth failure and premature aging. Most of the cases are due to mutations in the ERCC6 gene, which encodes the protein CSB. CSB is involved in several functions including DNA repair and transcription. Here we describe two Danish brothers with CS. Both patients carried a novel splice site mutation (c.2382+2T>G), and a previously described nonsense mutation (c.3259C>T, p.Arg1087X) in a biallelic state. Both patients presented the cardinal features of the disease including microcephaly, congenital cataract and postnatal growth failure. In addition, their fibroblasts were hypersensitive to UV irradiation and exhibited increased superoxide levels in comparison to fibroblasts from healthy age and gender matched individuals. Metabolomic analysis revealed a distinctive metabolic profile in cells from the CS patients compared to control cells. Among others, α-ketoglutarate, hydroxyglutarate and certain amino acids (ornithine, proline and glycine) were reduced in the CS patient fibroblasts, whereas glycolytic intermediates (glucose-6-phosphate and pyruvic acid) and fatty acids (palmitic, stearic and myristic acid) were increased. Our data not only provide additional information to the database of CS mutations, but also point towards targets for potential treatment of this devastating disease.
Collapse
Affiliation(s)
- Ines Sanchez-Roman
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Department of Basic Biomedical Science, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Sofie Lautrup
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Maria Diget Aamann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Edward G Neilan
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - John R Østergaard
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Tinna Stevnsner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
20
|
Bukowska B, Karwowski BT. Actual state of knowledge in the field of diseases related with defective nucleotide excision repair. Life Sci 2018; 195:6-18. [DOI: 10.1016/j.lfs.2017.12.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/11/2022]
|
21
|
VAFAEE A, BAGHDADI T, NOROUZZADEH S. Cockayne Syndrome Misdiagnosed as Cerebral Palsy. IRANIAN JOURNAL OF CHILD NEUROLOGY 2018; 12:162-168. [PMID: 30279719 PMCID: PMC6160622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/24/2017] [Accepted: 11/21/2017] [Indexed: 10/25/2022]
Abstract
A 7-yr-old patient was referred to pediatric orthopedic clinic of Imam hospital (2016) with the diagnosis of cerebral palsy (CP). His parents were concerned about some inconsistency of his disease progression. After initial evaluations, the diagnosis of CP was incorrect. The true diagnosis was suspected and confirmed with molecular genetic analysis. A rare autosomal recessive disorder -Cockayne syndrome- was diagnosed. Although untreatable, it can be prevented by appropriate prenatal diagnostic tests for their future children.
Collapse
Affiliation(s)
- Amiereza VAFAEE
- Department of Orthopedics, Tehran University of Medical Sciences. Tehran, Iran
| | - Taghi BAGHDADI
- Department of Orthopedics, Tehran University of Medical Sciences. Tehran, Iran
| | - Sara NOROUZZADEH
- Department of Orthopedics, Tehran University of Medical Sciences. Tehran, Iran
| |
Collapse
|
22
|
Cleaver JE. Transcription coupled repair deficiency protects against human mutagenesis and carcinogenesis. DNA Repair (Amst) 2017; 58:21-28. [DOI: 10.1016/j.dnarep.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022]
|
23
|
Limpose KL, Corbett AH, Doetsch PW. BERing the burden of damage: Pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management. DNA Repair (Amst) 2017. [PMID: 28629773 DOI: 10.1016/j.dnarep.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA base damage and non-coding apurinic/apyrimidinic (AP) sites are ubiquitous types of damage that must be efficiently repaired to prevent mutations. These damages can occur in both the nuclear and mitochondrial genomes. Base excision repair (BER) is the frontline pathway for identifying and excising damaged DNA bases in both of these cellular compartments. Recent advances demonstrate that BER does not operate as an isolated pathway but rather dynamically interacts with components of other DNA repair pathways to modulate and coordinate BER functions. We define the coordination and interaction between DNA repair pathways as pathway crosstalk. Numerous BER proteins are modified and regulated by post-translational modifications (PTMs), and PTMs could influence pathway crosstalk. Here, we present recent advances on BER/DNA repair pathway crosstalk describing specific examples and also highlight regulation of BER components through PTMs. We have organized and reported functional interactions and documented PTMs for BER proteins into a consolidated summary table. We further propose the concept of DNA repair hubs that coordinate DNA repair pathway crosstalk to identify central protein targets that could play a role in designing future drug targets.
Collapse
Affiliation(s)
- Kristin L Limpose
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| | - Paul W Doetsch
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States; Department of Biochemistry, Emory University, Atlanta, GA, 30322, United States.
| |
Collapse
|
24
|
Menoni H, Di Mascio P, Cadet J, Dimitrov S, Angelov D. Chromatin associated mechanisms in base excision repair - nucleosome remodeling and DNA transcription, two key players. Free Radic Biol Med 2017; 107:159-169. [PMID: 28011149 DOI: 10.1016/j.freeradbiomed.2016.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022]
Abstract
Genomic DNA is prone to a large number of insults by a myriad of endogenous and exogenous agents. The base excision repair (BER) is the major mechanism used by cells for the removal of various DNA lesions spontaneously or environmentally induced and the maintenance of genome integrity. The presence of persistent DNA damage is not compatible with life, since abrogation of BER leads to early embryonic lethality in mice. There are several lines of evidences showing existence of a link between deficient BER, cancer proneness and ageing, thus illustrating the importance of this DNA repair pathway in human health. Although the enzymology of BER mechanisms has been largely elucidated using chemically defined DNA damage substrates and purified proteins, the complex interplay of BER with another vital process like transcription or when DNA is in its natural state (i.e. wrapped in nucleosome and assembled in chromatin fiber is largely unexplored. Cells use chromatin remodeling factors to overcome the general repression associated with the nucleosomal organization. It is broadly accepted that energy-dependent nucleosome remodeling factors disrupt histones-DNA interactions at the expense of ATP hydrolysis to favor transcription as well as DNA repair. Importantly, unlike transcription, BER is not part of a regulated developmental process but represents a maintenance system that should be efficient anytime and anywhere in the genome. In this review we will discuss how BER can deal with chromatin organization to maintain genetic information. Emphasis will be placed on the following challenging question: how BER is initiated within chromatin?
Collapse
Affiliation(s)
- Hervé Menoni
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL UMR 5239 and Institut NeuroMyoGène - INMG CNRS/UCBL UMR 5310, Université de Lyon, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; Université de Grenoble Alpes/INSERM U1209/CNRS UMR 5309, 38042 Grenoble Cedex 9, France.
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000 São Paulo, SP, Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Stefan Dimitrov
- Université de Grenoble Alpes/INSERM U1209/CNRS UMR 5309, 38042 Grenoble Cedex 9, France
| | - Dimitar Angelov
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL UMR 5239 and Institut NeuroMyoGène - INMG CNRS/UCBL UMR 5310, Université de Lyon, Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
| |
Collapse
|
25
|
Wang Y, Li F, Zhang G, Kang L, Guan H. Ultraviolet-B induces ERCC6 repression in lens epithelium cells of age-related nuclear cataract through coordinated DNA hypermethylation and histone deacetylation. Clin Epigenetics 2016; 8:62. [PMID: 27231489 PMCID: PMC4880862 DOI: 10.1186/s13148-016-0229-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/18/2016] [Indexed: 01/22/2023] Open
Abstract
Background Ultraviolet-B (UVB) exposure attributes to the formation of age-related nuclear cataract (ARNC), which is mediated with DNA damage. DNA damage, an important factor for pathogenesis of ARNC, is induced by UVB, and is generally resolved by the nucleotide excision repair (NER) repair mechanism. Cockayne syndrome complementation group B (CSB) protein coded by ERCC6 is a vital component for NER. However, we found no association between selected ERCC6 polymorphisms and ARNC. In this study, we investigated whether UVB exposure could alter ERCC6 expression and the process could involve epigenetic changes of DNA methylation and/or histone acetylation of ERCC6 in the lens epithelial cells (LECs). We also assessed the involvement of those coordinated changes in lens tissue from ARNC patients. Results mRNA and protein expression of ERCC6 in lens tissue (LECs) were lower in ARNCs than those in the controls. This reduction corresponded to methylation of a CpG site at the ERCC6 promoter and histone modifications (methylation and acetylation) nearby this site. UVB-treated human lens epithelium B3 (HLE-B3) and 239T cell presented (1) increased apoptosis, suggesting reduced UV-damage repair, (2) hypermethylation of the CpG site located at position -441 (relative to transcription start site) within the binding region for transcriptional factor Sp1 in the ERCC6 promoter, (3) the enhancement of histone H3K9 deacetylation, (4) induction in DNA methyltransferases 3b (DNMT3b) and histone deacetylase1 (HDAC1) associated to the CpG site of ERCC6 by CHIP assay. Conclusions These findings suggest an orchestrated mechanism triggered by UVB radiation where the concurrent association of specific hypermethylation CpG site, H3K9 deacetylation of ERCC6, and repression of ERCC6 gene expression. Taken together, with the similar changes in the lens tissue from ARNC patients, our data unveiled a possible mechanism of epigenetic modification of DNA repair gene in the pathogenesis of ARNC. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0229-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu China
| | - Fei Li
- Ophthalmology Department, Chengdu Fifth People's Hospital, Chengdu, Sichuan China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu China
| |
Collapse
|
26
|
Exome sequencing in a patient with Catel–Manzke-like syndrome excludes the involvement of the known genes and reveals a possible candidate. Eur J Med Genet 2015; 58:597-602. [DOI: 10.1016/j.ejmg.2015.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 09/12/2015] [Accepted: 09/21/2015] [Indexed: 11/21/2022]
|
27
|
Nicolai S, Filippi S, Caputo M, Cipak L, Gregan J, Ammerer G, Frontini M, Willems D, Prantera G, Balajee AS, Proietti-De-Santis L. Identification of Novel Proteins Co-Purifying with Cockayne Syndrome Group B (CSB) Reveals Potential Roles for CSB in RNA Metabolism and Chromatin Dynamics. PLoS One 2015; 10:e0128558. [PMID: 26030138 PMCID: PMC4451243 DOI: 10.1371/journal.pone.0128558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/29/2015] [Indexed: 01/19/2023] Open
Abstract
The CSB protein, a member of the SWI/SNF ATP dependent chromatin remodeling family of proteins, plays a role in a sub-pathway of nucleotide excision repair (NER) known as transcription coupled repair (TCR). CSB is frequently mutated in Cockayne syndrome group B, a segmental progeroid human autosomal recessive disease characterized by growth failure and degeneration of multiple organs. Though initially classified as a DNA repair protein, recent studies have demonstrated that the loss of CSB results in pleiotropic effects. Identification of novel proteins belonging to the CSB interactome may be useful not only for predicting the molecular basis for diverse pathological symptoms of CS-B patients but also for unraveling the functions of CSB in addition to its authentic role in DNA repair. In this study, we performed tandem affinity purification (TAP) technology coupled with mass spectrometry and co-immunoprecipitation studies to identify and characterize the proteins that potentially interact with CSB-TAP. Our approach revealed 33 proteins that were not previously known to interact with CSB. These newly identified proteins indicate potential roles for CSB in RNA metabolism involving repression and activation of transcription process and in the maintenance of chromatin dynamics and integrity.
Collapse
Affiliation(s)
- Serena Nicolai
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100, Viterbo, Italy
| | - Silvia Filippi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100, Viterbo, Italy
| | - Manuela Caputo
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100, Viterbo, Italy
| | - Lubos Cipak
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Juraj Gregan
- Department of Genetics, Comenius University in Bratislava, Slovakia
| | - Gustav Ammerer
- Department of Biochemistry, Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, CB2 0PT, Cambridge, United Kingdom
| | - Daniela Willems
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100, Viterbo, Italy
| | - Giorgio Prantera
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100, Viterbo, Italy
| | - Adayabalam S. Balajee
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York, 10032, United States of America
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100, Viterbo, Italy
| |
Collapse
|
28
|
|
29
|
Regulation of the Rhp26ERCC6/CSB chromatin remodeler by a novel conserved leucine latch motif. Proc Natl Acad Sci U S A 2014; 111:18566-71. [PMID: 25512493 DOI: 10.1073/pnas.1420227112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CSB/ERCC6 (Cockayne syndrome B protein/excision repair cross-complementation group 6), a member of a subfamily of SWI2/SNF2 (SWItch/sucrose nonfermentable)-related chromatin remodelers, plays crucial roles in gene expression and the maintenance of genome integrity. Here, we report the mechanism of the autoregulation of Rhp26, which is the homolog of CSB/ERCC6 in Schizosaccharomyces pombe. We identified a novel conserved protein motif, termed the "leucine latch," at the N terminus of Rhp26. The leucine latch motif mediates the autoinhibition of the ATPase and chromatin-remodeling activities of Rhp26 via its interaction with the core ATPase domain. Moreover, we found that the C terminus of the protein counteracts this autoinhibition and that both the N- and C-terminal regions of Rhp26 are needed for its proper function in DNA repair in vivo. The presence of the leucine latch motif in organisms ranging from yeast to humans suggests a conserved mechanism for the autoregulation of CSB/ERCC6 despite the otherwise highly divergent nature of the N- and C-terminal regions.
Collapse
|
30
|
Shehata L, Simeonov DR, Raams A, Wolfe L, Vanderver A, Li X, Huang Y, Garner S, Boerkoel CF, Thurm A, Herman GE, Tifft CJ, He M, Jaspers NGJ, Gahl WA. ERCC6 dysfunction presenting as progressive neurological decline with brain hypomyelination. Am J Med Genet A 2014; 164A:2892-900. [PMID: 25251875 DOI: 10.1002/ajmg.a.36709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/23/2014] [Indexed: 12/14/2022]
Abstract
Mutations in ERCC6 are associated with growth failure, intellectual disability, neurological dysfunction and deterioration, premature aging, and photosensitivity. We describe siblings with biallelic ERCC6 mutations (NM_000124.2:c. [543+4delA];[2008C>T]) and brain hypomyelination, microcephaly, cognitive decline, and skill regression but without photosensitivity or progeria. DNA repair assays on cultured skin fibroblasts confirmed a defect of transcription-coupled nucleotide excision repair and increased ultraviolet light sensitivity. This report expands the disease spectrum associated with ERCC6 mutations.
Collapse
Affiliation(s)
- Laila Shehata
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Feichtinger RG, Sperl W, Bauer JW, Kofler B. Mitochondrial dysfunction: a neglected component of skin diseases. Exp Dermatol 2014; 23:607-14. [PMID: 24980550 DOI: 10.1111/exd.12484] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2014] [Indexed: 12/20/2022]
Abstract
Aberrant mitochondrial structure and function influence tissue homeostasis and thereby contribute to multiple human disorders and ageing. Ten per cent of patients with primary mitochondrial disorders present skin manifestations that can be categorized into hair abnormalities, rashes, pigmentation abnormalities and acrocyanosis. Less attention has been paid to the fact that several disorders of the skin are linked to alterations of mitochondrial energy metabolism. This review article summarizes the contribution of mitochondrial pathology to both common and rare skin diseases. We explore the intriguing observation that a wide array of skin disorders presents with primary or secondary mitochondrial pathology and that a variety of molecular defects can cause dysfunctional mitochondria. Among them are mutations in mitochondrial- and nuclear DNA-encoded subunits and assembly factors of oxidative phosphorylation (OXPHOS) complexes; mutations in intermediate filament proteins involved in linking, moving and shaping of mitochondria; and disorders of mitochondrial DNA metabolism, fatty acid metabolism and heme synthesis. Thus, we assume that mitochondrial involvement is the rule rather than the exception in skin diseases. We conclude the article by discussing how improving mitochondrial function can be beneficial for aged skin and can be used as an adjunct therapy for certain skin disorders. Consideration of mitochondrial energy metabolism in the skin creates a new perspective for both dermatologists and experts in metabolic disease.
Collapse
Affiliation(s)
- René G Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | | | | | | |
Collapse
|
32
|
Liu JW, He CY, Sun LP, Xu Q, Xing CZ, Yuan Y. The DNA repair gene ERCC6 rs1917799 polymorphism is associated with gastric cancer risk in Chinese. Asian Pac J Cancer Prev 2014; 14:6103-8. [PMID: 24289633 DOI: 10.7314/apjcp.2013.14.10.6103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Excision repair cross-complementing group 6 (ERCC6) is a major component of the nucleotide excision repair pathway that plays an important role in maintaining genomic stability and integrity. Several recent studies suggested a link of ERCC6 polymorphisms with susceptibility to various cancers. However, the relation of ERCC6 polymorphism with gastric cancer (GC) risk remains elusive. In this sex- and age- matched case-control study including 402 GC cases and 804 cancer-free controls, we aimed to investigate the association between a potentially functional polymorphism (rs1917799 T>G) in the ERCC6 regulatory region and GC risk. METHODS The genotypes of rs1917799 were determined by Sequenom MassARRAY platform and the status of Helicobacter pylori infection was detected by enzyme-linked immunosorbent assay. Odd ratios (ORs) and 95% confidential interval (CI) were calculated by logistic regression analysis. RESULTS Compared with the common TT genotype, the ERCC6 rs1917799 GG genotype was associated with increased GC risk (adjusted OR=1.46, 95%CI: 1.03-2.08, P=0.035). When compared with (GT+TT) genotypes, the GG genotype also demonstrated a statistical association with increased GC risk (adjusted OR=1.38, 95%CI: 1.01-1.89, P=0.044). This was also observed for the male subpopulation (GG vs. TT: adjusted OR=1.71, 95%CI: 1.12-2.62, P=0.013; G allele vs. T allele: adjusted OR=1.32, 95%CI: 1.07-1.62, P=0.009). Genetic effects on increased GC risk tended to be enhanced by H. pylori infection, smoking and drinking, but their interaction effects on GC risk did not reach statistical significance. CONCLUSIONS ERCC6 rs1917799 GG genotype might be associated with increased GC risk in Chinese, especially in males.
Collapse
Affiliation(s)
- Jing-Wei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China E-mail : ,
| | | | | | | | | | | |
Collapse
|
33
|
Romanyuk OP, Nikitchenko NV, Savina NV, Kuzhir TD, Goncharova RI. The polymorphism of DNA repair genes XPD, XRCC1, OGG1, and ERCC6, life expectancy, and the inclination to smoke. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414080067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Cao W, Zhang JL, Feng DY, Liu XW, Li Y, Wang LF, Yao LB, Zhang H, Zhang J. The effect of adenovirus-conjugated NDRG2 on p53-mediated apoptosis of hepatocarcinoma cells through attenuation of nucleotide excision repair capacity. Biomaterials 2014; 35:993-1003. [PMID: 24383128 DOI: 10.1016/j.biomaterials.2013.09.096] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
NDRG2 mRNA and protein levels can be upregulated in a p53-dependent manner. NDRG2 enhances p53-mediated apoptosis, whereas overexpression of NDRG2 suppresses tumor cell growth, regardless of whether p53 is mutated. However, the complicated mechanism by which NDRG2 suppresses tumor cell growth and enhances apoptosis mediated by p53 is not fully understood. Here, we demonstrated that Ad-NDRG2 enhanced the apoptosis of HepG2 cells (wild-type p53). Additionally, Ad-NDRG2 combined with rAd-p53 enhanced the apoptosis of Huh7 cells (mutant p53) after chemotherapy, and the expression of the ERCC6 gene (Cockayne syndrome group B protein gene) was suppressed in this process. Ad-NDRG2 combined with rAd-p53 induced the apoptosis of tumor cells (HepG2 and Huh7 cells); however, apoptosis was attenuated after transfection with ERCC6. Our results indicate that Ad-NDRG2 enhances the p53-mediated apoptosis of hepatocarcinoma cells (HepG2 and Huh7) by attenuating the nucleotide excision repair capacity (i.e., by downregulating ERCC6), and ERCC6 is a NDRG2-inducible target gene that is involved in the p53-mediated apoptosis pathway.
Collapse
|
35
|
Sokratous K, Hadjisavvas A, Diamandis EP, Kyriacou K. The role of ubiquitin-binding domains in human pathophysiology. Crit Rev Clin Lab Sci 2014; 51:280-90. [PMID: 24901807 DOI: 10.3109/10408363.2014.915287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ubiquitination, a fundamental post-translational modification (PTM) resulting in the covalent attachment of ubiquitin (Ub) to a target protein, is currently implicated in several key cellular processes. Although ubiquitination was initially associated with protein degradation, it is becoming increasingly evident that proteins labeled with polyUb chains of specific topology and length are activated in an ever-expanding repertoire of specific cellular processes. In addition to their involvement in the classical protein degradation pathways they are involved in DNA repair, kinase regulation and nuclear factor-κB (NF-κB) signaling. The sorting and processing of distinct Ub signals is mediated by small protein motifs, known as Ub-binding domains (UBDs), which are found in proteins that execute disparate biological functions. The involvement of UBDs in several biological pathways has been revealed by several studies which have highlighted the vital role of UBDs in cellular homeostasis. Importantly, functional impairment of UBDs in key regulatory pathways has been related to the development of pathophysiological conditions, including immune disorders and cancer. In this review, we present an up-to-date account of the crucial role of UBDs and their functions, with a special emphasis on their functional impairment in key biological pathways and the pathogenesis of several human diseases. The still under-investigated topic of Ub-UBD interactions as a target for developing novel therapeutic strategies against many diseases is also discussed.
Collapse
|
36
|
The cockayne syndrome B protein is essential for neuronal differentiation and neuritogenesis. Cell Death Dis 2014; 5:e1268. [PMID: 24874740 PMCID: PMC4047889 DOI: 10.1038/cddis.2014.228] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/28/2014] [Accepted: 04/14/2014] [Indexed: 01/03/2023]
Abstract
Cockayne syndrome (CS) is a progressive developmental and neurodegenerative disorder resulting in premature death at childhood and cells derived from CS patients display DNA repair and transcriptional defects. CS is caused by mutations in csa and csb genes, and patients with csb mutation are more prevalent. A hallmark feature of CSB patients is neurodegeneration but the precise molecular cause for this defect remains enigmatic. Further, it is not clear whether the neurodegenerative condition is due to loss of CSB-mediated functions in adult neurogenesis. In this study, we examined the role of CSB in neurogenesis by using the human neural progenitor cells that have self-renewal and differentiation capabilities. In this model system, stable CSB knockdown dramatically reduced the differentiation potential of human neural progenitor cells revealing a key role for CSB in neurogenesis. Neurite outgrowth, a characteristic feature of differentiated neurons, was also greatly abolished in CSB-suppressed cells. In corroboration with this, expression of MAP2 (microtubule-associated protein 2), a crucial player in neuritogenesis, was also impaired in CSB-suppressed cells. Consistent with reduced MAP2 expression in CSB-depleted neural cells, tandem affinity purification and chromatin immunoprecipitation studies revealed a potential role for CSB in the assembly of transcription complex on MAP2 promoter. Altogether, our data led us to conclude that CSB has a crucial role in coordinated regulation of transcription and chromatin remodeling activities that are required during neurogenesis.
Collapse
|
37
|
Luo Y, Ling Y, Chen J, Xu X, Chen C, Leng F, Cheng J, Chen M, Lu Z. A new mutation in the CSB gene in a Chinese patient with mild Cockayne syndrome. Clin Case Rep 2014; 2:33-6. [PMID: 25356239 PMCID: PMC4184625 DOI: 10.1002/ccr3.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/28/2013] [Accepted: 11/27/2013] [Indexed: 11/17/2022] Open
Abstract
Key Clinical Message Cockayne syndrome (CS) is a rare autosomal recessive genetic disease characterized by growth failure and progressive neurological degeneration. Here we report a mild form of CS patient who was homozygous for the C526T transition resulting in a new nonsense mutation, which converts Arg176 to a stop codon.
Collapse
Affiliation(s)
- Yu Luo
- Zhongshan Hospital Fudan University Shanghai, China
| | - Yan Ling
- Zhongshan Hospital Fudan University Shanghai, China
| | - Jiachao Chen
- Zhongshan Hospital Fudan University Shanghai, China
| | - Xi Xu
- Zhongshan Hospital Fudan University Shanghai, China
| | - Chen Chen
- Zhongshan Hospital Fudan University Shanghai, China
| | - Fei Leng
- Zhongshan Hospital Fudan University Shanghai, China
| | - Jing Cheng
- Zhongshan Hospital Fudan University Shanghai, China
| | - Min Chen
- Taizhou People's Hospital of Jiangsu Province Taizhou, China
| | - Zhiqiang Lu
- Zhongshan Hospital Fudan University Shanghai, China
| |
Collapse
|
38
|
Tummala H, Kirwan M, Walne AJ, Hossain U, Jackson N, Pondarre C, Plagnol V, Vulliamy T, Dokal I. ERCC6L2 mutations link a distinct bone-marrow-failure syndrome to DNA repair and mitochondrial function. Am J Hum Genet 2014; 94:246-56. [PMID: 24507776 PMCID: PMC3928664 DOI: 10.1016/j.ajhg.2014.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/10/2014] [Indexed: 10/25/2022] Open
Abstract
Exome sequencing was performed in three index cases with bone marrow failure and neurological dysfunction and whose parents are first-degree cousins. Homozygous truncating mutations were identified in ERCC6L2 in two of the individuals. Both of these mutations affect the subcellular localization and stability of ERCC6L2. We show here that knockdown of ERCC6L2 in human A549 cells significantly reduced their viability upon exposure to the DNA-damaging agents mitomycin C and Irofulven, but not etoposide and camptothecin, suggesting a role in nucleotide excision repair. ERCC6L2-knockdown cells also displayed H2AX phosphorylation, which significantly increased upon genotoxic stress, suggesting an early DNA-damage response. Intriguingly, ERCC6L2 was seen to translocate to the mitochondria and the nucleus in response to DNA damage, and ERCC6L2 knockdown induced intracellular reactive oxygen species (ROS). Treatment with the ROS scavenger N-acetyl cysteine attenuated the Irofulven-induced cytotoxicity in ERCC6L2-knockdown cells and abolished ERCCGL2 traffic to the mitochondria and nucleus in response to this DNA-damaging agent. Collectively, these observations identify a distinct bone-marrow-failure syndrome due to mutations in ERCC6L2, a gene implicated in DNA repair and mitochondrial function.
Collapse
Affiliation(s)
- Hemanth Tummala
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Michael Kirwan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Amanda J Walne
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Upal Hossain
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Barts Health NHS Trust, London E1 1BB, UK
| | - Nicholas Jackson
- Department of Haematology, University Hospital, Coventry CV2 2DX, UK
| | - Corinne Pondarre
- Institute of Pediatric Hematology and Oncology, Lyon I University, Lyon 69008, France
| | - Vincent Plagnol
- University College London Genetics Institute, London WC1E 6BT, UK
| | - Tom Vulliamy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Inderjeet Dokal
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Barts Health NHS Trust, London E1 1BB, UK
| |
Collapse
|
39
|
Abstract
A number of DNA repair disorders are known to cause neurological problems. These disorders can be broadly characterised into early developmental, mid-to-late developmental or progressive. The exact developmental processes that are affected can influence disease pathology, with symptoms ranging from early embryonic lethality to late-onset ataxia. The category these diseases belong to depends on the frequency of lesions arising in the brain, the role of the defective repair pathway, and the nature of the mutation within the patient. Using observations from patients and transgenic mice, we discuss the importance of double strand break repair during neuroprogenitor proliferation and brain development and the repair of single stranded lesions in neuronal function and maintenance.
Collapse
Affiliation(s)
- Stuart L Rulten
- Genome Damage and Stability Centre, Science Park Road, Falmer, Brighton BN1 9RQ, UK.
| | | |
Collapse
|
40
|
Aamann MD, Muftuoglu M, Bohr VA, Stevnsner T. Multiple interaction partners for Cockayne syndrome proteins: implications for genome and transcriptome maintenance. Mech Ageing Dev 2013; 134:212-24. [PMID: 23583689 DOI: 10.1016/j.mad.2013.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/17/2022]
Abstract
Cockayne syndrome (CS) is characterized by progressive multisystem degeneration and is classified as a segmental premature aging syndrome. The majority of CS cases are caused by defects in the CS complementation group B (CSB) protein and the rest are mainly caused by defects in the CS complementation group A (CSA) protein. Cells from CS patients are sensitive to UV light and a number of other DNA damaging agents including various types of oxidative stress. The cells also display transcription deficiencies, abnormal apoptotic response to DNA damage, and DNA repair deficiencies. Herein we have critically reviewed the current knowledge about known protein interactions of the CS proteins. The review focuses on the participation of the CSB and CSA proteins in many different protein interactions and complexes, and how these interactions inform us about pathways that are defective in the disease.
Collapse
Affiliation(s)
- Maria D Aamann
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | | |
Collapse
|
41
|
McKay BC, Cabrita MA. Arresting transcription and sentencing the cell: the consequences of blocked transcription. Mech Ageing Dev 2013; 134:243-52. [PMID: 23542592 DOI: 10.1016/j.mad.2013.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/16/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
Abstract
Bulky DNA adducts induced by agents like ultraviolet light, cisplatin and oxidative metabolism pose a block to elongation by RNA polymerase II (RNAPII). The arrested RNAPII can initiate the repair of transcription-blocking DNA lesions by transcription-coupled nucleotide excision repair (TC-NER) to permit efficient recovery of mRNA synthesis while widespread sustained transcription blocks lead to apoptosis. Therefore, RNAPII serves as a processive DNA damage sensor that identifies transcription-blocking DNA lesions. Cockayne syndrome (CS) is an autosomal recessive disorder characterized by a complex phenotype that includes clinical photosensitivity, progressive neurological degeneration and premature-aging. CS is associated with defects in TC-NER and the recovery of mRNA synthesis, making CS cells exquisitely sensitive to a variety of DNA damaging agents. These defects in the coupling of repair and transcription appear to underlie some of the complex clinical features of CS. Recent insight into the consequences of blocked transcription and their relationship to CS will be discussed.
Collapse
Affiliation(s)
- Bruce C McKay
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Canada.
| | | |
Collapse
|
42
|
Khobta A, Epe B. Repair of oxidatively generated DNA damage in Cockayne syndrome. Mech Ageing Dev 2013; 134:253-60. [PMID: 23518175 DOI: 10.1016/j.mad.2013.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/12/2013] [Accepted: 03/01/2013] [Indexed: 11/16/2022]
Abstract
Defects in the repair of endogenously (especially oxidatively) generated DNA modifications and the resulting genetic instability can potentially explain the clinical symptoms of Cockayne syndrome (CS), a hereditary disease characterized by developmental defects and neurological degeneration. In this review, we describe the evidence for the involvement of CSA and CSB proteins, which are mutated in most of the CS patients, in the repair and processing of DNA damage induced by reactive oxygen species and the implications for the induction of cell death and mutations. Taken together, the data demonstrate that CSA and CSB, in addition to their established role in transcription-coupled nucleotide excision repair, can modulate the base excision repair (BER) of oxidized DNA bases both directly (by interaction with BER proteins) and indirectly (by modulating the expression of the DNA repair genes). Both nuclear and mitochondrial DNA repair is affected by mutations in CSA and CSB genes. However, the observed retardations of repair and the resulting accumulation of unrepaired endogenously generated DNA lesions are often mild, thus pointing to the relevance of additional roles of the CS proteins, e.g. in the mitochondrial response to oxidatively generated DNA damage and in the maintenance of gene transcription.
Collapse
Affiliation(s)
- Andriy Khobta
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany.
| | | |
Collapse
|
43
|
Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 2013; 12:661-84. [PMID: 22353384 DOI: 10.1016/j.arr.2012.02.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 12/21/2022]
Abstract
Since the first publication on Somatic Mutation Theory of Aging (Szilárd, 1959), a great volume of knowledge in the field has been accumulated. Here we attempted to organize the evidence "for" and "against" the hypothesized causal role of DNA damage and mutation accumulation in aging in light of four Koch-like criteria. They are based on the assumption that some quantitative relationship between the levels of DNA damage/mutations and aging rate should exist, so that (i) the longer-lived individuals or species would have a lower rate of damage than the shorter-lived, and (ii) the interventions that modulate the level of DNA damage and repair capacity should also modulate the rate of aging and longevity and vice versa. The analysis of how the existing data meets the proposed criteria showed that many gaps should still be filled in order to reach a clear-cut conclusion. As a perspective, it seems that the main emphasis in future studies should be put on the role of DNA damage in stem cell aging.
Collapse
|
44
|
Berdasco M, Esteller M. Genetic syndromes caused by mutations in epigenetic genes. Hum Genet 2013; 132:359-83. [PMID: 23370504 DOI: 10.1007/s00439-013-1271-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
The orchestrated organization of epigenetic factors that control chromatin dynamism, including DNA methylation, histone marks, non-coding RNAs (ncRNAs) and chromatin-remodeling proteins, is essential for the proper function of tissue homeostasis, cell identity and development. Indeed, deregulation of epigenetic profiles has been described in several human pathologies, including complex diseases (such as cancer, cardiovascular and neurological diseases), metabolic pathologies (type 2 diabetes and obesity) and imprinting disorders. Over the last decade it has become increasingly clear that mutations of genes involved in epigenetic mechanism, such as DNA methyltransferases, methyl-binding domain proteins, histone deacetylases, histone methylases and members of the SWI/SNF family of chromatin remodelers are linked to human disorders, including Immunodeficiency Centromeric instability Facial syndrome 1, Rett syndrome, Rubinstein-Taybi syndrome, Sotos syndrome or alpha-thalassemia/mental retardation X-linked syndrome, among others. As new members of the epigenetic machinery are described, the number of human syndromes associated with epigenetic alterations increases. As recent examples, mutations of histone demethylases and members of the non-coding RNA machinery have recently been associated with Kabuki syndrome, Claes-Jensen X-linked mental retardation syndrome and Goiter syndrome. In this review, we describe the variety of germline mutations of epigenetic modifiers that are known to be associated with human disorders, and discuss the therapeutic potential of epigenetic drugs as palliative care strategies in the treatment of such disorders.
Collapse
Affiliation(s)
- María Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908 L'Hospitalet de LLobregat, Barcelona, Catalonia, Spain
| | | |
Collapse
|
45
|
Abstract
The pathogenesis of age-related macular degeneration (AMD) is complex and involves interactions between environmental and genetic factors, with oxidative stress playing an important role inducing damage in biomolecules, including DNA. Therefore, genetic variability in the components of DNA repair systems may influence the ability of the cell to cope with oxidative stress and in this way contribute to the pathogenesis of AMD. However, few reports have been published on this subject so far. We demonstrated that the c.977C>G polymorphism (rs1052133) in the hOGG1 gene and the c.972G>C polymorphism (rs3219489) in the MUTYH gene, the products of which play important roles in the repair of oxidatively damaged DNA, might be associated with the risk of AMD. Oxidative stress may promote misincorporation of uracil into DNA, where it is targeted by several DNA glycosylases. We observed that the g.4235T>C (rs2337395) and c.–32A>G (rs3087404) polymorphisms in two genes encoding such glycosylases, UNG and SMUG1, respectively, could be associated with the occurrence of AMD. Polymorphisms in some other DNA repair genes, including XPD (ERCC2), XRCC1 and ERCC6 (CSB) have also been reported to be associated with AMD. These data confirm the importance of the cellular reaction to DNA damage, and this may be influenced by variability in DNA repair genes, in AMD pathogenesis.
Collapse
|
46
|
Frontini M, Proietti-De-Santis L. Interaction between the Cockayne syndrome B and p53 proteins: implications for aging. Aging (Albany NY) 2012; 4:89-97. [PMID: 22383384 PMCID: PMC3314171 DOI: 10.18632/aging.100439] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The CSB protein plays a role in the transcription coupled repair (TCR) branch of the nucleotide excision repair pathway. CSB is very often found mutated in Cockayne syndrome, a segmental progeroid genetic disease characterized by organ degeneration and growth failure. The tumor suppressor p53 plays a pivotal role in triggering senescence and apoptosis and suppressing tumorigenesis. Although p53 is very important to avoid cancer, its excessive activity can be detrimental for the lifespan of the organism. This is why a network of positive and negative feedback loops, which most likely evolved to fine-tune the activity of this tumor suppressor, modulate its induction and activation. Accordingly, an unbalanced p53 activity gives rise to premature aging or cancer. The physical interaction between CSB and p53 proteins has been known for more than a decade but, despite several hypotheses, nobody has been able to show the functional consequences of this interaction. In this review we resume recent advances towards a more comprehensive understanding of the critical role of this interaction in modulating p53’s levels and activity, therefore helping the system find a reasonable equilibrium between the beneficial and the detrimental effects of its activity. This crosstalk re-establishes the physiological balance towards cell proliferation and survival instead of towards cell death, after stressors of a broad nature. Accordingly, cells bearing mutations in the csb gene are unable to re-establish this physiological balance and to properly respond to some stress stimuli and undergo massive apoptosis.
Collapse
Affiliation(s)
- Mattia Frontini
- Department of Haematology, University of Cambridge, CB2 0PT, Cambridge, United Kingdom
| | | |
Collapse
|
47
|
Andrade LNDS, Nathanson JL, Yeo GW, Menck CFM, Muotri AR. Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome. Hum Mol Genet 2012; 21:3825-34. [PMID: 22661500 DOI: 10.1093/hmg/dds211] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cockayne syndrome (CS) is a human premature aging disorder associated with neurological and developmental abnormalities, caused by mutations mainly in the CS group B gene (ERCC6). At the molecular level, CS is characterized by a deficiency in the transcription-couple DNA repair pathway. To understand the role of this molecular pathway in a pluripotent cell and the impact of CSB mutation during human cellular development, we generated induced pluripotent stem cells (iPSCs) from CSB skin fibroblasts (CSB-iPSC). Here, we showed that the lack of functional CSB does not represent a barrier to genetic reprogramming. However, iPSCs derived from CSB patient's fibroblasts exhibited elevated cell death rate and higher reactive oxygen species (ROS) production. Moreover, these cellular phenotypes were accompanied by an up-regulation of TXNIP and TP53 transcriptional expression. Our findings suggest that CSB modulates cell viability in pluripotent stem cells, regulating the expression of TP53 and TXNIP and ROS production.
Collapse
|
48
|
Dysmyelination not demyelination causes neurological symptoms in preweaned mice in a murine model of Cockayne syndrome. Proc Natl Acad Sci U S A 2012; 109:4627-32. [PMID: 22393014 DOI: 10.1073/pnas.1202621109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cockayne syndrome (CS) is a rare autosomal recessive neurodegenerative disease that is associated with mutations in either of two transcription-coupled DNA repair genes, CSA or CSB. Mice with a targeted mutation in the Csb gene (Cs-b(m/m)) exhibit a milder phenotype compared with human patients with mutations in the orthologous CSB gene. Mice mutated in Csb were crossed with mice lacking Xpc (Xp-c(-/-)), the global genome repair gene, to enhance the pathological symptoms. These Cs-b(m/m).Xp-c(-/-) mice were normal at birth but exhibited progressive failure to thrive, whole-body wasting, and ataxia and died at approximately postnatal day 21. Characterization of Cs-b(m/m).Xp-c(-/-) brains at postnatal stages demonstrated widespread reduction of myelin basic protein (MBP) and myelin in the sensorimotor cortex, the stratum radiatum, the corpus callosum, and the anterior commissure. Quantification of individual axons by electron microscopy showed a reduction in both the number of myelinated axons and the average diameter of myelin surrounding the axons. There were no significant differences in proliferation or oligodendrocyte differentiation between Cs-b(m/m).Xp-c(-/-) and Cs-b(m/+).Xp-c(-/-) mice. Rather, Cs-b(m/m).Xp-c(-/-) oligodendrocytes were unable to generate sufficient MBP or to maintain the proper myelination during early development. Csb is a multifunctional protein regulating both repair and the transcriptional response to reactive oxygen through its interaction with histone acetylase p300 and the hypoxia-inducible factor (HIF)1 pathway. On the basis of our results, combined with that of others, we suggest that in Csb the transcriptional response predominates during early development, whereas a neurodegenerative response associated with repair deficits predominates in later life.
Collapse
|
49
|
Winczura A, Zdżalik D, Tudek B. Damage of DNA and proteins by major lipid peroxidation products in genome stability. Free Radic Res 2012; 46:442-59. [PMID: 22257221 DOI: 10.3109/10715762.2012.658516] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative stress and lipid peroxidation (LPO) accompanying infections and chronic inflammation may induce several human cancers. LPO products are characterized by carbohydrate chains of different length, reactive aldehyde groups and double bonds, which make these molecules reactive to nucleic acids, proteins and cellular thiols. LPO-derived adducts to DNA bases form etheno-type and propano-type exocyclic rings, which have profound mutagenic potential, and are elevated in several cancer-prone diseases. Adducts of long chain LPO products to DNA bases inhibit transcription. Elimination from DNA of LPO-induced lesions is executed by several repair systems: base excision repair (BER), direct reversal by AlkB family proteins, nucleotide excision repair (NER) and recombination. Modifications of proteins with LPO products may regulate cellular processes like apoptosis, cell signalling and senescence. This review summarizes consequences of LPO products' presence in cell, particularly 4-hydroxy-2-nonenal, in terms of genomic stability.
Collapse
Affiliation(s)
- Alicja Winczura
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 02-106 Warsaw, Poland
| | | | | |
Collapse
|
50
|
Swartzlander DB, Bauer NC, Corbett AH, Doetsch PW. Regulation of base excision repair in eukaryotes by dynamic localization strategies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:93-121. [PMID: 22749144 DOI: 10.1016/b978-0-12-387665-2.00005-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter discusses base excision repair (BER) and the known mechanisms defined thus far regulating BER in eukaryotes. Unlike the situation with nucleotide excision repair and double-strand break repair, little is known about how BER is regulated to allow for efficient and accurate repair of many types of DNA base damage in both nuclear and mitochondrial genomes. Regulation of BER has been proposed to occur at multiple, different levels including transcription, posttranslational modification, protein-protein interactions, and protein localization; however, none of these regulatory mechanisms characterized thus far affect a large spectrum of BER proteins. This chapter discusses a recently discovered mode of BER regulation defined in budding yeast cells that involves mobilization of DNA repair proteins to DNA-containing organelles in response to genotoxic stress.
Collapse
Affiliation(s)
- Daniel B Swartzlander
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|