1
|
Kumaran D, Ramirez-Arcos S. Cutibacterium acnes contamination does not enhance the proinflammatory profile of platelet concentrates. Transfusion 2024; 64:1437-1446. [PMID: 38922882 DOI: 10.1111/trf.17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Cutibacterium acnes, a common anaerobic platelet concentrate (PC) contaminant, has been associated with rare mild adverse transfusion reactions and is often considered a harmless commensal. Notably, C. acnes can cause chronic infections and has been shown to induce the release of proinflammatory cytokines by immune cells. Since elevated concentrations of proinflammatory factors in PCs have been linked to noninfectious adverse reactions, this study aimed to assess whether C. acnes could elicit the release and accumulation of proinflammatory factors during PC storage, thereby enhancing the risk of such reactions. STUDY DESIGN/METHODS Four ABO-matched buffy coat PCs were pooled and split into six units, each were inoculated with either saline (negative control), a Staphylococcus aureus isolate (positive control, 30 colony forming units [CFU]/unit), or four C. acnes PC isolates (10 CFU/mL) and stored at 20-24°C with agitation. Bacterial counts, platelet activation, and concentration of proinflammatory factors were assessed on days 0, 3, and 5. N = 3. RESULTS C. acnes counts remained stable, while S. aureus proliferated reaching 108CFU/mL by the end of PC storage. By day 5, no significant differences in platelet activation or proinflammatory cytokine profiles were observed in C. acnes-contaminated PCs compared to the negative control (p > .05), while there was a significant increase (p ≤ .05) in sCD40L concentration (day 3), and platelet activation and IL-8 concentration (day 5) in S. aureus-contaminated units. DISCUSSION C. acnes contamination does not promote the accumulation of proinflammatory factors in the absence of proliferation during storage and may not enhance the risk of inflammatory reactions when transfused to patients.
Collapse
Affiliation(s)
- Dilini Kumaran
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Ramirez-Arcos S, Kumaran D, Cap A, Cardenas KM, Cloutier M, Ferdin J, Gravemann U, Ketter P, Landry P, Lu T, Niekerk T, Parker J, Renke C, Seltsam A, Stafford B, Süssner S, Vollmer T, Zilkenat S, McDonald C. Proliferation of psychrotrophic bacteria in cold-stored platelet concentrates. Vox Sang 2024; 119:693-701. [PMID: 38631895 DOI: 10.1111/vox.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND AND OBJECTIVES Platelet concentrates (PC) are stored at 20-24°C to maintain platelet functionality, which may promote growth of contaminant bacteria. Alternatively, cold storage of PC limits bacterial growth; however, data related to proliferation of psychotrophic species in cold-stored PC (CSP) are scarce, which is addressed in this study. MATERIALS AND METHODS Eight laboratories participated in this study with a pool/split approach. Two split PC units were spiked with ~25 colony forming units (CFU)/PC of Staphylococcus aureus, Klebsiella pneumoniae, Serratia liquefaciens, Pseudomonas fluorescens and Listeria monocytogenes. One unit was stored under agitation at 20-24°C/7 days while the second was stored at 1-6°C/no agitation for 21 days. PC were sampled periodically to determine bacterial loads. Five laboratories repeated the study with PC inoculated with lyophilized inocula (~30 CFU/mL) of S. aureus and K. pneumoniae. RESULTS All species proliferated in PC stored at 20-24°C, reaching concentrations of ≤109 CFU/mL by day 7. Psychrotrophic P. fluorescens and S. liquefaciens proliferated in CSP to ~106 CFU/mL and ~105 CFU/mL on days 10 and 17 of storage, respectively, followed by L. monocytogenes, which reached ~102 CFU/mL on day 21. S. aureus and K. pneumoniae did not grow in CSP. CONCLUSION Psychrotrophic bacteria, which are relatively rare contaminants in PC, proliferated in CSP, with P. fluorescens reaching clinically significant levels (≥105 CFU/mL) before day 14 of storage. Cold storage reduces bacterial risk of PC to levels comparable with RBC units. Safety of CSP could be further improved by implementing bacterial detection systems or pathogen reduction technologies if storage is beyond 10 days.
Collapse
Affiliation(s)
- Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Dilini Kumaran
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew Cap
- Coagulation and Blood Research Task Area US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Kristin Michelle Cardenas
- Coagulation and Blood Research Task Area US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | | | - Justin Ferdin
- Coagulation and Blood Research Task Area US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Ute Gravemann
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Patrick Ketter
- Coagulation and Blood Research Task Area US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | | | - Thea Lu
- Cerus Corporation, Concord, California, USA
| | - Truscha Niekerk
- South African National Blood Service, Roodepoort, South Africa
| | - Joel Parker
- Coagulation and Blood Research Task Area US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Claudia Renke
- Austrian Red Cross, Blood Centre Linz, Linz, Austria
| | - Axel Seltsam
- Bavarian Red Cross Blood Service, Nuremberg, Germany
| | | | | | - Tanja Vollmer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | | |
Collapse
|
3
|
Ramírez-Guerrero G, de Cal M, Lorenzin A, Vigolo D, Toscano AI, Araya-Rojas M, Zanella M, Ronco C. Sorbent functionalization with vancomycin enhances bacteria killing in extracorporeal hemoadsorption. Artif Organs 2024; 48:543-549. [PMID: 38156403 DOI: 10.1111/aor.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND The level of bacteremia in patients with sepsis and septic shock is a predictor of complications and mortality, regardless of the type of bacteria. Devices for bacteria, endotoxin and cytokines removal by adsorption have been recently developed. Thus, extracorporeal blood purification therapies have been proposed as adjunctive therapy in sepsis in combination with drugs. Some potentially useful drugs, however, are precluded due to their organ or metabolic toxicity. The present study represents a preliminary report on the in vitro effect of a sorbent device (minimodule with HA380 beads, Jafron medical, Zhuhai, China) in which the particles have been functionalized with vancomycin on the surface. The impact of the surface-modified beads on circulating bacteria (Staphylococcus aureus) has been tested in a simulated in vitro circulation. METHODS In vitro experiments were carried out with 800 mL of blood enriched with S. aureus species. Blood was circulated in the vancomycin-functionalized and non-functionalized mini-module cartridges in hemoadsorption setup (300 mL each) and the bactericidal effect was assessed. Also, 200 mL of blood was used as a control. RESULTS A significant increase in the time to positivity of blood cultures was observed after 60 min and also after 120 min of therapy with the mini-module functionalized with vancomycin as opposed to the non-functionalized cartridge. CONCLUSIONS These results suggest a possible way of treating sepsis by using drug- or antibiotic-functionalized cartridges without worrying about pharmacological toxicity. The prolongation of the time to bacterial culture positivity to S. aureus after a passage through a column packed with beads functionalized with vancomycin represents a proof of concept.
Collapse
Affiliation(s)
- Gonzalo Ramírez-Guerrero
- International Renal Research Institute of Vicenza (IRRIV Foundation), Vicenza, Italy
- Nephrology and Dialysis Unit, Carlos Van Buren Hospital, Valparaíso, Chile
- Department of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Massimo de Cal
- International Renal Research Institute of Vicenza (IRRIV Foundation), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Anna Lorenzin
- International Renal Research Institute of Vicenza (IRRIV Foundation), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Dario Vigolo
- International Renal Research Institute of Vicenza (IRRIV Foundation), Vicenza, Italy
| | - Anna Italia Toscano
- International Renal Research Institute of Vicenza (IRRIV Foundation), Vicenza, Italy
| | | | - Monica Zanella
- International Renal Research Institute of Vicenza (IRRIV Foundation), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Claudio Ronco
- International Renal Research Institute of Vicenza (IRRIV Foundation), Vicenza, Italy
| |
Collapse
|
4
|
Yousuf B, Flint A, Weedmark K, Pagotto F, Ramirez-Arcos S. Comparative virulome analysis of four Staphylococcus epidermidis strains from human skin and platelet concentrates using whole genome sequencing. Access Microbiol 2024; 6:000780.v3. [PMID: 38737800 PMCID: PMC11083402 DOI: 10.1099/acmi.0.000780.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 05/14/2024] Open
Abstract
Staphylococcus epidermidis is one of the predominant bacterial contaminants in platelet concentrates (PCs), a blood component used to treat bleeding disorders. PCs are a unique niche that triggers biofilm formation, the main pathomechanism of S. epidermidis infections. We performed whole genome sequencing of four S. epidermidis strains isolated from skin of healthy human volunteers (AZ22 and AZ39) and contaminated PCs (ST10002 and ST11003) to unravel phylogenetic relationships and decipher virulence mechanisms compared to 24 complete S. epidermidis genomes in GenBank. AZ39 and ST11003 formed a separate unique lineage with strains 14.1 .R1 and SE95, while AZ22 formed a cluster with 1457 and ST10002 closely grouped with FDAAGOS_161. The four isolates were assigned to sequence types ST1175, ST1174, ST73 and ST16, respectively. All four genomes exhibited biofilm-associated genes ebh, ebp, sdrG, sdrH and atl. Additionally, AZ22 had sdrF and aap, whereas ST10002 had aap and icaABCDR. Notably, AZ39 possesses truncated ebh and sdrG and harbours a toxin-encoding gene. All isolates carry multiple antibiotic resistance genes conferring resistance to fosfomycin (fosB), β-lactams (blaZ) and fluoroquinolones (norA). This study reveales a unique lineage for S. epidermidis and provides insight into the genetic basis of virulence and antibiotic resistance in transfusion-associated S. epidermidis strains.
Collapse
Affiliation(s)
- Basit Yousuf
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Annika Flint
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Kelly Weedmark
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Franco Pagotto
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
5
|
Mokhtar G, Adly A, Baky AA, Ezzat D, Hakeem GA, Hassab H, Youssry I, Ragab I, Florez I, Sherief LM, El-Ekiaby M, Zakaria M, Hesham M, Shaheen N, Salama N, Salah N, Afifi RAA, El-Ashry R, Youssef S, Ragab S, Habib SA, Omar T, Amer Y, Wali Y, Makkeyah S. Transfusion of blood components in pediatric age groups: an evidence-based clinical practice guideline adapted for the use in Egypt using 'Adapted ADAPTE'. Ann Hematol 2024; 103:1373-1388. [PMID: 38388746 PMCID: PMC10940419 DOI: 10.1007/s00277-024-05657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Pediatric transfusion is a complex area of medicine covering a wide age range, from neonates to young adults. Compared to adult practice, there is a relative lack of high-quality research to inform evidence-based guidelines. We aimed to adapt the pre-existing high-quality practice guidelines for the transfusion of blood components in different pediatric age groups to be available for national use by general practitioners, pediatricians, and other health care professionals. The guideline panel included 17 key leaders from different Egyptian institutions. The panel used the Adapted ADAPTE methodology. The panel prioritized the health questions and recommendations according to their importance for clinicians and patients. The procedure included searching for existing guidelines, quality appraisal, and adaptation of the recommendations to the target context of use. The guideline covered all important aspects of the indications, dosing, and administration of packed red cells, platelets, and fresh frozen plasma. It also included transfusion in special situations, e.g., chronic hemolytic anemia and aplastic anemia, management of massive blood loss, malignancies, surgery, recommendations for safe transfusion practices, and recommendations for modifications of cellular blood components. The final version of the adapted clinical practice guideline (CPG) has been made after a thorough review by an external review panel and was guided by their official recommendations and modifications. A set of implementation tools included algorithms, tables, and flow charts to aid decision-making in practice. This adapted guideline serves as a tool for safe transfusion practices in different pediatric age groups.
Collapse
Affiliation(s)
- Galila Mokhtar
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Ain Shams University, Cairo, Egypt
| | - Amira Adly
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Ain Shams University, Cairo, Egypt
| | - Ashraf Abdel Baky
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Pediatrics, MTI University, Cairo, Egypt
- Department of Pediatrics, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Dina Ezzat
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Beni Suef University, Beni Suef, Egypt
| | - Gehan Abdel Hakeem
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Minia University, Minia, Egypt
| | - Hoda Hassab
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Alexandria University, Alexandria, Egypt
| | - Ilham Youssry
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Cairo University, Giza, Egypt
| | - Iman Ragab
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Ain Shams University, Cairo, Egypt
| | - Ivan Florez
- Department of Pediatrics, University of Antioquia, Medellin, Colombia
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Laila M Sherief
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Zagazig University, Zagazig, Egypt
| | - Magdy El-Ekiaby
- Department of Clinical Pathology and Transfusion Medicine, Shabrawishi Hospital, Cairo, Egypt
| | - Marwa Zakaria
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Zagazig University, Zagazig, Egypt
| | - Mervat Hesham
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Zagazig University, Zagazig, Egypt
| | - Naglaa Shaheen
- Pediatric Hematology Department, Misr Children's Hospital, Health Insurance Organization, Cairo, Egypt
| | - Niveen Salama
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Cairo University, Giza, Egypt
| | - Nouran Salah
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Ain Shams University, Cairo, Egypt
| | - Rasha A A Afifi
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Cairo University, Giza, Egypt
| | - Rasha El-Ashry
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Mansoura University, Monsoura, Egypt
| | - Salwa Youssef
- Department of Clinical Pathology and Transfusion Medicine, Ain Shams University, Cairo, Egypt
| | - Seham Ragab
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Menoufia University, Menoufia, Egypt
| | - Sonia A Habib
- Pediatric Hematology and Oncology Unit, National Research Center, Giza, Egypt
| | - Tarek Omar
- Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yasser Amer
- Alexandria Center for Evidence-Based Clinical Practice Guidelines, Alexandria University, Alexandria, Egypt
- Department of Pediatrics, Quality Management Department, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Yasser Wali
- Pediatric Hematology/Oncology Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Sara Makkeyah
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
6
|
Na B, Lee J, Chang HE, Park E, Park S, Lee J, Oh S, Shin DW, Hong YJ, Park KU. Verification of a method using magnetic bead enrichment and nucleic acid extraction to improve the molecular detection of bacterial contamination in blood components. Microbiol Spectr 2024; 12:e0276023. [PMID: 38319091 PMCID: PMC10913752 DOI: 10.1128/spectrum.02760-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/26/2023] [Indexed: 02/07/2024] Open
Abstract
Bacterial contamination of blood products poses a significant risk in transfusion medicine. Platelets are particularly vulnerable to bacterial growth because they must be stored at room temperature with constant agitation for >5 days. The limitations of bacterial detection using conventional methods, such as blood cultures and lateral flow assays, include the long detection times, low sensitivity, and the requirement for substantial volumes of blood components. To address these limitations, we assessed the performance of a bacterial enrichment technique using antibiotic-conjugated magnetic nanobeads (AcMNBs) and real-time PCR for the detection of bacterial contamination in plasma. AcMNBs successfully captured >80% of four bacterial strains, including Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Klebsiella pneumoniae, in both plasma and phosphate-buffered saline. After 24-h incubation with bacterial enrichment, S. aureus and B. cereus were each detected at 101 CFU/mL in all trials (5/5), E. coli at 101 CFU/mL in 1/5 trials, and K. pneumoniae at 10² CFU/mL in 4/5 trials. Additionally, without incubation, the improvement was also achieved in samples with bacterial enrichment, S. aureus at 10² CFU/mL and B. cereus at 101 CFU/mL in 1/5 trials each, E. coli at 10³ CFU/mL in 3/5 trials, and K. pneumoniae at 10¹ CFU/mL in 2/5 trials. Overall, the findings from this study strongly support the superiority of bacterial enrichment in detecting low-level bacterial contamination in plasma when employing AcMNBs and PCR.IMPORTANCEThe study presents a breakthrough approach to detect bacterial contamination in plasma, a critical concern in transfusion medicine. Traditional methods, such as blood cultures and lateral flow assays, are hampered by slow detection times, low sensitivity, and the need for large blood sample volumes. Our research introduces a novel technique using antibiotic-conjugated magnetic nanobeads combined with real-time PCR, enhancing the detection of bacteria in blood products, especially platelets. This method has shown exceptional efficiency in identifying even low levels of four different species of bacteria in plasma. The ability to detect bacterial contamination rapidly and accurately is vital for ensuring the safety of blood transfusions and can significantly reduce the risk of infections transmitted through blood products. This advancement is a pivotal step in improving patient outcomes and elevating the standards of care in transfusion medicine.
Collapse
Affiliation(s)
- Byungjoon Na
- KingoBio Inc. Research Center, Seoul, South Korea
| | - Jinyeop Lee
- KingoBio Inc. Research Center, Seoul, South Korea
| | | | - Eunseon Park
- KingoBio Inc. Research Center, Seoul, South Korea
| | - Sojin Park
- KingoBio Inc. Research Center, Seoul, South Korea
| | | | - Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Woo Shin
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yun Ji Hong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
7
|
Hess AS. What's in Your Transfusion? A Bedside Guide to Blood Products and Their Preparation. Anesthesiology 2024; 140:144-156. [PMID: 37639622 DOI: 10.1097/aln.0000000000004655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
An understanding of the contents of blood products and how they are modified before transfusion will help any physician. This article will review five basic blood products and the five most common product modifications.
Collapse
Affiliation(s)
- Aaron S Hess
- Departments of Anesthesiology and Pathology & Transfusion Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
8
|
Salamanca-Pachon M, Guayacan-Fuquene NI, Garcia-Otalora MA. Septic Transfusion Reactions Involving Burkholderia cepacia Complex: A Review. Microorganisms 2023; 12:40. [PMID: 38257866 PMCID: PMC10818922 DOI: 10.3390/microorganisms12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 01/24/2024] Open
Abstract
This review was conducted to assess the global incidence of transfusion-transmitted infections (TTIs) caused by contamination of blood components with the Burkholderia cepacia complex (Bcc). Our search encompassed various specialized databases such as Medline/PubMed, Web of Science, Scopus, Scielo, ScienceDirect, and ClinicalKey. An analysis of the literature revealed a total of eleven reported cases where blood components contaminated with Bcc had been transfused, resulting in sepsis among the affected patients. Of these cases, eight were documented in the literature, while the remaining three occurred within the institution involving the authors of this review. A comparative examination was conducted, considering factors such as primary diagnosis, transfused blood component, time elapsed between transfusion and manifestation of symptoms, administration of antibiotics, and final outcome. Interestingly, regardless of the storage temperature, all blood components were found to be susceptible to Bcc contamination. Furthermore, the cases investigated revealed diverse sources of contamination, and it was observed that all the affected patients had compromised immune systems due to underlying illnesses. Based on these findings, a series of preventive strategies were derived to mitigate and decrease the occurrence of similar cases.
Collapse
Affiliation(s)
| | | | - Michel-Andres Garcia-Otalora
- Public Health Research Group, School of Medicine and Health Science, Universidad del Rosario, Bogotá 111221, Colombia;
| |
Collapse
|
9
|
Acharya D, Gaussen A, Poder TG, Lambert G, Renaud C, Nawej K, Lewin A. Associated criteria used in investigating suspected septic transfusion reactions: A scoping review. Vox Sang 2023; 118:1029-1037. [PMID: 37691585 DOI: 10.1111/vox.13521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Septic transfusion reactions (STRs) occur as a result of bacterial contamination of blood or blood products, resulting in sepsis. This scoping review aimed to identify, explore and map the available literature on the STR criteria triggering the investigation of STR. MATERIALS AND METHODS Four electronic databases (MEDLINE, Web of Science, Science Direct, Embase) were searched to retrieve scientific literature reporting such criteria, published from 1 January 2000 to 5 May 2022. Grey literature was also searched from open web sources. RESULTS Of 1052 references identified, 43 (21 peer-reviewed and 22 grey literature) met the eligibility criteria for inclusion and data extraction after full article screening. Of them, most (27/43, 62.79%) were found to report a single set of criteria, and only two reported four or more sets of criteria. The analysis of 66 sets of criteria collected from the selected references revealed 57 different sets. A few sets of criteria used only one sign and symptom (s/s) (12.12%, n = 8), whereas 16 sets used 7-15 s/s (n = 16/66; 24.24%). Of the total 319 occurrences of s/s associated with the 66 sets of criteria, post-transfusion hyperthermia, body temperature increase and hypotension were the most common s/s categories. Of all the literature available, only one study tested the diagnostic accuracy of the STR criteria. CONCLUSION This scoping review revealed a substantial variation in criteria used to identify suspected STR. Consequently, conducting further studies to enhance the diagnostic accuracy of these criteria, which trigger STR investigations, is imperative for advancing clinical practice.
Collapse
Affiliation(s)
- Dilaram Acharya
- Department of Management, Evaluation and Health Policy, School of Public Health, Université de Montréal, Montréal, Québec, Canada
- Medical Affairs and Innovation, Héma-Québec, Montréal, Québec, Canada
| | - Amaury Gaussen
- Medical Affairs and Innovation, Héma-Québec, Montréal, Québec, Canada
| | - Thomas G Poder
- Department of Management, Evaluation and Health Policy, School of Public Health, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, CIUSSS de l'Est-de-L'île-de-Montréal, Montréal, Québec, Canada
| | - Gilles Lambert
- Direction régionale de santé publique, Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Île-de-Montréal du Québec, Montréal, Québec, Canada
- Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec, Montréal, Québec, Canada
| | - Christian Renaud
- Medical Affairs and Innovation, Héma-Québec, Montréal, Québec, Canada
| | - Karlitaj Nawej
- Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec, Montréal, Québec, Canada
| | - Antoine Lewin
- Medical Affairs and Innovation, Héma-Québec, Montréal, Québec, Canada
- Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
10
|
O’Flaherty N, Bryce L, Nolan J, Lambert M. Changing Strategies for the Detection of Bacteria in Platelet Components in Ireland: From Primary and Secondary Culture (2010-2020) to Large Volume Delayed Sampling (2020-2023). Microorganisms 2023; 11:2765. [PMID: 38004776 PMCID: PMC10673373 DOI: 10.3390/microorganisms11112765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial contamination of platelet components (PC) poses the greatest microbial risk to recipients, as bacteria can multiply over the course of PC storage at room temperature. Between 2010 and 2020, the Irish Blood Transfusion Service (IBTS) screened over 170,000 buffy coat-derived pooled (BCDP) and single-donor apheresis platelets (SDAPs) with the BACT/ALERT 3D microbial detection system (Biomerieux, L'Etoile, France), using a two-step screening protocol which incorporated primary and secondary cultures. Although the protocol was successful in averting septic transfusion reactions (STRs), testing large sample volumes at later time points was reported to improve detection of bacterial contamination. A modified large-volume delayed sampling (LVDS)-type protocol was adopted in 2020, which in the case of SDAP was applied to collections rather than individual splits (2020-2023, 44,642 PC screened). Rates of bacterial contamination for BCDP were 0.125% on Day-2, 0.043% on Day-4 vs. 0.191% in the post-LVDS period. SDAP contamination rates in the pre-LVDS period were 0.065% on Day-1, 0.017% on Day-4 vs. 0.072% in the post-LVDS period. Confirmed STRs were absent, and the interdiction rate for possibly contaminated SDAP was over 70%. In the post-LVDS period, BCDPs had a higher total positivity rate than SDAPs, 0.191% (1:525) versus 0.072% (1:1385), respectively, (chi-squared 12.124, 1 df, p = 0.0005). The majority of organisms detected were skin-flora-type, low pathogenicity organisms, including coagulase-negative staphylococci and Cutibacterium acnes, with little change in the frequency of clinically significant organisms identified over time. Both protocols prevented the issue of potentially harmful components contaminated (rarely) with a range of pathogenic bacteria, including Escherichia coli, Serratia marcesens, Staphylococcus aureus, and streptococci. Culture positivity of outdates post-LVDS whereby 100% of expired platelets are retested provides a residual risk estimate of 0.06% (95% CI 0.016-0.150). However, bacterial contamination rates in expired platelets did not demonstrate a statistically significant difference between the pre-LVDS 0.100% (CI 0.033-0.234) and post-LVDS 0.059% (0.016-0.150) periods (chi-squared = 0.651, 1 df, p = 0.42).
Collapse
Affiliation(s)
- Niamh O’Flaherty
- Irish Blood Transfusion Service, National Blood Centre, D08 NH5R Dublin, Ireland; (L.B.); (M.L.)
| | | | | | | |
Collapse
|
11
|
Kracalik I, Kent AG, Villa CH, Gable P, Annambhotla P, McAllister G, Yokoe D, Langelier CR, Oakeson K, Noble-Wang J, Illoh O, Halpin AL, Eder AF, Basavaraju SV. Posttransfusion Sepsis Attributable to Bacterial Contamination in Platelet Collection Set Manufacturing Facility, United States. Emerg Infect Dis 2023; 29:1979-1989. [PMID: 37561399 PMCID: PMC10521617 DOI: 10.3201/eid2910.230869] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
During May 2018‒December 2022, we reviewed transfusion-transmitted sepsis cases in the United States attributable to polymicrobial contaminated apheresis platelet components, including Acinetobacter calcoaceticus‒baumannii complex or Staphylococcus saprophyticus isolated from patients and components. Transfused platelet components underwent bacterial risk control strategies (primary culture, pathogen reduction or primary culture, and secondary rapid test) before transfusion. Environmental samples were collected from a platelet collection set manufacturing facility. Seven sepsis cases from 6 platelet donations from 6 different donors were identified in patients from 6 states; 3 patients died. Cultures identified Acinetobacter calcoaceticus‒baumannii complex in 6 patients and 6 transfused platelets, S. saprophyticus in 4 patients and 4 transfused platelets. Whole-genome sequencing showed environmental isolates from the manufacturer were closely related genetically to patient and platelet isolates, indicating the manufacturer was the most probable source of recurrent polymicrobial contamination. Clinicians should maintain awareness of possible transfusion-transmitted sepsis even when using bacterial risk control strategies.
Collapse
|
12
|
Walker BS, Schmidt RL, White SK, Metcalf RA. Meta-analysis of bacterial growth characteristics in platelet components: Refining the inputs of a simulation analysis comparing the relative safety of testing strategies. Transfusion 2023; 63:1719-1727. [PMID: 37589199 DOI: 10.1111/trf.17497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND The relative safety of bacterial risk control strategies for platelets that include culture with or without rapid testing has been compared using simulation analysis. A wide range of bacterial lag and doubling times were included. However, published data on growth rates are available and these data have not been synthesized. We conducted a systematic review and meta-analysis to estimate growth rates and used these estimates to refine a comparative safety analysis of bacterial risk control strategies in the FDA guidance STUDY DESIGN AND METHODS: Data were extracted from published studies on bacterial growth rates in platelet components during storage. These data were used to estimate the practical range of growth rates. This refined the inputs for a simulation model comparing the safety of the testing strategies. RESULTS In total, 108 growth curves for 11 different aerobic organisms were obtained. Doubling times ranged from 0.8 to 12 h, but the lower 90% range was approximately 1-5 h. The revised comparative safety simulation using the narrower 1-5-h range showed similar rankings to the prior simulation, with 48-h large-volume delayed sampling with 7-day expiration (48C-7) demonstrating the lowest-ranking relative performance at the 103 and 105 colony forming unit (CFU)/mL exposure thresholds. DISCUSSION This was a two-step study. First, meta-analysis of published data on aerobic bacterial growth rates in stored platelets showed the vast majority of doubling times were 1-5 h. Next, an updated comparative safety simulation yielded similar results to a prior study, with 48C-7 showing the least favorable relative safety performance.
Collapse
Affiliation(s)
| | - Robert L Schmidt
- ARUP Laboratories, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Sandra K White
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Ryan A Metcalf
- ARUP Laboratories, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Kim MY, Han HJ. Dose-dependent effect of canine lyophilized platelet on an in vitro hemodilution model. BMC Vet Res 2023; 19:61. [PMID: 36932415 PMCID: PMC10022049 DOI: 10.1186/s12917-023-03614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
The transfusion of stored platelets has emerged as an efficient method for treating dogs with thrombocytopenia. However, the availability of fresh platelets is limited in veterinary medicine due to demanding storage conditions. Lyophilized platelets have long shelf lives and can be easily stored, increasing their accessibility for thrombocytopenic dogs. Due to the lack of research and information on the dose effect, canine lyophilized platelets are used at a clinical dosage without research-based evidence. This study was to evaluate the dose effect of lyophilized canine platelets on blood coagulability. Three different concentrations of lyophilized canine platelets were added to in vitro hemodilution blood model, increasing the platelet count by 25, 50, and 100 × 106/ml and coagulation profiles were analyzed. The coagulability was evaluated via the plasma fibrinogen concentration, coagulation time, thromboelastography (TEG), and platelet function analyzer (PFA). Higher concentrations of lyophilized platelets showed dose-dependent association with decreased aPTT and R-time of TEG and increased alpha angle and MA of TEG. These results showed the potential that the higher dose of canine lyophilized platelets better improve blood coagulability than the standard dose and provided the basis for further safety and clinical studies.
Collapse
Affiliation(s)
- Mu-Young Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, 05029, Seoul, Republic of Korea
| | - Hyun-Jung Han
- Department of Veterinary Emergency and Critical Care, College of Veterinary Medicine, Konkuk University, 05029, Seoul, Republic of Korea.
- KU Center for Animal Blood Medical Science, Konkuk University, 05029, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Yamket W, Sathianpitayakul P, Santanirand P, Ratthawongjirakul P. Implementation of helicase-dependent amplification with SYBR Green I for prompt naked-eye detection of bacterial contaminants in platelet products. Sci Rep 2023; 13:3238. [PMID: 36828935 PMCID: PMC9958189 DOI: 10.1038/s41598-023-30410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Platelet transfusions may lead to more significant risks of infection and septic transfusion reactions that can be fatal to the recipient. Platelet products should be screened to limit or detect bacterial contamination before application to patients to minimise any adverse reactions. This study aimed to develop a helicase-dependent amplification (HDA) technique targeting a universal highly conserved bacterial gene, 16S rRNA, in combination with naked-eye detection using SYBR Green I (HDA/SYBR Green I) to detect bacterial contamination in platelet products. Thirty positive samples were obtained from spiked platelet products by five transfusion-relevant bacterial strains and were screened for bacterial contamination by HDA/SYBR Green I. HDA/SYBR Green I showed an enhanced yield of bacterial contaminant detection when performed with medium to late shelf life, Day 2 of storage or later platelet products (98.67% sensitivity and 100% specificity compared to the BACT/ALERT culture system). The limit of detection of HDA/SYBR Green I was 1 ng, and there was no cross-reaction with other organisms that could likely contaminate platelet products. The developed HDA/SYBR Green I assay is rapid and simplistic and only requires an easy-to-find heat box, available in general blood bank laboratories, for the amplification step. This technique is suitable for further development as an alternative method to detect bacterial contamination in platelet products in the near future.
Collapse
Affiliation(s)
- Warangkana Yamket
- grid.7922.e0000 0001 0244 7875Program of Molecular Sciences in Medical Microbiology and Immunology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Panuwat Sathianpitayakul
- grid.10223.320000 0004 1937 0490Microbiology Unit, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
| | - Pitak Santanirand
- grid.10223.320000 0004 1937 0490Microbiology Unit, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
| | - Panan Ratthawongjirakul
- Research Unit of Innovative Diagnosis of Antimicrobial Resistance, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
15
|
Pitman JP, Payrat JM, Park MS, Liu K, Corash L, Benjamin RJ. Longitudinal analysis of annual national hemovigilance data to assess pathogen reduced platelet transfusion trends during conversion to routine universal clinical use and 7-day storage. Transfusion 2023; 63:711-723. [PMID: 36802055 DOI: 10.1111/trf.17285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/20/2023]
Abstract
BACKGROUND France converted to universal pathogen reduced (PR; amotosalen/UVA) platelets in 2017 and extended platelet component (PC) shelf-life from 5- to 7-days in 2018 and 2019. Annual national hemovigilance (HV) reports characterized longitudinal PC utilization and safety over 11 years, including several years prior to PR adoption as the national standard of care. METHODS Data were extracted from published annual HV reports. Apheresis and pooled buffy coat [BC] PC use was compared. Transfusion reactions (TRs) were stratified by type, severity, and causality. Trends were assessed for three periods: Baseline (2010-14; ~7% PR), Period 1 ([P1] 2015-17; 8%-21% PR), and Period 2 ([P2] 2018-20; 100% PR). RESULTS PC use increased by 19.1% between 2010 and 2020. Pooled BC PC production increased from 38.8% to 68.2% of total PCs. Annual changes in PCs issued averaged 2.4% per year at baseline, -0.02% (P1) and 2.8% (P2). The increase in P2 coincided with a reduction in the target platelet dose and extension to 7-day storage. Allergic reactions, alloimmunization, febrile non-hemolytic TRs, immunologic incompatibility, and ineffective transfusions accounted for >90% of TRs. Overall, TR incidence per 100,000 PCs issued declined from 527.9 (2010) to 345.7 (2020). Severe TR rates declined 34.8% between P1-P2. Forty-six transfusion-transmitted bacterial infections (TTBI) were associated with conventional PCs during baseline and P1. No TTBI were associated with amotosalen/UVA PCs. Infections with Hepatitis E (HEV) a non-enveloped virus resistant to PR, were reported in all periods. DISCUSSION Longitudinal HV analysis demonstrated stable PC utilization trends with reduced patient risk during conversion to universal 7-day amotosalen/UVA PCs.
Collapse
Affiliation(s)
- John P Pitman
- Scientific and Medical Affairs, Cerus Corporation, Concord, California, USA
| | | | - Min-Sun Park
- Biostatistics and Data Management, Cerus Corporation, Concord, California, USA
| | - Kathy Liu
- Biostatistics and Data Management, Cerus Corporation, Concord, California, USA
| | - Laurence Corash
- Scientific and Medical Affairs, Cerus Corporation, Concord, California, USA
| | - Richard J Benjamin
- Scientific and Medical Affairs, Cerus Corporation, Concord, California, USA
| |
Collapse
|
16
|
Walker BS, Schmidt RL, Moore RA, White SK, Fisher MA, Metcalf RA. Bacterial culture time to detection in platelet components: An evidence synthesis and estimation of detection failures. Transfusion 2023; 63:182-192. [PMID: 36371753 DOI: 10.1111/trf.17179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Non-pathogen reduction platelet bacterial risk control strategies in the US FDA guidance include at least one culture. Almost all of these strategies have a culture hold time of ≥12 h. Studies have reported time to detection (TTD) of bacterial cultures inoculated with bacteria from contaminated platelets, but these data and estimates of risk associated with detection failures have not been synthesized. METHODS We performed a literature search to identify studies reporting TTD for samples obtained from spiked platelet components. Using extracted data, regression analysis was used to estimate TTD for culture bottles at different inoculum sizes. Detection failures were defined as events in which contaminated components are transfused to a patient. We then used published data on time of transfusion (ToT) to estimate the risk of detection failures in practice. RESULTS The search identified 1427 studies, of which 16 were included for analysis. TTD data were available for 16 different organisms, including 14 in aerobic cultures and 11 in anaerobic cultures. For inocula of 1 colony forming unit (CFU), the average TTD for aerobic organisms was 19.2 h while it was 24.9 h in anaerobic organisms, but there was substantial overall variation. A hold time of 12 versus 24 h had minimal effect for most organisms. CONCLUSION TTD variation occurs between bacterial species and within a particular species. Under typical inventory management, the relative contribution of culture detection failures is much smaller than the residual risk from sampling failures. Increasing the hold period beyond 12 h has limited value.
Collapse
Affiliation(s)
| | - Robert L Schmidt
- ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Ryleigh A Moore
- Department of Mathematics, University of Utah, Salt Lake City, Utah, USA
| | - Sandra K White
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Mark A Fisher
- ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Ryan A Metcalf
- ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
17
|
Yousuf B, Pasha R, Pineault N, Ramirez‐Arcos S. Contamination of platelet concentrates with
Staphylococcus aureus
induces significant modulations in platelet functionality. Vox Sang 2022; 117:1318-1322. [DOI: 10.1111/vox.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Basit Yousuf
- Medical Affairs and Innovation Canadian Blood Services Ottawa Ontario Canada
- Department of Biochemistry, Microbiology and Immunology University of Ottawa Ottawa Ontario Canada
| | - Roya Pasha
- Medical Affairs and Innovation Canadian Blood Services Ottawa Ontario Canada
| | - Nicolas Pineault
- Medical Affairs and Innovation Canadian Blood Services Ottawa Ontario Canada
- Department of Biochemistry, Microbiology and Immunology University of Ottawa Ottawa Ontario Canada
| | - Sandra Ramirez‐Arcos
- Medical Affairs and Innovation Canadian Blood Services Ottawa Ontario Canada
- Department of Biochemistry, Microbiology and Immunology University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
18
|
Minichmayr IK, Kappetein S, Brill MJE, Friberg LE. Model-Informed Translation of In Vitro Effects of Short-, Prolonged- and Continuous-Infusion Meropenem against Pseudomonas aeruginosa to Clinical Settings. Antibiotics (Basel) 2022; 11:antibiotics11081036. [PMID: 36009905 PMCID: PMC9404958 DOI: 10.3390/antibiotics11081036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Pharmacokinetic-pharmacodynamic (PKPD) models have met increasing interest as tools to identify potential efficacious antibiotic dosing regimens in vitro and in vivo. We sought to investigate the impact of diversely shaped clinical pharmacokinetic profiles of meropenem on the growth/killing patterns of Pseudomonas aeruginosa (ARU552, MIC = 16 mg/L) over time using a semi-mechanistic PKPD model and a PK/PD index-based approach. Bacterial growth/killing were driven by the PK profiles of six patient populations (infected adults, burns, critically ill, neurosurgery, obese patients) given varied pathogen features (e.g., EC50, growth rate, inoculum), patient characteristics (e.g., creatinine clearance), and ten dosing regimens (including two dose levels and 0.5-h, 3-h and continuous-infusion regimens). Conclusions regarding the most favourable dosing regimen depended on the assessment of (i) the total bacterial load or fT>MIC (time that unbound concentrations exceed the minimum inhibitory concentration); (ii) the median or P0.95 profile of the population; and (iii) 8 h or 24 h time points. Continuous infusion plus loading dose as well as 3-h infusions (3-h infusions: e.g., for scenarios associated with low meropenem concentrations, P0.95 profiles, and MIC ≥ 16 mg/L) appeared superior to standard 0.5-h infusions at 24 h. The developed platform can serve to identify promising strategies of efficacious dosing for clinical trials.
Collapse
|
19
|
Comparison of Bacterial Risk in Cryo AHF and Pathogen Reduced Cryoprecipitated Fibrinogen Complex. Pathogens 2022; 11:pathogens11070744. [PMID: 35889990 PMCID: PMC9317717 DOI: 10.3390/pathogens11070744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Until November 2020, cryoprecipitated antihaemophilic factor (cryo AHF) was the only United States Food and Drug Administration (FDA)-approved fibrinogen source to treat acquired bleeding. The post-thaw shelf life of cryo AHF is limited, in part, by infectious disease risk. Concerns over product wastage demand that cryo AHF is thawed as needed, with thawing times delaying the treatment of coagulopathic patients. In November 2020, the FDA approved Pathogen Reduced Cryoprecipitated Fibrinogen Complex for the treatment and control of bleeding, including massive hemorrhage, associated with fibrinogen deficiency. Pathogen Reduced Cryoprecipitated Fibrinogen Complex (also known as INTERCEPT® Fibrinogen Complex, IFC) has a five-day post-thaw room-temperature shelf life. Unlike cryo AHF, manufacturing of IFC includes broad spectrum pathogen reduction (Amotosalen + UVA), enabling this extended post-thaw shelf life. In this study, we investigated the risk of bacterial contamination persisting through the cryoprecipitation manufacturing process of cryo AHF and IFC. Experiments were performed which included spiking plasma with bacteria prior to cryoprecipitation, and bacterial survival was analyzed at each step of the manufacturing process. The results show that while bacteria survive cryo AHF manufacturing, IFC remains sterile through to the end of shelf life and beyond. IFC, with a five-day post-thaw shelf life, allows the product to be sustainably thawed in advance, facilitating immediate access to concentrated fibrinogen and other key clotting factors for the treatment of bleeding patients.
Collapse
|
20
|
Ruby KN, Khan J, Martin IW, Dunbar NM. Application of Standardized Residual Component Culture Criteria for Suspected Septic Transfusion Reactions Would Increase the Component Culturing Rate at a Single Academic Medical Center. Am J Clin Pathol 2022; 158:216-220. [PMID: 35311936 DOI: 10.1093/ajcp/aqac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The 2019 SCARED study developed the Biomedical Excellence for Safer Transfusion (BEST) criteria in an effort to standardize the decision to culture residual units in the context of suspected septic transfusion reactions (STRs). The goal of this study was to apply the BEST criteria to determine the effect on the transfusion reaction decision to culture. METHODS This retrospective, single-center, cross-sectional study assessed adult transfusion reactions identified in calendar years 2013 to 2020. Reactions following transfusion of RBCs, platelets, and plasma were included, and the decisions to culture following strict application of BEST criteria were compared with decisions to culture in actual practice. RESULTS In total, 1,068 transfusion reactions were reported and 200 (19%) suspected STRs were cultured, all with negative results; 303 (28%) reactions would have been cultured per strict application of the BEST criteria. Concordance between actual culture decision and BEST criteria recommendation was 62% for cultured components and 79% for components that were not cultured. CONCLUSIONS BEST criteria provide objective recommendations of when to culture residual units implicated in suspected STRs, but strict application of these criteria may result in increased culture rates. Clinical correlation to aid in the decision to culture is recommended.
Collapse
Affiliation(s)
- Kristen N Ruby
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jenna Khan
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Isabella W Martin
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Nancy M Dunbar
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
21
|
Ramirez-Arcos S, Kou Y, Kumaran D, Culibrk B, Stewart T, Schubert P, McTaggart K. Assessment of bacterial growth in leukoreduced cold-stored whole blood supports overnight hold at room temperature prior to filtration: A pilot study. Vox Sang 2022; 117:678-684. [PMID: 35014042 DOI: 10.1111/vox.13246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Whole blood (WB) transfusion has regained attention to treat trauma patients. We reported no significant changes in in vitro quality through 21 days of cold storage for leukoreduced WB (LCWB) when time to filtration was extended from 8 to 24 h from collection. This study evaluated the impact of extended WB-hold at room temperature (RT) prior to leukoreduction on proliferation of transfusion-relevant bacteria. MATERIALS AND METHODS WB units were spiked with suspensions of Klebsiella pneumoniae, Streptococcus pyogenes, Staphylococcus aureus and Listeria monocytogenes prepared in saline solution (SS) or trypticase soy broth (TSB) to a concentration of ~0.2 CFU/ml (N = 6). Spiked units were held at RT for 18-24 h before leukoreduction and cold-stored for 21 days. Bacterial growth was determined on days 2, 7, 14 and 21. In vitro quality of WB inoculated with unspiked diluents was assessed. RESULTS K. pneumoniae and S. pyogenes proliferated in WB prior to leukoreduction reaching concentrations ≤102 CFU/ml. These bacteria, however, did not proliferate during the subsequent cold storage. S. aureus did not survive in WB while L. monocytogenes reached a concentration of ~102 CFU/ml by day 21. LCWB in vitro quality was not affected by SS or TSB. CONCLUSION Extended WB-hold prior to leukoreduction allowed proliferation of bacteria able to resist immune clearance, although they did not grow to clinically significant levels. While L. monocytogenes proliferated in LCWB, clinically relevant concentrations were not reached by day 21. These data suggest that transfusing LCWB may not pose a significant bacterial contamination safety risk to transfusion patients.
Collapse
Affiliation(s)
- Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Yuntong Kou
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Dilini Kumaran
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Brankica Culibrk
- Medical Affairs and Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada
| | - Tamiko Stewart
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Peter Schubert
- Medical Affairs and Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada
| | - Ken McTaggart
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Brown BL, Wagner SJ, Hapip CA, Fischer E, Getz TM, Thompson-Montgomery D, Turgeon A. Time from apheresis platelet donation to cold storage: Evaluation of platelet quality and bacterial growth. Transfusion 2022; 62:439-447. [PMID: 34994468 DOI: 10.1111/trf.16785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cold storage reduces posttransfusion survival of platelets; however, it can improve platelet activation, lower risk of bacterial contamination, and extend shelf-life compared to room temperature (RT) storage. To facilitate large-scale availability, manufacturing process optimization is needed, including understanding the impact of variables on platelet potency and safety. Short time requirements from collection to storage is challenging for large blood centers to complete resuspension and qualify platelets for production. This study evaluated the impact of time from platelet component collection to cold storage on in vitro properties and bacterial growth. STUDY DESIGN AND METHODS Double-apheresis platelet components were collected from healthy donors, suspended in 65% PAS-III/35% plasma, and split into 2 equal units. One unit was placed into cold storage within 2 h and the other unit after 8 h. Eight matched pairs were evaluated for 12 in vitro parameters. Twenty-four matched pairs were evaluated with 8 bacterial strains tested in triplicate. Samples were tested throughout 21 days of storage. RESULTS In vitro properties were not different between 2 and 8 h units, and trends throughout storage were similar between arms. Time to cold storage did not significantly impact bacterial growth, with <1 log10 difference at all timepoints between units. DISCUSSION Our studies showed that extending time to cold storage from 2 to 8 h from collection did not significantly increase the bacterial growth, and the platelet component quality and function is maintained. The ability to extend the time required from collection to storage will improve blood center logistics to feasibly produce CSPs.
Collapse
Affiliation(s)
- Bethany L Brown
- American Red Cross, Holland Lab for the Biomedical Sciences, Rockville, Maryland, USA
| | - Stephen J Wagner
- American Red Cross, Holland Lab for the Biomedical Sciences, Rockville, Maryland, USA
| | - C Anne Hapip
- American Red Cross, Holland Lab for the Biomedical Sciences, Rockville, Maryland, USA
| | - Erin Fischer
- American Red Cross, Holland Lab for the Biomedical Sciences, Rockville, Maryland, USA
| | - Todd M Getz
- U.S Army Medical Research and Development Command Battlefield Resuscitation for Immediate Stabilization of Combat Casualties Portfolio Combat Casualty Care Research Program Office, USA
| | | | - Annette Turgeon
- American Red Cross, Holland Lab for the Biomedical Sciences, Rockville, Maryland, USA
| |
Collapse
|
23
|
Wilson-Nieuwenhuis J, El-Mohtadi M, Edwards K, Whitehead K, Dempsey-Hibbert N. Factors Involved in the onset of infection following bacterially contaminated platelet transfusions. Platelets 2021; 32:909-918. [PMID: 32762589 DOI: 10.1080/09537104.2020.1803253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transfusion of platelet concentrates (PCs) is associated with several adverse patient reactions, the most common of which are febrile non-hemolytic transfusion reactions (FNHTRs) and transfusion-associated bacterial-infection/transfusion-associated sepsis (T-ABI/TA-S). Diagnosis of T-ABI/T-AS requires a positive blood culture (BC) result from the transfusion recipient and also a positive identification of bacterial contamination within a test aliquot of the transfused PC. In a significant number of cases, clinical symptoms post-transfusion are reported by the clinician, yet the BCs from the patient and/or PC are negative. The topic of 'missed bacterial detection' has therefore been the focus of several primary research studies and review articles, suggesting that biofilm formation in the blood bag and the presence of viable but non-culturable (VBNC) pathogens are the major causes of this missed detection. However, platelets are emerging as key players in early host responses to infection and as such, the aforementioned biofilm formation could elicit 'platelet priming', which could lead to significant immunological reactions in the host, in the absence of planktonic bacteria in the host bloodstream. This review reflects on what is known about missed detection and relates this to the emerging understanding of the effect of bacterial contamination on the platelets themselves and the significant role played by platelets in exacerbation of an immune response to infection within the transfusion setting.
Collapse
Affiliation(s)
| | - Mohamed El-Mohtadi
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Kurtis Edwards
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Kathryn Whitehead
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | | |
Collapse
|
24
|
Ramirez-Arcos S, Howell A, Bearne J, Bhakta V, Bower L, Cardigan R, Girard M, Kou Y, McDonald C, Nolin MÈ, Sawicka D, Sheffield W. Challenging the 30-min rule for thawed plasma. Vox Sang 2021; 117:328-336. [PMID: 34346087 DOI: 10.1111/vox.13189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Frozen plasma (FP) is thawed prior to transfusion and stored for ≤5 days at 1-6°C. The effect of temperature excursions on the quality and safety of thawed plasma during 5-day storage was determined. MATERIALS AND METHODS Four plasma units were pooled, split and stored at ≤-18°C for ≤90 days. Test units T30 and T60 were exposed to 20-24°C (room temperature [RT]) for 30 or 60 min, respectively, on days 0 and 2 of storage. Negative and positive control units remained refrigerated or at RT for 5 days, respectively. On Day 5, test units were exposed once to RT for 5 h. Quality assays included stability of coagulation factors FV, FVII, FVIII, fibrinogen and prothrombin time. Bacterial growth was performed in units inoculated with ~1 CFU/ml or ~100 CFU/ml of Serratia liquefaciens, Pseudomonas putida, Pseudomonas aeruginosa or Staphylococcus epidermidis on Day 0. RESULTS Testing results of all quality parameters were comparable between T30 and T60 units (p < 0.05). Serratia liquefaciens proliferated in cold-stored plasma, while P. putida showed variable viability. Serratia epidermidis and P. aeruginosa survived but did not grow in cold-stored plasma. Positive and negative controls showed expected results. Overall, no statistical differences in bacterial concentration between T30 and T60 units were observed (p < 0.05). CONCLUSION Multiple RT exposures for 30 or 60 min do not affect the stability of coagulation factors or promote bacterial growth in thawed plasma stored for 5 days. It is therefore safe to expose thawed plasma to uncontrolled temperatures for limited periods of 60 min.
Collapse
Affiliation(s)
- Sandra Ramirez-Arcos
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Anita Howell
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Jennifer Bearne
- National Bacteriology Laboratory, National Health Service Blood and Transplant, London, UK
| | - Varsha Bhakta
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Lucy Bower
- Component Development, National Health Service Blood and Transplant, Cambridge, UK
| | - Rebecca Cardigan
- Component Development, National Health Service Blood and Transplant, Cambridge, UK
| | - Mélissa Girard
- Medicals Affairs and Innovation, Héma-Québec, Québec, Quebec, Canada
| | - Yuntong Kou
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Carl McDonald
- National Bacteriology Laboratory, National Health Service Blood and Transplant, London, UK
| | - Marie-Ève Nolin
- Medicals Affairs and Innovation, Héma-Québec, Québec, Quebec, Canada
| | - Danuta Sawicka
- National Bacteriology Laboratory, National Health Service Blood and Transplant, London, UK
| | - William Sheffield
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Moore RA, Schmidt RL, Metcalf RA. In reply: Window periods for secondary bacterial culture of platelets according to FDA guidance. Transfusion 2021; 61:1343-1344. [PMID: 33831228 DOI: 10.1111/trf.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Ryleigh A Moore
- Department of Mathematics, University of Utah, Salt Lake City, Utah, USA
| | - Robert L Schmidt
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA.,ARUP Laboratories, Salt Lake City, Utah, USA
| | - Ryan A Metcalf
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA.,ARUP Laboratories, Salt Lake City, Utah, USA
| |
Collapse
|
26
|
Martin IW, Cohn CS, Delaney M, Fontaine MJ, Shih AW, Dunbar NM. Limitations of current practices in detection of bacterially contaminated blood products associated with suspected septic transfusion reactions. Transfusion 2021; 61:2414-2420. [PMID: 34181247 DOI: 10.1111/trf.16545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND In the setting of suspected septic transfusion reactions, bacterial culture of both the transfused patient and the residual blood component is recommended. Primary bacterial contamination can occur at the time of component collection. Clinically insignificant "secondary contamination" can occur during post-transfusion component discard, retrieval for culture, or manipulation of the bag at the time of culture sampling. STUDY DESIGN AND METHODS This retrospective, multi-center study analyzes positive residual component culture results and companion patient blood cultures from 15 hospitals, 1 blood center, and all cultured transfusion reactions within the province of Quebec, Canada, over a 5-year period. Imputability was assigned as "definite" (concordant growth), "possible" (discordant growth or lack of growth in patient culture), or "unable to assess" (patient not cultured). RESULTS There were 373 positive component cultures from 360 unique transfusion reactions, with 276 (76.7%) companion patient blood cultures performed, of which 10 (2.8%) yielded the pathogen detected in the positive component. Of these 10 definite pathogens, 7 (2 Staphylococcus aureus, 3 other staphylococci, and 1 Streptococcus pyogenes and 1 Bacillus sp.) were associated with platelet and 3 (Aeromonas veronii, Staphylococcus epidermidis, and Enterococcus faecalis) with RBC transfusions. RBC and plasma components comprised 70% of positive component cultures. DISCUSSION The process of performing residual component culture is vulnerable to secondary contamination. The significance of microorganisms recovered from component culture cannot be interpreted in isolation. In the context of low prevalence of primary contamination of blood components, the positive predictive value of a positive component culture result is very low.
Collapse
Affiliation(s)
- Isabella W Martin
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Claudia S Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Meghan Delaney
- Department of Pathology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA.,Department of Laboratory Medicine, University of Washington, Seattle Children's Hospital, Seattle, Washington, USA
| | - Magali J Fontaine
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrew W Shih
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Coastal Health Authority, Vancouver, British Columbia, Canada
| | - Nancy M Dunbar
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | | |
Collapse
|
27
|
LaVerda D, Shinefeld L, Best N, Lisitu J, Tambolleo G, Vallejo YR. Evaluation of an improved rapid bacterial assay with untreated and pathogen-reduced platelets: Detection of Acinetobacter strains. Transfusion 2021; 61:2710-2717. [PMID: 34042180 PMCID: PMC9291918 DOI: 10.1111/trf.16514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022]
Abstract
Background The PGDprime® test was updated to enable Acinetobacter spp. detection to respond to morbidity and mortality events in 2018 and 2020 involving platelets contaminated with Acinetobacter‐calcoaceticus‐baumannii complex (ACBC). In one morbidity event, the first‐generation PGD test failed to detect ACBC. In two other reported events, pathogen‐reduced (PR) platelets contaminated with ACBC and other bacteria led to patient morbidity and one death. Study Design and Methods A polyclonal antibody to Acinetobacter was integrated in the test device and evaluated for detection of Acinetobacter spp., including the ACBC isolate recovered in one of the 2018 contamination events. Limits of Detection for various Acinetobacter strains were determined in dilution studies. Detection of Acinetobacter growing in platelets after an initial low inoculum was evaluated. Use of the updated test as a secondary test after pathogen reduction was also evaluated by testing at 12‐h intervals PR platelet units inoculated with low levels of the 3 species reported in the fatal PR platelet: ACBC, Staphylococcus saprophyticus, and Leclercia adecarboxylata. Results The test detected several Acinetobacter strains at the clinically relevant CFU/ml levels associated with septic transfusions and successfully detected Acinetobacter growing in various non‐PR platelet types after an initial low inoculum. In PR platelets, the test yielded a positive result with the 3 implicated bacteria in 48 h or less after inoculation, or 48–72 h earlier than the reported time of transfusion of contaminated PR platelets. Conclusion PGDprime was improved to detect Acinetobacter and has shown utility to interdict contaminated PR platelets.
Collapse
Affiliation(s)
- David LaVerda
- Research and Development Department, Verax Biomedical Incorporated, Marlborough, Massachusetts, USA
| | - Lisa Shinefeld
- Research and Development Department, Verax Biomedical Incorporated, Marlborough, Massachusetts, USA
| | - Nancy Best
- Research and Development Department, Verax Biomedical Incorporated, Marlborough, Massachusetts, USA
| | - Johny Lisitu
- Research and Development Department, Verax Biomedical Incorporated, Marlborough, Massachusetts, USA
| | - Gary Tambolleo
- Research and Development Department, Verax Biomedical Incorporated, Marlborough, Massachusetts, USA
| | - Yli Remo Vallejo
- Research and Development Department, Verax Biomedical Incorporated, Marlborough, Massachusetts, USA
| |
Collapse
|
28
|
Platelet Transfusion-Insights from Current Practice to Future Development. J Clin Med 2021; 10:jcm10091990. [PMID: 34066360 PMCID: PMC8125287 DOI: 10.3390/jcm10091990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Since the late sixties, therapeutic or prophylactic platelet transfusion has been used to relieve hemorrhagic complications of patients with, e.g., thrombocytopenia, platelet dysfunction, and injuries, and is an essential part of the supportive care in high dose chemotherapy. Current and upcoming advances will significantly affect present standards. We focus on specific issues, including the comparison of buffy-coat (BPC) and apheresis platelet concentrates (APC); plasma additive solutions (PAS); further measures for improvement of platelet storage quality; pathogen inactivation; and cold storage of platelets. The objective of this article is to give insights from current practice to future development on platelet transfusion, focusing on these selected issues, which have a potentially major impact on forthcoming guidelines.
Collapse
|
29
|
Koepsell S. Complications of Transfusion. Transfus Med 2021. [DOI: 10.1002/9781119599586.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
McDonald CP, Bearne J, Aplin K, Sawicka D. Assessing the inactivation capabilities of two commercially available platelet component pathogen inactivation systems: effectiveness at end of shelf life. Vox Sang 2021; 116:416-424. [PMID: 33616238 DOI: 10.1111/vox.13040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES The inactivation capabilities of the two current commercially available pathogen inactivation (PI) systems for platelet components (PC), Mirasol and Intercept, were investigated by determination of the absence of viable bacteria at the end of shelf life by testing the entire contents of the PC by enrichment culture (terminal sterility). METHODS A pool-and-split method was used, with two treated units and one untreated control per inoculum concentration. Pairs of PC bags were inoculated with a single bacterial species. Three concentrations (n = 2 per concentration), which incremented tenfold, were tested initially based on published data from the manufacturer. Dependent on these results, the concentrations subsequently tested were either increased or decreased until the inactivation capability of the system was derived. Bacterial count was determined post-spiking, immediately prior to treatment (2 h from spiking), immediately after treatment and at the end of shelf life (day seven). Enrichment culture was performed immediately prior to treatment, after treatment and at the end of shelf life. RESULTS The inactivation capabilities, in CFU/ml, of Intercept and Mirasol, respectively, at the end of PC shelf life were as follows: Staphylococcus aureus ≥ 107 , <101 ; Staphylococcus epidermidis ≥106 , <102 ; Klebsiella pneumoniae 105 , <101 ; Streptococcus bovis ≥107 , 101 , Escherichia coli ≥106 , <101 ; Streptococcus pneumoniae ≥106 , 103 ; Streptococcus mitis ≥107 , 101 ; Listeria monocytogenes ≥107 , 101 ; Streptococcus dysgalactiae ≥107 , <101 ; Serratia marcescens 103 , <101 ; Pseudomonas aeruginosa 103 , Mirasol not tested; and Bacillus cereus < 102 , Mirasol not tested. CONCLUSION The inactivation capability of Intercept was greater than that of Mirasol. Inactivation capability (by terminal sterility) is the most meaningful measure to evaluate a PI system for bacteria, rather than logarithmic reduction assessed immediately after treatment by plate count. PI offers a possible alternative to bacterial screening if treatment is performed at an appropriate time dependent on the inactivation capabilities of the system.
Collapse
Affiliation(s)
- Carl P McDonald
- Microbiology Services Laboratory - Bacteriology, NHS Blood and Transplant, London, UK
| | - Jennifer Bearne
- Microbiology Services Laboratory - Bacteriology, NHS Blood and Transplant, London, UK
| | - Kate Aplin
- Microbiology Services Laboratory - Bacteriology, NHS Blood and Transplant, London, UK
| | - Danuta Sawicka
- Microbiology Services Laboratory - Bacteriology, NHS Blood and Transplant, London, UK
| |
Collapse
|
31
|
Ramirez‐Arcos S, Evans S, McIntyre T, Pang C, Yi Q, DiFranco C, Goldman M. Extension of platelet shelf life with an improved bacterial testing algorithm. Transfusion 2020; 60:2918-2928. [DOI: 10.1111/trf.16112] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Sandra Ramirez‐Arcos
- Canadian Blood Services Ottawa Ontario Canada
- Department of Biochemistry, Microbiology and Immunology University of Ottawa Ottawa Ontario Canada
| | | | | | | | - Qi‐Long Yi
- Canadian Blood Services Ottawa Ontario Canada
| | | | | |
Collapse
|
32
|
Fenwick AJ, Gehrie EA, Marshall CE, Tobian AAR, Shrestha R, Kacker S, Brunker PAR, Shifflett L, Carroll KC, Gozelanczyk D, Goel R, Ness PM, Bloch EM. Secondary bacterial culture of platelets to mitigate transfusion-associated sepsis: A 3-year analysis at a large academic institution. Transfusion 2020; 60:2021-2028. [PMID: 32750171 PMCID: PMC10007897 DOI: 10.1111/trf.15978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND In 2019, the United States Food and Drug Administration published its final recommendations to mitigate bacterial contamination of platelets. We sought to evaluate our secondary bacterial culture (SBC) strategy in light of those recommendations. STUDY DESIGN AND METHODS A retrospective analysis was conducted of SBC data (October 2016-2019) at our institution. SBC was performed upon receipt (Day 3 after collection); 5 mL of platelet product was inoculated aseptically into an aerobic bottle and incubated at 35°C for 3 days. For 8 months, a 10-mL inoculum was trialed. No quarantine was applied. All positive cultures underwent Gram staining and repeat culture of the platelet product (if available). A probable true positive was defined as concordant positive culture between the initial and repeat culture. The incidence of probable true- and false-positive cultures were reported descriptively and differences evaluated by sampling volume. RESULTS Over 3 years, 55 896 platelet products underwent SBC, yielding 30 initial positive results (approx. 1/1863 platelets); 25 (83.3%) signaled within 24 hours of SBC. The rates of probable true positive, false positive, and indeterminate for 5 mL were 0.027% (1/3771), 0.002% (1/45 251) and 0.018% (1/5656), respectively. The respective rates for 10 mL were 0.018% (1/5323), 0.07% (1/1521), and 0%. Seven of eight (87.5%) false-positive SBCs occurred with a 10-mL inoculum. No septic transfusion reactions were reported. CONCLUSION SBC continues to interdict bacterially contaminated units of platelets. Our findings suggest higher rates of false positivity using large-volume inocula.
Collapse
Affiliation(s)
- Alexander J Fenwick
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric A Gehrie
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christi E Marshall
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruchee Shrestha
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seema Kacker
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patricia A R Brunker
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,American Red Cross Biomedical Services, Greater Chesapeake & Potomac Region, Baltimore, Maryland, USA
| | - Lisa Shifflett
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen C Carroll
- Division of Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Donna Gozelanczyk
- American Red Cross Biomedical Services, Greater Chesapeake & Potomac Region, Baltimore, Maryland, USA
| | - Ruchika Goel
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Mississippi Valley Regional Blood Center, Springfield, IL, USA
| | - Paul M Ness
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evan M Bloch
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Bacterial contamination of blood products for transfusion in the Democratic Republic of the Congo: temperature monitoring, qualitative and semi-quantitative culture. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 18:348-358. [PMID: 32931413 DOI: 10.2450/2020.0108-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bacterial contamination of blood for transfusion is rarely investigated in low-income countries. We determined the contamination rate of blood products in the Democratic Republic of the Congo. MATERIAL AND METHODS In this prospective observational study, blood products in one rural and two urban hospitals (paediatric and general) contained a satellite sampling bag by which blood was sampled for culture in a blood culture bottle (4 mL) and on an agar-coated slide to estimate colony forming units (CFU/mL). Bacteria were identified with biochemical tests and MALDI-TOF (Bruker). Exposure time >10 °C was assessed on a subset of blood products. RESULTS In total, 1.4% (41 of 2,959) of blood products were contaminated with 48 bacterial isolates. Skin (e.g., Staphylococcus spp.) and environmental (e.g., Bacillus spp.) bacteria predominated (97.8% of 45 isolates identified). Bacterial counts were ≤103 CFU/mL. Contamination rates for the urban paediatric, urban general and rural hospitals were 1.6%, 2.4% and 0.3%, respectively (p=0.004). None of the following variables was significantly associated with contamination: (i) donor type (voluntary 1.6%, family 1.2%, paid 3.9%); (ii) type of blood product (red cells 1.6%, whole blood 0.6%); (ii) season (dry season 2.4%, rainy season 1.8%); (iv) age of blood product (contaminated 8 days vs non-contaminated 6 days); and (v) exposure time >10 °C (median for contaminated and non-contaminated blood reached maximum test limit of 8 hours). DISCUSSION A bacterial contamination rate of 1.4% of whole blood and red cells is similar to results from high-income countries. Implementation of feasible risk-mitigation measures is needed.
Collapse
|
34
|
Walker BS, White SK, Schmidt RL, Metcalf RA. Residual bacterial detection rates after primary culture as determined by secondary culture and rapid testing in platelet components: A systematic review and meta-analysis. Transfusion 2020; 60:2029-2037. [PMID: 32757411 DOI: 10.1111/trf.16001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Primary culture alone was a bacterial risk control strategy intended to facilitate interdiction of contaminated platelets (PLTs). A September 2019 FDA guidance includes secondary testing options to enhance safety. Our objective was to use meta-analysis to determine residual contamination risk after primary culture using secondary culture and rapid testing. STUDY DESIGN AND METHODS A December 2019 literature search identified articles on PLT bacterial detection rates using primary culture and a secondary testing method. We used meta-analysis to estimate secondary testing detection rates after a negative primary culture. We evaluated collection method, sample volume, sample time, and study date as potential sources of heterogeneity. RESULTS The search identified 6102 articles; 16 were included for meta-analysis. Of these, 12 used culture and five used rapid testing as a secondary testing method. Meta-analysis was based on a total of 103 968 components tested by secondary culture and 114 697 by rapid testing. The residual detection rate using secondary culture (DRSC ) was 0.93 (95% CI, 0.24-0.6) per 1000 components, while residual detection rate using rapid testing (DRRT ) was 0.09 (95% CI, 0.01-0.25) per 1000 components. Primary culture detection rate was the only statistically significant source of heterogeneity. CONCLUSION We evaluated bacterial detection rates after primary culture using rapid testing and secondary culture. These results provide a lower and upper bound on real-world residual clinical risk because these methods are designed to detect high-level exposures or any level of exposure, respectively. Rapid testing may miss some harmful exposures and secondary culture may identify some clinically insignificant exposures.
Collapse
Affiliation(s)
| | - Sandra K White
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Robert L Schmidt
- ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Ryan A Metcalf
- ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
35
|
Vallejo RP, Shinefeld L, LaVerda D, Best N, Lawrence G, Lousararian A, Hornbaker N, Rasmusson P, Mintz PD. Performance profile of an updated safety measure rapid assay for bacteria in platelets. Transfusion 2020; 60:2622-2632. [PMID: 32743810 PMCID: PMC7754371 DOI: 10.1111/trf.16000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The Verax PGD rapid test for bacteria in platelets (PLTs) has been updated to simplify workflow and improve specificity and sensitivity by employing a novel sequential format. The performance of this updated version, called PGDprime, was evaluated to determine its suitability for use as an FDA-cleared "safety measure" to supplant the current PGD test. STUDY DESIGN AND METHODS Three consecutive cGMP-manufactured lots of PGDprime were evaluated for specificity (at three separate sites), sensitivity, reproducibility, interfering substances, assay robustness, and detection in analytical growth and ultralow-inoculum growth studies. PGDprime's performance was compared to that of PGD. RESULTS Specificity studies yielded no false-positive results among 3802 individual indate PLTs of seven different types (observed specificity, 100%). PGDprime detected all 10 PGD claim bacteria at the same limit of detection or better. Wild-type Gram-negative bacteria growing in PLTs were detected at earlier elapsed times than PGD by 12 to 30 hours. In growth studies, PGDprime detected bacteria growing in PLTs within the same 12-hour interval as PGD or 12 to 48 hours earlier. Assay reproducibility was not affected by operator, day of test, or manufacturing lot. PGDprime tolerated a wide variation in volume transfers, timing, temperature, and relative humidity and was not affected by 15 of 16 potential interferents found in samples at extremely high or low levels. CONCLUSION The PGD test has been successfully updated to PGDprime with an innovative sequential assay format to deliver a robust simplified workflow and improved specificity and sensitivity.
Collapse
Affiliation(s)
- Remo P Vallejo
- Research and Development Department, Verax Biomedical Incorporated, Worcester, Massachusetts, USA
| | - Lisa Shinefeld
- Research and Development Department, Verax Biomedical Incorporated, Worcester, Massachusetts, USA
| | - David LaVerda
- Research and Development Department, Verax Biomedical Incorporated, Worcester, Massachusetts, USA
| | - Nancy Best
- Research and Development Department, Verax Biomedical Incorporated, Worcester, Massachusetts, USA
| | - Gregory Lawrence
- Research and Development Department, Verax Biomedical Incorporated, Worcester, Massachusetts, USA
| | - Adam Lousararian
- Research and Development Department, Verax Biomedical Incorporated, Worcester, Massachusetts, USA
| | - Nancy Hornbaker
- Research and Development Department, Verax Biomedical Incorporated, Worcester, Massachusetts, USA
| | - Patricia Rasmusson
- Research and Development Department, Verax Biomedical Incorporated, Worcester, Massachusetts, USA
| | - Paul D Mintz
- Research and Development Department, Verax Biomedical Incorporated, Worcester, Massachusetts, USA
| |
Collapse
|
36
|
Walker BS, Schmidt RL, Fisher MA, White SK, Blaylock RC, Metcalf RA. The comparative safety of bacterial risk control strategies for platelet components: a simulation study. Transfusion 2020; 60:1723-1731. [PMID: 32632927 DOI: 10.1111/trf.15919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bacterial contamination of platelets is a problem that can lead to harmful septic transfusion reactions. The US Food and Drug Administration published a guidance in September 2019 detailing several permissible risk control strategies. Our objective was to compare the safety of each bacterial testing strategy for apheresis platelets. STUDY DESIGN AND METHODS We used simulation to compare safety of the nine risk control strategies involving apheresis platelet testing. The primary outcome was the risk of exposure. An exposure event occurred if a patient received platelets exceeding a specific contamination threshold (>0, 103 , and 105 colony-forming units (CFU/mL). We generated a range of bacterial contamination scenarios (inoculum size, doubling time, lag time) and compared risk of exposure for each policy in each contamination scenario. We then computed the average risk difference over all scenarios. RESULTS At the 0 CFU/mL exposure threshold, two-step policies that used secondary culture ranked best (all top three), while single-step 24-hour culture with 3-day expiration ranked last (ninth). This latter policy performed well (median rank of 1) at both the 103 and 105 CFU/mL thresholds, but 48-hour culture with 7-day expiration performed relatively poorly. At these higher thresholds, median ranks of two-step policies that used secondary culture were again top three. Two-step policies that used rapid testing improved at the higher (105 CFU/mL) harm threshold, with median rankings between 1 and 5. CONCLUSION Two-step policies that used secondary culture were generally safer than single-step policies. Performance of two-step policies that used rapid testing depended on the CFU per milliter threshold of exposure used.
Collapse
Affiliation(s)
- Brandon S Walker
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
| | - Robert L Schmidt
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
| | - Mark A Fisher
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
| | - Sandra K White
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
| | - Robert C Blaylock
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
| | - Ryan A Metcalf
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
37
|
Kundrapu S, Srivastava S, Good CE, Lazarus HM, Maitta RW, Jacobs MR. Bacterial contamination and septic transfusion reaction rates associated with platelet components before and after introduction of primary culture: experience at a US Academic Medical Center 1991 through 2017. Transfusion 2020; 60:974-985. [PMID: 32357261 DOI: 10.1111/trf.15780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The high incidence of septic transfusion reactions (STRs) led to testing being mandated by AABB from 2004. This was implemented by primary culture of single-donor apheresis platelets (APs) from 2004 and prestorage pooled platelets (PSPPs) from 2007. STUDY DESIGN/METHODS Platelet (PLT) aliquots were cultured at issue and transfusion reactions evaluated at our hospital. Bacterial contamination and STR rates (shown as rates per million transfusions in Results) were evaluated before and after introduction of primary culture by blood centers that used a microbial detection system (BacT/ALERT, bioMerieux) or enhanced bacterial detection system (eBDS, Haemonetics). RESULTS A total of 28,457 PLTs were cultured during pre-primary culture periods (44.7% APs; 55.3% at-issue pooled PLTs [AIPPs]) and 97,595 during post-primary culture periods (79.3% APs; 20.7% PSPPs). Forty-three contaminated units were identified in preculture and 34 in postculture periods (rates, 1511 vs. 348; p < 0.0001). Contamination rates of APs were significantly lower than AIPPs in the preculture (393 vs. 2415; p < 0.0001) but not postculture period compared to PSPPs (387 vs. 198; p = 0.9). STR rates (79 vs. 90; p = 0.98) were unchanged with APs but decreased considerably with pooled PLTs (826 vs. 50; p = 0.0006). Contamination (299 vs. 324; p = 0.84) and STR rates (25 vs. 116; p = 0.22) were similar for PLTs tested by BacT/ALERT and eBDS primary culture methods. A change in donor skin preparation method in 2012 was associated with decreased contamination and STR rates. CONCLUSION Primary culture significantly reduced bacterial contamination and STR associated with pooled but not AP PLTs. Measures such as secondary testing near time of use or pathogen reduction are needed to further reduce STRs.
Collapse
Affiliation(s)
- Sirisha Kundrapu
- Department of Pathology and Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Swati Srivastava
- Department of Pathology and Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Caryn E Good
- Department of Pathology and Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Robert W Maitta
- Department of Pathology and Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael R Jacobs
- Department of Pathology and Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
38
|
Satake M, Kozakai M, Matsumoto M, Matsubayashi K, Taira R, Goto N. Platelet safety strategies in Japan: impact of short shelf life on the incidence of septic reactions. Transfusion 2020; 60:731-738. [PMID: 32119134 DOI: 10.1111/trf.15733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Transfusion-transmitted bacterial infections (TTBIs) often have serious consequences for patients. The Japanese Red Cross (JRC) has not implemented culture screening for platelet concentrate (PC), but it has maintained a shelf life of 85 hours for PC. STUDY DESIGN AND METHODS The JRC collected reports of suspected TTBI and investigated causal relationships using PC samples and patient blood samples. PCs showing apparent abnormalities were retrieved and cultured and analyzed for bacterial growth. RESULTS The JRC analyzed 86 samples available from 135 transfused PCs with suspected TTBIs that were collected over the past 12 years; 17 (19.8%) were culture-positive. One, 6, and 10 TTBIs developed in patients on Days 1, 2, and 3 after PC collection, respectively. Assuming that PC is transfused on the day of issue, the TTBI risk was fourfold higher on Day 3 than on Day 2, after adjusting the TTBI incidence for the number of PCs issued per day. Compared with the model of issuing all PCs on Day 3, issuing PCs with the current distribution of storage time could have decreased the TTBI incidence by 56%. During the past 8 years, the JRC retrieved 960 PC units because of apparent abnormalities, 2.8% of which were culture-positive. CONCLUSION The short shelf life of PC is associated with a low incidence of reported TTBIs, more than half of which occurred on Day 3 relative to earlier time points. Visual inspection of PC before transfusion is crucial in detecting bacterially contaminated PC despite its low positive predictive value.
Collapse
Affiliation(s)
- Masahiro Satake
- Central Blood Institute, Japanese Red Cross, Tokyo, Japan.,Blood Service Headquarters, Japanese Red Cross, Tokyo, Japan
| | - Moe Kozakai
- Central Blood Institute, Japanese Red Cross, Tokyo, Japan
| | - Mami Matsumoto
- Central Blood Institute, Japanese Red Cross, Tokyo, Japan
| | | | - Rikizo Taira
- Blood Service Headquarters, Japanese Red Cross, Tokyo, Japan
| | - Naoko Goto
- Blood Service Headquarters, Japanese Red Cross, Tokyo, Japan
| |
Collapse
|
39
|
Wagner SJ, Dy B, Young P, Goldberg C, Mair D, Fadeyi E, Poisson J, Cohn C. Septic risk increases with apheresis platelet storage time. Transfusion 2020; 60:220-222. [DOI: 10.1111/trf.15594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 11/30/2022]
Affiliation(s)
| | - Beth Dy
- American National Red Cross Washington District of Columbia
| | - Pampee Young
- American National Red Cross Washington District of Columbia
| | | | - David Mair
- American National Red Cross Washington District of Columbia
| | | | | | | |
Collapse
|
40
|
Lu M, Dai T, Hu S, Zhang Q, Bhayana B, Wang L, Wu MX. Antimicrobial blue light for decontamination of platelets during storage. JOURNAL OF BIOPHOTONICS 2020; 13:e201960021. [PMID: 31407467 PMCID: PMC7083650 DOI: 10.1002/jbio.201960021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 05/28/2023]
Abstract
Platelet (PLT) storage is currently limited to 5 days in clinics in the United States, in part, due to an increasing risk for microbial contamination over time. In light of well-documented antimicrobial activity of blue light (405-470 nm), we investigated potentials to decontaminate microbes during PLT storage by antimicrobial blue light (aBL). We found that PLTs produced no detectable levels of porphyrins or their derivatives, the chromophores that specifically absorb blue light, in marked contrast to microbes that generated porphyrins abundantly. The difference formed a basis with which aBL selectively inactivated contaminated microbes prior to and during the storage, without incurring any harm to PLTs. In accordance with this, when contamination with representative microbes was simulated in PLT concentrates supplemented with 65% of PLT additive solution in a standard storage bag, all "contaminated" microbes tested were completely inactivated after exposure of the bag to 405 nm aBL at 75 J/cm2 only once. While killing microbes efficiently, this dose of aBL irradiation exerted no adverse effects on the viability, activation or aggregation of PLTs ex vivo and could be used repeatedly during PLT storage. PLT survival in vivo was also unaltered by aBL irradiation after infusion of aBL-irradiated mouse PLTs into mice. The study provides proof-of-concept evidence for a potential of aBL to decontaminate PLTs during storage.
Collapse
Affiliation(s)
- Min Lu
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - TianHong Dai
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - SiSi Hu
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Qi Zhang
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Brijesh Bhayana
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Li Wang
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Mei X. Wu
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
41
|
Drews SJ, Lesley P, Detsky ME, Distefano L, Ilagan C, Mehta S, McGeer A, Shehata N, Skeate R, Ramirez-Arcos S. A suspected septic transfusion reaction associated with posttransfusion contamination of a platelet pool by vancomycin-resistant Enterococcus faecium. Transfusion 2019; 60:430-435. [PMID: 31859413 DOI: 10.1111/trf.15644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Vancomycin-resistant enterococci (VRE) are antibiotic-resistant organisms associated with both colonization and serious life-threatening infection in health care settings. Contamination of platelet concentrates (PCs) with Enterococcus can result in transfusion-transmitted infection. CASE PRESENTATION This report describes the investigation of a septic transfusion case involving a 27-year-old male patient with relapsed acute leukemia who was transfused with a 5-day-old buffy coat PC pool and developed fever and rigors. DISCUSSION Microbiology testing and pulse-field gel electrophoresis (PFGE) was done on patient blood cultures obtained from peripheral and central lines. Microbiology and molecular testing were also performed on the remaining posttransfusion PC pool, which was refrigerated for 24 hours before microbiology testing. Red blood cell (RBC) and plasma units associated with the implicated PCs were screened for microbial contamination. Patient blood cultures obtained from peripheral and central lines yielded vancomycin-resistant Enterococcus faecium. Gram stain of a sample from the platelet pool was negative but coagulase-negative Staphylococcus (CNST) and VRE were isolated on culture. Antibiotic sensitivity and PFGE profiles of several VRE isolates from the patient before and after transfusion, and the PC pool, revealed that all were closely related. Associated RBC and plasma components tested negative for microbial contamination. CONCLUSIONS Microbiological and molecular investigations showed a relationship between VRE isolated from the patient before and after transfusion, and therefore it is postulated that a patient-to-PC retrograde contamination (from either blood or skin) occurred. As the CNST isolated from the PC pool was not isolated from patient samples, its implication in the transfusion event is unknown.
Collapse
Affiliation(s)
- Steven J Drews
- Canadian Blood Services, Edmonton, Alberta, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Lesley
- Canadian Blood Services, Ottawa, Ontario, Canada
| | - Michael E Detsky
- Mount Sinai Hospital, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Sangeeta Mehta
- Mount Sinai Hospital, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allison McGeer
- Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Nadine Shehata
- Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Canadian Blood Services, Toronto, Ontario, Canada
| | - Robert Skeate
- Department of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Canadian Blood Services, Toronto, Ontario, Canada
| | - Sandra Ramirez-Arcos
- Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
42
|
Storch EK, Custer BS, Jacobs MR, Menitove JE, Mintz PD. Review of current transfusion therapy and blood banking practices. Blood Rev 2019; 38:100593. [PMID: 31405535 DOI: 10.1016/j.blre.2019.100593] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 01/28/2023]
Abstract
Transfusion Medicine is a dynamically evolving field. Recent high-quality research has reshaped the paradigms guiding blood transfusion. As increasing evidence supports the benefit of limiting transfusion, guidelines have been developed and disseminated into clinical practice governing optimal transfusion of red cells, platelets, plasma and cryoprecipitate. Concepts ranging from transfusion thresholds to prophylactic use to maximal storage time are addressed in guidelines. Patient blood management programs have developed to implement principles of patient safety through limiting transfusion in clinical practice. Data from National Hemovigilance Surveys showing dramatic declines in blood utilization over the past decade demonstrate the practical uptake of current principles guiding patient safety. In parallel with decreasing use of traditional blood products, the development of new technologies for blood transfusion such as freeze drying and cold storage has accelerated. Approaches to policy decision making to augment blood safety have also changed. Drivers of these changes include a deeper understanding of emerging threats and adverse events based on hemovigilance, and an increasing healthcare system expectation to align blood safety decision making with approaches used in other healthcare disciplines.
Collapse
Affiliation(s)
| | - Brian S Custer
- UCSF Department of Laboratory Medicine, Blood Systems Research Institute, USA.
| | - Michael R Jacobs
- Department of Pathology, Case Western Reserve University, USA; Department of Clinical Microbiology, University Hospitals Cleveland Medical Center, USA.
| | - Jay E Menitove
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA
| | | |
Collapse
|
43
|
Existing and Emerging Blood-Borne Pathogens: Impact on the Safety of Blood Transfusion for the Hematology/Oncology Patient. Hematol Oncol Clin North Am 2019; 33:739-748. [PMID: 31466601 DOI: 10.1016/j.hoc.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite measures to mitigate risk of transfusion-transmitted infections, emerging agents contribute to morbidity and mortality. We outline the epidemiology, risk mitigation strategies, and impact on patients for Zika virus, bacteria, Babesia, and cytomegalovirus. Nucleic acid testing of blood has reduced risk of Zika infection and reduced transfusion-transmitted risk of Babesia. Other collection and testing measures have reduced but not eliminated the risk of sepsis from bacterially contaminated blood components. Cytomegalovirus has almost been eliminated by high-efficiency leukoreduction, but residual transmissions are difficult to distinguish from community-acquired infections and additional antibody testing of blood may confer further safety of susceptible recipients.
Collapse
|
44
|
Osei FB, Boamah VE, Agyare C, Abaidoo RC. Physicochemical Properties and Microbial Quality of Water Used in Selected Poultry Farms in the Ashanti Region of Ghana. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Water plays an important role in both domestic and commercial settings. However, some physicochemical properties and biological contaminants could render water unsafe for use. Contaminated water from various sources is used as drinking water and for processing of animal products in animal farms, which has resulted in infections among animals, including poultry, and contaminated animal products on the market.
Objective:
To determine the physicochemical properties and microbial quality of water used as drinking water in selected poultry farms in the Ashanti region of Ghana.
Methods:
The pH, turbidity, conductivity, Total Dissolved Solids (TDS) and total hardness of poultry-drinking-water from 100 farms were assessed following WHO guidelines. The presence of total coliforms and faecal Enterococci was determined using the membrane filtration method. The presence of Escherichia coli, Salmonella typhi, Staphylococcus aureus and coagulase-negative Staphylococci were determined using selective culture media and their identities confirmed using biochemical tests.
Results:
pH of the samples ranged from 3.76 to 8.90, turbidity from 0.20 to 617 NTU, conductivity from 23.6 to 1114.0 µS/cm, TDS from 11.3 to 557 mg/L and total hardness from 17.1 to 192.0. Total coliforms and faecal Enterococci were present in 97% and 56% samples respectively. Escherichia coli, Salmonella typhi, Staphylococcus aureus and non-coagulase staphylococci were isolated from four samples.
Conclusion:
Water used on poultry farms has varied physicochemical properties and could also be a potential source of pathogenic organisms. There should be regular monitoring and checks on the quality of water used in animal husbandry in order to prevent the use of contaminated water for drinking and processing of animal products.
Collapse
|
45
|
Prax M, Bekeredjian-Ding I, Krut O. Microbiological Screening of Platelet Concentrates in Europe. Transfus Med Hemother 2019; 46:76-86. [PMID: 31191193 PMCID: PMC6514488 DOI: 10.1159/000499349] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/27/2019] [Indexed: 01/05/2023] Open
Abstract
The risk of transfusion-associated sepsis due to transmission of bacteria is a persistent problem in the transfusion field. Despite numerous interventions to reduce the risk, cases of bacterial sepsis following transfusion are repeatedly being reported. Especially platelet concentrates are highly susceptible to bacterial contaminations due to the growth-promoting storage conditions. In Europe, blood establishments and national authorities have implemented individual precaution measures to mitigate the risk of bacterial transmission. To obtain an overview of the different approaches, we compiled information from national authorities, blood establishments, and the current literature. Several aspects such as the shelf life of platelets, time of sampling and the applied control measures are compared between the member states. The analysis of the data revealed a broad heterogeneity of procedures on a national level ranging from platelet release without any safety testing up to mandatory screening of all platelet concentrates prior to transfusion. Despite the substantial progress made in recent years, several bacterial reports on transfusion-associated sepsis indicate that further efforts are needed to increase the safety of blood transfusions in the long term.
Collapse
Affiliation(s)
- Marcel Prax
- Division of Microbiology, Paul Ehrlich Institute, Langen, Germany
| | | | | |
Collapse
|
46
|
Ramirez‐Arcos S, McDonald C, Deol P, Kreuger AL, Patel N, Pidcoke H, Prax M, Seltsam A, Stassinopoulos A. Bacterial safety of blood components–a congress review of the ISBT transfusion‐transmitted infectious diseases working party, bacterial subgroup. ACTA ACUST UNITED AC 2019. [DOI: 10.1111/voxs.12483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Axel Seltsam
- German Red Cross Blood Service NSTOB Springe Germany
| | | | | |
Collapse
|
47
|
Haass KA, Sapiano MRP, Savinkina A, Kuehnert MJ, Basavaraju SV. Transfusion-Transmitted Infections Reported to the National Healthcare Safety Network Hemovigilance Module. Transfus Med Rev 2019; 33:84-91. [PMID: 30930009 DOI: 10.1016/j.tmrv.2019.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/04/2018] [Accepted: 01/02/2019] [Indexed: 11/29/2022]
Abstract
Transfusion-transmitted infections (TTIs) can be severe and result in death. Transfusion-transmitted viral pathogen transmission has been substantially reduced, whereas sepsis due to bacterial contamination of platelets and transfusion-transmitted babesiosis may occur more frequently. Quantifying the burden of TTI is important to develop targeted interventions. From January 1, 2010, to December 31, 2016, health care facilities participating in the National Healthcare Safety Network Hemovigilance Module monitored transfusion recipients for evidence of TTI and recorded the total number of units transfused. Facilities use standard criteria to report TTIs. Incidence rates of TTIs, including for bacterial contamination of platelets and transfusion-transmitted babesiosis, are presented. One hundred ninety-five facilities reported 111 TTIs and 7.9 million transfused components to the National Healthcare Safety Network Hemovigilance Module. Of these 111 reports, 54 met inclusion criteria. The most frequently reported pathogens were Babesia spp in RBCs (16/23, 70%) and Staphylococcus aureus in platelets (12/30, 40%). There were 1.95 (26 apheresis, 4 whole blood derived) TTIs per 100 000 transfused platelet units and 0.53 TTI per 100 000 transfused RBC components, compared to 0.68 TTI per 100 000 all transfused components. Bacterial contamination of platelets and transfusion-transmitted babesiosis were the most frequently reported TTIs. Interventions that reduce the burden of bacterial contamination of platelets, particularly collected by apheresis, and Babesia transmission through RBC transfusion would reduce transfusion recipient morbidity and mortality. These analyses demonstrate the value and importance of facility participation in national recipient hemovigilance using standard reporting criteria.
Collapse
Affiliation(s)
- Kathryn A Haass
- Office of Blood, Organ, and Other Tissue Safety, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention.
| | - Mathew R P Sapiano
- Surveillance Branch, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, US Centers for Disease Control and Prevention
| | - Alexandra Savinkina
- Office of Blood, Organ, and Other Tissue Safety, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention; Oak Ridge Institute for Science and Education
| | - Matthew J Kuehnert
- Office of Blood, Organ, and Other Tissue Safety, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention
| | - Sridhar V Basavaraju
- Office of Blood, Organ, and Other Tissue Safety, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention
| |
Collapse
|
48
|
Prioli KM, Karp JK, Lyons NM, Chrebtow V, Herman JH, Pizzi LT. Economic Implications of Pathogen Reduced and Bacterially Tested Platelet Components: A US Hospital Budget Impact Model. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2018; 16:889-899. [PMID: 30062464 PMCID: PMC6244623 DOI: 10.1007/s40258-018-0409-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND US FDA draft guidance includes pathogen reduction (PR) or secondary rapid bacterial testing (RT) in its recommendations for mitigating risk of platelet component (PC) bacterial contamination. An interactive budget impact model was created for hospitals to use when considering these technologies. METHODS A Microsoft Excel model was built and populated with base-case costs and probabilities identified through literature search and a survey of US hospital transfusion service directors. Annual costs of PC acquisition, testing, wastage, dispensing/transfusion, sepsis, shelf life, and reimbursement for a mid-sized hospital that purchases all of its PCs were compared for four scenarios: 100% conventional PCs (C-PC), 100% RT-PC, 100% PR-PC, and 50% RT-PC/50% PR-PC. RESULTS Annual total costs were US$3.64, US$3.67, and US$3.96 million when all platelets were C-PC, RT-PC, or PR-PC, respectively, or US$3.81 million in the 50% RT-PC/50% PR-PC scenario. The annual net cost of PR-PC, obtained by subtracting annual reimbursements from annual total costs, is 6.18% above that of RT-PC. Maximum usable shelf lives for C-PC, RT-PC, and PR-PC are 3.0, 5.0, and 3.6 days, respectively; hospitals obtain PR-PC components earliest at 1.37 days. CONCLUSION The model predicts minimal cost increase for PR-PC versus RT-PC, including cost offsets such as elimination of bacterial detection and irradiation, and reimbursement. Additional safety provided by PR, including risk mitigation of transfusion-transmission of a broad spectrum of viruses, parasites, and emerging pathogens, may justify this increase. Effective PC shelf life may increase with RT, but platelets can be available sooner with PR due to elimination of bacterial detection, depending on blood center logistics.
Collapse
Affiliation(s)
- Katherine M. Prioli
- Center for Health Outcomes, Policy, and Economics, Rutgers University, 160 Frelinghuysen Road, Suite 417, Piscataway, NJ 08854 USA
| | - Julie Katz Karp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, 111 South 11th Street, Philadelphia, PA 19107 USA
| | - Nina M. Lyons
- Thomas Jefferson University, 901 Walnut Street, Suite 901, Philadelphia, PA 19107 USA
| | - Vera Chrebtow
- Global Marketing and Communications, Cerus Corporation, 2550 Stanwell Drive, Concord, CA 94520 USA
| | - Jay H. Herman
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, 111 South 11th Street, Philadelphia, PA 19107 USA
| | - Laura T. Pizzi
- Center for Health Outcomes, Policy, and Economics, Rutgers University, 160 Frelinghuysen Road, Suite 417, Piscataway, NJ 08854 USA
| |
Collapse
|
49
|
Erony SM, Marshall CE, Gehrie EA, Boyd JS, Ness PM, Tobian AA, Carroll KC, Blagg L, Shifflett L, Bloch EM. The epidemiology of bacterial culture-positive and septic transfusion reactions at a large tertiary academic center: 2009 to 2016. Transfusion 2018; 58:1933-1939. [DOI: 10.1111/trf.14789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/08/2018] [Accepted: 04/08/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Sean M. Erony
- Johns Hopkins Hospital and Medical Institutions; Baltimore Maryland
| | | | - Eric A. Gehrie
- Johns Hopkins Hospital and Medical Institutions; Baltimore Maryland
| | - Joan S. Boyd
- Johns Hopkins Hospital and Medical Institutions; Baltimore Maryland
| | - Paul M. Ness
- Johns Hopkins Hospital and Medical Institutions; Baltimore Maryland
| | | | - Karen C. Carroll
- Johns Hopkins Hospital and Medical Institutions; Baltimore Maryland
| | - Lorraine Blagg
- Johns Hopkins Hospital and Medical Institutions; Baltimore Maryland
| | - Lisa Shifflett
- Johns Hopkins Hospital and Medical Institutions; Baltimore Maryland
| | - Evan M. Bloch
- Johns Hopkins Hospital and Medical Institutions; Baltimore Maryland
| |
Collapse
|
50
|
Vollmer T, Dabisch‐Ruthe M, Weinstock M, Knabbe C, Dreier J. Late sampling for automated culture to extend the platelet shelf life to 5 days in Germany. Transfusion 2018; 58:1654-1664. [DOI: 10.1111/trf.14617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Tanja Vollmer
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitaetsklinik der Ruhr‐Universität BochumBad Oeynhausen Germany
| | - Mareike Dabisch‐Ruthe
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitaetsklinik der Ruhr‐Universität BochumBad Oeynhausen Germany
| | - Melanie Weinstock
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitaetsklinik der Ruhr‐Universität BochumBad Oeynhausen Germany
| | - Cornelius Knabbe
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitaetsklinik der Ruhr‐Universität BochumBad Oeynhausen Germany
| | - Jens Dreier
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitaetsklinik der Ruhr‐Universität BochumBad Oeynhausen Germany
| |
Collapse
|