1
|
Yewbrey R, Kornysheva K. The Hippocampus Preorders Movements for Skilled Action Sequences. J Neurosci 2024; 44:e0832242024. [PMID: 39317474 DOI: 10.1523/jneurosci.0832-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Plasticity in the subcortical motor basal ganglia-thalamo-cerebellar network plays a key role in the acquisition and control of long-term memory for new procedural skills, from the formation of population trajectories controlling trained motor skills in the striatum to the adaptation of sensorimotor maps in the cerebellum. However, recent findings demonstrate the involvement of a wider cortical and subcortical brain network in the consolidation and control of well-trained actions, including a brain region traditionally associated with declarative memory-the hippocampus. Here, we probe which role these subcortical areas play in skilled motor sequence control, from sequence feature selection during planning to their integration during sequence execution. An fMRI dataset (N = 24; 14 females) collected after participants learnt to produce four finger press sequences entirely from memory with high movement and timing accuracy over several days was examined for both changes in BOLD activity and their informational content in subcortical regions of interest. Although there was a widespread activity increase in effector-related striatal, thalamic, and cerebellar regions, in particular during sequence execution, the associated activity did not contain information on the motor sequence identity. In contrast, hippocampal activity increased during planning and predicted the order of the upcoming sequence of movements. Our findings suggest that the hippocampus preorders movements for skilled action sequences, thus contributing to the higher-order control of skilled movements that require flexible retrieval. These findings challenge the traditional taxonomy of episodic and procedural memory and carry implications for the rehabilitation of individuals with neurodegenerative disorders.
Collapse
Affiliation(s)
- Rhys Yewbrey
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Bangor Imaging Unit, Bangor University, Bangor LL57 2AS, United Kingdom
| | - Katja Kornysheva
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Bangor Imaging Unit, Bangor University, Bangor LL57 2AS, United Kingdom
| |
Collapse
|
2
|
Wilhelm E, Derosiere G, Quoilin C, Cakiroglu I, Paço S, Raftopoulos C, Nuttin B, Duque J. Subthalamic DBS does not restore deficits in corticospinal suppression during movement preparation in Parkinson's disease. Clin Neurophysiol 2024; 165:107-116. [PMID: 38996612 DOI: 10.1016/j.clinph.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024]
Abstract
OBJECTIVE Parkinson's disease (PD) patients exhibit changes in mechanisms underlying movement preparation, particularly the suppression of corticospinal excitability - termed "preparatory suppression" - which is thought to facilitate movement execution in healthy individuals. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) being an attractive treatment for advanced PD, we aimed to study the potential contribution of this nucleus to PD-related changes in such corticospinal dynamics. METHODS On two consecutive days, we applied single-pulse transcranial magnetic stimulation to the primary motor cortex of 20 advanced PD patients treated with bilateral STN-DBS (ON vs. OFF), as well as 20 healthy control subjects. Motor-evoked potentials (MEPs) were elicited at rest or during movement preparation in an instructed-delay choice reaction time task including left- or right-hand responses. Preparatory suppression was assessed by expressing MEPs during movement preparation relative to rest. RESULTS PD patients exhibited a deficit in preparatory suppression when it was probed on the responding hand side, particularly when this corresponded to their most-affected hand, regardless of their STN-DBS status. CONCLUSIONS Advanced PD patients displayed a reduction in preparatory suppression which was not restored by STN-DBS. SIGNIFICANCE The current findings confirm that PD patients lack preparatory suppression, as previously reported. Yet, the fact that this deficit was not responsive to STN-DBS calls for future studies on the neural source of this regulatory mechanism during movement preparation.
Collapse
Affiliation(s)
- Emmanuelle Wilhelm
- Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium; Department of Adult Neurology, Saint-Luc University Hospital, 1200 Brussels, Belgium.
| | - Gerard Derosiere
- Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| | - Caroline Quoilin
- Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| | - Inci Cakiroglu
- Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| | - Susana Paço
- NOVA IMS, Universidade Nova de Lisboa, 1070-312 Lisbon, Portugal
| | | | - Bart Nuttin
- Department of Neurosurgery, UZ Leuven, 3000 Leuven, Belgium
| | - Julie Duque
- Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Xia X, Li Y, Song Y, Dong Y, Chen R, Zhang J, Tan X. Modulation of intracortical circuits in primary motor cortex during automatic action tendencies. Brain Struct Funct 2024; 229:909-918. [PMID: 38483581 PMCID: PMC11003908 DOI: 10.1007/s00429-024-02783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
Humans display automatic action tendencies toward emotional stimuli, showing faster automatic behavior (i.e., approaching a positive stimulus and avoiding a negative stimulus) than regulated behavior (i.e., avoiding a positive stimulus and approaching a negative stimulus). Previous studies have shown that the primary motor cortex is involved in the processing of automatic actions, with higher motor evoked potential amplitudes during automatic behavior elicited by single-pulse transcranial magnetic stimulation. However, it is unknown how intracortical circuits are involved with automatic action tendencies. Here, we measured short-interval intracortical inhibition and intracortical facilitation within the primary motor cortex by using paired-pulse transcranial magnetic stimulation protocols during a manikin task, which has been widely used to explore approaching and avoiding behavior. Results showed that intracortical facilitation was stronger during automatic behavior than during regulated behavior. Moreover, there was a significant negative correlation between reaction times and intracortical facilitation effect during automatic behavior: individuals with short reaction times had stronger faciliatory activity, as shown by higher intracortical facilitation. By contrast, no significant difference was found for short-interval intracortical inhibition between automatic behavior and regulated behavior. The results indicated that the intracortical facilitation circuit, mediated by excitatory glutamatergic neurons, in the primary motor cortex, plays an important role in mediating automatic action tendencies. This finding further supports the link between emotional perception and the action system.
Collapse
Affiliation(s)
- Xue Xia
- School of Social Development and Health Management, University of Health and Rehabilitation Sciences, Qingdao, China
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yansong Li
- School of Physical Education, Qingdao University, Qingdao, China
| | - Yuyu Song
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yuanjun Dong
- School of Social Development and Health Management, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Xiaoying Tan
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Rua de Luis Gonzaga Gomes, Macao S.A.R., China.
| |
Collapse
|
4
|
Bundt C, Huster RJ. Corticospinal excitability reductions during action preparation and action stopping in humans: Different sides of the same inhibitory coin? Neuropsychologia 2024; 195:108799. [PMID: 38218313 DOI: 10.1016/j.neuropsychologia.2024.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Motor functions and cognitive processes are closely associated with each other. In humans, this linkage is reflected in motor system state changes both when an action must be prepared and stopped. Single-pulse transcranial magnetic stimulation showed that both action preparation and action stopping are accompanied by a reduction of corticospinal excitability, referred to as preparatory and response inhibition, respectively. While previous efforts have been made to describe both phenomena extensively, an updated and comprehensive comparison of the two phenomena is lacking. To ameliorate such deficit, this review focuses on the role and interpretation of single-coil (single-pulse and paired-pulse) and dual-coil TMS outcome measures during action preparation and action stopping in humans. To that effect, it aims to identify commonalities and differences, detailing how TMS-based outcome measures are affected by states, traits, and psychopathologies in both processes. Eventually, findings will be compared, and open questions will be addressed to aid future research.
Collapse
Affiliation(s)
- Carsten Bundt
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway.
| | - René J Huster
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Tatz JR, Carlson MO, Lovig C, Wessel JR. Examining motor evidence for the pause-then-cancel model of action-stopping: Insights from motor system physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577976. [PMID: 38352621 PMCID: PMC10862812 DOI: 10.1101/2024.01.30.577976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Stopping initiated actions is fundamental to adaptive behavior. Longstanding, single-process accounts of action-stopping have been challenged by recent, two-process, 'pause-then-cancel' models. These models propose that action-stopping involves two inhibitory processes: 1) a fast Pause process, which broadly suppresses the motor system as the result of detecting any salient event, and 2) a slower Cancel process, which involves motor suppression specific to the cancelled action. A purported signature of the Pause process is global suppression, or the reduced corticospinal excitability (CSE) of task-unrelated effectors early on in action-stopping. However, unlike the Pause process, few (if any) motor system signatures of a Cancel process have been identified. Here, we used single- and paired-pulse TMS methods to comprehensively measure the local physiological excitation and inhibition of both responding and task-unrelated motor effector systems during action-stopping. Specifically, we measured CSE, short-interval intracortical inhibition (SICI), and the duration of the cortical silent period (CSP). Consistent with key predictions from the pause-then-cancel model, CSE measurements at the responding effector indicated that additional suppression was necessary to counteract Go-related increases in CSE during-action-stopping, particularly at later timepoints. Increases in SICI on Stop-signal trials did not differ across responding and non-responding effectors, or across timepoints. This suggests SICI as a potential source of global suppression. Increases in CSP duration on Stop-signal trials were more prominent at later timepoints. SICI and CSP duration therefore appeared most consistent with the Pause and Cancel processes, respectively. Our study provides further evidence from motor system physiology that multiple inhibitory processes influence action-stopping.
Collapse
Affiliation(s)
- Joshua R Tatz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, USA
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa, USA
- Cognitive Control Collaborative University of Iowa, Iowa, USA
| | - Madeline O Carlson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, USA
| | - Carson Lovig
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, USA
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, USA
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa, USA
- Cognitive Control Collaborative University of Iowa, Iowa, USA
| |
Collapse
|
6
|
Tal-Perry N, Yuval-Greenberg S. Sequential effect and temporal orienting in prestimulus oculomotor inhibition. J Vis 2023; 23:1. [PMID: 38047731 PMCID: PMC10697170 DOI: 10.1167/jov.23.14.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
When faced with unfamiliar circumstances, we often turn to our past experiences with similar situations to shape our expectations. This results in the well-established sequential effect, in which previous trials influence the expectations of the current trial. Studies have revealed that, in addition to the classical behavioral metrics, the inhibition of eye movement could be used as a biomarker to study temporal expectations. This prestimulus oculomotor inhibition is found a few hundred milliseconds prior to predictable events, with a stronger inhibition for predictable than unpredictable events. The phenomenon has been found to occur in various temporal structures, such as rhythms, cue-association, and conditional probability, yet it is still unknown whether it reflects local sequential information of the previous trial. To explore this, we examined the relationship between the sequential effect and the prestimulus oculomotor inhibition. Our results (N = 40) revealed that inhibition was weaker when the previous trial was longer than the current trial, in line with findings of behavioral metrics. These findings indicate that the prestimulus oculomotor inhibition covaries with expectation based on local sequential information, demonstrating the tight connection between this phenomenon and expectation and providing a novel measurement for studying sequential effects in temporal expectation.
Collapse
Affiliation(s)
- Noam Tal-Perry
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- https://orcid.org/0000-0003-2521-9546
| | - Shlomit Yuval-Greenberg
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- https://orcid.org/0000-0001-6455-7578
| |
Collapse
|
7
|
Denyer R, Greenhouse I, Boyd LA. PMd and action preparation: bridging insights between TMS and single neuron research. Trends Cogn Sci 2023; 27:759-772. [PMID: 37244800 DOI: 10.1016/j.tics.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Transcranial magnetic stimulation (TMS) research has furthered understanding of human dorsal premotor cortex (PMd) function due to its unrivalled ability to measure the inhibitory and facilitatory influences of PMd over the primary motor cortex (M1) in a temporally precise manner. TMS research indicates that PMd transiently modulates inhibitory output to effector representations within M1 during motor preparation, with the direction of modulation depending on which effectors are selected for response, and the timing of modulations co-varying with task selection demands. In this review, we critically assess this literature in the context of a dynamical systems approach used to model nonhuman primate (NHP) PMd/M1 single-neuron recordings during action preparation. Through this process, we identify gaps in the literature and propose future experiments.
Collapse
Affiliation(s)
- Ronan Denyer
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, V6T1Z3, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, OR 97401, USA
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, V6T1Z3, Canada
| |
Collapse
|
8
|
Suleiman A, Solomonow-Avnon D, Mawase F. Cortically Evoked Movement in Humans Reflects History of Prior Executions, Not Plan for Upcoming Movement. J Neurosci 2023; 43:5030-5044. [PMID: 37236809 PMCID: PMC10324989 DOI: 10.1523/jneurosci.2170-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Human motor behavior involves planning and execution of actions, some more frequently. Manipulating probability distribution of a movement through intensive direction-specific repetition causes physiological bias toward that direction, which can be cortically evoked by transcranial magnetic stimulation (TMS). However, because evoked movement has not been used to distinguish movement execution and plan histories to date, it is unclear whether the bias is because of frequently executed movements or recent planning of movement. Here, in a cohort of 40 participants (22 female), we separately manipulate the recent history of movement plans and execution and probe the resulting effects on physiological biases using TMS and on the default plan for goal-directed actions using a timed-response task. Baseline physiological biases shared similar low-level kinematic properties (direction) to a default plan for upcoming movement. However, manipulation of recent execution history via repetitions toward a specific direction significantly affected physiological biases, but not plan-based goal-directed movement. To further determine whether physiological biases reflect ongoing motor planning, we biased plan history by increasing the likelihood of a specific target location and found a significant effect on the default plan for goal-directed movements. However, TMS-evoked movement during preparation did not become biased toward the most frequent plan. This suggests that physiological biases may either provide a readout of the default state of primary motor cortex population activity in the movement-related space, but not ongoing neural activation in the planning-related space, or that practice induces sensitization of neurons involved in the practiced movement, calling into question the relevance of cortically evoked physiological biases to voluntary movements.SIGNIFICANCE STATEMENT Human motor performance depends not only on ability to make movements relevant to the environment/body's current state, but also on recent action history. One emerging approach to study recent movement history effects on the brain is via physiological biases in cortically-evoked involuntary movements. However, because prior movement execution and plan histories were indistinguishable to date, to what extent physiological biases are due to pure execution-dependent history, or to prior planning of the most probable action, remains unclear. Here, we show that physiological biases are profoundly affected by recent movement execution history, but not ongoing movement planning. Evoked movement, therefore, provides a readout of the default state within the movement space, but not of ongoing activation related to voluntary movement planning.
Collapse
Affiliation(s)
- Abdelbaset Suleiman
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Deborah Solomonow-Avnon
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Firas Mawase
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
9
|
Breveglieri R, Borgomaneri S, Diomedi S, Tessari A, Galletti C, Fattori P. A Short Route for Reach Planning between Human V6A and the Motor Cortex. J Neurosci 2023; 43:2116-2125. [PMID: 36788027 PMCID: PMC10039742 DOI: 10.1523/jneurosci.1609-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 02/16/2023] Open
Abstract
In the macaque monkey, area V6A, located in the medial posterior parietal cortex, contains cells that encode the spatial position of a reaching target. It has been suggested that during reach planning this information is sent to the frontal cortex along a parieto-frontal pathway that connects V6A-premotor cortex-M1. A similar parieto-frontal network may also exist in the human brain, and we aimed here to study the timing of this functional connection during planning of a reaching movement toward different spatial positions. We probed the functional connectivity between human area V6A (hV6A) and the primary motor cortex (M1) using dual-site, paired-pulse transcranial magnetic stimulation with a short (4 ms) and a longer (10 ms) interstimulus interval while healthy participants (18 men and 18 women) planned a visually-guided or a memory-guided reaching movement toward positions located at different depths and directions. We found that, when the stimulation over hV6A is sent 4 ms before the stimulation over M1, hV6A inhibits motor-evoked potentials during planning of either rightward or leftward reaching movements. No modulations were found when the stimulation over hV6A was sent 10 ms before the stimulation over M1, suggesting that only short medial parieto-frontal routes are active during reach planning. Moreover, the short route of hV6A-premotor cortex-M1 is active during reach planning irrespectively of the nature (visual or memory) of the reaching target. These results agree with previous neuroimaging studies and provide the first demonstration of the flow of inhibitory signals between hV6A and M1.SIGNIFICANCE STATEMENT All our dexterous movements depend on the correct functioning of the network of brain areas. Knowing the functional timing of these networks is useful to gain a deeper understanding of how the brain works to enable accurate arm movements. In this article, we probed the parieto-frontal network and demonstrated that it takes 4 ms for the medial posterior parietal cortex to send inhibitory signals to the frontal cortex during reach planning. This fast flow of information seems not to be dependent on the availability of visual information regarding the reaching target. This study opens the way for future studies to test how this timing could be impaired in different neurological disorders.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sara Borgomaneri
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, 00179 Rome, Italy
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessia Tessari
- Department of Psychology "Renzo Canestrari", University of Bologna, 40127 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
10
|
Yewbrey R, Mantziara M, Kornysheva K. Cortical Patterns Shift from Sequence Feature Separation during Planning to Integration during Motor Execution. J Neurosci 2023; 43:1742-1756. [PMID: 36725321 PMCID: PMC10010461 DOI: 10.1523/jneurosci.1628-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Performing sequences of movements from memory and adapting them to changing task demands is a hallmark of skilled human behavior, from handwriting to playing a musical instrument. Prior studies showed a fine-grained tuning of cortical primary motor, premotor, and parietal regions to motor sequences: from the low-level specification of individual movements to high-level sequence features, such as sequence order and timing. However, it is not known how tuning in these regions unfolds dynamically across planning and execution. To address this, we trained 24 healthy right-handed human participants (14 females, 10 males) to produce four five-element finger press sequences with a particular finger order and timing structure in a delayed sequence production paradigm entirely from memory. Local cortical fMRI patterns during preparation and production phases were extracted from separate No-Go and Go trials, respectively, to tease out activity related to these perimovement phases. During sequence planning, premotor and parietal areas increased tuning to movement order or timing, regardless of their combinations. In contrast, patterns reflecting the unique integration of sequence features emerged in these regions during execution only, alongside timing-specific tuning in the ventral premotor, supplementary motor, and superior parietal areas. This was in line with the participants' behavioral transfer of trained timing, but not of order to new sequence feature combinations. Our findings suggest a general informational state shift from high-level feature separation to low-level feature integration within cortical regions for movement execution. Recompiling sequence features trial-by-trial during planning may enable flexible last-minute adjustment before movement initiation.SIGNIFICANCE STATEMENT Musicians and athletes can modify the timing and order of movements in a sequence trial-by-trial, allowing for a vast repertoire of flexible behaviors. How does the brain put together these high-level sequence features into an integrated whole? We found that, trial-by-trial, the control of sequence features undergoes a state shift from separation during planning to integration during execution across a network of motor-related cortical areas. These findings have implications for understanding the hierarchical control of skilled movement sequences, as well as how information in brain areas unfolds across planning and execution.
Collapse
Affiliation(s)
- Rhys Yewbrey
- Bangor Imaging Unit, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Myrto Mantziara
- Bangor Imaging Unit, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
| | - Katja Kornysheva
- Bangor Imaging Unit, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
11
|
Netz Y, Herschkovitz SF, Levin O, Ziv G. The effect of acute exercise on cognitive and motor inhibition - Does fitness moderate this effect? PSYCHOLOGY OF SPORT AND EXERCISE 2023; 65:102344. [PMID: 37665827 DOI: 10.1016/j.psychsport.2022.102344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 09/06/2023]
Abstract
BACKGROUND Given the extensive evidence on improvements in cognitive inhibition immediately following exercise, and the literature indicating that cognitive and motor inhibitory functions are mediated by overlapping brain networks, the aim of this study was to assess, for the first time, the effect of moderate intensity acute aerobic exercise on multi-limb motor inhibition, as compared to cognitive inhibition. METHOD Participants were 36 healthy adults aged 40-60 years old (mean age 46.8 ± 5.7), who were randomly assigned to experimental or control groups. One-to-two weeks following baseline assessment, participants were asked to perform a three-limb (3-Limb) inhibition task and a vocal version of the Stroop before and after either acute moderate-intense aerobic exercise (experimental group) or rest (control). RESULTS Similar rates of improvement were observed among both groups from baseline to the pre-test. Conversely, a meaningful, yet non-significant trend was seen among the experimental group in their pretest to posttest improvement in both cognitive and motor tasks. In addition, exploratory analysis revealed significant group differences in favor of the experimental group among highly fit participants on the 3-Limb task. A significant correlation was indicated between the inhibition conditions, i.e., choice in the motor inhibition and color/word (incongruent) in the cognitive inhibition, especially in the improvement observed following the exercise. DISCUSSION Moderate-intensity acute aerobic exercise is a potential stimulator of both multi-limb motor inhibition and cognitive inhibition. It appears that high-fit participants benefit from exercise more than low-fit people. Additionally, performance on behavioral tasks that represent motor and cognitive inhibition is related. This observation suggests that fitness levels and acute exercise contribute to the coupling between cognitive and motor inhibition. Neuroimaging methods would allow examining brain-behavior associations of exercise-induced changes in the brain.
Collapse
Affiliation(s)
- Yael Netz
- The Academic College at Wingate, Netanya, Israel.
| | | | - Oron Levin
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Belgium; Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Gal Ziv
- The Academic College at Wingate, Netanya, Israel
| |
Collapse
|
12
|
Betti S, Zani G, Guerra S, Granziol U, Castiello U, Begliomini C, Sartori L. When Corticospinal Inhibition Favors an Efficient Motor Response. BIOLOGY 2023; 12:biology12020332. [PMID: 36829607 PMCID: PMC9953307 DOI: 10.3390/biology12020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/25/2022] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Many daily activities involve responding to the actions of other people. However, the functional relationship between the motor preparation and execution phases still needs to be clarified. With the combination of different and complementary experimental techniques (i.e., motor excitability measures, reaction times, electromyography, and dyadic 3-D kinematics), we investigated the behavioral and neurophysiological signatures characterizing different stages of a motor response in contexts calling for an interactive action. Participants were requested to perform an action (i.e., stirring coffee or lifting a coffee cup) following a co-experimenter's request gesture. Another condition, in which a non-interactive gesture was used, was also included. Greater corticospinal inhibition was found when participants prepared their motor response after observing an interactive request, compared to a non-interactive gesture. This, in turn, was associated with faster and more efficient action execution in kinematic terms (i.e., a social motor priming effect). Our results provide new insights on the inhibitory and facilitatory drives guiding social motor response generation. Altogether, the integration of behavioral and neurophysiological indexes allowed us to demonstrate that a more efficient action execution followed a greater corticospinal inhibition. These indexes provide a full picture of motor activity at both planning and execution stages.
Collapse
Affiliation(s)
- Sonia Betti
- Department of Psychology, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Correspondence:
| | - Giovanni Zani
- School of Psychology, Victoria University of Wellington, Kelburn Parade 20, Wellington 6012, New Zealand
| | - Silvia Guerra
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Umberto Granziol
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Padua Center for Network Medicine, University of Padova, Via Francesco Marzolo 8, 35131 Padova, Italy
| | - Chiara Begliomini
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, Via Giuseppe Orus 2, 35131 Padova, Italy
| | - Luisa Sartori
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, Via Giuseppe Orus 2, 35131 Padova, Italy
| |
Collapse
|
13
|
Nguyen AT, Tresilian JR, Lipp OV, Tavora-Vieira D, Marinovic W. Evolving changes in cortical and subcortical excitability during movement preparation: A study of brain potentials and eye-blink reflexes during loud acoustic stimulation. Psychophysiology 2023:e14267. [PMID: 36748371 DOI: 10.1111/psyp.14267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 02/08/2023]
Abstract
During preparation for action, the presentation of loud acoustic stimuli (LAS) can trigger movements at very short latencies in a phenomenon called the StartReact effect. It was initially proposed that a special, separate subcortical mechanism that bypasses slower cortical areas could be involved. We sought to examine the evidence for a separate mechanism against the alternative that responses to LAS can be explained by a combination of stimulus intensity effects and preparatory states. To investigate whether cortically mediated preparatory processes are involved in mediating reactions to LAS, we used an auditory reaction task where we manipulated the preparation level within each trial by altering the conditional probability of the imperative stimulus. We contrasted responses to non-intense tones and LAS and examined whether cortical activation and subcortical excitability and motor responses were influenced by preparation levels. Increases in preparation levels were marked by gradual reductions in reaction time (RT) coupled with increases in cortical activation and subcortical excitability - at both condition and trial levels. Interestingly, changes in cortical activation influenced motor and auditory but not visual areas - highlighting the widespread yet selective nature of preparation. RTs were shorter to LAS than tones, but the overall pattern of preparation level effects was the same for both stimuli. Collectively, the results demonstrate that LAS responses are indeed shaped by cortically mediated preparatory processes. The concurrent changes observed in brain and behavior with increasing preparation reinforce the notion that preparation is marked by evolving brain states which shape the motor system for action.
Collapse
Affiliation(s)
- An T Nguyen
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | | | - Ottmar V Lipp
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Welber Marinovic
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
14
|
Wilhelm E, Quoilin C, Derosiere G, Paço S, Jeanjean A, Duque J. Corticospinal Suppression Underlying Intact Movement Preparation Fades in Parkinson's Disease. Mov Disord 2022; 37:2396-2406. [PMID: 36121426 DOI: 10.1002/mds.29214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In Parkinson's disease (PD), neurophysiological abnormalities within the primary motor cortex (M1) have been shown to contribute to bradykinesia, but exact modalities are still uncertain. We propose that such motor slowness could involve alterations in mechanisms underlying movement preparation, especially the suppression of corticospinal excitability-called "preparatory suppression"-which is considered to propel movement execution by increasing motor neural gain in healthy individuals. METHODS On two consecutive days, 29 PD patients (on and off medication) and 29 matched healthy controls (HCs) underwent transcranial magnetic stimulation over M1, eliciting motor-evoked potentials (MEPs) in targeted hand muscles, while they were either at rest or preparing a left- or right-hand response in an instructed-delay choice reaction time task. Preparatory suppression was assessed by expressing MEP amplitudes during movement preparation relative to rest. RESULTS Contrary to HCs, PD patients showed a lack of preparatory suppression when the side of the responding hand was analyzed, especially when the latter was the most affected one. This deficit, which did not depend on dopamine medication, increased with disease duration and also tended to correlate with motor impairment, as measured by the Movement Disorder Society Unified Parkinson's Disease Rating Scale, Part III (both total and bradykinesia scores). CONCLUSIONS Our novel findings indicate that preparatory suppression fades in PD, in parallel with worsening motor symptoms, including bradykinesia. Such results suggest that an alteration in this marker of intact movement preparation could indeed cause motor slowness and support its use in future studies on the relation between M1 alterations and motor impairment in PD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Emmanuelle Wilhelm
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Department of Adult Neurology, Saint-Luc University Hospital, Brussels, Belgium
| | - Caroline Quoilin
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Gerard Derosiere
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Susana Paço
- NOVA IMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Anne Jeanjean
- Department of Adult Neurology, Saint-Luc University Hospital, Brussels, Belgium
| | - Julie Duque
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
15
|
Tran DMD, Prieto I, Otto AR, Livesey EJ. TMS reveals distinct patterns of proactive and reactive inhibition in motor system activity. Neuropsychologia 2022; 174:108348. [PMID: 35998766 DOI: 10.1016/j.neuropsychologia.2022.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Response inhibition is our ability to suppress or cancel actions when required. Deficits in response inhibition are linked with a range of psychopathological disorders including addiction and OCD. Studies on response inhibition have largely focused on reactive inhibition-stopping an action when explicitly cued. Less work has examined proactive inhibition-preparation to stop ahead of time. In the current experiment, we studied both reactive and proactive inhibition by adopting a two-step continuous performance task (e.g., "AX"-CPT) often used to study cognitive control. By combining a dot pattern expectancy (DPX) version of this task with transcranial magnetic stimulation (TMS), we mapped changes in reactive and proactive inhibition within the motor system. Measured using motor-evoked potentials, we found modulation of corticospinal excitability at critical timepoints during the DPX when participants were preparing in advance to inhibit a response (at step 1: during the cue) and while inhibiting a response (at step 2: during the probe). Notably, motor system activity during early timepoints was predicted by a behavioural index of proactive capacity and could predict whether participants would later successfully inhibit their response. Our findings demonstrate that combining TMS with a two-step CPT such as the DPX can be useful for studying reactive and proactive inhibition, and reveal that successful inhibition is determined earlier than previously thought.
Collapse
Affiliation(s)
| | - Illeana Prieto
- School of Psychology, The University of Sydney, Australia
| | - A Ross Otto
- Department of Psychology, McGill University, Montreal, Canada
| | - Evan J Livesey
- School of Psychology, The University of Sydney, Australia
| |
Collapse
|
16
|
Evidence for non-selective response inhibition in uncertain contexts revealed by combined meta-analysis and Bayesian analysis of fMRI data. Sci Rep 2022; 12:10137. [PMID: 35710930 PMCID: PMC9203582 DOI: 10.1038/s41598-022-14221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Response inhibition is typically considered a brain mechanism selectively triggered by particular “inhibitory” stimuli or events. Based on recent research, an alternative non-selective mechanism was proposed by several authors. Presumably, the inhibitory brain activity may be triggered not only by the presentation of “inhibitory” stimuli but also by any imperative stimuli, including Go stimuli, when the context is uncertain. Earlier support for this notion was mainly based on the absence of a significant difference between neural activity evoked by equiprobable Go and NoGo stimuli. Equiprobable Go/NoGo design with a simple response time task limits potential confounds between response inhibition and accompanying cognitive processes while not preventing prepotent automaticity. However, previous neuroimaging studies used classical null hypothesis significance testing, making it impossible to accept the null hypothesis. Therefore, the current research aimed to provide evidence for the practical equivalence of neuronal activity in the Go and NoGo trials using Bayesian analysis of functional magnetic resonance imaging (fMRI) data. Thirty-four healthy participants performed a cued Go/NoGo task with an equiprobable presentation of Go and NoGo stimuli. To independently localize brain areas associated with response inhibition in similar experimental conditions, we performed a meta-analysis of fMRI studies using equal-probability Go/NoGo tasks. As a result, we observed overlap between response inhibition areas and areas that demonstrate the practical equivalence of neuronal activity located in the right dorsolateral prefrontal cortex, parietal cortex, premotor cortex, and left inferior frontal gyrus. Thus, obtained results favour the existence of non-selective response inhibition, which can act in settings of contextual uncertainty induced by the equal probability of Go and NoGo stimuli.
Collapse
|
17
|
Oostwoud Wijdenes L, Wynn SC, Roesink BS, Schutter DJLG, Selen LPJ, Medendorp WP. Assessing corticospinal excitability and reaching hand choice during whole-body motion. J Neurophysiol 2022; 128:19-27. [PMID: 35647760 DOI: 10.1152/jn.00699.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Behavioral studies have shown that humans account for inertial acceleration in their decisions of hand choice when reaching during body motion. Physiologically, it is unclear at what stage of movement preparation information about body motion is integrated in the process of hand selection. Here, we addressed this question by applying transcranial magnetic stimulation over left motor cortex (M1) of human participants who performed a preferential reach task while they were sinusoidally translated on a linear motion platform. If M1 only represents a read-out of the final hand choice, we expect the body motion not to affect the motor-evoked potential (MEP) amplitude. If body motion biases the hand selection process prior to target onset, we expect corticospinal excitability to be influenced by the phase of the motion, with larger MEP amplitudes for phases that show a bias to using the right hand. Behavioral results replicate our earlier findings of a sinusoidal modulation of hand choice bias with motion phase. MEP amplitudes also show a sinusoidal modulation with motion phase, suggesting that body motion influences corticospinal excitability which may ultimately reflect changes of hand preference. The modulation being present prior to target onset suggests that competition between hands is represented throughout the corticospinal tract. Its phase relationship with the motion profile indicates that other processes after target onset take up time until the hand selection process has been completely resolved, and the reach is initiated.
Collapse
Affiliation(s)
- Leonie Oostwoud Wijdenes
- Donders Institute of Brain, Cognition and Behaviour, grid.5590.9Radboud University Nijmegen, Nijmegen, Netherlands
| | - Syanah C Wynn
- School of Psychology, grid.6572.6University of Birmingham, Birmingham, United Kingdom
| | - Béla Sebastiaan Roesink
- Donders Institute of Brain, Cognition and Behaviour, grid.5590.9Radboud University Nijmegen, Nijmegen, Netherlands
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, grid.5477.1Utrecht University, Utrecht, Netherlands
| | - Luc P J Selen
- Donders Institute for Brain Cognition and Behaviour, grid.5590.9Radboud University Nijmegen, Nijmegen, Netherlands
| | - W Pieter Medendorp
- Donders institute for Brain, Cognition and Behaviour, grid.5590.9Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
18
|
Tecilla M, Guerra A, Rocchi L, Määttä S, Bologna M, Herrojo Ruiz M, Biundo R, Antonini A, Ferreri F. Action Selection and Motor Decision Making: Insights from Transcranial Magnetic Stimulation. Brain Sci 2022; 12:639. [PMID: 35625025 PMCID: PMC9139261 DOI: 10.3390/brainsci12050639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
In everyday life, goal-oriented motor behaviour relies on the estimation of the rewards/costs associated with alternative actions and on the appropriate selection of movements. Motor decision making is defined as the process by which a motor plan is chosen among a set of competing actions based on the expected value. In the present literature review we discuss evidence from transcranial magnetic stimulation (TMS) studies of motor control. We focus primarily on studies of action selection for instructed movements and motor decision making. In the first section, we delve into the usefulness of various TMS paradigms to characterise the contribution of motor areas and distributed brain networks to cued action selection. Then, we address the influence of motivational information (e.g., reward and biomechanical cost) in guiding action choices based on TMS findings. Finally, we conclude that TMS represents a powerful tool for elucidating the neurophysiological mechanisms underlying action choices in humans.
Collapse
Affiliation(s)
- Margherita Tecilla
- Department of Psychology, Goldsmiths, University of London, London SE146NW, UK; (M.T.); (M.H.R.)
| | - Andrea Guerra
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.G.); (M.B.)
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London WC1N3BG, UK
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Matteo Bologna
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.G.); (M.B.)
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Herrojo Ruiz
- Department of Psychology, Goldsmiths, University of London, London SE146NW, UK; (M.T.); (M.H.R.)
| | - Roberta Biundo
- Department of General Psychology and Study Center for Neurodegeneration (CESNE), University of Padua, 35131 Padua, Italy;
- San Camillo IRCSS Hospital, 30126 Lido di Venezia, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, 35131 Padua, Italy;
| | - Florinda Ferreri
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70211 Kuopio, Finland;
- Unit of Neurology, Unit of Clinical Neurophysiology and Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, 35131 Padua, Italy
| |
Collapse
|
19
|
Gong R, Mühlberg C, Wegscheider M, Fricke C, Rumpf JJ, Knösche TR, Classen J. Cross-frequency phase-amplitude coupling in repetitive movements in patients with Parkinson's disease. J Neurophysiol 2022; 127:1606-1621. [PMID: 35544757 PMCID: PMC9190732 DOI: 10.1152/jn.00541.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bradykinesia is a cardinal motor symptom in Parkinson’s disease (PD), the pathophysiology of which is not fully understood. We analyzed the role of cross-frequency coupling of oscillatory cortical activity in motor impairment in patients with PD and healthy controls. High-density EEG signals were recorded during various motor activities and at rest. Patients performed a repetitive finger-pressing task normally, but were slower than controls during tapping. Phase-amplitude coupling (PAC) between β (13–30 Hz) and broadband γ (50–150 Hz) was computed from individual EEG source signals in the premotor, primary motor, and primary somatosensory cortices, and the primary somatosensory complex. In all four regions, averaging the entire movement period resulted in higher PAC in patients than in controls for the resting condition and the pressing task (similar performance between groups). However, this was not the case for the tapping tasks where patients performed slower. This suggests the strength of state-related β-γ PAC does not determine Parkinsonian bradykinesia. Examination of the dynamics of oscillatory EEG signals during motor transitions revealed a distinctive motif of PAC rise and decay around press onset. This pattern was also present at press offset and slow tapping onset, linking such idiosyncratic PAC changes to transitions between different movement states. The transition-related PAC modulation in patients was similar to controls in the pressing task but flattened during slow tapping, which related to normal and abnormal performance, respectively. These findings suggest that the dysfunctional evolution of neuronal population dynamics during movement execution is an important component of the pathophysiology of Parkinsonian bradykinesia. NEW & NOTEWORTHY Our findings using noninvasive EEG recordings provide evidence that PAC dynamics might play a role in the physiological cortical control of movement execution and may encode transitions between movement states. Results in patients with Parkinson’s disease suggest that bradykinesia is related to a deficit of the dynamic regulation of PAC during movement execution rather than its absolute strength. Our findings may contribute to the development of a new concept of the pathophysiology of bradykinesia.
Collapse
Affiliation(s)
- Ruxue Gong
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany.,Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christoph Mühlberg
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Mirko Wegscheider
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Christopher Fricke
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Jost-Julian Rumpf
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Thomas R Knösche
- Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
20
|
Fiori F, Ciricugno A, Rusconi ML, Slaby RJ, Cattaneo Z. How Untidiness Moves the Motor System. Percept Mot Skills 2022; 129:399-414. [PMID: 35440258 DOI: 10.1177/00315125221086254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Humans tend to prefer order to disorder. Orderly environments may provide individuals with comfort due to predictability, allowing a more efficient interaction with objects. Accordingly, a disorderly environment may elicit a tendency to restore order. This order restoration tendency may be observed physiologically as modulation within corticospinal excitability; the latter has been previously associated with motor preparation. To test these hypothesized physiological indices of order restoration, we measured possible changes in corticospinal excitability, as reflected by the amplitude of motor-evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation (TMS) over the primary motor cortex while participants viewed ordered and disordered rooms. We found that images depicting disorderly environments suppressed excitability within the corticospinal tract, in line with prior findings that motor preparation is typically associated with decreased corticospinal excitability. Interestingly, this pattern was particularly evident in individuals that displayed subclinical levels of obsessive-compulsive traits. Thus, a disorderly environment may move the motor system to restore a disorderly environment into a more orderly and predictable environment, and preparation for "order" may be observed on a sensorimotor basis.
Collapse
Affiliation(s)
- Francesca Fiori
- Department of Psychology, 9305University of Milano-Bicocca, Milano, Italy.,Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Maria Luisa Rusconi
- Department of Human and Social Sciences, 18953University of Bergamo, Bergamo, Italy
| | - Ryan J Slaby
- Department of Psychology, 9305University of Milano-Bicocca, Milano, Italy
| | - Zaira Cattaneo
- IRCCS Mondino Foundation, Pavia, Italy.,Department of Human and Social Sciences, 18953University of Bergamo, Bergamo, Italy
| |
Collapse
|
21
|
Derosiere G, Thura D, Cisek P, Duque J. Hasty sensorimotor decisions rely on an overlap of broad and selective changes in motor activity. PLoS Biol 2022; 20:e3001598. [PMID: 35389982 PMCID: PMC9017893 DOI: 10.1371/journal.pbio.3001598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/19/2022] [Accepted: 03/10/2022] [Indexed: 12/27/2022] Open
Abstract
Humans and other animals are able to adjust their speed–accuracy trade-off (SAT) at will depending on the urge to act, favoring either cautious or hasty decision policies in different contexts. An emerging view is that SAT regulation relies on influences exerting broad changes on the motor system, tuning its activity up globally when hastiness is at premium. The present study aimed to test this hypothesis. A total of 50 participants performed a task involving choices between left and right index fingers, in which incorrect choices led either to a high or to a low penalty in 2 contexts, inciting them to emphasize either cautious or hasty policies. We applied transcranial magnetic stimulation (TMS) on multiple motor representations, eliciting motor-evoked potentials (MEPs) in 9 finger and leg muscles. MEP amplitudes allowed us to probe activity changes in the corresponding finger and leg representations, while participants were deliberating about which index to choose. Our data indicate that hastiness entails a broad amplification of motor activity, although this amplification was limited to the chosen side. On top of this effect, we identified a local suppression of motor activity, surrounding the chosen index representation. Hence, a decision policy favoring speed over accuracy appears to rely on overlapping processes producing a broad (but not global) amplification and a surround suppression of motor activity. The latter effect may help to increase the signal-to-noise ratio of the chosen representation, as supported by single-trial correlation analyses indicating a stronger differentiation of activity changes in finger representations in the hasty context. Many have argued that the regulation of the speed-accuracy tradeoff relies on an urgency signal, which implements "collapsing decision thresholds" by tuning neural activity in a global manner in decision-related structures. This study indicates that the reality is more subtle, with several aspects of "urgency" being specifically targeted to particular corticospinal populations within the motor system.
Collapse
Affiliation(s)
- Gerard Derosiere
- Institute of Neuroscience, Laboratory of Neurophysiology, Université Catholique de Louvain, Brussels, Belgium
- * E-mail:
| | - David Thura
- Lyon Neuroscience Research Center–Impact Team, Inserm U1028, CNRS UMR5292, Lyon 1 University, Bron, France
| | - Paul Cisek
- Department of Neuroscience, Université de Montréal, Montréal, Canada
| | - Julie Duque
- Institute of Neuroscience, Laboratory of Neurophysiology, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
22
|
Greenhouse I. Inhibition for gain modulation in the motor system. Exp Brain Res 2022; 240:1295-1302. [DOI: 10.1007/s00221-022-06351-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 01/10/2023]
|
23
|
Merrick CM, Dixon TC, Breska A, Lin J, Chang EF, King-Stephens D, Laxer KD, Weber PB, Carmena J, Thomas Knight R, Ivry RB. Left hemisphere dominance for bilateral kinematic encoding in the human brain. eLife 2022; 11:e69977. [PMID: 35227374 PMCID: PMC8887902 DOI: 10.7554/elife.69977] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Neurophysiological studies in humans and nonhuman primates have revealed movement representations in both the contralateral and ipsilateral hemispheres. Inspired by clinical observations, we ask if this bilateral representation differs for the left and right hemispheres. Electrocorticography was recorded in human participants during an instructed-delay reaching task, with movements produced with either the contralateral or ipsilateral arm. Using a cross-validated kinematic encoding model, we found stronger bilateral encoding in the left hemisphere, an effect that was present during preparation and was amplified during execution. Consistent with this asymmetry, we also observed better across-arm generalization in the left hemisphere, indicating similar neural representations for right and left arm movements. Notably, these left hemisphere electrodes were centered over premotor and parietal regions. The more extensive bilateral encoding in the left hemisphere adds a new perspective to the pervasive neuropsychological finding that the left hemisphere plays a dominant role in praxis.
Collapse
Affiliation(s)
- Christina M Merrick
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Tanner C Dixon
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
| | - Assaf Breska
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Jack Lin
- Department of Neurology, University of California at IrvineIrvineUnited States
| | - Edward F Chang
- Department of Neurological Surgery, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical CenterSan FranciscoUnited States
| | - Kenneth D Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical CenterSan FranciscoUnited States
| | - Peter B Weber
- Department of Neurology and Neurosurgery, California Pacific Medical CenterSan FranciscoUnited States
| | - Jose Carmena
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
- Department of Electrical Engineering and Computer Sciences, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Robert Thomas Knight
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
- Department of Neurological Surgery, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Richard B Ivry
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
24
|
Thivierge JP, Pilzak A. Estimating null and potent modes of feedforward communication in a computational model of cortical activity. Sci Rep 2022; 12:742. [PMID: 35031628 PMCID: PMC8760251 DOI: 10.1038/s41598-021-04684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
Communication across anatomical areas of the brain is key to both sensory and motor processes. Dimensionality reduction approaches have shown that the covariation of activity across cortical areas follows well-delimited patterns. Some of these patterns fall within the "potent space" of neural interactions and generate downstream responses; other patterns fall within the "null space" and prevent the feedforward propagation of synaptic inputs. Despite growing evidence for the role of null space activity in visual processing as well as preparatory motor control, a mechanistic understanding of its neural origins is lacking. Here, we developed a mean-rate model that allowed for the systematic control of feedforward propagation by potent and null modes of interaction. In this model, altering the number of null modes led to no systematic changes in firing rates, pairwise correlations, or mean synaptic strengths across areas, making it difficult to characterize feedforward communication with common measures of functional connectivity. A novel measure termed the null ratio captured the proportion of null modes relayed from one area to another. Applied to simultaneous recordings of primate cortical areas V1 and V2 during image viewing, the null ratio revealed that feedforward interactions have a broad null space that may reflect properties of visual stimuli.
Collapse
Affiliation(s)
- Jean-Philippe Thivierge
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.
| | - Artem Pilzak
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
25
|
Gooijers J, Chalavi S, Koster LK, Roebroeck A, Kaas A, Swinnen SP. Representational Similarity Scores of Digits in the Sensorimotor Cortex Are Associated with Behavioral Performance. Cereb Cortex 2022; 32:3848-3863. [PMID: 35029640 DOI: 10.1093/cercor/bhab452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Previous studies aimed to unravel a digit-specific somatotopy in the primary sensorimotor (SM1) cortex. However, it remains unknown whether digit somatotopy is associated with motor preparation and/or motor execution during different types of tasks. We adopted multivariate representational similarity analysis to explore digit activation patterns in response to a finger tapping task (FTT). Sixteen healthy young adults underwent magnetic resonance imaging, and additionally performed an out-of-scanner choice reaction time task (CRTT) to assess digit selection performance. During both the FTT and CRTT, force data of all digits were acquired using force transducers. This allowed us to assess execution-related interference (i.e., digit enslavement; obtained from FTT & CRTT), as well as planning-related interference (i.e., digit selection deficit; obtained from CRTT) and determine their correlation with digit representational similarity scores of SM1. Findings revealed that digit enslavement during FTT was associated with contralateral SM1 representational similarity scores. During the CRTT, digit enslavement of both hands was also associated with representational similarity scores of the contralateral SM1. In addition, right hand digit selection performance was associated with representational similarity scores of left S1. In conclusion, we demonstrate a cortical origin of digit enslavement, and uniquely reveal that digit selection is associated with digit representations in primary somatosensory cortex (S1). Significance statement In current systems neuroscience, it is of critical importance to understand the relationship between brain function and behavioral outcome. With the present work, we contribute significantly to this understanding by uniquely assessing how digit representations in the sensorimotor cortex are associated with planning- and execution-related digit interference during a continuous finger tapping and a choice reaction time task. We observe that digit enslavement (i.e., execution-related interference) finds its origin in contralateral digit representations of SM1, and that deficits in digit selection (i.e., planning-related interference) in the right hand during a choice reaction time task are associated with more overlapping digit representations in left S1. This knowledge sheds new light on the functional contribution of the sensorimotor cortex to everyday motor skills.
Collapse
Affiliation(s)
- J Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
- LBI-KU Leuven Brain Institute, Leuven 3000, Belgium
| | - S Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
- LBI-KU Leuven Brain Institute, Leuven 3000, Belgium
| | - L K Koster
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6229 EV, the Netherlands
| | - A Kaas
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6229 EV, the Netherlands
| | - S P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
- LBI-KU Leuven Brain Institute, Leuven 3000, Belgium
| |
Collapse
|
26
|
Impact of interhemispheric inhibition on bimanual movement control in young and old. Exp Brain Res 2022; 240:687-701. [PMID: 35020040 PMCID: PMC8858275 DOI: 10.1007/s00221-021-06258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/23/2021] [Indexed: 12/05/2022]
Abstract
Interhemispheric interactions demonstrate a crucial role for directing bimanual movement control. In humans, a well-established paired-pulse transcranial magnetic stimulation paradigm enables to assess these interactions by means of interhemispheric inhibition (IHI). Previous studies have examined changes in IHI from the active to the resting primary motor cortex during unilateral muscle contractions; however, behavioral relevance of such changes is still inconclusive. In the present study, we evaluated two bimanual tasks, i.e., mirror activity and bimanual anti-phase tapping, to examine behavioral relevance of IHI for bimanual movement control within this behavioral framework. Two age groups (young and older) were evaluated as bimanual movement control demonstrates evident behavioral decline in older adults. Two types of IHI with differential underlying mechanisms were measured; IHI was tested at rest and during a motor task from the active to the resting primary motor cortex. Results demonstrate an association between behavior and short-latency IHI in the young group: larger short-latency IHI correlated with better bimanual movement control (i.e., less mirror activity and better bimanual anti-phase tapping). These results support the view that short-latency IHI represents a neurophysiological marker for the ability to suppress activity of the contralateral side, likely contributing to efficient bimanual movement control. This association was not observed in the older group, suggesting age-related functional changes of IHI. To determine underlying mechanisms of impaired bimanual movement control due to neurological disorders, it is crucial to have an in-depth understanding of age-related mechanisms to disentangle disorder-related mechanisms of impaired bimanual movement control from age-related ones.
Collapse
|
27
|
Puri R, Hinder MR. Response bias reveals the role of interhemispheric inhibitory networks in movement preparation and execution. Neuropsychologia 2021; 165:108120. [PMID: 34915037 DOI: 10.1016/j.neuropsychologia.2021.108120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/25/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Human movement is influenced by various cognitive processes, such as bias, that dynamically shape competing movement representations. However, the neurophysiological mechanisms underlying the effects of bias on movement selection across the lifespan remains poorly understood. Healthy young (n = 21) and older (n = 20) adults completed a choice reaction-time task necessitating left- or right-hand responses to imperative stimuli (IS). Response bias was manipulated via a cue that informed participants a particular response was 70% likely (i.e., the IS was either congruent, or incongruent, with the cue); biasing was either fixed for blocks of trials (block-wise bias) or varied from trial-to-trial (trial-wise bias). As well as assessing the behavioural manifestations of bias, we used transcranial magnetic stimulation to determine changes in corticospinal excitability (CSE) and short- and long-interval interhemispheric inhibition (SIHI, LIHI) during movement preparation and execution. Participants responded more quickly, and accurately, in congruent compared to incongruent trials. CSE decreases occurred in both hands following the cue, consistent with the 'inhibition for impulse control' hypothesis of preparatory inhibition. In contrast, IHI modulations occurred in a hand-specific manner. Greater SIHI was observed during movement preparation in the hand biased away from, compared to the hand biased towards, the cue; furthermore, greater SIHI was observed during movement execution in the hand biased towards the cue when it was not required to respond (i.e., incongruent trial) compared to when it was required to respond (congruent trial). Additionally, during the movement preparation period, the LIHI ratio of the hand biased towards, compared to the hand biased away from, the cue was greatest when the cue varied trial-by-trial. Overall, the IHI results provide support for the 'inhibition for competition resolution' hypothesis, with hand specific modulation of inhibition during movement preparation and execution.
Collapse
Affiliation(s)
- Rohan Puri
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia.
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
28
|
Canepa P, Papaxanthis C, Bisio A, Biggio M, Paizis C, Faelli E, Avanzino L, Bove M. Motor Cortical Excitability Changes in Preparation to Concentric and Eccentric Movements. Neuroscience 2021; 475:73-82. [PMID: 34425159 DOI: 10.1016/j.neuroscience.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Specific neural mechanisms operate at corticospinal levels during eccentric and concentric contractions. Here, we investigated the difference in corticospinal excitability (CSE) when preparing these two types of contraction. In this study we enrolled 16 healthy participants. They were asked to perform an instructed-delay reaction time (RT) task involving a concentric or an eccentric contraction of the right first dorsal interosseus muscle, as a response to a proprioceptive cue (Go signal) presented 1 s after a warning signal. We tested CSE at different time points ranging from 300 ms before up to 40 ms after a Go signal. CSE increased 300-150 ms before the Go signal for both contractions. Interestingly, significant changes in CSE in the time interval around the Go signal (from -150 ms to +40 ms) were only revealed in eccentric contraction. We observed a significant decrease in excitability immediately before the Go cue (Pre_50) and a significant increase 40 ms after it (Post_40) with respect to the MEPs recorded at Pre_150. Finally, CSE in eccentric contraction was lower before the Go cue (Pre_50) and greater after it (Post_40) compared to the concentric contraction. A similar result was also found in NoMov paradigm, used to disentangle the effects induced by movement preparation from those induced by the movement preparation linked to the proprioceptive cue. We could conclude that different neural mechanisms observed during concentric and eccentric contractions are mirrored with a different time-specific modulation of CSE in the preparatory phase to the movement.
Collapse
Affiliation(s)
- Patrizio Canepa
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy; INSERM UMR1093-CAPS, UFR des Sciences du Sport, University of Bourgogne Franche-Comté, Dijon, France
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, University of Bourgogne Franche-Comté, Dijon, France
| | - Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Christos Paizis
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, University of Bourgogne Franche-Comté, Dijon, France; Centre for Performance Expertise, CAPS, U1093 INSERM, University of Bourgogne Franche-Comté, Faculty of Sport Sciences, Dijon, France
| | - Emanuela Faelli
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino-IRCCS, Genoa, Italy.
| |
Collapse
|
29
|
Verstraelen S, Cuypers K, Maes C, Hehl M, Van Malderen S, Levin O, Mikkelsen M, Meesen RLJ, Swinnen SP. Neurophysiological modulations in the (pre)motor-motor network underlying age-related increases in reaction time and the role of GABA levels - a bimodal TMS-MRS study. Neuroimage 2021; 243:118500. [PMID: 34428570 PMCID: PMC8547554 DOI: 10.1016/j.neuroimage.2021.118500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/10/2023] Open
Abstract
It has been argued that age-related changes in the neurochemical and neurophysiological properties of the GABAergic system may underlie increases in reaction time (RT) in older adults. However, the role of GABA levels within the sensorimotor cortices (SMC) in mediating interhemispheric interactions (IHi) during the processing stage of a fast motor response, as well as how both properties explain interindividual differences in RT, are not yet fully understood. In this study, edited magnetic resonance spectroscopy (MRS) was combined with dual-site transcranial magnetic stimulation (dsTMS) for probing GABA+ levels in bilateral SMC and task-related neurophysiological modulations in corticospinal excitability (CSE), and primary motor cortex (M1)-M1 and dorsal premotor cortex (PMd)-M1 IHi, respectively. Both CSE and IHi were assessed during the preparatory and premotor period of a delayed choice RT task. Data were collected from 25 young (aged 18-33 years) and 28 older (aged 60-74 years) healthy adults. Our results demonstrated that older as compared to younger adults exhibited a reduced bilateral CSE suppression, as well as a reduced magnitude of long latency M1-M1 and PMd-M1 disinhibition during the preparatory period, irrespective of the direction of the IHi. Importantly, in older adults, the GABA+ levels in bilateral SMC partially accounted for task-related neurophysiological modulations as well as individual differences in RT. In contrast, in young adults, neither task-related neurophysiological modulations, nor individual differences in RT were associated with SMC GABA+ levels. In conclusion, this study contributes to a comprehensive initial understanding of how age-related differences in neurochemical properties and neurophysiological processes are related to increases in RT.
Collapse
Affiliation(s)
- Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium
| | - Koen Cuypers
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium; Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium.
| | - Celine Maes
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Melina Hehl
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium; Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Shanti Van Malderen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Oron Levin
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Mark Mikkelsen
- Russel H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Raf L J Meesen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium; Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
30
|
Abstract
There is growing appreciation for the role of long-term memory in guiding temporal preparation in speeded reaction time tasks. In experiments with variable foreperiods between a warning stimulus (S1) and a target stimulus (S2), preparation is affected by foreperiod distributions experienced in the past, long after the distribution has changed. These effects from memory can shape preparation largely implicitly, outside of participants' awareness. Recent studies have demonstrated the associative nature of memory-guided preparation. When distinct S1s predict different foreperiods, they can trigger differential preparation accordingly. Here, we propose that memory-guided preparation allows for another key feature of learning: the ability to generalize across acquired associations and apply them to novel situations. Participants completed a variable foreperiod task where S1 was a unique image of either a face or a scene on each trial. Images of either category were paired with different distributions with predominantly shorter versus predominantly longer foreperiods. Participants displayed differential preparation to never-before seen images of either category, without being aware of the predictive nature of these categories. They continued doing so in a subsequent Transfer phase, after they had been informed that these contingencies no longer held. A novel rolling regression analysis revealed at a fine timescale how category-guided preparation gradually developed throughout the task, and that explicit information about these contingencies only briefly disrupted memory-guided preparation. These results offer new insights into temporal preparation as the product of a largely implicit process governed by associative learning from past experiences.
Collapse
|
31
|
McInnes AN, Lipp OV, Tresilian JR, Vallence AM, Marinovic W. Premovement inhibition can protect motor actions from interference by response-irrelevant sensory stimulation. J Physiol 2021; 599:4389-4406. [PMID: 34339524 DOI: 10.1113/jp281849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/28/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Suppression of corticospinal excitability is reliably observed during preparation for a range of motor actions, leading to the belief that this preparatory inhibition is a physiologically obligatory component of motor preparation. The neurophysiological function of this suppression is uncertain. We restricted the time available for participants to engage in preparation and found no evidence for preparatory inhibition. The function of preparatory inhibition can be inferred from our findings that sensory stimulation can disrupt motor output in the absence of preparatory inhibition, but enhance motor output when inhibition is present. These findings suggest preparatory inhibition may be a strategic process which acts to protect prepared actions from external interference. Our findings have significant theoretical implications for preparatory processes. Findings may also have a pragmatic benefit in that acoustic stimulation could be used therapeutically to facilitate movement, but only if the action can be prepared well in advance. ABSTRACT Shortly before movement initiation, the corticospinal system undergoes a transient suppression. This phenomenon has been observed across a range of motor tasks, suggesting that it may be an obligatory component of movement preparation. We probed whether this was also the case when the urgency to perform a motor action was high, in a situation where little time was available to engage in preparatory processes. We controlled the urgency of an impending motor action by increasing or decreasing the foreperiod duration in an anticipatory timing task. Transcranial magnetic stimulation (TMS; experiment 1) or a loud acoustic stimulus (LAS; experiment 2) were used to examine how corticospinal and subcortical excitability were modulated during motor preparation. Preparatory inhibition of the corticospinal tract was absent when movement urgency was high, though motor actions were initiated on time. In contrast, subcortical circuits were progressively inhibited as the time to prepare increased. Interestingly, movement force and vigour were reduced by both TMS and the LAS when movement urgency was high, and enhanced when movement urgency was low. These findings indicate that preparatory inhibition may not be an obligatory component of motor preparation. The behavioural effects we observed in the absence of preparatory inhibition were induced by both TMS and the LAS, suggesting that accessory sensory stimulation may disrupt motor output when such stimulation is presented in the absence of preparatory inhibition. We conclude that preparatory inhibition may be an adaptive strategy which can serve to protect the prepared motor action from external interference.
Collapse
Affiliation(s)
- Aaron N McInnes
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Western Australia, Australia
| | - Ottmar V Lipp
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Western Australia, Australia.,School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Ann-Maree Vallence
- School of Psychology and Exercise Science, Murdoch University, Perth, Western Australia, Australia
| | - Welber Marinovic
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
32
|
Paci M, Di Cosmo G, Perrucci MG, Ferri F, Costantini M. Cortical silent period reflects individual differences in action stopping performance. Sci Rep 2021; 11:15158. [PMID: 34312403 PMCID: PMC8313697 DOI: 10.1038/s41598-021-94494-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
Inhibitory control is the ability to suppress inappropriate movements and unwanted actions, allowing to regulate impulses and responses. This ability can be measured via the Stop Signal Task, which provides a temporal index of response inhibition, namely the stop signal reaction time (SSRT). At the neural level, Transcranial Magnetic Stimulation (TMS) allows to investigate motor inhibition within the primary motor cortex (M1), such as the cortical silent period (CSP) which is an index of GABAB-mediated intracortical inhibition within M1. Although there is strong evidence that intracortical inhibition varies during action stopping, it is still not clear whether differences in the neurophysiological markers of intracortical inhibition contribute to behavioral differences in actual inhibitory capacities. Hence, here we explored the relationship between intracortical inhibition within M1 and behavioral response inhibition. GABABergic-mediated inhibition in M1 was determined by the duration of CSP, while behavioral inhibition was assessed by the SSRT. We found a significant positive correlation between CSP's duration and SSRT, namely that individuals with greater levels of GABABergic-mediated inhibition seem to perform overall worse in inhibiting behavioral responses. These results support the assumption that individual differences in intracortical inhibition are mirrored by individual differences in action stopping abilities.
Collapse
Affiliation(s)
- Mario Paci
- Department of Neuroscience, Imaging and Clinical Science, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy.
| | - Giulio Di Cosmo
- Department of Neuroscience, Imaging and Clinical Science, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Science, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies - ITAB, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Science, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies - ITAB, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| | - Marcello Costantini
- Institute for Advanced Biomedical Technologies - ITAB, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health, and Territorial Sciences, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| |
Collapse
|
33
|
Neige C, Rannaud Monany D, Lebon F. Exploring cortico-cortical interactions during action preparation by means of dual-coil transcranial magnetic stimulation: A systematic review. Neurosci Biobehav Rev 2021; 128:678-692. [PMID: 34274404 DOI: 10.1016/j.neubiorev.2021.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/31/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Action preparation is characterized by a set of complex and distributed processes that occur in multiple brain areas. Interestingly, dual-coil transcranial magnetic stimulation (TMS) is a relevant technique to probe effective connectivity between cortical areas, with a high temporal resolution. In the current systematic review, we aimed at providing a detailed picture of the cortico-cortical interactions underlying action preparation focusing on dual-coil TMS studies. We considered four theoretical processes (impulse control, action selection, movement initiation and action reprogramming) and one task modulator (movement complexity). The main findings highlight 1) the interplay between primary motor cortex (M1) and premotor, prefrontal and parietal cortices during action preparation, 2) the varying (facilitatory or inhibitory) cortico-cortical influence depending on the theoretical processes and the TMS timing, and 3) the key role of the supplementary motor area-M1 interactions that shape the preparation of simple and complex movements. These findings are of particular interest for clinical perspectives, with a need to better characterize functional connectivity deficiency in clinical population with altered action preparation.
Collapse
Affiliation(s)
- Cécilia Neige
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Dylan Rannaud Monany
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France.
| |
Collapse
|
34
|
Ficarella SC, Desantis A, Zénon A, Burle B. Preparing to React: A Behavioral Study on the Interplay between Proactive and Reactive Action Inhibition. Brain Sci 2021; 11:brainsci11060680. [PMID: 34067343 PMCID: PMC8224560 DOI: 10.3390/brainsci11060680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Motor preparation, based on one's goals and expectations, allows for prompt reactions to stimulations from the environment. Proactive and reactive inhibitory mechanisms modulate this preparation and interact to allow a flexible control of responses. In this study, we investigate these two control mechanisms with an ad hoc cued Go/NoGo Simon paradigm in a within-subjects design, and by measuring subliminal motor activities through electromyographic recordings. Go cues instructed participants to prepare a response and wait for target onset to execute it (Go target) or inhibit it (NoGo target). Proactive inhibition keeps the prepared response in check, hence preventing false alarms. Preparing the cue-coherent effector in advance speeded up responses, even when it turned out to be the incorrect effector and reactive inhibition was needed to perform the action with the contralateral one. These results suggest that informative cues allow for the investigation of the interaction between proactive and reactive action inhibition. Partial errors' analysis suggests that their appearance in compatible conflict-free trials depends on cue type and prior preparatory motor activity. Motor preparation plays a key role in determining whether proactive inhibition is needed to flexibly control behavior, and it should be considered when investigating proactive/reactive inhibition.
Collapse
Affiliation(s)
- Stefania C. Ficarella
- CNRS—Le Centre National de la Recherche Scientifique, LNC, Aix Marseille University, F-13331 Marseille, France;
- The French Aerospace Lab ONERA, Département Traitement de l’Information et Systèmes, 13661 Salon-de-Provence, France;
- Correspondence: ; Tel.: +33-490170124
| | - Andrea Desantis
- The French Aerospace Lab ONERA, Département Traitement de l’Information et Systèmes, 13661 Salon-de-Provence, France;
- INCC—Integrative Neuroscience & Cognition Center UMR 8002, CNRS, Université de Paris, F-75006 Paris, France
- Institut de Neurosciences de la Timone (UMR 7289), CNRS, Aix-Marseille Université, F-13005 Marseille, France
| | - Alexandre Zénon
- Institut de Neuroscience Cognitive et Intégrative d’Aquitaine (UMR5287), CNRS and Université de Bordeaux, F-33076 Bordeaux, France;
| | - Boris Burle
- CNRS—Le Centre National de la Recherche Scientifique, LNC, Aix Marseille University, F-13331 Marseille, France;
| |
Collapse
|
35
|
Prestimulus inhibition of eye movements reflects temporal expectation rather than time estimation. Atten Percept Psychophys 2021; 83:2473-2485. [PMID: 33982205 DOI: 10.3758/s13414-021-02319-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 11/08/2022]
Abstract
Eye movements are inhibited prior to the occurrence of temporally predictable events. This 'oculomotor inhibition effect' has been demonstrated with various tasks and modalities. Specifically, it was shown that when intervals between cue and target are fixed, saccade rate prior to the target is lower than when they are varied. However, it is still an open question whether this effect is linked to temporal expectation to the predictable target, or to the duration estimation of the interval preceding it. Here, we examined this question in 20 participants while they performed an implicit temporal expectation and an explicit time estimation task. In each trial, following cue onset, two consecutive grating patches were presented, each preceded by an interval. Temporal expectation was manipulated by setting the first interval duration to be either fixed or varied within each block. Participants were requested to compare either the durations of the two intervals (time estimation), or the tilts of the two grating patches (temporal expectation). Saccade rate, measured prior to the first grating, was lower in the fixed relative to the varied condition of both tasks. This suggests that the inhibition effect is elicited by target predictability and indicates that it is linked to temporal expectation, rather than to time estimation processes. Additionally, this finding suggests that the oculomotor inhibition is independent of motor readiness, as it was elicited even when no response was required. We conclude that the prestimulus oculomotor inhibition effect can be used as a marker of temporal expectation, and discuss its potential underlying mechanisms.
Collapse
|
36
|
Stimulation of Different Sectors of the Human Dorsal Premotor Cortex Induces a Shift from Reactive to Predictive Action Strategies and Changes in Motor Inhibition: A Dense Transcranial Magnetic Stimulation (TMS) Mapping Study. Brain Sci 2021; 11:brainsci11050534. [PMID: 33923217 PMCID: PMC8146001 DOI: 10.3390/brainsci11050534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Delayed motor tasks require timely interaction between immobility and action. The neural substrates of these processes probably reside in the premotor and motor circuits; however, fine-grained anatomical/functional information is still lacking. Participants performed a delayed simple reaction task, structured as a ready-set-go sequence, with a fixed, predictable, SET-period. Responses were given with lip movements. During the SET-period, we performed a systematic dense-mapping of the bilateral dorsal premotor region (dPM) by means of single transcranial magnetic stimulation (TMS) pulses on an 18-spot mapping grid, interleaved with sham TMS which served as a baseline. Reaction times (RTs) in TMS trials over each grid spot were compared to RTs in sham trials to build a statistical parametric z-map. The results reveal a rostro-caudal functional gradient in the dPM. TMS of the rostral dPM induced a shift from reactive towards predictive response strategies. TMS of the caudal dPM interfered with the SET-period duration. By means of dense TMS mapping, we have drawn a putative functional map of the role of the dPM during the SET-period. A higher-order rostral component is involved in setting action strategies and a caudal, lower-order, part is probably involved in the inhibitory control of motor output.
Collapse
|
37
|
Los SA, Nieuwenstein J, Bouharab A, Stephens DJ, Meeter M, Kruijne W. The warning stimulus as retrieval cue: The role of associative memory in temporal preparation. Cogn Psychol 2021; 125:101378. [PMID: 33524889 DOI: 10.1016/j.cogpsych.2021.101378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
In a warned reaction time task, the warning stimulus (S1) initiates a process of temporal preparation, which promotes a speeded response to the impending target stimulus (S2). According to the multiple trace theory of temporal preparation (MTP), participants learn the timing of S2 by storing a memory trace on each trial, which contains a temporal profile of the events on that trial. On each new trial, S1 serves as a retrieval cue that implicitly and associatively activates memory traces created on earlier trials, which jointly drive temporal preparation for S2. The idea that S1 assumes this role as a retrieval cue was tested across eight experiments, in which two different S1s were associated with two different distributions of S1-S2 intervals: one with predominantly short and one with predominantly long intervals. Experiments differed regarding the S1 features that made up a pair, ranging from highly distinct (e.g., tone and flash) to more similar (e.g., red and green flash) and verbal (i.e., "short" vs "long"). Exclusively for pairs of highly distinct S1s, the results showed that the S1 cue modified temporal preparation, even in participants who showed no awareness of the contingency. This cueing effect persisted in a subsequent transfer phase, in which the contingency between S1 and the timing of S2 was broken - a fact participants were informed of in advance. Together, these findings support the role of S1 as an implicit retrieval cue, consistent with MTP.
Collapse
|
38
|
Gomez IN, Ormiston K, Greenhouse I. Response preparation involves a release of intracortical inhibition in task-irrelevant muscles. J Neurophysiol 2020; 125:523-532. [PMID: 33356901 DOI: 10.1152/jn.00390.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action preparation involves widespread modulation of motor system excitability, but the precise mechanisms are unknown. In this study, we investigated whether intracortical inhibition changes in task-irrelevant muscle representations during action preparation. We used transcranial magnetic stimulation (TMS) combined with electromyography in healthy human adults to measure motor-evoked potentials (MEPs) and cortical silent periods (CSPs) in task-irrelevant muscles during the preparatory period of simple delayed response tasks. In experiment 1, participants responded with the left index finger in one task condition and the right index finger in another task condition, whereas MEPs and CSPs were measured from the contralateral nonresponding and tonically contracted index finger. During experiment 2, participants responded with the right pinky finger whereas MEPs and CSPs were measured from the tonically contracted left index finger. In both experiments, MEPs and CSPs were compared between the task preparatory period and a resting intertrial baseline. The CSP duration during response preparation decreased from baseline in every case. A laterality difference was also observed in experiment 1, with a greater CSP reduction during the preparation of left finger responses compared to right finger responses. Despite reductions in CSP duration, consistent with a release of intracortical inhibition, MEP amplitudes were smaller during action preparation when accounting for background levels of muscle activity, consistent with earlier studies that reported decreased corticospinal excitability. These findings indicate that intracortical inhibition associated with task-irrelevant muscles is transiently released during action preparation and implicate a novel mechanism for the controlled and coordinated release of motor cortex inhibition.NEW & NOTEWORTHY In this study, we observed the first evidence of a release of intracortical inhibition in task-irrelevant muscle representations during response preparation. We applied transcranial magnetic stimulation to elicit cortical silent periods in task-irrelevant muscles during response preparation, and observed a consistent decrease in the silent period duration relative to a resting baseline. These findings address the question of whether cortical mechanisms underlie widespread modulation in motor excitability during response preparation.
Collapse
Affiliation(s)
- Isaac N Gomez
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Kara Ormiston
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
39
|
Bundt C, Boehler CN, Verbruggen F, Brass M, Notebaert W. Reward does not modulate corticospinal excitability in anticipation of a Stroop trial. Eur J Neurosci 2020; 53:1019-1028. [PMID: 33222331 DOI: 10.1111/ejn.15052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022]
Abstract
Action preparation is associated with a transient decrease of corticospinal excitability just before target onset. We have previously shown that the prospect of reward modulates preparatory corticospinal excitability in a Simon task. While the conflict in the Simon task strongly implicates the motor system, it is unknown whether reward prospect modulates preparatory corticospinal excitability in tasks that implicate the motor system less directly. To that effect, we examined reward-modulated preparatory corticospinal excitability in the Stroop task. We administered a rewarded cue-target delay paradigm using Stroop stimuli that afforded a left or right index finger response. Single-pulse transcranial magnetic stimulation was administered over the left primary motor cortex and electromyography was obtained from the right first dorsal interosseous muscle. In line with previous findings, there was a preparatory decrease in corticospinal excitability during the delay period. In contrast to our previous study using the Simon task, preparatory corticospinal excitability was not modulated by reward. Our results indicate that reward-modulated changes in the motor system depend on specific task-demands, possibly related to varying degrees of motor conflict.
Collapse
Affiliation(s)
- Carsten Bundt
- Department of Experimental Psychology, Ghent University, Ghent, Belgium.,Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway.,Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| | - Carsten N Boehler
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | | | - Marcel Brass
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Wim Notebaert
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
40
|
Vassiliadis P, Derosiere G, Grandjean J, Duque J. Motor training strengthens corticospinal suppression during movement preparation. J Neurophysiol 2020; 124:1656-1666. [DOI: 10.1152/jn.00378.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Movement preparation involves a broad suppression in the excitability of the corticospinal pathway, a phenomenon called preparatory suppression. Here, we show that motor training strengthens preparatory suppression and that this strengthening is associated with faster reaction times. Our findings highlight a key role of preparatory suppression in training-driven behavioral improvements.
Collapse
Affiliation(s)
- Pierre Vassiliadis
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
- Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Geneva, Switzerland
| | - Gerard Derosiere
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Julien Grandjean
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
41
|
De Doncker W, Brown KE, Kuppuswamy A. Influence of post-stroke fatigue on reaction times and corticospinal excitability during movement preparation. Clin Neurophysiol 2020; 132:191-199. [PMID: 33302061 PMCID: PMC7810236 DOI: 10.1016/j.clinph.2020.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/07/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Higher the fatigue, lesser the inhibition in movement preparation in stroke survivors. Higher the fatigue, lesser the pre-movement facilitation and slower the reaction times. Poor excitability modulation supports sensory attenuation model of fatigue.
Objectives Reduced corticospinal excitability at rest is associated with post-stroke fatigue (PSF). However, it is not known if corticospinal excitability prior to a movement is also altered in fatigue which may then influence subsequent behaviour. We hypothesized that the levels of PSF can be explained by differences in modulation of corticospinal excitability during movement preparation. Methods 73 stroke survivors performed an auditory reaction time task. Corticospinal excitability was measured using transcranial magnetic stimulation. Fatigue was quantified using the fatigue severity scale. The effect of time and fatigue on corticospinal excitability and reaction time was analysed using a mixed effects model. Results Those with greater levels of PSF showed reduced suppression of corticospinal excitability during movement preparation and increased facilitation immediately prior to movement onset (β = −0.0066, t = −2.22, p = 0.0263). Greater the fatigue, slower the reaction times the closer the stimulation time to movement onset (β = 0.0024, t = 2.47, p = 0.0159). Conclusions Lack of pre-movement modulation of corticospinal excitability in high fatigue may indicate poor sensory processing supporting the sensory attenuation model of fatigue. Significance We take a systems-based approach and investigate the motor system and its role in pathological fatigue allowing us to move towards gaining a mechanistic understanding of chronic pathological fatigue.
Collapse
Affiliation(s)
- William De Doncker
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, UK.
| | - Katlyn E Brown
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, UK; University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, Waterloo, ON, Canada
| | - Annapoorna Kuppuswamy
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, UK
| |
Collapse
|
42
|
Grandjean J, Duque J. A TMS study of preparatory suppression in binge drinkers. Neuroimage Clin 2020; 28:102383. [PMID: 32828028 PMCID: PMC7451449 DOI: 10.1016/j.nicl.2020.102383] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
Binge drinking consists in a pattern of consumption characterised by the repeated alternation between massive alcohol intakes and abstinence periods. A continuum hypothesis suggests that this drinking endeavour represents an early stage of alcohol dependence rather than a separate phenomenon. Among the variety of alterations in alcohol-dependent individuals (ADIs), one has to do with the motor system, which does not show a normal pattern of activity during action preparation. In healthy controls (HCs), motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over primary motor cortex (M1) show both facilitation and suppression effects, depending on the time and setting of TMS during action preparation. A recent study focusing on the suppression component revealed that this aspect of preparatory activity is abnormally weak in ADIs and that this defect scales with the risk of relapse. In the present study, we tested whether binge drinkers (BDs) present a similar deficit. To do so, we recorded MEPs in a set of hand muscles applying TMS in 20 BDs and in 20 matched HCs while they were preparing index finger responses in an instructed-delay choice reaction time task. Consistent with past research, the MEP data in HCs revealed a strong MEP suppression in this task. This effect was evident in all hand muscles, regardless of whether they were relevant or irrelevant in the task. BDs also showed some preparatory suppression, yet this effect was less consistent, especially in the prime mover of the responding hand. These findings suggest abnormal preparatory activity in BDs, similar to alcohol-dependent patients, though some of the current results also raise new questions regarding the significance of these observations.
Collapse
Affiliation(s)
- Julien Grandjean
- CoActions Lab, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| | - Julie Duque
- CoActions Lab, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
43
|
Spampinato D. Dissecting two distinct interneuronal networks in M1 with transcranial magnetic stimulation. Exp Brain Res 2020; 238:1693-1700. [PMID: 32661650 PMCID: PMC7413864 DOI: 10.1007/s00221-020-05875-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/06/2020] [Indexed: 11/27/2022]
Abstract
Interactions from both inhibitory and excitatory interneurons are necessary components of cortical processing that contribute to the vast amount of motor actions executed by humans daily. As transcranial magnetic stimulation (TMS) over primary motor cortex is capable of activating corticospinal neurons trans-synaptically, studies over the past 30 years have provided how subtle changes in stimulation parameters (i.e., current direction, pulse width, and paired-pulse) can elucidate evidence for two distinct neuronal networks that can be probed with this technique. This article provides a brief review of some fundamental studies demonstrating how these networks have separable excitatory inputs to corticospinal neurons. Furthermore, the findings of recent investigations will be discussed in detail, illustrating how each network's sensitivity to different brain states (i.e., rest, movement preparation, and motor learning) is dissociable. Understanding the physiological characteristics of each network can help to explain why interindividual responses to TMS exist, while also providing insights into the role of these networks in various human motor behaviors.
Collapse
Affiliation(s)
- Danny Spampinato
- Department for Clinical and Movement Neurosciences, Institute of Neurology, University College of London, London, UK.
| |
Collapse
|
44
|
Quoilin C, Grandjean J, Duque J. Considering Motor Excitability During Action Preparation in Gambling Disorder: A Transcranial Magnetic Stimulation Study. Front Psychiatry 2020; 11:639. [PMID: 32695036 PMCID: PMC7339919 DOI: 10.3389/fpsyt.2020.00639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
A lack of inhibitory control appears to contribute to the development and maintenance of addictive disorders. Among the mechanisms thought to assist inhibitory control, an increasing focus has been drawn on the so-called preparatory suppression, which refers to the drastic suppression observed in the motor system during action preparation. Interestingly, deficient preparatory suppression has been reported in alcohol use disorders. However, it is currently unknown whether this deficit also concerns behavioral, substance-free, addictions, and thus whether it might represent a vulnerability factor common to both substance and behavioral addictive disorders. To address this question, neural measures of preparatory suppression were obtained in gambling disorder patients (GDPs) and matched healthy control subjects. To do so, single-pulse transcranial magnetic stimulation was applied over the left and the right motor cortex to elicit motor-evoked potentials (MEPs) in both hands when participants were performing a choice reaction time task. In addition, choice and rapid response impulsivity were evaluated in all participants, using self-report measures and neuropsychological tasks. Consistent with a large body of literature, the MEP data revealed that the activity of the motor system was drastically reduced during action preparation in healthy subjects. Surprisingly, though, a similar MEP suppression was observed in GDPs, indicating that those subjects do not globally suffer from a deficit in preparatory suppression. By contrast, choice impulsivity was higher in GDPs than healthy subjects, and a higher rapid response impulsivity was found in the more severe forms of GD. Altogether, those results demonstrated that although some aspects of inhibitory control are impaired in GDPs, these alterations do not seem to concern preparatory suppression. Yet, the profile of individuals suffering of a GD is very heterogeneous, with only part of them presenting an impulsive disposition, such as in patients with alcohol use disorders. Hence, a lack of preparatory suppression may be only shared by this sub-type of addicts, an interesting issue for future investigation.
Collapse
Affiliation(s)
- Caroline Quoilin
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
45
|
Advanced TMS approaches to probe corticospinal excitability during action preparation. Neuroimage 2020; 213:116746. [DOI: 10.1016/j.neuroimage.2020.116746] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
|
46
|
Lebon F, Ruffino C, Greenhouse I, Labruna L, Ivry RB, Papaxanthis C. The Neural Specificity of Movement Preparation During Actual and Imagined Movements. Cereb Cortex 2020; 29:689-700. [PMID: 29309536 DOI: 10.1093/cercor/bhx350] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022] Open
Abstract
Current theories consider motor imagery, the mental representation of action, to have considerable functional overlap with the processes involved in actual movement preparation and execution. To test the neural specificity of motor imagery, we conducted a series of 3 experiments using transcranial magnetic stimulation (TMS). We compared changes in corticospinal excitability as people prepared and implemented actual or imagined movements, using a delayed response task in which a cue indicated the forthcoming response. TMS pulses, used to elicit motor-evoked responses in the first dorsal interosseous muscle of the right hand, were applied before and after an imperative signal, allowing us to probe the state of excitability during movement preparation and implementation. Similar to previous work, excitability increased in the agonist muscle during the implementation of an actual or imagined movement. Interestingly, preparing an imagined movement engaged similar inhibitory processes as that observed during actual movement, although the degree of inhibition was less selective in the imagery conditions. These changes in corticospinal excitability were specific to actual/imagined movement preparation, as no modulation was observed when preparing and generating images of cued visual objects. Taken together, inhibition is a signature of how actions are prepared, whether they are imagined or actually executed.
Collapse
Affiliation(s)
- Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Célia Ruffino
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Ian Greenhouse
- Department of Psychology, University of California, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Ludovica Labruna
- Department of Psychology, University of California, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| |
Collapse
|
47
|
Mento G, Granziol U. The developing predictive brain: How implicit temporal expectancy induced by local and global prediction shapes action preparation across development. Dev Sci 2020; 23:e12954. [PMID: 32080951 DOI: 10.1111/desc.12954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 12/05/2019] [Accepted: 02/19/2020] [Indexed: 01/29/2023]
Abstract
Human behavior is continuously shaped not just as a function of explicitly responding to external world events but also by internal biases implicitly driven by the capacity to extract statistics from complex sensory patterns. Two possible sources of predictability engaged to generate and update temporal expectancy are the implicit extraction of either local or global statistical contingencies in the events' temporal structure. In the context of action preparation the local prediction has been reported to be stable from the age of 6. However, there is no evidence about how the ability to extract and use global statistical patterns to establish temporal expectancy changes across development. Here we used a new, child-friendly reaction time task purposely designed to investigate how local (within-trial expectancy bias) and global (between-block expectancy bias) prediction interplay to generate temporal expectancy and consequently shape action preparation in young (5- to 6-year-old), middle-aged (7- to 8-year-old) and old (9- to 10-year-old) typically developing children. We found that while local temporal prediction showed stable developmental trajectories, the ability to use a global rule to action preparation in terms of both accuracy and speed becomes stable after the age of seven. These findings are discussed by adopting a neuroconstructivist-inspired theoretical account, according to which the developmental constraints on learning from hierarchically nested levels of sensory complexity may constitute a necessary prerequisite for mastering complex domains.
Collapse
Affiliation(s)
- Giovanni Mento
- Department of General Psychology, University of Padova, Padova, Italy
| | - Umberto Granziol
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
48
|
Ibáñez J, Spampinato DA, Paraneetharan V, Rothwell JC. SICI during changing brain states: Differences in methodology can lead to different conclusions. Brain Stimul 2020; 13:353-356. [PMID: 31711879 PMCID: PMC7790761 DOI: 10.1016/j.brs.2019.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Short-latency intracortical inhibition (SICI) is extensively used to probe GABAergic inhibitory mechanisms in M1. Task-related changes in SICI are presumed to reflect changes in the central excitability of GABAergic pathways. Usually, the level of SICI is evaluated using a single intensity of conditioning stimulus so that inhibition can be compared in different brain states. OBJECTIVE Here, we show that this approach may sometimes be inadequate since distinct conclusions can be drawn if a different CS intensity is used. METHODS We measured SICI using a range of CS intensities at rest and during a warned simple reaction time task. CONCLUSIONS Our results show that SICI changes that occurred during the task could be either larger or smaller than at rest depending on the intensity of the CS. These findings indicate that careful interpretation of results are needed when a single intensity of CS is used to measure task-related physiological changes.
Collapse
Affiliation(s)
- Jaime Ibáñez
- Department for Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom; Department of Bioengineering, Imperial College, London, United Kingdom.
| | - Danny A Spampinato
- Department for Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom
| | - Varshini Paraneetharan
- Department for Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom
| | - John C Rothwell
- Department for Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom
| |
Collapse
|
49
|
Tuning the Corticospinal System: How Distributed Brain Circuits Shape Human Actions. Neuroscientist 2020; 26:359-379. [DOI: 10.1177/1073858419896751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interactive behaviors rely on the operation of several processes allowing the control of actions, including their selection, withholding, and cancellation. The corticospinal system provides a unique route through which multiple brain circuits can exert control over bodily motor acts. In humans, the influence of these modulatory circuits on the corticospinal system can be probed using various transcranial magnetic stimulation (TMS) protocols. Here, we review neural data from TMS studies at the basis of our current understanding of how diverse pathways—including intra-cortical, trans-cortical, and subcortico-cortical circuits—contribute to action control by tuning the activity of the corticospinal system. Critically, when doing so, we point out important caveats in the field that arise from the fact that these circuits, and their impact on the corticospinal system, have not been considered equivalently for action selection, withholding, and cancellation. This has led to the misleading view that some circuits or regions are specialized in specific control processes and that they produce particular modulatory changes in corticospinal excitability (e.g., generic vs. specific modulation of corticospinal excitability). Hence, we point to the need for more transversal research approaches in the field of action control.
Collapse
|
50
|
Tran DMD, Harris JA, Harris IM, Livesey EJ. Motor Conflict: Revealing Involuntary Conditioned Motor Preparation Using Transcranial Magnetic Stimulation. Cereb Cortex 2019; 30:2478-2488. [DOI: 10.1093/cercor/bhz253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Preparing actions to achieve goals, overriding habitual responses, and substituting actions that are no longer relevant are aspects of motor control often assumed to be driven by deliberate top-down processes. In the present study, we investigated whether motor control could come under involuntary control of environmental cues that have been associated with specific actions in the past. We used transcranial magnetic stimulation (TMS) to probe corticospinal excitability as an index of motor preparation, while participants performed a Go/No-Go task (i.e., an action outcome or no action outcome task) and rated what trial was expected to appear next (Go or No-Go). We found that corticospinal excitability during a warning cue for the upcoming trial closely matched recent experience (i.e., cue–outcome pairings), despite conflicting with what participants expected would appear. The results reveal that in an action–outcome task, neurophysiological indices of motor preparation show changes that are consistent with participants learning to associate a preparatory warning cue with a specific action, and are not consistent with the action that participants explicitly anticipate making. This dissociation with conscious expectancy ratings reveals that conditioned responding and motor preparation can operate independently of conscious expectancies about having to act.
Collapse
Affiliation(s)
- D M D Tran
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - J A Harris
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - I M Harris
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - E J Livesey
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|