1
|
Sun R, Wu C, Gou Y, Zhao Y, Huang P. Advancements in second-line treatment research for hepatocellular carcinoma. Clin Transl Oncol 2024:10.1007/s12094-024-03653-8. [PMID: 39162977 DOI: 10.1007/s12094-024-03653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, characterized by high incidence and mortality rates. Due to its insidious onset, most patients are diagnosed at an advanced stage, often missing the opportunity for surgical resection. Consequently, systemic treatments play a pivotal role. In recent years, an increasing number of drugs have been approved for first-line systemic treatment of HCC. However, their efficacy is limited, and some patients develop drug resistance after a period of treatment. For such patients, there is currently a lack of standard second-line systemic treatment options. This review summarizes the latest advancements in second-line systemic treatment research for HCC patients who have developed resistance to various first-line systemic treatments, aiming to provide more rational and personalized second-line treatment strategies.
Collapse
Affiliation(s)
- Ruirui Sun
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Chenrui Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Yang Gou
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Yaowu Zhao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Ping Huang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China.
| |
Collapse
|
2
|
Chung JY, Lee W, Lee OW, Ylaya K, Nambiar D, Sheehan-Klenk J, Fayn S, Hewitt SM, Choyke PL, Escorcia FE. Glypican-3 deficiency in liver cancer upregulates MAPK/ERK pathway but decreases cell proliferation. Am J Cancer Res 2024; 14:3348-3371. [PMID: 39113871 PMCID: PMC11301284 DOI: 10.62347/ttny4279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Glypican-3 (GPC3) is overexpressed in hepatocellular carcinomas and hepatoblastomas and represents an important therapeutic target but the biologic importance of GPC3 in liver cancer is unclear. To date, there are limited data characterizing the biological implications of GPC3 knockout (KO) in liver cancers that intrinsically express this target. Here, we report on the development and characterization of GPC3-KO liver cancer cell lines and compare to them to parental lines. GPC3-KO variants were established in HepG2 and Hep3B liver cancer cell lines using a lentivirus-mediated CRISPR/Cas9 system. We assessed the effects of GPC3 deficiency on oncogenic properties in vitro and in murine xenograft models. Downstream cellular signaling pathway changes induced by GPC3 deficiency were examined by RNAseq and western blot. To confirm the usefulness of the models for GPC3-targeted drug development, we evaluated the target engagement of a GPC3-selective antibody, GC33, conjugated to the positron-emitting zirconium-89 (89Zr) in subcutaneous murine xenografts of wild type (WT) and KO liver cancer cell lines. Deletion of GPC3 significantly reduced liver cancer cell proliferation, migration, and invasion compared to the parental cell lines. Additionally, the tumor growth of GPC3-KO liver cancer xenografts was significantly slower compared with control xenografts. RNA sequencing analysis also showed GPC3-KO resulted in a reduction in the expression of genes associated with cell cycle regulation, invasion, and migration. Specifically, we observed the downregulation of components in the AKT/NFκB/WNT signaling pathways and of molecules related to cell cycle regulation with GPC3-KO. In contrast, pMAPK/ERK1/2 was upregulated, suggesting an adaptive compensatory response. KO lines demonstrated increased sensitivity to ERK (GDC09994), while AKT (MK2206) inhibition was more effective in WT lines. Using antibody-based positron emission tomography (immunoPET) imaging, we confirmed that 89Zr-GC33 accumulated exclusively in GPC3-expression xenografts but not in GPC3-KO xenografts with high tumor uptake and tumor-to-liver signal ratio. We show that GPC3-KO liver cancer cell lines exhibit decreased tumorigenicity and altered signaling pathways, including upregulated pMAPK/ERK1/2, compared to parental lines. Furthermore, we successfully distinguished between GPC3+ and GPC3- tumors using the GPC3-targeted immunoPET imaging agent, demonstrating the potential utility of these cell lines in facilitating GPC3-selective drug development.
Collapse
Affiliation(s)
- Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Woonghee Lee
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Olivia W Lee
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Kris Ylaya
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Divya Nambiar
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Julia Sheehan-Klenk
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Stanley Fayn
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
- Oxford Institute for Radiation Oncology, Department of Oncology, University of OxfordOxford OX3 7DQ, UK
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Freddy E Escorcia
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| |
Collapse
|
3
|
Prawitt D, Eggermann T. Molecular mechanisms of human overgrowth and use of omics in its diagnostics: chances and challenges. Front Genet 2024; 15:1382371. [PMID: 38894719 PMCID: PMC11183334 DOI: 10.3389/fgene.2024.1382371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Overgrowth disorders comprise a group of entities with a variable phenotypic spectrum ranging from tall stature to isolated or lateralized overgrowth of body parts and or organs. Depending on the underlying physiological pathway affected by pathogenic genetic alterations, overgrowth syndromes are associated with a broad spectrum of neoplasia predisposition, (cardio) vascular and neurodevelopmental anomalies, and dysmorphisms. Pathologic overgrowth may be of prenatal or postnatal onset. It either results from an increased number of cells (intrinsic cellular hyperplasia), hypertrophy of the normal number of cells, an increase in interstitial spaces, or from a combination of all of these. The underlying molecular causes comprise a growing number of genetic alterations affecting skeletal growth and Growth-relevant signaling cascades as major effectors, and they can affect the whole body or parts of it (mosaicism). Furthermore, epigenetic modifications play a critical role in the manifestation of some overgrowth diseases. The diagnosis of overgrowth syndromes as the prerequisite of a personalized clinical management can be challenging, due to their clinical and molecular heterogeneity. Physicians should consider molecular genetic testing as a first diagnostic step in overgrowth syndromes. In particular, the urgent need for a precise diagnosis in tumor predisposition syndromes has to be taken into account as the basis for an early monitoring and therapy. With the (future) implementation of next-generation sequencing approaches and further omic technologies, clinical diagnoses can not only be verified, but they also confirm the clinical and molecular spectrum of overgrowth disorders, including unexpected findings and identification of atypical cases. However, the limitations of the applied assays have to be considered, for each of the disorders of interest, the spectrum of possible types of genomic variants has to be considered as they might require different methodological strategies. Additionally, the integration of artificial intelligence (AI) in diagnostic workflows significantly contribute to the phenotype-driven selection and interpretation of molecular and physiological data.
Collapse
Affiliation(s)
- Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, University Medical Center, Mainz, Germany
| | - Thomas Eggermann
- Institute for Human Genetics and Genome Medicine, Medical Faculty, RWTH Aachen, Aachen, Germany
| |
Collapse
|
4
|
Roy AM, Iyer R, Chakraborty S. The extracellular matrix in hepatocellular carcinoma: Mechanisms and therapeutic vulnerability. Cell Rep Med 2023; 4:101170. [PMID: 37652015 PMCID: PMC10518608 DOI: 10.1016/j.xcrm.2023.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
The tumor microenvironment (TME) is influenced by a "disorganized" extracellular matrix (ECM) that sensitizes cancer cells toward mechanical stress, signaling, and structural alterations. In hepatocellular carcinoma (HCC), lack of knowledge about key ECM proteins driving the TME refractory to targeted therapies poses a barrier to the identification of new therapeutic targets. Herein, we discuss the contributions of various ECM components that impact hepatocytes and their surrounding support network during tumorigenesis. In addition, the underpinnings by which ECM proteins transduce mechanical signals to the liver TME are detailed. Finally, in view of the bidirectional feedback between the ECM, transformed hepatocytes, and immune cells, we highlight the potential role of the ECM disorganization process in shaping responses to immune checkpoint inhibitors and targeted therapies. Our comprehensive characterization of these ECM components may provide a roadmap for innovative therapeutic approaches to restrain HCC.
Collapse
Affiliation(s)
- Arya Mariam Roy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Sayan Chakraborty
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263.
| |
Collapse
|
5
|
Dituri F, Gigante G, Scialpi R, Mancarella S, Fabregat I, Giannelli G. Proteoglycans in Cancer: Friends or Enemies? A Special Focus on Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14081902. [PMID: 35454809 PMCID: PMC9024587 DOI: 10.3390/cancers14081902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Proteoglycans affect multiple molecular and cellular processes during the progression of solid tumors with a highly desmoplastic stroma, such as HCC. Due to their role in enhancing or limiting the traits of cancer cells underlying their aggressiveness, such as proliferation, angiogenesis, epithelial to mesenchymal transition (EMT), and stemness, these macromolecules could be exploited as molecular targets or therapeutic agents. Proteoglycans, such as biglycan, versican, syndecan-1, glypican-3, and agrin, promote HCC cell proliferation, EMT, and angiogenesis, while endostatin and proteoglycan 4 were shown to impair cancer neovascularization or to enhance the sensitivity of HCC cells to drugs, such as sorafenib and regorafenib. Based on this evidence, interventional strategies involving the use of humanized monoclonal antibodies, T cells engineered with chimeric antigen receptors, or recombinant proteins mimicking potentially curative proteoglycans, are being employed or may be adopted in the near future for the treatment of HCC. Abstract Proteoglycans are a class of highly glycosylated proteins expressed in virtually all tissues, which are localized within membranes, but more often in the pericellular space and extracellular matrix (ECM), and are involved in tissue homeostasis and remodeling of the stromal microenvironment during physiological and pathological processes, such as tissue regeneration, angiogenesis, and cancer. In general, proteoglycans can perform signaling activities and influence a range of physical, chemical, and biological tissue properties, including the diffusivity of small electrolytes and nutrients and the bioavailability of growth factors. While the dysregulated expression of some proteoglycans is observed in many cancers, whether they act as supporters or limiters of neoplastic progression is still a matter of controversy, as the tumor promoting or suppressive function of some proteoglycans is context dependent. The participation of multiple proteoglycans in organ regeneration (as demonstrated for the liver in hepatectomy mouse models) and in cancer suggests that these molecules actively influence cell growth and motility, thus contributing to key events that characterize neoplastic progression. In this review, we outline the main roles of proteoglycans in the physiology and pathology of cancers, with a special mention to hepatocellular carcinoma (HCC), highlighting the translational potential of proteoglycans as targets or therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
- Correspondence:
| | - Gianluigi Gigante
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| | - Rosanna Scialpi
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| | - Serena Mancarella
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| | - Isabel Fabregat
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBEREHD and University of Barcelona, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Gianluigi Giannelli
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| |
Collapse
|
6
|
Yamada K, Yoshida K. Multiple subcellular localizations and functions of protein kinase Cδ in liver cancer. World J Gastroenterol 2022; 28:188-198. [PMID: 35110944 PMCID: PMC8776529 DOI: 10.3748/wjg.v28.i2.188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/25/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Protein kinase Cδ (PKCδ) is a member of the PKC family, and its implications have been reported in various biological and cancerous processes, including cell proliferation, cell death, tumor suppression, and tumor progression. In liver cancer cells, accumulating reports show the bi-functional regulation of PKCδ in cell death and survival. PKCδ function is defined by various factors, such as phosphorylation, catalytic domain cleavage, and subcellular localization. PKCδ has multiple intracellular distribution patterns, ranging from the cytosol to the nucleus. We recently found a unique extracellular localization of PKCδ in liver cancer and its growth factor-like function in liver cancer cells. In this review, we first discuss the structural features of PKCδ and then focus on the functional diversity of PKCδ based on its subcellular localization, such as the nucleus, cell surface, and extracellular space. These findings improve our knowledge of PKCδ involvement in the progression of liver cancer.
Collapse
Affiliation(s)
- Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
7
|
Huang SL, Wang YM, Wang QY, Feng GG, Wu FQ, Yang LM, Zhang XH, Xin HW. Mechanisms and Clinical Trials of Hepatocellular Carcinoma Immunotherapy. Front Genet 2021; 12:691391. [PMID: 34306031 PMCID: PMC8296838 DOI: 10.3389/fgene.2021.691391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common and lethal tumors worldwide, is usually not diagnosed until the disease is advanced, which results in ineffective intervention and unfavorable prognosis. Small molecule targeted drugs of HCC, such as sorafenib, provided only about 2.8 months of survival benefit, partially due to cancer stem cell resistance. There is an urgent need for the development of new treatment strategies for HCC. Tumor immunotherapies, including immune check point inhibitors, chimeric antigen receptor T cells (CAR-T) and bispecific antibodies (BsAb), have shown significant potential. It is known that the expression level of glypican-3 (GPC3) was significantly increased in HCC compared with normal liver tissues. A bispecific antibody (GPC3-S-Fabs) was reported to recruit NK cells to target GPC3 positive cancer cells. Besides, bispecific T-cell Engagers (BiTE), including GPC3/CD3, an aptamer TLS11a/CD3 and EpCAM/CD3, were recently reported to efficiently eliminate HCC cells. It is known that immune checkpoint proteins programmed death-1 (PD-1) binding by programmed cell death-ligand 1 (PD-L1) activates immune checkpoints of T cells. Anti-PD-1 antibody was reported to suppress HCC progression. Furthermore, GPC3-based HCC immunotherapy has been shown to be a curative approach to prolong the survival time of patients with HCC in clinically trials. Besides, the vascular endothelial growth factor (VEGF) inhibitor may inhibit the migration, invasion and angiogenesis of HCC. Here we review the cutting-edge progresses on mechanisms and clinical trials of HCC immunotherapy, which may have significant implication in our understanding of HCC and its immunotherapy.
Collapse
Affiliation(s)
- Shao-Li Huang
- Department of Clinical Laboratory, Lianjiang People's Hospital, Zhanjiang, China.,Doctoral Scientific Research Center, Lianjiang People's Hospital, Zhanjiang, China.,Guangdong Medical University Affiliated Lianjiang People's Hospital, Zhanjiang, China
| | - Yu-Ming Wang
- Department of Spinal and Neural Functional Reconstruction, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China.,School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | | | - Guang-Gui Feng
- Department of Clinical Laboratory, Lianjiang People's Hospital, Zhanjiang, China.,Guangdong Medical University Affiliated Lianjiang People's Hospital, Zhanjiang, China
| | - Fu-Qing Wu
- Department of Clinical Laboratory, Lianjiang People's Hospital, Zhanjiang, China.,Guangdong Medical University Affiliated Lianjiang People's Hospital, Zhanjiang, China
| | - Liu-Ming Yang
- Doctoral Scientific Research Center, Lianjiang People's Hospital, Zhanjiang, China.,Guangdong Medical University Affiliated Lianjiang People's Hospital, Zhanjiang, China.,Department of Gastroenterology and Hepatology, Lianjiang People's Hospital, Zhanjiang, China
| | - Xi-He Zhang
- Doctoral Scientific Research Center, Lianjiang People's Hospital, Zhanjiang, China.,Guangdong Medical University Affiliated Lianjiang People's Hospital, Zhanjiang, China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Faculty of Medicine, Yangtze University, Jingzhou, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Faculty of Medicine, Yangtze University, Jingzhou, China
| |
Collapse
|
8
|
Krieger TG, Tirier SM, Park J, Jechow K, Eisemann T, Peterziel H, Angel P, Eils R, Conrad C. Modeling glioblastoma invasion using human brain organoids and single-cell transcriptomics. Neuro Oncol 2021; 22:1138-1149. [PMID: 32297954 PMCID: PMC7594554 DOI: 10.1093/neuonc/noaa091] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) consists of devastating neoplasms with high invasive capacity, which have been difficult to study in vitro in a human-derived model system. Therapeutic progress is also limited by cellular heterogeneity within and between tumors, among other factors such as therapy resistance. To address these challenges, we present an experimental model using human cerebral organoids as a scaffold for patient-derived GBM cell invasion. METHODS This study combined tissue clearing and confocal microscopy with single-cell RNA sequencing of GBM cells before and after co-culture with organoid cells. RESULTS We show that tumor cells within organoids extend a network of long microtubes, recapitulating the in vivo behavior of GBM. Transcriptional changes implicated in the invasion process are coherent across patient samples, indicating that GBM cells reactively upregulate genes required for their dispersion. Potential interactions between GBM and organoid cells identified by an in silico receptor-ligand pairing screen suggest functional therapeutic targets. CONCLUSIONS Taken together, our model has proven useful for studying GBM invasion and transcriptional heterogeneity in vitro, with applications for both pharmacological screens and patient-specific treatment selection on a time scale amenable to clinical practice.
Collapse
Affiliation(s)
- Teresa G Krieger
- Digital Health Center, Berlin Institute of Health and Charité, Berlin, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Stephan M Tirier
- Division of Chromatin Networks, German Cancer Research Center, Heidelberg, Germany
| | - Jeongbin Park
- Digital Health Center, Berlin Institute of Health and Charité, Berlin, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Katharina Jechow
- Digital Health Center, Berlin Institute of Health and Charité, Berlin, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Tanja Eisemann
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Heike Peterziel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany.,Present affiliation: Hopp Children's Tumor Center Heidelberg and Clinical Cooperation Unit Paediatric Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Roland Eils
- Digital Health Center, Berlin Institute of Health and Charité, Berlin, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany.,Health Data Science Unit, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Christian Conrad
- Digital Health Center, Berlin Institute of Health and Charité, Berlin, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
9
|
Alshehri MA, Alshehri MM, Albalawi NN, Al-Ghamdi MA, Al-Gayyar MMH. Heparan sulfate proteoglycans and their modification as promising anticancer targets in hepatocellular carcinoma. Oncol Lett 2021; 21:173. [PMID: 33552290 PMCID: PMC7798035 DOI: 10.3892/ol.2021.12434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of primary liver cancer. Despite advancements in the treatment strategies of HCC, there is an urgent requirement to identify and develop novel therapeutic drugs that do not lead to resistance. These novel agents should have the potential to influence the primary mechanisms participating in the pathogenesis of HCC. Heparan sulfate proteoglycans (HSPGs) are major elements of the extracellular matrix that perform structural and signaling functions. HSPGs protect against invasion of tumor cells by preventing cell infiltration and intercellular adhesion. Several enzymes, such as heparanase, matrix metalloproteinase-9 and sulfatase-2, have been reported to affect HSPGs, leading to their degradation and thus enhancing tumor invasion. In addition, some compounds that are produced from the degradation of HSPGs, including glypican-3 and syndecan-1, enhance tumor progression. Thus, the identification of enzymes that affect HSPGs or their degradation products in HCC may lead to the development of novel therapeutic targets. The present review discusses the main enzymes and compounds associated with HSPGs, and their involvement with the pathogenicity of HCC.
Collapse
Affiliation(s)
- Mohammed A Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moath M Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Naif N Albalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moshari A Al-Ghamdi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed M H Al-Gayyar
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
10
|
Yamada K, Oikawa T, Kizawa R, Motohashi S, Yoshida S, Kumamoto T, Saeki C, Nakagawa C, Shimoyama Y, Aoki K, Tachibana T, Saruta M, Ono M, Yoshida K. Unconventional Secretion of PKCδ Exerts Tumorigenic Function via Stimulation of ERK1/2 Signaling in Liver Cancer. Cancer Res 2020; 81:414-425. [PMID: 33318039 DOI: 10.1158/0008-5472.can-20-2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/02/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022]
Abstract
Expression of human protein kinase C delta (PKCδ) protein has been linked to many types of cancers. PKCδ is known to be a multifunctional PKC family member and has been rigorously studied as an intracellular signaling molecule. Here we show that PKCδ is a secretory protein that regulates cell growth of liver cancer. Full-length PKCδ was secreted to the extracellular space in living liver cancer cells under normal cell culture conditions and in xenograft mouse models. Patients with liver cancer showed higher levels of serum PKCδ than patients with chronic hepatitis or liver cirrhosis or healthy individuals. In liver cancer cells, PKCδ secretion was executed in an endoplasmic reticulum (ER)-Golgi-independent manner, and the inactivation status of cytosolic PKCδ was required for its secretion. Furthermore, colocalization studies showed that extracellular PKCδ was anchored on the cell surface of liver cancer cells via association with glypican 3, a liver cancer-related heparan sulfate proteoglycan. Addition of exogenous PKCδ activated IGF-1 receptor (IGF1R) activation and subsequently enhanced activation of ERK1/2, which led to accelerated cell growth in liver cancer cells. Conversely, treatment with anti-PKCδ antibody attenuated activation of both IGF1R and ERK1/2 and reduced cell proliferation and spheroid formation of liver cancer cells and tumor growth in xenograft mouse models. This study demonstrates the presence of PKCδ at the extracellular space and the function of PKCδ as a growth factor and provides a rationale for the extracellular PKCδ-targeting therapy of liver cancer. SIGNIFICANCE: PKCδ secretion from liver cancer cells behaves as a humoral growth factor that contributes to cell growth via activation of proliferative signaling molecules, which may be potential diagnostic or therapeutic targets.
Collapse
Affiliation(s)
- Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Ryusuke Kizawa
- Department of Biochemistry, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Saya Motohashi
- Department of Biochemistry, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Tomotaka Kumamoto
- Department of Biochemistry, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Chika Nakagawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yuya Shimoyama
- Department of Biochemistry, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Katsuhiko Aoki
- Department of Biochemistry, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Toshiaki Tachibana
- Core Research Facilities for Basic Science, Research Center for Medical Sciences, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan.
| |
Collapse
|
11
|
Development of Glypican-3 Targeting Immunotoxins for the Treatment of Liver Cancer: An Update. Biomolecules 2020; 10:biom10060934. [PMID: 32575752 PMCID: PMC7356171 DOI: 10.3390/biom10060934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for most liver cancers and represents one of the deadliest cancers in the world. Despite the global demand for liver cancer treatments, there remain few options available. The U.S. Food and Drug Administration (FDA) recently approved Lumoxiti, a CD22-targeting immunotoxin, as a treatment for patients with hairy cell leukemia. This approval helps to demonstrate the potential role that immunotoxins can play in the cancer therapeutics pipeline. However, concerns have been raised about the use of immunotoxins, including their high immunogenicity and short half-life, in particular for treating solid tumors such as liver cancer. This review provides an overview of recent efforts to develop a glypican-3 (GPC3) targeting immunotoxin for treating HCC, including strategies to deimmunize immunotoxins by removing B- or T-cell epitopes on the bacterial toxin and to improve the serum half-life of immunotoxins by incorporating an albumin binding domain.
Collapse
|
12
|
Fleming BD, Urban DJ, Hall M, Longerich T, Greten T, Pastan I, Ho M. Engineered Anti-GPC3 Immunotoxin, HN3-ABD-T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention. Hepatology 2020; 71:1696-1711. [PMID: 31520528 PMCID: PMC7069773 DOI: 10.1002/hep.30949] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Treatment of hepatocellular carcinomas using our glypican-3 (GPC3)-targeting human nanobody (HN3) immunotoxins causes potent tumor regression by blocking protein synthesis and down-regulating the Wnt signaling pathway. However, immunogenicity and a short serum half-life may limit the ability of immunotoxins to transition to the clinic. APPROACH AND RESULTS To address these concerns, we engineered HN3-based immunotoxins to contain various deimmunized Pseudomonas exotoxin (PE) domains. This included HN3-T20, which was modified to remove T-cell epitopes and contains a PE domain II truncation. We compared them to our previously reported B-cell deimmunized immunotoxin (HN3-mPE24) and our original HN3-immunotoxin with a wild-type PE domain (HN3-PE38). All of our immunotoxins displayed high affinity to human GPC3, with HN3-T20 having a KD value of 7.4 nM. HN3-T20 retained 73% enzymatic activity when compared with the wild-type immunotoxin in an adenosine diphosphate-ribosylation assay. Interestingly, a real-time cell growth inhibition assay demonstrated that a single dose of HN3-T20 at 62.5 ng/mL (1.6 nM) was capable of inhibiting nearly all cell proliferation during the 10-day experiment. To enhance HN3-T20's serum retention, we tested the effect of adding a streptococcal albumin-binding domain (ABD) and a llama single-domain antibody fragment specific for mouse and human serum albumin. For the detection of immunotoxin in mouse serum, we developed a highly sensitive enzyme-linked immunosorbent assay and found that HN3-ABD-T20 had a 45-fold higher serum half-life than HN3-T20 (326 minutes vs. 7.3 minutes); consequently, addition of an ABD resulted in HN3-ABD-T20-mediated tumor regression at 1 mg/kg. CONCLUSION These data indicate that ABD-containing deimmunized HN3-T20 immunotoxins are high-potency therapeutics ready to be evaluated in clinical trials for the treatment of liver cancer.
Collapse
Affiliation(s)
- Bryan D. Fleming
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland, 20892
| | - Daniel J. Urban
- Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, Maryland, 20850
| | - Matthew Hall
- Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, Maryland, 20850
| | - Thomas Longerich
- Institute of Pathology, University Hospital, Heidelberg, Germany, 69120
| | - Tim Greten
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, Maryland, 20892
| | - Ira Pastan
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland, 20892
| | - Mitchell Ho
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland, 20892
| |
Collapse
|
13
|
Elgundi Z, Papanicolaou M, Major G, Cox TR, Melrose J, Whitelock JM, Farrugia BL. Cancer Metastasis: The Role of the Extracellular Matrix and the Heparan Sulfate Proteoglycan Perlecan. Front Oncol 2020; 9:1482. [PMID: 32010611 PMCID: PMC6978720 DOI: 10.3389/fonc.2019.01482] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis is the dissemination of tumor cells to new sites, resulting in the formation of secondary tumors. This process is complex and is spatially and temporally regulated by intrinsic and extrinsic factors. One important extrinsic factor is the extracellular matrix, the non-cellular component of tissues. Heparan sulfate proteoglycans (HSPGs) are constituents of the extracellular matrix, and through their heparan sulfate chains and protein core, modulate multiple events that occur during the metastatic cascade. This review will provide an overview of the role of the extracellular matrix in the events that occur during cancer metastasis, primarily focusing on perlecan. Perlecan, a basement membrane HSPG is a key component of the vascular extracellular matrix and is commonly associated with events that occur during the metastatic cascade. Its contradictory role in these events will be discussed and we will highlight the recent advances in cancer therapies that target HSPGs and their modifying enzymes.
Collapse
Affiliation(s)
- Zehra Elgundi
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Michael Papanicolaou
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Gretel Major
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Brooke L Farrugia
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Role of glypicans in regulation of the tumor microenvironment and cancer progression. Biochem Pharmacol 2019; 168:108-118. [PMID: 31251939 DOI: 10.1016/j.bcp.2019.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/28/2022]
Abstract
Glypicans are evolutionary conserved, cell surface heparan sulfate (HS) proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor. Glypicans interact with a broad class of soluble and insoluble ligands, such as morphogens, growth factors, chemokines, receptors and components of the extracellular matrix (ECM). Such versatility comes from their ability to interact through both their HS chains and core protein. Glypicans are involved in cellular and tissue development, morphogenesis and cell motility. They exhibit differential expression in several cancers, acting as both tumor promoters and inhibitors in a cancer type-specific manner. They also influence tumor stroma by facilitating angiogenesis, ECM remodeling and alteration of immune cell functions. Glypicans have emerged as a new therapeutic moiety, whose functions can be exploited in the field of targeted therapies and precision medicine in cancer. This is demonstrated by the emergence of several anti-glypican antibody-based immunologics that have been recently developed and are being evaluated in clinical trials. This review will focus on glypican structure and function with an emphasis on their expression in various cancers. Discussion will also center on the potential of glypicans to be therapeutic targets for inhibition of cancer cell growth.
Collapse
|
15
|
Moudi B, Heidari Z, Mahmoudzadeh-Sagheb H. Meta-analysis and systematic review of prognostic significance of Glypican-3 in patients with hepatitis B-related hepatocellular carcinoma. Virusdisease 2019; 30:193-200. [PMID: 31179356 PMCID: PMC6531550 DOI: 10.1007/s13337-019-00517-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant cancer and the second cause of cancer-related death worldwide. Glypican-3 (GPC3) is established as an important prognostic factor for HCC but the results are still controversial. Moreover, its utility as an immunohistochemical marker for HCC is not conclusive. Herein we aimed to find the prognostic significance of GPC3 in HCC patients. The PubMed, Web of Science, EMBASE, SCOPUS and Cochrane library databases were searched and eligible studies based on the GPC3 expression and survival outcome of HCC (odds ratios or hazard ratios) included in the current meta-analysis. The STATA 12.0 and RevMan 5.3 software were used for statistical evaluations. 17 articles contained 2618 patients, were included in the recent meta-analysis. Our findings revealed a significant association between tumor stage, higher tumor grade, presence of vascular invasion, shorter overall survival, shorter disease-free survival and high expression of GPC3. The subgroup analyses based on sample size, cutoffs and follow-up period were also conducted to examine the association between GPC3 and OS and also to increase the homogeneity of study. Current study found a significant association between GPC3 expression and poor prognosis of HCC and specially related to the HCC invasion and progression. It was recommended to design more prospective studies based on the relationship between GPC3 and HCC to confirm our results.
Collapse
Affiliation(s)
- Bita Moudi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Heidari
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamidreza Mahmoudzadeh-Sagheb
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
16
|
Ortiz MV, Roberts SS, Glade Bender J, Shukla N, Wexler LH. Immunotherapeutic Targeting of GPC3 in Pediatric Solid Embryonal Tumors. Front Oncol 2019; 9:108. [PMID: 30873384 PMCID: PMC6401603 DOI: 10.3389/fonc.2019.00108] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/05/2019] [Indexed: 12/23/2022] Open
Abstract
Glypican 3 (GPC3) is a heparan sulfate proteoglycan and cell surface oncofetal protein which is highly expressed on a variety of pediatric solid embryonal tumors including the majority of hepatoblastomas, Wilms tumors, rhabdoid tumors, certain germ cell tumor subtypes, and a minority of rhabdomyosarcomas. Via both its core protein and heparan sulfate side chains, GPC3 activates the canonical Wnt/β-catenin pathway, which is frequently overexpressed in these malignancies. Loss of function mutations in GPC3 lead to Simpson-Golabi-Behmel Syndrome, an X-linked overgrowth condition with a predisposition to GPC3-expressing cancers including hepatoblastoma and Wilms tumor. There are several immunotherapeutic approaches to targeting GPC3, including vaccines, monoclonal antibodies, antibody-drug conjugates, bispecific antibodies, cytolytic T lymphocytes, and CAR T cells. These therapies offer a potentially novel means to target these pediatric solid embryonal tumors. A key pediatric-specific consideration of GPC3-targeted immunotherapeutics is that GPC3 can be physiologically expressed in normal tissues during the first year of life, particularly in the liver and kidney. In summary, this article reviews the current evidence for targeting childhood cancers with GPC3-directed immunotherapies.
Collapse
Affiliation(s)
- Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Julia Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
17
|
Tanaka Y, Tateishi R, Koike K. Proteoglycans Are Attractive Biomarkers and Therapeutic Targets in Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:ijms19103070. [PMID: 30297672 PMCID: PMC6213444 DOI: 10.3390/ijms19103070] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Proteoglycans, which consist of a protein core and glycosaminoglycan chains, are major components of the extracellular matrix and play physiological roles in maintaining tissue homeostasis. In the carcinogenic tissue microenvironment, proteoglycan expression changes dramatically. Altered proteoglycan expression on tumor and stromal cells affects cancer cell signaling pathways, which alters growth, migration, and angiogenesis and could facilitate tumorigenesis. This dysregulation of proteoglycans has been implicated in the pathogenesis of diseases such as hepatocellular carcinoma (HCC) and the underlying mechanism has been studied extensively. This review summarizes the current knowledge of the roles of proteoglycans in the genesis and progression of HCC. It focuses on well-investigated proteoglycans such as serglycin, syndecan-1, glypican 3, agrin, collagen XVIII/endostatin, versican, and decorin, with particular emphasis on the potential of these factors as biomarkers and therapeutic targets in HCC regarding the future perspective of precision medicine toward the "cure of HCC".
Collapse
Affiliation(s)
- Yasuo Tanaka
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Ryosuke Tateishi
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Kazuhiko Koike
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
18
|
Han S, Ma X, Zhao Y, Zhao H, Batista A, Zhou S, Zhou X, Yang Y, Wang T, Bi J, Xia Z, Bai Z, Garkavtsev I, Zhang Z. Identification of Glypican-3 as a potential metastasis suppressor gene in gastric cancer. Oncotarget 2018; 7:44406-44416. [PMID: 27259271 PMCID: PMC5190106 DOI: 10.18632/oncotarget.9763] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 05/23/2016] [Indexed: 01/07/2023] Open
Abstract
Gastric cancer is a prevalent tumor that is usually detected at an advanced metastatic stage. Currently, standard therapies are mostly ineffective. Here, we report that Glypican-3 (GPC3) is absent in invasive tumors and metastatic lymph nodes, in particular in aggressive and highly disseminated signet ring cell carcinomas. We demonstrate that loss of GPC3 correlates with poor overall survival in patients. Moreover, we show that absence of GPC3 causes up-regulation of MAPK/FoxM1 signaling and that blockade of this pathway alters cellular invasion. An inverse correlation between GPC3 and FoxM1 is also shown in patient samples. These data identify GPC3 as a potential metastasis suppressor gene and suggest its value as a prognostic marker in gastric cancer. Development of therapies targeting signaling downstream of GPC3 are warranted.
Collapse
Affiliation(s)
- Shiwei Han
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xuemei Ma
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongying Zhao
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ana Batista
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Sheng Zhou
- Institute of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaona Zhou
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yao Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Tingting Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jingtao Bi
- Department of General Surgery, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing, China
| | - Zheng Xia
- Department of Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Igor Garkavtsev
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
19
|
Combining expression of GPC3 in tumors and CD16 on NK cells from peripheral blood to identify patients responding to codrituzumab. Oncotarget 2018. [PMID: 29535817 PMCID: PMC5828203 DOI: 10.18632/oncotarget.23830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Codrituzumab, a monoclonal antibody targeting an oncofetal protein glypican-3 (GPC3) expressed on cell surface of hepatocellular carcinoma (HCC) induces antibody-dependent cellular cytotoxicity (ADCC) and inhibits tumor growth in preclinical studies. Based on this mechanism, tumor GPC3 expression and CD16 expression on NK cells, which are the effector cells of ADCC, were investigated to correlate with codrituzumab's clinical efficacy in patients with advanced HCC. Results Joint analyses of the two biomarkers revealed that both high levels of GPC3 and CD16 were required for patients to benefit from codrituzumab; lack of either one of them would lead to a loss of the therapeutic effect. Conclusions These results suggest the combination of tumor GPC3 expression and CD16 expression on NK cells from peripheral blood at baseline as a composite biomarker to select HCC patients for codrituzumab. Impact The conclusion warrants a future study in an HCC population with both high GPC3 expression and high levels of CD16 at baseline to establish codrituzumab's therapeutic benefit in HCC. Methods Data from a phase II clinical trial of codrituzumab were used for the analyses. GPC3 expression in baseline tumor biopsies was determined by immunohistochemistry (IHC) analysis, and baseline CD16 expression on NK cells were quantified by peripheral blood lymphocyte immunophenotyping. According to high or low expression of GPC3 and CD16, different patient subgroups were formed; for each subgroup, overall survival of patients having high codrituzumab exposure was compared to that of patients receiving placebo.
Collapse
|
20
|
Liu H, Yang C, Lu W, Zeng Y. Prognostic significance of glypican-3 expression in hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore) 2018; 97:e9702. [PMID: 29369198 PMCID: PMC5794382 DOI: 10.1097/md.0000000000009702] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In recent years, an increasing number of studies has been published analyzing the possible prognostic utility of glypican-3 (GPC3) in hepatocellular carcinoma (HCC), but the results are still controversial. The aim of this meta-analysis was to evaluate possible association between GPC3 expression and patients' survival. METHODS Relevant publications which assessed GPC3 expression with survival outcome in HCC patients were searched from Pubmed, Embase, Web of Science, and the Cochrane library. Survival outcome (odds ratios or hazard ratios) was synthesized with a fixed or random effects meta-analysis. Publication bias and sensitivity analyses were also conducted. Statistical analysis was performed by STATA 12.0 and Review Manager software 5.3. RESULTS Fifteen studies including 2336 HCC cases were analyzed systematically in our meta-analysis. The main results showed that GPC3 high expression was significantly associated with later tumor stage, higher tumor grade, presence of vascular invasion, shortened overall survival, and disease-free survival. Subgroup analyses for GPC3 on HCC overall survival according to the studies categorized by sample size, follow-up period, and cut-offs were also conducted. CONCLUSION Our findings suggested that GPC3 may play a role in cancer invasion and progression and may be related to poor prognosis of HCC. Further mechanical research or multicenter cohort studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Hong Liu
- Department of Integrated Traditional and Western Medicine
| | - Chunmei Yang
- Department of Integrated Traditional and Western Medicine
| | - Wenzhu Lu
- Department of Integrated Traditional and Western Medicine
| | - Yong Zeng
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Role of Glypican-3 in the growth, migration and invasion of primary hepatocytes isolated from patients with hepatocellular carcinoma. Cell Oncol (Dordr) 2017; 41:169-184. [PMID: 29204978 DOI: 10.1007/s13402-017-0364-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Recently, Glypican-3 (GPC3) has been identified as a potential hepatocellular carcinoma (HCC) diagnostic and/or therapeutic target. GPC3 has been found to be up-regulated in HCC and to be absent in normal and cirrhotic liver. As yet, however, the molecular characteristics of GPC3 and its role in HCC cell physiology and development are still undefined. METHODS Human hepatocyte cultures were established from 10 HCC patients. Additional liver samples were obtained from 5 patients without cirrhosis and/or HCC. Soft agar colony formation, (co-)immunofluorescence and Western blot assays were used to characterize the hapatocyte cultures. The expression of GPC3 in the hepatocytes was silenced using siRNA, after which, apoptosis, scratch wound migration and transwell invasion assays were performed. RESULTS We found that in HCC precursor hepatocytes GPC3 is increasingly expressed in different forms and at different locations, i.e., a non-cleaved form (70 kDa) was found to be localized in the cytoplasm while a N-terminal cleaved form (N-GPC3: 40 kDa) was fond to be localized in the cytoplasm and at the extracellular side of hepatocyte membranes. In addition, we found that the non-cleaved form of GPC3 co-localizes with Furin-Convertase in the Golgi apparatus. We also found that, similar to GPC3, Furin-Convertase is expressed in HCC precursor cells, suggesting a role in GPC3 processing. Subsequent siRNA-mediated GPC3 silencing resulted in a temporary inhibition of cell proliferation, migration and ivasion, while inducing apoptosis in transformed hepatocytes. CONCLUSION Our data reveal new aspects of the role of GPC3 in early hepatocyte transformation. In addition we conclude that GPC3 may serve as a new HCC immune-therapeutic target.
Collapse
|
22
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
23
|
Overexpression of Glypican 3 Promotes Proliferation, Regulates Cell Cycle Progression, and Inhibits Apoptosis of Human Fetal Osteoblastic Cell Line 1.19. J Craniofac Surg 2017; 28:1481-1485. [PMID: 28796105 DOI: 10.1097/scs.0000000000003861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Craniosynostosis is a complex disease condition, which involves premature fusion of cranial vault sutures and lacks desirable treatment. Previous studies have demonstrated decreased proliferation rate of osteoblasts and downregulated expression of glypican 3 (GPC3) in syndromic craniosynostosis patients. In this study, quantitative and qualitative analysis were utilized to assess the effect of GPC3 in human fetal osteoblastic cell line, hFOB 1.19. Lentiviral transfection efficiency with green fluorescent protein images was obtained after 72 hours. Western Blot and quantitative real-time polymerase chain reaction analysis results indicated that GPC3 was overexpressed in hFOB 1.19 cells transfected with recombinant lentivirus LV-GPC3-GFP. Cell proliferation was assessed by CCK-8 assay and cell cycle progression and apoptosis were analyzed by flow cytometric assay. Results revealed that GPC3 promoted cell viability, induced cell cycle entry into S phase, and inhibited cell apoptosis. These findings provide novel ideas in understanding the pathogenesis of craniosynostosis. It also provides novel insights in the treatment of craniosynostosis by targeting GPC3.
Collapse
|
24
|
Cheng W, Huang PC, Chao HM, Jeng YM, Hsu HC, Pan HW, Hwu WL, Lee YM. Glypican-3 induces oncogenicity by preventing IGF-1R degradation, a process that can be blocked by Grb10. Oncotarget 2017; 8:80429-80442. [PMID: 29113314 PMCID: PMC5655209 DOI: 10.18632/oncotarget.19035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/18/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is a major cause of cancer-related death worldwide. Previously, we demonstrated that glypican-3 (GPC3) is highly expressed in HCC, and that GPC3 induces oncogenicity and promotes the growth of cancer cells through IGF-1 receptor (IGF-1R). In the present study, we investigated the mechanisms of GPC3-mediated enhancement of IGF-1R signaling. We demonstrated that GPC3 decreased IGF-1-induced IGF-1R ubiquitination and degradation and increased c-Myc protein levels. GPC3 bound to Grb10, a mediator of ligand-induced receptor ubiquitination, and the overexpression of Grb10 blocked GPC3-enhanced IGF-1-induced ERK phosphorylation. GPC3 promoted the growth of NIH3T3 and PLC-PRF-5 cells in serum-free medium but did not promote the growth of IGF-1R negative R- cells. Grb10 overexpression decreased GPC3-promoted cell growth. Therefore, the present study elucidates the mechanisms of GPC3-induced oncogenicity, which may highlight new strategies for the treatment of HCC.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pathology, Kee-Lung Hospital, Ministry of Health and Welfare, Kee-Lung, Taiwan.,Ching Kuo Institute of Management and Health, Kee-Lung, Taiwan.,National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Po-Chun Huang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Mei Chao
- Department of Pathology, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hey-Chi Hsu
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Wei Pan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-May Lee
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
Vongchan P, Linhardt RJ. Characterization of a new monoclonal anti-glypican-3 antibody specific to the hepatocellular carcinoma cell line, HepG2. World J Hepatol 2017; 9:368-384. [PMID: 28321273 PMCID: PMC5340992 DOI: 10.4254/wjh.v9.i7.368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/19/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To characterize the antigen on HepG2 cell that is specifically recognized by a new monoclonal antibody raised against human liver heparan sulfate proteoglycan (HSPG), clone 1E4-1D9.
METHODS The antigen recognized by mAb 1E4-1D9 was immunoprecipitated and its amino acid sequence was analyzed LC/MS. The transmembrane domain, number of cysteine residues, and glycosylation sites were predicted from these entire sequences. Data from amino acid analysis was aligned with glypican-3 (https://www.ebi.ac.uk/Tools/msa/clustalo/). The competitive reaction of mAb 1E4-1D9 and anti-glypican-3 on HepG2 cells was demonstrated by indirect immunofluorescence and analyzed by flow cytometry. Moreover, co-immunoprecipitation of mAb 1E4-1D9 and anti-glypican-3 was performed in HepG2 cells by Western immunoblotting. The recognition by mAb 1E4-1D9 of a specific epitope on solid tumor and hematopoietic cell lines was studied using indirect immunofluorescence and analyzed by flow cytometry.
RESULTS Monoclonal antibody 1E4-1D9 reacted with an HSPG isolated from human liver and a band of 67 kD was detected under both reducing and non-reducing conditions. The specific antigen pulled down by mAb 1E4-1D9, having a MW of 135 kD, was analyzed. The results showed two sequences of interest, gi30722350 (1478 amino acid) and gi60219551 (1378 amino acid). In both sequences no transmembrane regions were observed. Sequence number gi30722350 was 99.7% showed a match to FYCO1, a molecule involved in induction of autophagy. Sequence number gi60219551 contained 15 cysteines and 11 putative glycosylation sites with 6 predicted N-glycosylation sites. It was also matched with all PDZ domain proteins. Moreover, it showed an 85.7% match to glypican-3. Glypican-3 on HepG2 cells competitively reacted with both phycoerythrin-conjugated anti-glypican-3 and mAb 1E4-1C2 and resulted in an increase of double-stained cell population when higher concentration of mAb 1E4-1D9 was used. Moreover, antigens precipitated from HepG2 cell by anti-glypican-3 could be detected by mAb 1E4-1D9 and vice versa. The recognition of antigens, on other solid tumor cell lines, by mAb 1E4-1D9 was studied. The results demonstrated that mAb 1E4-1D9 reacted with Huh7, HepG2, HT29, MCF7, SW620, Caco2, B16F1, U937, K562 and Molt4 cells. It was also found to be weakly positive to SW1353 and HL60 and negative to H460 and Hela cell lines.
CONCLUSION All findings show that mAb 1E4-1D9 specifically recognizes glypican-3. Moreover, a new partner molecule of glypican-3, FYCO1 is proposed based on the results from co-precipitation studies.
Collapse
|
26
|
Yao M, Wang L, Fang M, Zheng W, Dong Z, Yao D. Advances in the study of oncofetal antigen glypican-3 expression in HBV-related hepatocellular carcinoma. Biosci Trends 2016; 10:337-343. [PMID: 27795482 DOI: 10.5582/bst.2016.01176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Early specific diagnosis and effective treatment of hepatocellular carcinoma (HCC) are crucial. Expression of membrane-associated heparan sulfate proteoglycan glypican-3 (GPC-3) was recently found to increase as part of the malignant transformation of hepatocytes, and this increase is especially marked in patients with hepatitis B virus (HBV) infection, periportal cancerous embolus, or extra-hepatic metastasis. According to data from basic and clinical studies, the oncofetal antigen GPC-3 is a highly specific diagnostic biomarker of HCC and an indicator of its prognosis, and GPC-3 is also a promising target molecule for HCC gene therapy since it may play a crucial role in cell proliferation, metastasis, and invasion and it may mediate oncogenesis and oncogenic signaling pathways. This review summarizes recent advances in the use of oncofetal antigen GPC-3 to diagnose HBV-related HCC, estimate its prognosis, and its targeted therapy.
Collapse
Affiliation(s)
- Min Yao
- Department of Immunology, Medical School of Nantong University
| | | | | | | | | | | |
Collapse
|
27
|
Abou-Alfa GK, Puig O, Daniele B, Kudo M, Merle P, Park JW, Ross P, Peron JM, Ebert O, Chan S, Poon TP, Colombo M, Okusaka T, Ryoo BY, Minguez B, Tanaka T, Ohtomo T, Ukrainskyj S, Boisserie F, Rutman O, Chen YC, Xu C, Shochat E, Jukofsky L, Reis B, Chen G, Di Laurenzio L, Lee R, Yen CJ. Randomized phase II placebo controlled study of codrituzumab in previously treated patients with advanced hepatocellular carcinoma. J Hepatol 2016; 65:289-95. [PMID: 27085251 DOI: 10.1016/j.jhep.2016.04.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Codrituzumab, a humanized monoclonal antibody against Glypican-3 (GPC3) that is expressed in hepatocellular carcinoma (HCC), interacts with CD16/FcγRIIIa and triggers antibody-dependent cytotoxicity. Codrituzumab was studied vs. placebo in a randomized phase II trial in advanced HCC patients who had failed prior systemic therapy. METHODS Patients with advanced HCC who had failed prior systemic therapy, ⩾18years, Eastern cooperative oncology group (ECOG) 0-1, Child-Pugh A were randomized 2:1 to biweekly codrituzumab 1600mg vs. placebo. Patients were stratified based on GPC3 immunohistochemical expression: 2+/3+, 1+, and 0. Primary endpoint was progression free survival. Secondary endpoints include overall survival (OS), tolerability, pharmacokinetics, and an exploratory endpoint in biomarkers analysis. RESULTS 185 patients were enrolled: 125 received codrituzumab and 60 placebo: Median age 64/63, 85/75% male, 46/42% Asian, ECOG 0 65/63%, 74/77% having vascular invasion and/or extra-hepatic metastasis. 84%/70% had prior sorafenib. Drug exposure was 98.4% of planned dose, with an identical adverse events profile between the 2 groups. The median progression free survival and overall survival in the codrituzumab vs. placebo groups in months were: 2.6 vs. 1.5 (hazard ratios 0.97, p=0.87), and 8.7 vs. 10 (hazard ratios 0.96, p=0.82). Projected Ctrough at cycle 3day 1 based exposure, high CD16/FcγRIIIa on peripheral immune cells, and GPC3 expression in the tumor, were all associated with prolonged progression free survival and overall survival. CONCLUSIONS Codrituzumab did not show clinical benefit in this previously treated HCC population. Whether higher codrituzumab drug exposure or the use of CD16 and GPC3 as potential biomarkers would improve outcome remain unanswered questions. LAY SUMMARY Codrituzumab is a manufactured antibody against a liver cancer protein called glypican-3. In this clinical trial, codrituzumab was not found be effective against liver cancer. It was suggested though that a higher dose of codrituzumab or selecting patients with high level of glypican-3 or its mediator CD16 might improve outcome. CLINICAL TRIAL REGISTRATION This trial is registered at Clinicaltrials.gov (NCT01507168).
Collapse
Affiliation(s)
- Ghassan K Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA.
| | - Oscar Puig
- Roche Innovation Center New York, Hoffmann-La Roche Inc., USA
| | | | | | - Philippe Merle
- Hopital de la Croix-Rousse, Hepatologie et Gastroenterologie, Lyon, France
| | | | - Paul Ross
- King's College Hospital, United Kingdom
| | | | - Oliver Ebert
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Germany
| | | | | | | | | | | | - Beatriz Minguez
- Liver Unit, Hospital Universitario Vall d́Hebron, Barcelona, Spain
| | | | | | | | | | - Olga Rutman
- Roche Innovation Center New York, Hoffmann-La Roche Inc., USA
| | - Ya-Chi Chen
- Roche Innovation Center New York, Hoffmann-La Roche Inc., USA
| | - Chao Xu
- Roche Innovation Center New York, Hoffmann-La Roche Inc., USA
| | - Eliezer Shochat
- Roche Innovation Center Basel, Hoffmann-La Roche, Switzerland
| | - Lori Jukofsky
- Roche Innovation Center New York, Hoffmann-La Roche Inc., USA
| | - Bernhard Reis
- Roche Innovation Center Basel, Hoffmann-La Roche, Switzerland
| | - Gong Chen
- Roche Innovation Center New York, Hoffmann-La Roche Inc., USA
| | | | - Ray Lee
- Roche Innovation Center New York, Hoffmann-La Roche Inc., USA
| | | |
Collapse
|
28
|
Awad W, Adamczyk B, Örnros J, Karlsson NG, Mani K, Logan DT. Structural Aspects of N-Glycosylations and the C-terminal Region in Human Glypican-1. J Biol Chem 2015; 290:22991-3008. [PMID: 26203194 PMCID: PMC4645609 DOI: 10.1074/jbc.m115.660878] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/10/2015] [Indexed: 11/06/2022] Open
Abstract
Glypicans are multifunctional cell surface proteoglycans involved in several important cellular signaling pathways. Glypican-1 (Gpc1) is the predominant heparan sulfate proteoglycan in the developing and adult human brain. The two N-linked glycans and the C-terminal domain that attach the core protein to the cell membrane are not resolved in the Gpc1 crystal structure. Therefore, we have studied Gpc1 using crystallography, small angle x-ray scattering, and chromatographic approaches to elucidate the composition, structure, and function of the N-glycans and the C terminus and also the topology of Gpc1 with respect to the membrane. The C terminus is shown to be highly flexible in solution, but it orients the core protein transverse to the membrane, directing a surface evolutionarily conserved in Gpc1 orthologs toward the membrane, where it may interact with signaling molecules and/or membrane receptors on the cell surface, or even the enzymes involved in heparan sulfate substitution in the Golgi apparatus. Furthermore, the N-glycans are shown to extend the protein stability and lifetime by protection against proteolysis and aggregation.
Collapse
Affiliation(s)
- Wael Awad
- From the Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Box 124, SE-221 00 Lund
| | - Barbara Adamczyk
- the Department of Biochemistry and Cell Biology, University of Gothenburg, Box 440, SE-40530 Gothenburg, and
| | - Jessica Örnros
- the Department of Biochemistry and Cell Biology, University of Gothenburg, Box 440, SE-40530 Gothenburg, and
| | - Niclas G Karlsson
- the Department of Biochemistry and Cell Biology, University of Gothenburg, Box 440, SE-40530 Gothenburg, and
| | - Katrin Mani
- the Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Derek T Logan
- From the Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Box 124, SE-221 00 Lund,
| |
Collapse
|
29
|
Abstract
BACKGROUND The carcinogenesis of hepatocellular carcinoma (HCC) is a multi-factorial, multi-step and complex process. Early diagnosis and effective treatments are of utmost importance. This review summarized the recent studies of oncofetal glypican-3 (GPC-3), a membrane-associated heparan sulfate proteoglycan, in the diagnosis and treatment of HCC. DATA SOURCES English-language reports published from June 2001 to September 2014 were searched from MEDLINE. The key words searched included: GPC-3, biomarker, target and HCC. The sensitivity, specificity, positive and negative predictive values were extracted, and the effect of GPC-3 targeted therapy on HCC was also evaluated. RESULTS GPC-3 plays a crucial role in HCC cell proliferation and metastasis. It mediates oncogenesis involving signaling pathways during hepatocyte malignant transformation. GPC-3 expression is increased in atypical hyperplasia and cancerous tissues. GPC-3 levels in HCC patients are related to HBV infection, TNM stage, periportal cancerous embolus, and extrahepatic metastasis. The diagnostic accuracy of the combination of serum GPC-3 and alpha-fetoprotein in HCC is up to 94.3%. Down-regulation of GPC-3 with specific siRNA or anti-GPC-3 antibody alters cell migration, metastasis and invasion behaviors. The nude mice xenograft tumor growth is inhibited by silencing GPC-3 gene transcription. CONCLUSION Oncofetal GPC-3 is a highly specific biomarker for the diagnosis of HCC and a promising target molecule for HCC gene therapy.
Collapse
|
30
|
Chan SL, Chan AWH, Yeo W. Novel therapeutic targets and predictive markers for hepatocellular carcinoma. Expert Opin Ther Targets 2015; 19:973-83. [DOI: 10.1517/14728222.2015.1031109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Wu Y, Liu H, Weng H, Zhang X, Li P, Fan CL, Li B, Dong PL, Li L, Dooley S, Ding HG. Glypican-3 promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells through ERK signaling pathway. Int J Oncol 2015; 46:1275-85. [PMID: 25572615 DOI: 10.3892/ijo.2015.2827] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/10/2014] [Indexed: 12/13/2022] Open
Abstract
Glypican-3 (GPC3), a membrane-associated heparan sulfate proteoglycan, is frequently upregulated in hepatocellular carcinoma (HCC). However, how GPC3 contributes to the progress of HCC is largely unclear. The present study investigated the association between GPC3 expression and HCC clinicopathological characteristics, and particularly focused on the role and underlying mechanisms of GPC3 in HCC epithelial-mesenchymal transition (EMT). Remarkably elevated expression of GPC3 was demonstrated in HCC tumor tissues compared with paired non-tumor tissues in 45 patients with HCC by quantitative real-time PCR, immunohistochemistry, and western blotting, respectively. Furthermore, the tissue expression of GPC3 was increased during HCC progression from Barcelona Clinic Liver Cancer stage A or B to stage C. The enhanced levels of GPC3 in HCC tumor tissues were tightly correlated to the expression of the EMT-associated proteins and tumor vascular invasion. Patients with GPC3-high expression in tumor tissues displayed significantly shorter survival time than those with GPC3-low expression (P=0.001). Consistent with the findings in patients, HepG2 cells, which expressed high levels of GPC3, showed stronger capacity of migration and significant EMT-like changes when compared to those HCC cells with low levels of GPC3, e.g., Hep3B and Huh7 in scratch, Transwell assays and western blotting. Furthermore, administration with exogenous GPC3 in HCC cells activated extracellular signal-regulated kinase (ERK) and significantly enhanced cell migration and invasion. The behavior was significantly inhibited by the ERK inhibitor PD98059. Together, our studies show that GPC3 contributes to HCC progression and metastasis through impacting EMT of cancer cells, and the effects of GPC3 are associated with ERK activation.
Collapse
Affiliation(s)
- Yongle Wu
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Hui Liu
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Honglei Weng
- Molecular Hepatology, University of Heidelberg, University Medical Center Mannheim, D-68167 Mannheim, Germany
| | - Xin Zhang
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Peng Li
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Chun-Lei Fan
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Bing Li
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Pei-Ling Dong
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Lei Li
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| | - Steven Dooley
- Molecular Hepatology, University of Heidelberg, University Medical Center Mannheim, D-68167 Mannheim, Germany
| | - Hui-Guo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Fengtai District, Beijing 100069, P.R. China
| |
Collapse
|
32
|
Zaghloul RA, El-Shishtawy MM, El Galil KHA, Ebrahim MA, Metwaly AA, Al-Gayyar MM. Evaluation of antiglypican-3 therapy as a promising target for amelioration of hepatic tissue damage in hepatocellular carcinoma. Eur J Pharmacol 2014; 746:353-62. [PMID: 25449037 DOI: 10.1016/j.ejphar.2014.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 01/16/2023]
Abstract
In Egypt, hepatocellular carcinoma (HCC) was predicted to continue to rise over the next few decades causing a national problem. Meanwhile, glypican-3 (GPC3), a highly expressed glypican, has emerged as a potential target for HCC immunotherapy. Therefore, we aimed to identify the impact of blocking GPC3 on liver damage in HCC as well as a possible mechanism. Fifty four HCC patients, 20 cirrhotic patients and 10 healthy subjects were recruited. Serum levels of GPC3, sulfatase-2 (SULF-2), heparan sulfate proteoglycan (HSPG), insulin-like growth factor-II (IGF-II) were measured by ELISA. In parallel, HCC was induced in 40 male Sprague-Dawley rats in presence/absence of antiGPC-3. Liver impairment was detected by investigating liver sections stained with hematoxylin/eosin and serum α-fetoprotein (AFP). Liver homogenates of GPC3, SULF-2, and HSPG were measured by ELISA. Gene expression of caspase-3 and IGF-II were assayed by RT-PCR. HCC patients showed significant elevated serum levels of GPC3, IGF-II and SULF-2 accompanied by decreased HSPG. However, treatment of HCC rats with antiGPC-3 significantly reduced serum AFP and showed nearly normal hepatocytes. In addition, antiGPC-3 significantly reduced elevated liver homogenates protein levels of GPC3 and SULF-2 and gene expression of IGF-II and caspase-3. antiGPC-3 restored the reduced hepatic HSPG. antiGPC-3 showed anti-tumor activity as well as hepatoprotective effects. antiGPC-3-chemoprotective effect can be explained by forced reduction of IGF-II expression, restoration of HSPGs, deactivation of SULF-2 and reduction of gene expression of caspase-3. Targeting GPC3 is a promising therapeutic approach for HCC.
Collapse
Affiliation(s)
- Randa A Zaghloul
- Dept. of Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
| | - Mamdouh M El-Shishtawy
- Dept. of Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Khaled H Abd El Galil
- Dept. of Microbiology, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | | | - AbdelHamid A Metwaly
- Dept. of Internal Medicine, Faculty of Medicine, University of Mansoura, Mansoura 35516, Egypt
| | - Mohammed M Al-Gayyar
- Dept. of Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt; Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
33
|
Li J, Gao JZ, Du JL, Wei LX. Prognostic and clinicopathological significance of glypican-3 overexpression in hepatocellular carcinoma: A meta-analysis. World J Gastroenterol 2014; 20:6336-6344. [PMID: 24876756 PMCID: PMC4033473 DOI: 10.3748/wjg.v20.i20.6336] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/07/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the prognostic and clinicopathological significance of glypican-3 (GPC3) overexpression in hepatocellular carcinoma (HCC).
METHODS: Publications were searched using PubMed, EMBASE, the Cochrane Library and the Chinese Biomedical Literature Database up to March 2013. Inclusion and exclusion criteria were established to screen eligible studies for meta-analysis. The hazard ratios (HRs) of the eligible studies were pooled using RevMan 5.2 software to evaluate the impact of GPC3 overexpression on overall survival (OS) and disease-free survival (DFS) in HCC patients. The correlation between GPC3 expression and clinicopathological parameters of HCC was also analyzed.
RESULTS: A total of five studies with 493 patients were included in the meta-analysis. The combined HRs indicated that GPC3 overexpression can predict poor OS (n = 362 in 3 studies, HR = 2.18, 95%CI: 1.47-3.24, Z = 3.86, P = 0.0001) and DFS (n = 325 in 3 studies, HR = 2.05, 95%CI: 1.43-2.93, Z = 3.94, P < 0.0001) in HCC patients without heterogeneity. Egger’s and Begg’s tests were applied to detect publication bias, and the results showed that there was no evidence of publication bias detected in the OS studies (the P value for Egger’s test was 0.216) or DFS studies (the P value for Egger’s test was 0.488). The combined odds ratios (ORs) suggested that GPC3 expression tends to be associated with tumor vascular invasion (OR = 2.74, 95%CI: 1.15-6.52, P = 0.02), hepatic cirrhosis (OR = 2.10, 95%CI: 1.31-3.36, P = 0.002), poor tumor differentiation (OR = 0.22, 95%CI: 0.13-0.40, P < 0.00001) and advanced TNM stage (OR = 0.31, 95%CI: 0.18-0.51, P < 0.00001).
CONCLUSION: From this study, we conclude that GPC3 overexpression tends to be associated with a poor prognosis (poor OS or DFS) in HCC.
Collapse
|
34
|
Benzylidene-indolinones are effective as multi-targeted kinase inhibitor therapeutics against hepatocellular carcinoma. Mol Oncol 2014; 8:1266-77. [PMID: 24839937 DOI: 10.1016/j.molonc.2014.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/19/2014] [Accepted: 04/22/2014] [Indexed: 12/11/2022] Open
Abstract
Effective pharmacological intervention of advanced hepatocellular carcinoma (HCC) is currently lacking. Despite the use of tyrosine kinase inhibitors (TKIs) for the targeted therapy of several malignancies, no agent has been developed to specifically interfere with the oncogenic tyrosine kinase signaling aberrations found in HCC. Therefore, we adopted an orthogonal biological phenotypic screening approach to uncover candidate compounds: based on a potent cytotoxicity toward HCC-derived cell lines, and minimal toxicity toward normal liver cells. Given the success of indolinone as a chemical scaffold in deriving potent multi-kinase inhibitors (e.g. sunitinib), we screened a group of newly synthesized benzylidene-indolinones. Among the candidates, E/Z 6-Chloro-3-(3-trifluoromethyl-benzyliden)-1,3-dihydroindol-2-one (compound 47) exhibited potent anti-proliferative, anti-migratory, pro-apoptotic properties and good safety profile as compared to known multi-targeted tyrosine kinase inhibitors sunitinib and sorafenib. Additionally, an accompanying suppression of alpha-fetoprotein (AFP) transcription, an HCC tumor marker, implies a favorable selectivity and efficacy on HCC. The in vivo efficacy was demonstrated in an HCC xenograft where 47 was administered once weekly (60 mg/kg) and suppressed tumor burden to the same extent as sorafenib (30 mg/kg daily). A receptor tyrosine kinase (RTK) array study revealed promising inhibition of multiple tyrosine kinases such as IGF-1R, Tyro3 and EphA2 phosphorylation. Gene silencing of these targets ameliorated the cytotoxic potential of 47 on the HuH7 cell line, thereby implicating their contribution to the tumorigenicity of HCC. Hence, 47 exhibits potent anti-cancer effects on HCC cell lines, and is a suitable lead for developing multi-targeted kinase inhibitors of relevance to HCC.
Collapse
|
35
|
Heparan sulfate signaling in cancer. Trends Biochem Sci 2014; 39:277-88. [PMID: 24755488 DOI: 10.1016/j.tibs.2014.03.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 01/03/2023]
Abstract
Heparan sulfate (HS) is a biopolymer consisting of variably sulfated repeating disaccharide units. The anticoagulant heparin is a highly sulfated intracellular variant of HS. HS has demonstrated roles in embryonic development, homeostasis, and human disease via non-covalent interactions with numerous cellular proteins, including growth factors and their receptors. HS can function as a co-receptor by enhancing receptor-complex formation. In other contexts, HS disrupts signaling complexes or serves as a ligand sink. The effects of HS on growth factor signaling are tightly regulated by the actions of sulfyltransferases, sulfatases, and heparanases. HS has important emerging roles in oncogenesis, and heparin derivatives represent potential therapeutic strategies for human cancers. Here we review recent insights into HS signaling in tumor proliferation, angiogenesis, metastasis, and differentiation. A cancer-specific understanding of HS signaling could uncover potential therapeutic targets in this highly actionable signaling network.
Collapse
|
36
|
Dong Z, Yao M, Wang L, Yan X, Gu X, Shi Y, Yao N, Qiu L, Wu W, Yao D. Abnormal expression of insulin-like growth factor-I receptor in hepatoma tissue and its inhibition to promote apoptosis of tumor cells. Tumour Biol 2014; 34:3397-405. [PMID: 23797814 DOI: 10.1007/s13277-013-0912-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/03/2013] [Indexed: 12/21/2022] Open
Abstract
Abnormal signaling of insulin-like growth factor I receptor (IGF-IR) is associated with hepatocellular carcinoma, but the underlying molecular mechanisms remain largely unknown. The objective of this study was to investigate IGF-IR's role as a signaling molecule, its pathological alteration in hepatoma tissues, and its effect on hepatoma cell proliferation when inhibited. As measured by immunohistochemical analysis, the incidence of hepatic IGF-IR expression in cancerous tissue was 80.0 % (24 of 30), which was significantly higher (P < 0.05) than 43.3 % (13 of 30) occurrence in the surrounding tissue and the nondetectable (0 of 30) frequency in the distal cancerous tissue. Hepatoma IGF-IR expression was correlated to the differentiation degree and not to the number or size of tumors, HBV infection, and AFP level. The in vitro IGF-IR expression in hepatoma cells was down-regulated significantly by picropodophyllin, a specific kinase inhibitor, in a time- and dose-dependent manner. Cell proliferation was inhibited through typical mechanisms of promoting apoptosis and cell cycle arrest (G2/M phase). Up-regulation of IGF-IR in hepatocarcinogenesis suggests that the down-regulation of IGF-IR expression could be a specific molecular target for hepatoma cell proliferation.
Collapse
MESH Headings
- Adult
- Aged
- Apoptosis/drug effects
- Apoptosis/genetics
- Base Sequence
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Female
- G2 Phase Cell Cycle Checkpoints/drug effects
- G2 Phase Cell Cycle Checkpoints/genetics
- Gene Expression Regulation, Neoplastic
- Hep G2 Cells
- Humans
- Immunohistochemistry
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Molecular Sequence Data
- Podophyllotoxin/analogs & derivatives
- Podophyllotoxin/pharmacology
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
Collapse
|
37
|
Xiao WK, Qi CY, Chen D, Li SQ, Fu SJ, Peng BG, Liang LJ. Prognostic significance of glypican-3 in hepatocellular carcinoma: a meta-analysis. BMC Cancer 2014; 14:104. [PMID: 24548704 PMCID: PMC3984430 DOI: 10.1186/1471-2407-14-104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/31/2014] [Indexed: 12/14/2022] Open
Abstract
Backgrounds Glypican-3(GPC3) has been implicated in tumor development and progression for several years. However, the prognostic significance of GPC3 expression in patients with hepatocellular carcinoma (HCC) is controversial. We performed a meta-analysis of available studies to assess whether GPC3 can be used as a prognostic factor in patients with HCC. Methods We searched PubMed and Ovid EBM Reviews databases and evaluated the reference list of relevant articles for studies that assessed the prognostic relevance of GPC3 in patients with HCC. Meta-analysis was performed using hazard ratio (HR) or odds ratio (OR) and 95% confidence intervals (95% CIs) as effect measures. Results A meta-analysis of eight studies included 1070 patients was carried out to evaluate the association between GPC3 and overall survival (OS) and disease-free survival (DFS) in HCC patients. The relation between GPC3 and tumor pathological features was also assessed. Our analysis results indicated that high GPC3 expression predicted poor OS (HR: 1.96, 95% CI: 1.51–2.55) and DFS (HR: 1.99, 95% CI: 1.57-2.51) of patients with HCC. GPC3 overexpression was significantly associated with high tumor grade (OR: 3.30, 95% CI: 2.04–5.33), late TNM stage (OR: 2.26, 95% CI: 1.00–5.12), and the presence of vascular invasion (OR: 2.43, 95% CI: 1.23–4.82). Conclusions GPC3 overexpression indicates a poor prognosis for patients with HCC, and it may also have predictive potential for HCC invasion and metastasis.
Collapse
Affiliation(s)
| | | | | | - Shao-Qiang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No, 58 Zhongshan Er Road, Guangzhou 510080, China.
| | | | | | | |
Collapse
|
38
|
Abd El Gawad IA, Mossallam GI, Radwan NH, Elzawahry HM, Elhifnawy NM. Comparing prothrombin induced by vitamin K absence-II (PIVKA-II) with the oncofetal proteins glypican-3, Alpha feto protein and carcinoembryonic antigen in diagnosing hepatocellular carcinoma among Egyptian patients. J Egypt Natl Canc Inst 2014; 26:79-85. [PMID: 24841158 DOI: 10.1016/j.jnci.2014.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/29/2013] [Accepted: 01/05/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is usually asymptomatic in the early stage and does not show elevated alpha-feto protein (AFP). AFP shows 60-80% sensitivity in diagnosing HCC. Glypican3 (GPC-3) is an oncofetal protein that is only detected in HCC cells but not in benign liver tissues, while Carcinoembryonic antigen (CEA) is expressed in various neoplasms including HCC. Although, it is not specific for HCC. Prothrombin induced by vitamin K absence-II (PIVKA-II) is an abnormal prothrombin protein that is increased in the serum of HCC patients. It has higher sensitivity and specificity compared to AFP. The aim of this study is to compare the clinical utility of PIVKA-II with GPC-3, AFP and CEA in diagnosing HCC. PATIENTS AND METHODS This study included 40 patients with HCC, 10 patients with cirrhosis as a benign control group, and 10 apparently healthy volunteers as normal controls. Serum samples were subjected to routine laboratory investigations, measurement of CEA, AFP using MEIA technique (Axsym), glypican3, and PIVKA-II using ELISA technique in the sera of all patients and controls. RESULTS All markers showed the highest results in the HCC group. Higher concentrations of PIVKA-II were detected in patients with splenomegaly, and in tumors with size (>3cm). Combination of Glypican-3 and PIVKA-II showed the highest sensitivity, while GPC-3 alone and combination of GPC-3 and AFP showed the highest specificity to differentiate HCC from liver cirrhosis and normal controls. GPC-3, PIVKAII, and combination of both showed the highest sensitivity, while GPC-3 alone showed the highest specificity to differentiate HCC from liver cirrhosis. CONCLUSION Glypican-3 is the only oncofetal antigen that showed comparable high diagnostic accuracy as PIVKA-II in diagnosing HCC among Egyptian patients.
Collapse
Affiliation(s)
- Iman A Abd El Gawad
- The Department of Clinical & Chemical Pathology, NCI, Cairo University, Egypt.
| | - Ghada I Mossallam
- The Department of Clinical & Chemical Pathology, NCI, Cairo University, Egypt.
| | - Noha H Radwan
- The Department of Clinical & Chemical Pathology, NCI, Cairo University, Egypt.
| | - Heba M Elzawahry
- The Department of Medical Oncology, NCI, Cairo University, Egypt.
| | - Niveen M Elhifnawy
- The Department of Clinical & Chemical Pathology, NCI, Cairo University, Egypt.
| |
Collapse
|
39
|
Murray PG, Hanson D, Coulson T, Stevens A, Whatmore A, Poole RL, Mackay DJ, Black GCM, Clayton PE. 3-M syndrome: a growth disorder associated with IGF2 silencing. Endocr Connect 2013; 2:225-35. [PMID: 24148222 PMCID: PMC3847915 DOI: 10.1530/ec-13-0065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/22/2013] [Indexed: 12/30/2022]
Abstract
3-M syndrome is an autosomal recessive disorder characterised by pre- and post-natal growth restriction, facial dysmorphism, normal intelligence and radiological features (slender long bones and tall vertebral bodies). It is known to be caused by mutations in the genes encoding cullin 7, obscurin-like 1 and coiled-coil domain containing 8. The mechanisms through which mutations in these genes impair growth are unclear. The aim of this study was to identify novel pathways involved in the growth impairment in 3-M syndrome. RNA was extracted from fibroblast cell lines derived from four 3-M syndrome patients and three control subjects, hybridised to Affymetrix HU 133 plus 2.0 arrays with quantitative real-time PCR used to confirm changes found on microarray. IGF-II protein levels in conditioned cell culture media were measured by ELISA. Of the top 10 downregulated probesets, three represented IGF2 while H19 was identified as the 23rd most upregulated probeset. QRT-PCR confirmed upregulation of H19 (P<0.001) and downregulation of IGF2 (P<0.001). Levels of IGF-II secreted into conditioned cell culture medium were higher for control fibroblasts than those for 3-M fibroblasts (10.2±2.9 vs 0.6±0.9 ng/ml, P<0.01). 3-M syndrome is associated with a gene expression profile of reduced IGF2 expression and increased H19 expression similar to that found in Silver-Russell syndrome. Loss of autocrine IGF-II in the growth plate may be associated with the short stature seen in children with 3-M syndrome.
Collapse
Affiliation(s)
- P G Murray
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of ManchesterManchesterUK
- 5th Floor Research, Royal Manchester Children's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences CentreOxford Road, Manchester, M13 9WLUK
| | - D Hanson
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of ManchesterManchesterUK
| | - T Coulson
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of ManchesterManchesterUK
| | - A Stevens
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of ManchesterManchesterUK
| | - A Whatmore
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of ManchesterManchesterUK
| | - R L Poole
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - D J Mackay
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - G C M Black
- Centre for Genetic Medicine, Institute of Human DevelopmentFaculty of Medical and Human Sciences, University of ManchesterManchesterUK
- Genetic Medicine, St Mary's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences CentreOxford Road, Manchester, M13 9WLUK
| | - P E Clayton
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of ManchesterManchesterUK
- 5th Floor Research, Royal Manchester Children's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences CentreOxford Road, Manchester, M13 9WLUK
| |
Collapse
|
40
|
Fu SJ, Qi CY, Xiao WK, Li SQ, Peng BG, Liang LJ. Glypican-3 is a potential prognostic biomarker for hepatocellular carcinoma after curative resection. Surgery 2013; 154:536-44. [DOI: 10.1016/j.surg.2013.02.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/05/2013] [Indexed: 02/08/2023]
|
41
|
Miao HL, Pan ZJ, Lei CJ, Wen JY, Li MY, Liu ZK, Qiu ZD, Lin MZ, Chen NP, Chen M. Knockdown of GPC3 inhibits the proliferation of Huh7 hepatocellular carcinoma cells through down-regulation of YAP. J Cell Biochem 2013; 114:625-31. [PMID: 23060277 DOI: 10.1002/jcb.24404] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/18/2012] [Indexed: 12/11/2022]
Abstract
Glypican-3 (GPC3), a membrane-associated heparan sulfate proteoglycan, is frequently upregulated in hepatocellular carcinoma (HCC). Yes-associated protein (YAP) is also found over-expressed in HCC and has been identified as a key effector molecule in Hippo pathway, which could control the organ size in animals through the regulation of cell proliferation and apoptosis and plays an important role in the development of malignant tumors. Studies have reported that GPC3 and YAP might collaborate to regulate the development of HCC. To elucidate the role of GPC3 in the development of HCC and its relationship with YAP, siRNA technique was employed to knock down GPC3 in Huh7 HCC cells. Moreover, recombinant human YAP-1 was used to examine the effects of GPC3 on Huh7 cells. The results of flow cytometric analysis and Annexin-V-FLUOS apoptosis assay showed that knockdown of GPC3-induced apoptosis in Huh7 cells, resulting in inhibition of cell proliferation as examined by EdU incorporation assay, migration, and invasion. GPC3 knockdown also suppressed the expression of YAP in mRNA and protein levels, as examined by fluorescence quantitative PCR and Western blot analysis. Moreover, addition of recombinant human YAP-1 effectively rescued the cells from apoptosis triggered by GPC3 knockdown. Taken together, our findings suggest that GPC3 regulates HCC cell proliferation with the involvement of Hippo pathway.
Collapse
Affiliation(s)
- Hui-Lai Miao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Barczyk MM, Lu N, Popova SN, Bolstad AI, Gullberg D. α11β1 integrin-mediated MMP-13-dependent collagen lattice contraction by fibroblasts: evidence for integrin-coordinated collagen proteolysis. J Cell Physiol 2013; 228:1108-19. [PMID: 23065814 DOI: 10.1002/jcp.24261] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 10/03/2012] [Indexed: 02/01/2023]
Abstract
We have previously determined that integrin α11β1 is required on mouse periodontal ligament (PDL) fibroblasts to generate the force needed for incisor eruption. As part of the phenotype of α11(-/-) mice, the incisor PDL (iPDL) is thickened, due to disturbed matrix remodeling. To determine the molecular mechanism behind the disturbed matrix dynamics in the PDL we crossed α11(-/-) mice with the Immortomouse and isolated immortalized iPDL cells. Microarray analysis of iPDL cells cultured inside a 3D collagen gel demonstrated downregulated expression of a number of genes in α11-deficient iPDL cells, including matrix metalloproteinase-13 (MMP-13) and cathepsin K. α11(-/-) iPDL cells in vitro displayed disturbed interactions with collagen I during contraction of attached and floating collagen lattices and furthermore displayed reduced MMP-13 protein expression levels. The MMP-13 specific inhibitor WAY 170523 and the Cathepsin K Inhibitor II both blocked part of the α11 integrin-mediated collagen remodeling. In summary, our data demonstrate that in iPDL fibroblasts the mechanical strain generated by α11β1 integrin regulates molecules involved in collagen matrix dynamics. The positive regulation of α11β1-dependent matrix remodeling, involving MMP-13 and cathepsin K, might also occur in other types of fibroblasts and be an important regulatory mechanism for coordinated extracellular and intracellular collagen turnover in tissue homeostasis.
Collapse
|
43
|
Yao M, Yao DF, Bian YZ, Wu W, Yan XD, Yu DD, Qiu LW, Yang JL, Zhang HJ, Sai WL, Chen J. Values of circulating GPC-3 mRNA and alpha-fetoprotein in detecting patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2013; 12:171-9. [PMID: 23558072 DOI: 10.1016/s1499-3872(13)60028-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The prognosis of hepatocellular carcinoma (HCC) is poor and its early diagnosis is of the utmost importance. This study aimed to investigate the values of glypican-3 (GPC-3) expression in the liver and sera and its gene transcription for diagnosis and monitoring of metastasis of HCC. METHODS Liver GPC-3 was analyzed in HCC tissues from 36 patients by immunohistochemistry and Western blotting. GPC-3 mRNA from circulating peripheral blood mononuclear cells from 123 HCC patients or 246 patients with other diseases or 36 HCC tissues was amplified by RT-PCR, quantitative real-time PCR, and confirmed by DNA sequencing. Circulating GPC-3 level was detected by ELISA. RESULTS The increasing expression of GPC-3 was observed from non-cancerous to cancerous tissues, with brown granule-like staining localized in tumor parts of atypical hyperplasia and HCC formation. The positive rate of GPC-3 was 80.6% in HCC, 41.7% in their paracancerous tissues, and none in distal cancerous tissues (P<0.001), with no significant difference in differentiation grade and tumor number except for size (Z=2.941, P=0.003). Serum GPC-3 was detected only in HCC (52.8%) and significant difference was found between GPC-3 and tumor size (X2=6.318, P=0.012) or HBV infection (X2=23.362, P<0.001). Circulating GPC-3 mRNA was detected in 70.7% of HCC tissues, with relation to TNM stage, periportal cancerous embolus, and extra-hepatic metastasis (P<0.001). The combination of circulating GPC-3, GPC-3 mRNA and alpha-fetoprotein is of complementary value for HCC diagnosis (94.3%). CONCLUSION Both GPC-3 overexpression and GPC-3 mRNA abnormality could be used as markers for the diagnosis of HCC and monitoring its metastasis.
Collapse
Affiliation(s)
- Min Yao
- Department of Immunology, Medical School of Nantong University, Nantong 226001, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhu AX, Gold PJ, El-Khoueiry AB, Abrams TA, Morikawa H, Ohishi N, Ohtomo T, Philip PA. First-in-man phase I study of GC33, a novel recombinant humanized antibody against glypican-3, in patients with advanced hepatocellular carcinoma. Clin Cancer Res 2013; 19:920-8. [PMID: 23362325 DOI: 10.1158/1078-0432.ccr-12-2616] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE GC33 is a novel recombinant fully humanized monoclonal antibody that binds to human glypican-3 (GPC3). The antitumor activity of GC33 was shown in preclinical models of hepatocellular carcinoma (HCC). This first-in-man clinical trial was conducted to evaluate the safety, pharmacokinetic characteristics, and preliminary efficacy of GC33 in patients with advanced HCC. EXPERIMENTAL DESIGN Patients with measurable, histologically proven, advanced HCC were enrolled to a dose-escalation study of GC33 (2.5-20 mg/kg) given intravenously weekly. The primary endpoint was to determine the maximum tolerated dose of GC33 for further development. Pharmacokinetic characteristics were measured in serum samples. Immunohistochemistry was conducted on tumor biopsies to evaluate GPC3 expression. Tumor response was assessed every 8 weeks using Response Evaluation Criteria in Solid Tumors criteria. RESULTS Twenty patients were enrolled and treated with GC33. A maximum tolerated dose was not reached as there were no dose-limiting toxicities (DLT) up to the highest planned dose level. Common adverse events with all grades included fatigue (50%), constipation (35%), headache (35%), and hyponatremia (35%). The incidence of adverse events seemed not to be dose dependent. Trough serum concentrations at steady state were in excess of target concentration at doses of 5 mg/kg or greater. Median time to progression (TTP) was 26.0 weeks in the GPC3 high expression group and 7.1 weeks in the low expression group (P = 0.033). CONCLUSION This study shows that GC33 was well tolerated in advanced HCC and provides preliminary evidence that GPC3 expression in HCC may be associated with the clinical benefit to GC33 that warrants prospective evaluation.
Collapse
Affiliation(s)
- Andrew X Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Pan Z, Chen C, Long H, Lei C, Tang G, Li L, Feng J, Chen F. Overexpression of GPC3 inhibits hepatocellular carcinoma cell proliferation and invasion through induction of apoptosis. Mol Med Rep 2013; 7:969-74. [PMID: 23338845 DOI: 10.3892/mmr.2013.1279] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/08/2013] [Indexed: 11/05/2022] Open
Abstract
Glypican‑3 (GPC3) is a membrane heparan sulfate proteoglycan involved in cell proliferation, differentiation, adhesion, migration and the development of the majority of mesodermal tissues and organs. GPC3 has been found to be important for the occurrence and development of hepatocellular carcinoma (HCC). Therefore, it may be suitable for use as a novel molecular marker for the diagnosis of primary liver cancer. In the present study, the role of GPC3 in the occurrence and development of HCC was determined. GPC3 recombinant vector was transfected into two HCC cell lines, Huh7 and SK‑HEP‑1, to upregulate the expression of GPC3 and examine changes in the biological behavior of the cells. Results indicate that overexpression of GPC3 in Huh7 and SK‑HEP‑1 cells effectively inhibited cell proliferation and cell invasion through induction of apoptosis. However, cotreatment of the cells with insulin‑like growth factor 2 (IGF2) and fibroblast growth factor 2 (FGF2) was found by Annexin V‑PI flow cytometric analysis to significantly inhibit the apoptotic cell death induced by GPC3 overexpression. These observations indicate that GPC3 may act as a negative regulator of IGF2 and FGF2 pathways. Taken together, these results demonstrate that overexpression of GPC3 inhibits the occurrence and development of HCC.
Collapse
Affiliation(s)
- Zhijian Pan
- Second Department of General Surgery, Fifth Hospital of Wuhan, Hubei 430050, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dong ZZ, Yan XD, Yao M, Yan MJ, Wang L, Qiu LW, Wu W, Yao DF. Association between expression of key insulin-like growth factor signaling molecules and malignant transformation of hepatocytes. Shijie Huaren Xiaohua Zazhi 2012; 20:2992-2999. [DOI: 10.11569/wcjd.v20.i31.2992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the dynamic expression of key insulin-like growth factor (IGF) signaling IGF-Ⅱ and IGF-Ⅰreceptor (IGF-IR) during malignant transformation of rat hepatocytes.
METHODS: Hepatoma was induced in male Sprague-Dawley rats with 2-fluorenylacetamide (2-FAA). Morphological changes of the liver were observed, and dynamic changes in the levels of IGF-Ⅱ and IGF-1R in the liver and serum were quantitatively analyzed. The expression and distribution of IGF-Ⅱ and IGF-1R proteins were analyzed by immunohistochemistry. Serum IGF-1R and IGF-II levels were detected by ELISA. Expression of IGF-Ⅱ and IGF-IR mRNAs in the liver was detected by nested RT-PCR and confirmed by DNA sequencing.
RESULTS: After induction with 2-FAA, rat hepatocytes showed granule-like degeneration, atypical hyperplasia, and malignant transformation, and hepatic total RNA, IGF-1R, and IGF-Ⅱ levels significantly increased. The levels of IGF-Ⅱ in the liver (F = 48.1, P < 0.01) and serum (F = 13.2, P < 0.01) were significantly higher in the hepatoma group than in any of other groups. There was a positive relationship (r = 0.97, t = 5.97, P < 0.01) between liver IGF-II (nmol/mg wet liver) and serum IGF-Ⅱ (nmol/L). Similar results were also obtained for IGF-IR in the liver and serum, and IGF-IR expression in the hepatoma group was significantly higher (P < 0.01) than that in any of other groups.
CONCLUSION: IGF-1R and IGF-Ⅱ may participate in hepatocyte canceration. Overexpression of IGF-1R and IGF-Ⅱ might be useful molecular markers for early diagnosis and prognosis of hepatocellular carcinoma.
Collapse
|
47
|
Bertino G, Ardiri A, Malaguarnera M, Malaguarnera G, Bertino N, Calvagno GS. Hepatocellualar carcinoma serum markers. Semin Oncol 2012; 39:410-33. [PMID: 22846859 DOI: 10.1053/j.seminoncol.2012.05.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in some areas of the world. In most cases, HCC is diagnosed at a late stage. Therefore, the prognosis of patients with HCC is generally poor. The recommended screening strategy for patients with cirrhosis includes the determination of serum α-fetoprotein (AFP) levels and an abdominal ultrasound every 6 months to detect HCC at an earlier stage. AFP, however, is a marker characterized by poor sensitivity and specificity, and abdominal ultrasound is highly dependent on the operator's experience. In addition to AFP, Lens culinaris agglutinin-reactive AFP (AFP-L3), des-γ-carboxy prothrombin (DCP), glypican-3 (GPC-3), osteopontin (OPN), and several other biomarkers (such as squamous cell carcinoma antigen-immunoglobulin M complexes [SCCA-IgM], alpha-1-fucosidase [AFU], chromogranin A [CgA], human hepatocyte growth factor, insulin-like growth factor) have been proposed as markers for the early detection of HCC. For these markers, we describe the mechanisms of production, and their diagnostic and prognosis roles. None of them is optimal; however, when used together, their sensitivity in detecting HCC is increased. Recent research has shown that some biomarkers have mitogenic and migratory activities in the angiogenesis of HCC and are a factor of tumor growth.
Collapse
Affiliation(s)
- Gaetano Bertino
- Hepatology Unit, Department of Medical and Pediatric Sciences, Policlinic of Catania, University of Catania, Catania, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
Li L, Jin R, Zhang X, Lv F, Liu L, Liu D, Liu K, Li N, Chen D. Oncogenic activation of glypican-3 by c-Myc in human hepatocellular carcinoma. Hepatology 2012; 56:1380-90. [PMID: 22706665 DOI: 10.1002/hep.25891] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Glypican-3 (GPC3) is a heparan sulfate proteoglycan that has an important role in cell growth and differentiation, and its function in tumorigenesis is tissue-dependent. In hepatocellular carcinoma (HCC), the overexpression of GPC3 has been demonstrated to be a reliable diagnostic indicator. However, the mechanisms that regulate the expression and function of GPC3 remain unclear. The oncoprotein c-Myc is a transcription factor that plays a significant role in more than 50% of human tumors. We report here that GPC3 is a transcriptional target of c-Myc and that the expression of c-Myc is also regulated by GPC3, thus forming a positive feedback signaling loop. We found that the overexpression of c-Myc could induce GPC3 promoter-dependent luciferase activity in luciferase reporter experiments. Furthermore, mutational analysis identified c-Myc-binding sites within the GPC3 promoter. The exogenous overexpression of c-Myc increased the endogenous messenger RNA (mRNA) and protein levels of GPC3. Chromatin immunoprecipitation experiments revealed the binding of c-Myc to the endogenous GPC3 promoter, indicating that c-Myc can directly transcriptionally activate GPC3. Interestingly, GPC3 can also elevate c-Myc expression. Overexpression of GPC3 increased c-Myc protein levels, whereas the knockdown of GPC3 reduced c-Myc expression levels. Lastly, the elevated levels of c-Myc correlate with the overexpression of GPC3 in human HCC samples. CONCLUSION These data provide new mechanistic insight into the roles of GPC3 and of c-Myc in the development of HCC.
Collapse
Affiliation(s)
- Li Li
- Beijing Institute of Liver Disease, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Taneja-Bageshwar S, Gumienny TL. Two functional domains in C. elegans glypican LON-2 can independently inhibit BMP-like signaling. Dev Biol 2012; 371:66-76. [PMID: 22922164 DOI: 10.1016/j.ydbio.2012.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/25/2012] [Accepted: 08/12/2012] [Indexed: 12/21/2022]
Abstract
Glypicans are multifunctional proteoglycans with regulatory roles in several intercellular signaling pathways. Here, we examine the functional requirements for glypican regulation of bone morphogenetic protein (BMP)-mediated body length in C. elegans. We provide evidence that two parts of C. elegans glypican LON-2 can independently inhibit BMP signaling in vivo: the N-terminal furin protease product and the C-terminal region containing heparan sulfate attachment sequences. While the C-terminal protease product is dispensable for LON-2 minimal core protein activity, it does affect the localization of LON-2. Cleavage of LON-2 into two parts at the conserved furin protease site is not required for LON-2 to inhibit BMP-like signaling. The glycosyl-phosphatidylinositol (GPI) membrane anchor is also not absolutely required for LON-2 activity. Finally, we show that an RGD protein-protein interaction motif in the LON-2 N-terminal domain is necessary for LON-2 core protein activity, suggesting that LON-2 inhibits BMP signaling by acting as a scaffold for BMP and an RGD-binding protein.
Collapse
Affiliation(s)
- Suparna Taneja-Bageshwar
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|
50
|
Ho DWY, Yang ZF, Yi K, Lam CT, Ng MNP, Yu WC, Lau J, Wan T, Wang X, Yan Z, Liu H, Zhang Y, Fan ST. Gene expression profiling of liver cancer stem cells by RNA-sequencing. PLoS One 2012; 7:e37159. [PMID: 22606345 PMCID: PMC3351419 DOI: 10.1371/journal.pone.0037159] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 04/15/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90(+) liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90(+) cells sorted from tumor (CD90(+)CSCs) with parallel non-tumorous liver tissues (CD90(+)NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. METHODOLOGY/PRINCIPAL FINDINGS CD90(+) cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90(+) cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90(+)CSCs and CD90(+)NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90(+)CSCs and CD90(+)NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90(+)CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90(+)CSCs compared to CD90(+)NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90(+)CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90(+)CSCs in liver tumor tissues. CONCLUSIONS/SIGNIFICANCE The identified genes, such as GPC3 that are distinctly expressed in liver CD90(+)CSCs, may be promising gene candidates for HCC therapy without inducing damages to normal liver stem cells.
Collapse
Affiliation(s)
- David W. Y. Ho
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhen Fan Yang
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
- Innovation Center China, AstraZeneca Global R&D, Shanghai, China
| | - Kang Yi
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Chi Tat Lam
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Michael N. P. Ng
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wan Ching Yu
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Joyce Lau
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Timothy Wan
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiaoqi Wang
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhixiang Yan
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Hang Liu
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Yong Zhang
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Sheung Tat Fan
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|