1
|
Sokolenko AP, Bakaeva EK, Venina AR, Kuligina ES, Romanko AA, Aleksakhina SN, Belysheva YV, Belogubova EV, Stepanov IA, Zaitseva OA, Yatsuk OS, Togo AV, Khamgokov ZM, Kadyrova AO, Pirmagomedov AS, Bolieva MB, Epkhiev AA, Tsutsaev AK, Chakhieva MD, Khabrieva KM, Khabriev IM, Murachuev MA, Buttaeva BN, Baboshkina LS, Bayramkulova FI, Katchiev IR, Alieva LK, Raskin GA, Orlov SV, Khachmamuk ZK, Levonyan KR, Gichko DM, Kirtbaya DV, Degtyariov AM, Sultanova LV, Musayeva HS, Belyaev AM, Imyanitov EN. Ethnicity-specific BRCA1, BRCA2, PALB2, and ATM pathogenic alleles in breast and ovarian cancer patients from the North Caucasus. Breast Cancer Res Treat 2024; 203:307-315. [PMID: 37851290 DOI: 10.1007/s10549-023-07135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Mountain areas of the North Caucasus host several large ethnic communities that have preserved their national identity over the centuries. METHODS This study involved high-grade serous ovarian cancer (HGSOC) and breast cancer (BC) patients from Dagestan (HGSOC: 37; BC: 198), Kabardino-Balkaria (HGSOC: 68; BC: 155), North Ossetia (HGSOC: 51; BC: 104), Chechnya (HGSOC: 68; BC: 79), Ingushetia (HGSOC: 19; BC: 103), Karachay-Cherkessia (HGSOC: 13; BC: 47), and several Armenian settlements (HGSOC: 16; BC: 101). The group of BC patients was enriched by young-onset and/or family history-positive and/or bilateral and/or receptor triple-negative cases. The entire coding region of BRCA1, BRCA2, PALB2, and ATM genes was analyzed by next-generation sequencing. RESULTS A significant contribution of BRCA1/2 pathogenic variants (PVs) to HGSOC and BC development was observed across all North Caucasus regions (HGSOC: 19-39%; BC: 6-13%). Founder alleles were identified in all ethnic groups studied, e.g., BRCA1 c.3629_3630delAG in Chechens, BRCA2 c.6341delC in North Ossetians, BRCA2 c.5351dupA in Ingush, and BRCA1 c.2907_2910delTAAA in Karachays. Some BRCA1/2 alleles, particularly BRCA2 c.9895C > T, were shared by several nationalities. ATM PVs were detected in 14 patients, with c.1673delG and c.8876_8879delACTG alleles occurring twice each. PALB2 heterozygosity was observed in 5 subjects, with one variant seen in 2 unrelated women. CONCLUSION This study adds to the evidence for the global-wide contribution of BRCA1/2 genes to HGSOC and BC morbidity, although the spectrum of their PVs is a subject of ethnicity-specific variations. The data on founder BRCA1/2 alleles may be considered when adjusting the BRCA1/2 testing procedure to the ethnic origin of patients.
Collapse
Affiliation(s)
- Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758.
- St. Petersburg Pediatric Medical University, St. Petersburg, Russia.
| | - Elvina Kh Bakaeva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Aigul R Venina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Ekaterina Sh Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Alexandr A Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Svetlana N Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Yana V Belysheva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Evgeniya V Belogubova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Ilya A Stepanov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Olga A Zaitseva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Olga S Yatsuk
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Alexandr V Togo
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Zaur M Khamgokov
- Republican Cancer Center, The Kabardino-Balkarian Republic, Nalchik, Russia
| | - Azinat O Kadyrova
- Republican Cancer Center, The Kabardino-Balkarian Republic, Nalchik, Russia
| | | | - Marina B Bolieva
- Republican Cancer Center, The Republic of North Ossetia-Alania, Vladikavkaz, Russia
| | - Alexandr A Epkhiev
- Republican Cancer Center, The Republic of North Ossetia-Alania, Vladikavkaz, Russia
| | - Aslan K Tsutsaev
- Republican Cancer Center, The Republic of North Ossetia-Alania, Vladikavkaz, Russia
| | | | | | - Idris M Khabriev
- Republican Cancer Center, The Republic of Ingushetia, Pliyevo, Russia
| | - Mirza A Murachuev
- Republican Cancer Center, The Republic of Dagestan, Makhachkala, Russia
| | - Bella N Buttaeva
- Republican Bureau of Pathology, The Republic of Dagestan, Makhachkala, Russia
| | - Liliya S Baboshkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | | | - Islam R Katchiev
- Republican Cancer Center, The Karachay-Cherkess Republic, Cherkessk, Russia
| | - Lina Kh Alieva
- Republican Cancer Center, The Karachay-Cherkess Republic, Cherkessk, Russia
| | - Grigory A Raskin
- Dr. Sergey Berezin Medical Institute of Biological Systems, St. Petersburg, Russia
| | - Sergey V Orlov
- I.P. Pavlov St.-Petersburg State Medical University, St. Petersburg, Russia
| | | | | | | | | | | | | | - Hedi S Musayeva
- Republican Cancer Center, Grozny, The Chechen Republic, Russia
| | - Alexey M Belyaev
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
- St. Petersburg Pediatric Medical University, St. Petersburg, Russia
| |
Collapse
|
2
|
Nurmi AK, Pelttari LM, Kiiski JI, Khan S, Nurmikolu M, Suvanto M, Aho N, Tasmuth T, Kalso E, Schleutker J, Kallioniemi A, Heikkilä P, Aittomäki K, Blomqvist C, Nevanlinna H. NTHL1 is a recessive cancer susceptibility gene. Sci Rep 2023; 13:21127. [PMID: 38036545 PMCID: PMC10689455 DOI: 10.1038/s41598-023-47441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
In search of novel breast cancer (BC) risk variants, we performed a whole-exome sequencing and variant analysis of 69 Finnish BC patients as well as analysed loss-of-function variants identified in DNA repair genes in the Finns from the Genome Aggregation Database. Additionally, we carried out a validation study of SERPINA3 c.918-1G>C, recently suggested for BC predisposition. We estimated the frequencies of 41 rare candidate variants in 38 genes by genotyping them in 2482-4101 BC patients and in 1273-3985 controls. We further evaluated all coding variants in the candidate genes in a dataset of 18,786 BC patients and 182,927 controls from FinnGen. None of the variants associated significantly with cancer risk in the primary BC series; however, in the FinnGen data, NTHL1 c.244C>T p.(Gln82Ter) associated with BC with a high risk for homozygous (OR = 44.7 [95% CI 6.90-290], P = 6.7 × 10-5) and a low risk for heterozygous women (OR = 1.39 [1.18-1.64], P = 7.8 × 10-5). Furthermore, the results suggested a high risk of colorectal, urinary tract, and basal-cell skin cancer for homozygous individuals, supporting NTHL1 as a recessive multi-tumour susceptibility gene. No significant association with BC risk was detected for SERPINA3 or any other evaluated gene.
Collapse
Affiliation(s)
- Anna K Nurmi
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Liisa M Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Johanna I Kiiski
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Mika Nurmikolu
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Maija Suvanto
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Niina Aho
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Tiina Tasmuth
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, and FICAN West Cancer Centre, and Department of Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| | - Anne Kallioniemi
- Tays Cancer Center, Tampere University Hospital, and BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories, Tampere, Finland
| | - Päivi Heikkilä
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland.
| |
Collapse
|
3
|
Yanus GA, Savonevich EL, Sokolenko AP, Romanko AA, Ni VI, Bakaeva EK, Gorustovich OA, Bizin IV, Imyanitov EN. Founder vs. non-founder BRCA1/2 pathogenic alleles: the analysis of Belarusian breast and ovarian cancer patients and review of other studies on ethnically homogenous populations. Fam Cancer 2023; 22:19-30. [PMID: 35596902 DOI: 10.1007/s10689-022-00296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/08/2022] [Indexed: 01/13/2023]
Abstract
The spectrum of BRCA1/2 mutations demonstrates significant interethnic variations. We analyzed for the first time the entire BRCA1/2 coding region in 340 Belarusian cancer patients with clinical signs of BRCA1/2-related disease, including 168 women with bilateral and/or early-onset breast cancer (BC), 104 patients with ovarian cancer and 68 subjects with multiple primary malignancies involving BC and/or OC. BRCA1/2 pathogenic alleles were detected in 98 (29%) women, with 67 (68%) of these being represented by founder alleles. Systematic comparison with other relevant studies revealed that the founder effect observed in Belarus is among the highest estimates observed worldwide. These findings are surprising, given that the population of Belarus did not experience geographic or cultural isolation throughout history.
Collapse
Affiliation(s)
- G A Yanus
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia
| | - E L Savonevich
- Department of Obstetrics and Gynecology, Grodno State Medical University, Grodno, Belarus
| | - A P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia. .,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg, Russia.
| | - A A Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg, Russia
| | - V I Ni
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia
| | - E Kh Bakaeva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia
| | - O A Gorustovich
- Department of Obstetrics and Gynecology, Grodno State Medical University, Grodno, Belarus
| | - I V Bizin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia
| | - E N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg, Russia.,Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, Russia
| |
Collapse
|
4
|
Nurmi AK, Suvanto M, Dennis J, Aittomäki K, Blomqvist C, Nevanlinna H. Pathogenic Variant Spectrum in Breast Cancer Risk Genes in Finnish Patients. Cancers (Basel) 2022; 14:cancers14246158. [PMID: 36551643 PMCID: PMC9776204 DOI: 10.3390/cancers14246158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Recurrent pathogenic variants have been detected in several breast and ovarian cancer (BC/OC) risk genes in the Finnish population. We conducted a gene-panel sequencing and copy number variant (CNV) analysis to define a more comprehensive spectrum of pathogenic variants in BRCA1, BRCA2, PALB2, CHEK2, ATM, BARD1, RAD51C, RAD51D, BRIP1, and FANCM genes in Finnish BC patients. The combined frequency of pathogenic variants in the BRCA1/2 genes was 1.8% in 1356 unselected patients, whereas variants in the other genes were detected altogether in 8.3% of 1356 unselected patients and in 12.9% of 699 familial patients. CNVs were detected in 0.3% of both 1137 unselected and 612 familial patients. A few variants covered most of the pathogenic burden in the studied genes. Of the BRCA1/2 carriers, 70.8% had 1 of 10 recurrent variants. In the other genes combined, 92.1% of the carrier patients had at least 1 of 11 recurrent variants. In particular, PALB2 c.1592delT and CHEK2 c.1100delC accounted for 88.9% and 82.9%, respectively, of the pathogenic variation in each gene. Our results highlight the importance of founder variants in the BC risk genes in the Finnish population and could be used in the designing of population screening for the risk variants.
Collapse
Affiliation(s)
- Anna K. Nurmi
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Maija Suvanto
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
- Correspondence:
| |
Collapse
|
5
|
Pallonen TAS, Lempiäinen SMM, Joutsiniemi TK, Aaltonen RI, Pohjola PE, Kankuri-Tammilehto MK. Genetic, clinic and histopathologic characterization of BRCA-associated hereditary breast and ovarian cancer in southwestern Finland. Sci Rep 2022; 12:6704. [PMID: 35469032 PMCID: PMC9038668 DOI: 10.1038/s41598-022-10519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/07/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWe have analyzed the histopathological, clinical, and genetic characteristics in hereditary breast and ovarian cancer patients of counselled families from 1996 up to today in the southwestern Finland population. In this study we analyzed the incidence of different BRCA1 and BRCA2 pathogenic variants (PV). 1211 families were evaluated, and the families were classified as 38 BRCA1 families, 48 BRCA2 families, 689 non-BRCA families and 436 other counselled families (criteria for genetic testing was not met). In those families, the study consisted of 44 BRCA1 breast and/or ovarian cancer patients, 58 BRCA2 cancer patients, 602 non-BRCA patients and 328 other counselled patients. Breast cancer mean onset was 4.6 years earlier in BRCA1 carriers compared to BRCA2 (p = 0.07, a trend) and ovarian cancer onset almost 11 years earlier in BRCA1 families (p < 0.05). In BRCA families the onset of ovarian cancer was later than 40 years, and BRCA2-origin breast cancer was seen as late as 78 years. The BRCA PV (9%) increases the risk for same patient having both ovarian and breast cancer with a twofold risk when compared to non-BRCA group (4%) (95% CI p < 0.05). Triple-negativity in BRCA1 (42%) carriers is approximately 2.6 times vs more common than in BRCA2 carriers (16%) (p < 0.05). The risk ratio for bilateral breast cancer is approximately four times when compared BRCA2 (17%) and other counselled patients’ group (4%) (p < 0.05). 27% southwestern BRCA2-families have a unique PV, and correspondingly 39% of BRCA1-families. The results of this analysis allow improved prediction of cancer risk in high-risk hereditary breast and ovarian families in southwestern Finland and improve long term follow-up programs. According to the result it could be justified to have the discussion about prophylactic salpingo-oophorectomy by the age of 40 years. The possibility of late breast cancer onset in BRCA2 carriers supports the lifelong follow-up in BRCA carriers. Cancer onset is similar between BRCA2 carries and non-BRCA high-risk families. This study evaluated mutation profile of BRCA in southwestern Finland. In this study genotype–phenotype correlation was not found
Collapse
|
6
|
Le TNN, Tran VK, Nguyen TT, Vo NS, Hoang TH, Vo HL, Nguyen THT, Nguyen PD, Nguyen VT, Ta TV, Tran HT. BRCA1/2 Mutations in Vietnamese Patients with Hereditary Breast and Ovarian Cancer Syndrome. Genes (Basel) 2022; 13:genes13020268. [PMID: 35205313 PMCID: PMC8872259 DOI: 10.3390/genes13020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
(1) Background: Individuals with BRCA1/2 gene mutations are at increased risk of breast and ovarian cancer. The prevalence of BRCA1/2 mutations varies by race and ethnicity, and the prevalence and the risks associated with most BRCA1/2 mutations has not been unknown in the Vietnamese population. We herein screen the entire BRCA1 and BRCA2 genes for breast and ovarian cancer patients with a family history of breast cancer and ovarian cancer, thereby, suggesting a risk score associated with carrier status and history for aiding personalized treatment; (2) Methods: Between December 2017 and December 2019, Vietnamese patients who had a pathological diagnosis of breast and epithelial ovarian cancer were followed up, prospectively, after treatment from two large institutions in Vietnam. Blood samples from 33 Vietnamese patients with hereditary breast and ovarian cancers (HBOC) syndrome were collected and analyzed using Next Generation Sequencing; (3) Results: Eleven types of mutations in both BRCA1 (in nine patients) and BRCA2 (in three patients) were detected, two of which (BRCA1:p.Tyr1666Ter and BRCA2:p.Ser1341Ter) have not been previously documented in the literature. Seven out of 19 patient’s relatives had BRCA1/2 gene mutations. All selected patients were counselled about the likelihood of cancer rising and prophylactic screening and procedures. The study established a risk score associated with the cohorts based on carrier status and family history; (4) Conclusions: Our findings suggested the implications for the planning of a screening programme for BRCA1 and BRCA2 genes testing in breast and ovarian cancer patients and genetic screening in their relatives. BRCA1/2 mutation carriers without cancer should have early and regular cancer screening, and prophylactic measures. This study could be beneficial for a diverse group in a large population-specific cohort, related to HBOC Syndrome.
Collapse
Affiliation(s)
- Trong-Nhan N. Le
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
| | - Van-Khanh Tran
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
| | - Thu-Thuy Nguyen
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
| | - Nam S. Vo
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi 100000, Vietnam; (N.S.V.); (T.H.H.)
| | - Tham H. Hoang
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi 100000, Vietnam; (N.S.V.); (T.H.H.)
| | - Hoang-Long Vo
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
| | - Thanh-Hai T. Nguyen
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
| | - Phuoc-Dung Nguyen
- National Institute of Hematology and Blood Transfusion, Hanoi 100000, Vietnam;
| | - Viet-Tien Nguyen
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
| | - Thanh-Van Ta
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
- Hanoi Medical University Hospital, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Huy-Thinh Tran
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
- Hanoi Medical University Hospital, Hanoi Medical University, Hanoi 100000, Vietnam
- Correspondence: ; Tel.: +84-243-852-3798/244; Fax: +84-24-3852-5115
| |
Collapse
|
7
|
High miR-30 Expression Associates with Improved Breast Cancer Patient Survival and Treatment Outcome. Cancers (Basel) 2021; 13:cancers13122907. [PMID: 34200751 PMCID: PMC8230388 DOI: 10.3390/cancers13122907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Previous research on the miR-30 family and breast cancer patient survival and on miR-30-related chemosensitivity prompted us to design a comprehensive study on the role of the miR-30 family in general and on miR-30d in particular in breast cancer. We present a study consisting of a tumor microarray analysis of 1238 breast cancer patients, a survival analysis, a drug-sensitivity screen with six breast cancer cell lines, and an in-silico pathway analysis. In our analysis, high miR-30d expression was associated with improved survival in breast cancer patients with aggressive tumor phenotypes. In the drug-sensitivity analysis, ectopic expression of miR-30 family members sensitized the cell lines to the treatment. The pathway analysis based on miRNA and mRNA expression in the METABRIC data suggested that the miR-30 family may have an inhibitory role in pathways contributing to EMT and metastasis. Our results suggest prognostic and predictive potential for the miR-30 family for further investigation. Abstract Deregulated miRNA expression has been suggested in several stages of breast cancer pathogenesis. We have studied the miR-30 family, in particular miR-30d, in relation to breast cancer patient survival and treatment outcomes. With tumor specimens from 1238 breast cancer patients, we analyzed the association of miR-30d expression with tumor characteristics with the 5-year occurrence of breast cancer-specific death or distant metastasis (BDDM), and with 10-year breast cancer survival (BCS). We conducted a two-stage drug-screen to investigate the impact of miR-30 family members (miR-30a-30e) on sensitivity to doxorubicin and lapatinib in six breast cancer cell lines HCC1937, HCC1954, MDA-MB-361, MCF7, MDA-MB-436 and CAL-120, using drug sensitivity scores (DSS) to compare the miR-30 family mimics to their specific inhibitors. The study was complemented with Ingenuity Pathway Analysis (IPA) with the METABRIC data. We found that while high miR-30d expression is typical for aggressive tumors, it predicts better metastasis-free (pBDDM = 0.035, HR = 0.63, 95% CI = 0.4–0.9) and breast cancer-specific survival (pBCS = 0.018, HR = 0.61, 95% CI = 0.4–0.9), especially in HER2-positive (pBDDM = 0.0009), ER-negative (pBDDM = 0.003), p53-positive (pBDDM = 0.011), and highly proliferating (pBDDM = 0.0004) subgroups, and after adjuvant chemotherapy (pBDDM = 0.035). MiR-30d predicted survival independently of standard prognostic markers (pBDDM = 0.0004). In the drug-screening test, the miR-30 family sensitized the HER2-positive HCC1954 cell line to lapatinib (p < 10−2) and HCC1937, MDA-MB-361, MDA-MB-436 and CAL120 to doxorubicin (p < 10−4) with an opposite impact on MCF7. According to the pathway analysis, the miR-30 family has a suppressive effect on cell motility and metastasis in breast cancer. Our results suggest prognostic and predictive potential for the miR-30 family, which warrants further investigation.
Collapse
|
8
|
Mars N, Widén E, Kerminen S, Meretoja T, Pirinen M, Della Briotta Parolo P, Palta P, Palotie A, Kaprio J, Joensuu H, Daly M, Ripatti S. The role of polygenic risk and susceptibility genes in breast cancer over the course of life. Nat Commun 2020; 11:6383. [PMID: 33318493 PMCID: PMC7736877 DOI: 10.1038/s41467-020-19966-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022] Open
Abstract
Polygenic risk scores (PRS) for breast cancer have potential to improve risk prediction, but there is limited information on their utility in various clinical situations. Here we show that among 122,978 women in the FinnGen study with 8401 breast cancer cases, the PRS modifies the breast cancer risk of two high-impact frameshift risk variants. Similarly, we show that after the breast cancer diagnosis, individuals with elevated PRS have an elevated risk of developing contralateral breast cancer, and that the PRS can considerably improve risk assessment among their female first-degree relatives. In more detail, women with the c.1592delT variant in PALB2 (242-fold enrichment in Finland, 336 carriers) and an average PRS (10–90th percentile) have a lifetime risk of breast cancer at 55% (95% CI 49–61%), which increases to 84% (71–97%) with a high PRS ( > 90th percentile), and decreases to 49% (30–68%) with a low PRS ( < 10th percentile). Similarly, for c.1100delC in CHEK2 (3.7–fold enrichment; 1648 carriers), the respective lifetime risks are 29% (27–32%), 59% (52–66%), and 9% (5–14%). The PRS also refines the risk assessment of women with first-degree relatives diagnosed with breast cancer, particularly among women with positive family history of early-onset breast cancer. Here we demonstrate the opportunities for a comprehensive way of assessing genetic risk in the general population, in breast cancer patients, and in unaffected family members. Identifying women at high risk of breast cancer has important implications for screening. Here, the authors demonstrate that polygenic risk scores improve breast cancer risk prediction in the population, in women with mutations in high-risk genes and in women with close relatives with the disease.
Collapse
Affiliation(s)
- Nina Mars
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sini Kerminen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tuomo Meretoja
- Breast Surgery Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland.,University of Helsinki, Helsinki, Finland
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.,Helsinki Institute for Information Technology HIIT and Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | | | - Priit Palta
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.,Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Aarno Palotie
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.,Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Analytic and Translational Genetics Unit, Department of Medicine, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Heikki Joensuu
- University of Helsinki, Helsinki, Finland.,Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Mark Daly
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland. .,Department of Public Health, University of Helsinki, Helsinki, Finland. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
9
|
Nurmi A, Muranen TA, Pelttari LM, Kiiski JI, Heikkinen T, Lehto S, Kallioniemi A, Schleutker J, Bützow R, Blomqvist C, Aittomäki K, Nevanlinna H. Recurrent moderate-risk mutations in Finnish breast and ovarian cancer patients. Int J Cancer 2019; 145:2692-2700. [PMID: 30927251 PMCID: PMC6767104 DOI: 10.1002/ijc.32309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/24/2022]
Abstract
Mutations in BRCA1 and BRCA2 genes predispose to breast and ovarian cancer (BC/OC) with a high lifetime risk, whereas mutations in PALB2, CHEK2, ATM, FANCM, RAD51C and RAD51D genes cause a moderately elevated risk. In the Finnish population, recurrent mutations have been identified in all of these genes, the latest being CHEK2 c.319+2T>A and c.444+1G>A. By genotyping 3,156 cases and 2,089 controls, we estimated the frequencies of CHEK2 c.319+2T>A and c.444+1G>A in Finnish BC patients. CHEK2 c.319+2T>A was detected in 0.7% of the patients, and it was associated with a high risk of BC in the unselected patient group (OR = 5.40 [95% CI 1.58-18.45], p = 0.007) and similarly in the familial patient group. CHEK2 c.444+1G>A was identified in 0.1% of all patients. Additionally, we evaluated the combined prevalence of recurrent moderate-risk gene mutations in 2,487 BC patients, 556 OC patients and 261 BRCA1/2 carriers from 109 families. The overall frequency of the mutations was 13.3% in 1,141 BRCA1/2-negative familial BC patients, 7.5% in 1,727 unselected BC patients and 7.2% in 556 unselected OC patients. At least one moderate-risk gene mutation was found in 12.5% of BRCA1 families and 7.1% of BRCA1 index patients, as well as in 17.0% of BRCA2 families and 11.3% of BRCA2 index patients, and the mutations were associated with an additional risk in the BRCA1/2 index patients (OR = 2.63 [1.15-5.48], p = 0.011). These results support gene panel testing of even multiple members of BC families where several mutations may segregate in different individuals.
Collapse
Affiliation(s)
- Anna Nurmi
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Taru A. Muranen
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Liisa M. Pelttari
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Johanna I. Kiiski
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Tuomas Heikkinen
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Sini Lehto
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Anne Kallioniemi
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University and Fimlab LaboratoriesTampereFinland
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, and Department of Medical Genetics, Genomics, Laboratory DivisionTurku University HospitalTurkuFinland
| | - Ralf Bützow
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Department of Pathology and University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Carl Blomqvist
- Department of Oncology and University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Kristiina Aittomäki
- Department of Clinical GeneticsUniversity of Helsinki, and HUSLAB, Helsinki University HospitalHelsinkiFinland
| | - Heli Nevanlinna
- Department of Obstetrics and GynecologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
10
|
Määttä KM, Nurminen R, Kankuri-Tammilehto M, Kallioniemi A, Laasanen SL, Schleutker J. Germline EMSY sequence alterations in hereditary breast cancer and ovarian cancer families. BMC Cancer 2017; 17:496. [PMID: 28738860 PMCID: PMC5525221 DOI: 10.1186/s12885-017-3488-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 07/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND BRCA1 and BRCA2 mutations explain approximately one-fifth of the inherited susceptibility in high-risk Finnish hereditary breast and ovarian cancer (HBOC) families. EMSY is located in the breast cancer-associated chromosomal region 11q13. The EMSY gene encodes a BRCA2-interacting protein that has been implicated in DNA damage repair and genomic instability. We analysed the role of germline EMSY variation in breast/ovarian cancer predisposition. The present study describes the first EMSY screening in patients with high familial risk for this disease. METHODS Index individuals from 71 high-risk, BRCA1/2-negative HBOC families were screened for germline EMSY sequence alterations in protein coding regions and exon-intron boundaries using Sanger sequencing and TaqMan assays. The identified variants were further screened in 36 Finnish HBOC patients and 904 controls. Moreover, one novel intronic deletion was screened in a cohort of 404 breast cancer patients unselected for family history. Haplotype block structure and the association of haplotypes with breast/ovarian cancer were analysed using Haploview. The functionality of the identified variants was predicted using Haploreg, RegulomeDB, Human Splicing Finder, and Pathogenic-or-Not-Pipeline 2. RESULTS Altogether, 12 germline EMSY variants were observed. Two alterations were located in the coding region, five alterations were intronic, and five alterations were located in the 3'untranslated region (UTR). Variant frequencies did not significantly differ between cases and controls. The novel variant, c.2709 + 122delT, was detected in 1 out of 107 (0.9%) breast cancer patients, and the carrier showed a bilateral form of the disease. The deletion was absent in 897 controls (OR = 25.28; P = 0.1) and in 404 breast cancer patients unselected for family history. No haplotype was identified to increase the risk of breast/ovarian cancer. Functional analyses suggested that variants, particularly in the 3'UTR, were located within regulatory elements. The novel deletion was predicted to affect splicing regulatory elements. CONCLUSIONS These results suggest that the identified EMSY variants are likely neutral at the population level. However, these variants may contribute to breast/ovarian cancer risk in single families. Additional analyses are warranted for rare novel intronic deletions and the 3'UTR variants predicted to have functional roles.
Collapse
Affiliation(s)
- Kirsi M Määttä
- Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere, Lääkärinkatu 1, FI-33520, Tampere, Finland.,Fimlab Laboratories, Tampere University Hospital, Biokatu 4, FI-33520, Tampere, Finland
| | - Riikka Nurminen
- Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere, Lääkärinkatu 1, FI-33520, Tampere, Finland.,Fimlab Laboratories, Tampere University Hospital, Biokatu 4, FI-33520, Tampere, Finland
| | - Minna Kankuri-Tammilehto
- Department of Clinical Genetics, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20521, Turku, Finland
| | - Anne Kallioniemi
- Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere, Lääkärinkatu 1, FI-33520, Tampere, Finland
| | - Satu-Leena Laasanen
- Department of Pediatrics, Genetics Outpatient Clinic, and Department of Dermatology, Tampere UniversityHospital, PO BOX 2000, FI-33521, Tampere, Finland.,Department of Dermatology, Tampere University Hospital, PO BOX 2000, FI-33521, Tampere, Finland
| | - Johanna Schleutker
- Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere, Lääkärinkatu 1, FI-33520, Tampere, Finland. .,Fimlab Laboratories, Tampere University Hospital, Biokatu 4, FI-33520, Tampere, Finland. .,Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20014, Turku, Finland. .,Department of Medical Genetics, Turku University Hospital, Kiinamyllynkatu 10, FI-20521, Turku, Finland.
| |
Collapse
|
11
|
FANCM mutation c.5791C>T is a risk factor for triple-negative breast cancer in the Finnish population. Breast Cancer Res Treat 2017; 166:217-226. [PMID: 28702895 PMCID: PMC5645429 DOI: 10.1007/s10549-017-4388-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/07/2017] [Indexed: 10/25/2022]
Abstract
PURPOSE The FANCM c.5101C>T nonsense mutation was previously found to associate with breast cancer in the Finnish population, especially among triple-negative cases. Here, we studied the prevalence of three other FANCM variants: c.5791C>T, which has been reported to predispose to familial breast cancer, and the c.4025_4026delCT and c.5293dupA variants recently identified in Finnish cancer patients. METHODS We genotyped the FANCM c.5791C>T mutation in 4806 invasive breast cancer patients, including BRCA1/2 mutation negative familial cases and unselected cases, and in 2734 healthy population controls from four different geographical areas of Finland. The association of the mutation with breast cancer risk among patient subgroups was statistically evaluated. We further analyzed the combined risk associated with c.5101C>T and c.5791C>T mutations. We also genotyped 526 unselected ovarian cancer patients for the c.5791C>T mutation and 862 familial breast cancer patients for the c.4025_4026delCT and c.5293dupA variants. RESULTS The frequency of the FANCM c.5791C>T mutation was higher among breast cancer cases than in controls (OR 1.94, 95% CI 0.87-4.32, P = 0.11), with a statistically significant association with triple-negative breast cancer (OR 5.14, 95% CI 1.65-16.0, P = 0.005). The combined analysis for c.5101C>T and c.5791C>T carriers confirmed a strong association with breast cancer (OR 1.86, 95% CI 1.32-2.49, P = 0.0002), especially among the triple-negative patients (OR 3.08, 95% CI 1.77-5.35, P = 0.00007). For the other variants, only one additional c.4025_4026delCT carrier and no c.5293dupA carriers were observed. CONCLUSIONS These results support the role of FANCM as a breast cancer susceptibility gene, particularly for triple-negative breast cancer.
Collapse
|
12
|
Kiiski JI, Fagerholm R, Tervasmäki A, Pelttari LM, Khan S, Jamshidi M, Mantere T, Pylkäs K, Bartek J, Bartkova J, Mannermaa A, Tengström M, Kosma VM, Winqvist R, Kallioniemi A, Aittomäki K, Blomqvist C, Nevanlinna H. FANCM c.5101C>T mutation associates with breast cancer survival and treatment outcome. Int J Cancer 2016; 139:2760-2770. [PMID: 27542569 PMCID: PMC5095781 DOI: 10.1002/ijc.30394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/19/2016] [Indexed: 01/16/2023]
Abstract
Breast cancer (BC) is a heterogeneous disease, and different tumor characteristics and genetic variation may affect the clinical outcome. The FANCM c.5101C > T nonsense mutation in the Finnish population associates with increased risk of breast cancer, especially for triple‐negative breast cancer patients. To investigate the association of the mutation with disease prognosis, we studied tumor phenotype, treatment outcome, and patient survival in 3,933 invasive breast cancer patients, including 101 FANCM c.5101C > T mutation carriers and 3,832 non‐carriers. We also examined association of the mutation with nuclear immunohistochemical staining of DNA repair markers in 1,240 breast tumors. The FANCM c.5101C > T mutation associated with poor 10‐year breast cancer‐specific survival (hazard ratio (HR)=1.66, 95% confidence interval (CI) 1.09–2.52, p = 0.018), with a more pronounced survival effect among familial cases (HR = 2.93, 95% CI 1.5–5.76, p = 1.80 × 10−3). Poor disease outcome of the carriers was also found among the estrogen receptor (ER) positive subgroup of patients (HR = 1.8, 95% CI 1.09–2.98, p = 0.021). Reduced survival was seen especially among patients who had not received radiotherapy (HR = 3.43, 95% CI 1.6–7.34, p = 1.50 × 10−3) but not among radiotherapy treated patients (HR = 1.35, 95% CI 0.82–2.23, p = 0.237). Significant interaction was found between the mutation and radiotherapy (p = 0.040). Immunohistochemical analyses show that c.5101C > T carriers have reduced PAR‐activity. Our results suggest that FANCM c.5101C > T nonsense mutation carriers have a reduced breast cancer survival but postoperative radiotherapy may diminish this survival disadvantage. What's new? Variations in DNA repair genes can predispose individuals to breast cancer, with one example being FANCM c.5101C > T, a nonsense mutation in the Fanconi Anemia DNA repair pathway. In previous work, FANCM c.5101C > T was associated with increased breast cancer risk in the Finnish population. Here, the mutation is further shown to be associated with adverse breast cancer outcome. Mutation‐positive Finnish patients exhibited reduced long‐term survival and increased risk of disease recurrence. Survival was worse particularly for patients who were not treated with radiotherapy, indicating that FANCM c.5101C>T may interact with radiotherapy to improve disease outcome in mutation carriers.
Collapse
Affiliation(s)
- Johanna I Kiiski
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Rainer Fagerholm
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland.,Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, NordLab, Oulu, Finland
| | - Liisa M Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maral Jamshidi
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland.,Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, NordLab, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland.,Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, NordLab, Oulu, Finland
| | - Jiri Bartek
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Jirina Bartkova
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.,Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Maria Tengström
- School of Medicine, Institute of Clinical Medicine, Oncology, Kuopio, Finland.,Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.,Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland.,Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, NordLab, Oulu, Finland
| | - Anne Kallioniemi
- BioMediTech, University of Tampere and Fimlab Laboratories, Tampere, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
13
|
Mantere T, Winqvist R, Kauppila S, Grip M, Jukkola-Vuorinen A, Tervasmäki A, Rapakko K, Pylkäs K. Targeted Next-Generation Sequencing Identifies a Recurrent Mutation in MCPH1 Associating with Hereditary Breast Cancer Susceptibility. PLoS Genet 2016; 12:e1005816. [PMID: 26820313 PMCID: PMC4731077 DOI: 10.1371/journal.pgen.1005816] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/23/2015] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is strongly influenced by hereditary risk factors, a majority of which still remain unknown. Here, we performed a targeted next-generation sequencing of 796 genes implicated in DNA repair in 189 Finnish breast cancer cases with indication of hereditary disease susceptibility and focused the analysis on protein truncating mutations. A recurrent heterozygous mutation (c.904_916del, p.Arg304ValfsTer3) was identified in early DNA damage response gene, MCPH1, significantly associating with breast cancer susceptibility both in familial (5/145, 3.4%, P = 0.003, OR 8.3) and unselected cases (16/1150, 1.4%, P = 0.016, OR 3.3). A total of 21 mutation positive families were identified, of which one-third exhibited also brain tumors and/or sarcomas (P = 0.0007). Mutation carriers exhibited significant increase in genomic instability assessed by cytogenetic analysis for spontaneous chromosomal rearrangements in peripheral blood lymphocytes (P = 0.0007), suggesting an effect for MCPH1 haploinsufficiency on cancer susceptibility. Furthermore, 40% of the mutation carrier tumors exhibited loss of the wild-type allele. These findings collectively provide strong evidence for MCHP1 being a novel breast cancer susceptibility gene, which warrants further investigations in other populations.
Collapse
Affiliation(s)
- Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre NordLab Oulu, University of Oulu, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre NordLab Oulu, University of Oulu, Oulu, Finland
- * E-mail: (RW); (KP)
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Arja Jukkola-Vuorinen
- Department of Oncology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre NordLab Oulu, University of Oulu, Oulu, Finland
| | - Katrin Rapakko
- Laboratory of Genetics, Northern Finland Laboratory Centre NordLab Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre NordLab Oulu, University of Oulu, Oulu, Finland
- * E-mail: (RW); (KP)
| |
Collapse
|
14
|
Inherited breast cancer predisposition in Asians: multigene panel testing outcomes from Singapore. NPJ Genom Med 2016; 1:15003. [PMID: 29263802 PMCID: PMC5685290 DOI: 10.1038/npjgenmed.2015.3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 12/20/2022] Open
Abstract
Genetic testing for germline mutations in breast cancer predisposition genes can potentially identify individuals at a high risk of developing breast and/or ovarian cancer. There is a paucity of such mutational information for Asians. Panel testing of 25 cancer susceptibility genes and BRCA1/2 deletion/duplication analysis was performed for 220 Asian breast cancer patients or their family members referred for genetics risk assessment. All 220 participants had at least one high-risk feature: having a family history of breast and/or ovarian cancer in first- and/or second-degree relatives; having breast and ovarian cancer in the same individual or bilateral breast cancer; having early-onset breast cancer or ovarian cancer (⩽40 years of age). We identified 67 pathogenic variants in 66 (30.0%) patients. Of these, 19 (28.3%) occurred in BRCA1, 16 (23.9%) in BRCA2, 7 (10.4%) in PALB2, 6 (9.0%) in TP53, 2 (3.0%) in PTEN, 2 (3.0%) in CDH1 and 15 (22.4%) in other predisposition genes. Notably, 47.8% of pathogenic variants were in non-BRCA1/2 genes. Of the 66 patients with pathogenic mutations, 63.6% (42/66) were under the age of 40 years. Family history of breast and/or ovarian cancer is enriched in patients with BRCA1/2 pathogenic variants but less predictive for non-BRCA1/2 related pathogenic variations. We detected a median of three variants of unknown significance (VUS) per gene (range 0–21). Custom gene panel testing is feasible and useful for the detection of pathogenic mutations and should be done in the setting of a formal clinical cancer genetics service given the rate of VUS.
Collapse
|
15
|
Park J, Jang W, Chae H, Kim Y, Chi HY, Kim M. Comparison of Targeted Next-Generation and Sanger Sequencing for the BRCA1 and BRCA2 Mutation Screening. Ann Lab Med 2015; 36:197-201. [PMID: 26709275 PMCID: PMC4713861 DOI: 10.3343/alm.2016.36.2.197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/03/2015] [Accepted: 11/11/2015] [Indexed: 12/27/2022] Open
Affiliation(s)
- Joonhong Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woori Jang
- Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Samkwang Medical Laboratories, Seoul, Korea
| | - Hyojin Chae
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
16
|
Pelttari LM, Kinnunen L, Kiiski JI, Khan S, Blomqvist C, Aittomäki K, Nevanlinna H. Screening of HELQ in breast and ovarian cancer families. Fam Cancer 2015; 15:19-23. [DOI: 10.1007/s10689-015-9838-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Pelttari LM, Kiiski JI, Ranta S, Vilske S, Blomqvist C, Aittomäki K, Nevanlinna H. RAD51, XRCC3, and XRCC2 mutation screening in Finnish breast cancer families. SPRINGERPLUS 2015; 4:92. [PMID: 25918678 PMCID: PMC4404470 DOI: 10.1186/s40064-015-0880-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/25/2022]
Abstract
Majority of the known breast cancer susceptibility genes have a role in DNA repair and the most important high-risk genes BRCA1 and BRCA2 are specifically involved in the homologous recombination repair (HRR) of DNA double-strand breaks. A central player in HRR is RAD51 that binds DNA at the damage site. The RAD51 paralogs RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3 facilitate the binding of RAD51 to DNA. While germline mutations in RAD51C and RAD51D are associated with high ovarian cancer risk and RAD51B polymorphisms with breast cancer, the contribution of RAD51, XRCC3, and XRCC2 is more unclear. To investigate the role of RAD51, XRCC3, and XRCC2 in breast cancer predisposition and to identify putative recurrent founder mutations in the Finnish population where such mutations have been observed in most of the currently known susceptibility genes, we screened 182 familial Finnish breast or ovarian cancer patients for germline variation in the RAD51and XRCC3 genes and 342 patients for variation in XRCC2, with a subset of the patients selected on the basis of decreased RAD51 protein expression on tumors. We also performed haplotype analyses for 1516 breast cancer cases and 1234 controls to assess the common variation in these genes. No pathogenic mutations were detected in any of the genes and the distribution of haplotypes was similar between cases and controls. Our results suggest that RAD51, XRCC3, and XRCC2 do not substantially contribute to breast cancer predisposition in the Finnish population.
Collapse
Affiliation(s)
- Liisa M Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, FIN-00029 Helsinki, Finland
| | - Johanna I Kiiski
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, FIN-00029 Helsinki, Finland
| | - Salla Ranta
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, FIN-00029 Helsinki, Finland
| | - Sara Vilske
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, FIN-00029 Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, P.O. Box 180, FIN-00029 Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, P.O. Box 160, FIN-00029 Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, FIN-00029 Helsinki, Finland
| |
Collapse
|
18
|
Cecener G, Egeli U, Tunca B, Erturk E, Ak S, Gokgoz S, Tasdelen I, Tezcan G, Demirdogen E, Bayram N, Avci N, Evrensel T. BRCA1/2 germline mutations and their clinical importance in Turkish breast cancer patients. Cancer Invest 2014; 32:375-87. [PMID: 24884828 DOI: 10.3109/07357907.2014.919302] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BRCA1/BRCA2 genes were screened in 117 patients with breast cancer by sequencing. Fourteen percent of patients tested positive for BRCA1/BRCA2 mutations. Four frame shift mutations, four pathogenic missense mutations, and 25 different sequence variations were detected. BRCA mutation positivity was significantly associated with Ki67 (p = .001). BRCA protein expressions were decreased in the patients harboring important mutations and polymorphisms (BRCA1;P508 stop, V1740G, Q1182R, Q1756P and BRCA2;V2466A) related with disease. Our findings contribute significantly to the types of germline BRCA1/BRCA2 mutations and their biological effects in Turkish women. These data could help guide the management of BRCA1/BRCA2 mutation-carrying patients when considering breast-conserving therapy.
Collapse
Affiliation(s)
- Gulsah Cecener
- Department of Medical Biology, Faculty of Medicine, University of Uludag, Turkey,1
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Frequency of 5382insC mutation of BRCA1 gene among breast cancer patients: an experience from Eastern India. Fam Cancer 2014; 12:489-95. [PMID: 23232912 DOI: 10.1007/s10689-012-9590-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The incidence of breast cancer in India is on the rise and is rapidly becoming the number one cancer in females pushing the cervical cancer to the second position. The mutations in two breast cancer susceptibility genes, BRCA1 and BRCA2, are frequently associated with familial breast cancer. The main objective of the study was to determine the frequency of the mutation 5382insC in BRCA1 of eastern Indian breast cancer patients and also study the hormonal receptor status and histopathology of the patients. Altogether 92 patients affected with breast cancer were included in this study. ARMS-PCR based amplification was used to detect the presence of mutation. The mutations were considered only after pedigree analysis. Out of 92 patients (age range: 20-77 years) with family history (57 individuals) and without family history (35 individuals) were screened. Fifty controls have been systematically investigated. Seven patients and two family members were found to be carriers of 5382insC mutation in BRCA1 gene. We have found 42.64 % ER(-)/PR(-) cancer and 20.58 % triple negative cancer. Invasive ductal carcinoma is the most common histology among the investigated individuals. The presented data confirm a noticeable contribution of BRCA1 5382insC mutation in BC development in Eastern India, which may justify an extended BRCA1 5382insC testing within this patient population. We found HER-2/neu negativity and BRCA1 positivity associated with familial breast cancer. From the hospital's patient history, it was revealed that the age of menarche plays an important role in development of breast cancer.
Collapse
|
20
|
Kuusisto KM, Akinrinade O, Vihinen M, Kankuri-Tammilehto M, Laasanen SL, Schleutker J. copy number variation analysis in familial BRCA1/2-negative Finnish breast and ovarian cancer. PLoS One 2013; 8:e71802. [PMID: 23967248 PMCID: PMC3742470 DOI: 10.1371/journal.pone.0071802] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/03/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Inherited factors predisposing individuals to breast and ovarian cancer are largely unidentified in a majority of families with hereditary breast and ovarian cancer (HBOC). We aimed to identify germline copy number variations (CNVs) contributing to HBOC susceptibility in the Finnish population. METHODS A cohort of 84 HBOC individuals (negative for BRCA1/2-founder mutations and pre-screened for the most common breast cancer genes) and 36 healthy controls were analysed with a genome-wide SNP array. CNV-affecting genes were further studied by Gene Ontology term enrichment, pathway analyses, and database searches to reveal genes with potential for breast and ovarian cancer predisposition. CNVs that were considered to be important were validated and genotyped in 20 additional HBOC individuals (6 CNVs) and in additional healthy controls (5 CNVs) by qPCR. RESULTS An intronic deletion in the EPHA3 receptor tyrosine kinase was enriched in HBOC individuals (12 of 101, 11.9%) compared with controls (27 of 432, 6.3%) (OR = 1.96; P = 0.055). EPHA3 was identified in several enriched molecular functions including receptor activity. Both a novel intronic deletion in the CSMD1 tumor suppressor gene and a homozygous intergenic deletion at 5q15 were identified in 1 of 101 (1.0%) HBOC individuals but were very rare (1 of 436, 0.2% and 1 of 899, 0.1%, respectively) in healthy controls suggesting that these variants confer disease susceptibility. CONCLUSION This study reveals new information regarding the germline CNVs that likely contribute to HBOC susceptibility in Finland. This information may be used to facilitate the genetic counselling of HBOC individuals but the preliminary results warrant additional studies of a larger study group.
Collapse
Affiliation(s)
- Kirsi M. Kuusisto
- Institute of Biomedical Technology/BioMediTech, University of Tampere and Fimlab Laboratories, Tampere, Finland
| | - Oyediran Akinrinade
- Institute of Biomedical Technology/BioMediTech, University of Tampere and Fimlab Laboratories, Tampere, Finland
| | - Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Satu-Leena Laasanen
- Department of Pediatrics, Genetics Outpatient Clinic, and Department of Dermatology, Tampere University Hospital, Tampere, Finland
| | - Johanna Schleutker
- Institute of Biomedical Technology/BioMediTech, University of Tampere and Fimlab Laboratories, Tampere, Finland
- Department of Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
21
|
Akilzhanova AR, Nyshanbekkyzy B, Nurkina ZM, Shtephanov II, Makishev AK, Adylkhanov TA, Rakhypbekov TK, Ramanculov EM, Momynaliev KT. BRCA1 and BRCA2 Gene Mutations Screening In Sporadic Breast Cancer Patients In Kazakhstan. Cent Asian J Glob Health 2013; 2:29. [PMID: 29755871 PMCID: PMC5927761 DOI: 10.5195/cajgh.2013.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND A large number of distinct mutations in the BRCA1 and BRCA2 genes have been reported worldwide, but little is known regarding the role of these inherited susceptibility genes in breast cancer risk among Kazakhstan women. AIM To evaluate the role of BRCA1/2 mutations in Kazakhstan women presenting with sporadic breast cancer. METHODS We investigated the distribution and nature of polymorphisms in BRCA1 and BRCA2 entire coding regions in 156 Kazakhstan sporadic breast cancer cases and 112 age-matched controls using automatic direct sequencing. RESULTS We identified 22 distinct variants, including 16 missense mutations and 6 polymorphisms in BRCA1/2 genes. In BRCA1, 9 missense mutations and 3 synonymous polymorphisms were observed. In BRCA2, 7 missense mutations and 3 polymorphisms were detected. There was a higher prevalence of observed mutations in Caucasian breast cancer cases compared to Asian cases (p<0.05); higher frequencies of sequence variants were observed in Asian controls. No recurrent or founder mutations were observed in BRCA1/2 genes. There were no statistically significant differences in age at diagnosis, tumor histology, size of tumor, and lymph node involvement between women with breast cancer with or without the BRCA sequence alterations. CONCLUSIONS Considering the majority of breast cancer cases are sporadic, the present study will be helpful in the evaluation of the need for the genetic screening of BRCA1/2 mutations and reliable genetic counseling for Kazakhstan sporadic breast cancer patients. Evaluation of common polymorphisms and mutations and breast cancer risk in families with genetic predisposition to breast cancer is ongoing in another current investigation.
Collapse
Affiliation(s)
- Ainur R Akilzhanova
- Center for Life sciences, Nazarbayev University, Astana, Kazakhstan.,National Center for Biotechnology, Astana, Kazakhstan
| | | | - Zhannur M Nurkina
- Center for Life sciences, Nazarbayev University, Astana, Kazakhstan.,National Center for Biotechnology, Astana, Kazakhstan
| | - Ivan I Shtephanov
- State Medical University Astana, Astana Oncological Center, Astana, Kazakhstan
| | - Abay K Makishev
- State Medical University Astana, Astana Oncological Center, Astana, Kazakhstan
| | - Tasbolat A Adylkhanov
- Semey Oncological Center, Semey, Kazakhstan.,Semey State Medical University, Semey, Kazakhstan
| | - Tolebay K Rakhypbekov
- Semey Oncological Center, Semey, Kazakhstan.,Semey State Medical University, Semey, Kazakhstan
| | | | | |
Collapse
|
22
|
Jamshidi M, Bartkova J, Greco D, Tommiska J, Fagerholm R, Aittomäki K, Mattson J, Villman K, Vrtel R, Lukas J, Heikkilä P, Blomqvist C, Bartek J, Nevanlinna H. NQO1 expression correlates inversely with NFκB activation in human breast cancer. Breast Cancer Res Treat 2011; 132:955-68. [DOI: 10.1007/s10549-011-1629-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/03/2011] [Indexed: 12/17/2022]
|
23
|
Kuusisto KM, Bebel A, Vihinen M, Schleutker J, Sallinen SL. Screening for BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1 mutations in high-risk Finnish BRCA1/2-founder mutation-negative breast and/or ovarian cancer individuals. Breast Cancer Res 2011; 13:R20. [PMID: 21356067 PMCID: PMC3109589 DOI: 10.1186/bcr2832] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/14/2010] [Accepted: 02/28/2011] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Two major high-penetrance breast cancer genes, BRCA1 and BRCA2, are responsible for approximately 20% of hereditary breast cancer (HBC) cases in Finland. Additionally, rare mutations in several other genes that interact with BRCA1 and BRCA2 increase the risk of HBC. Still, a majority of HBC cases remain unexplained which is challenging for genetic counseling. We aimed to analyze additional mutations in HBC-associated genes and to define the sensitivity of our current BRCA1/2 mutation analysis protocol used in genetic counseling. METHODS Eighty-two well-characterized, high-risk hereditary breast and/or ovarian cancer (HBOC) BRCA1/2-founder mutation-negative Finnish individuals, were screened for germline alterations in seven breast cancer susceptibility genes, BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1. BRCA1/2 were analyzed by multiplex ligation-dependent probe amplification (MLPA) and direct sequencing. CHEK2 was analyzed by the high resolution melt (HRM) method and PALB2, RAD50, BRIP1 and CDH1 were analyzed by direct sequencing. Carrier frequencies between 82 (HBOC) BRCA1/2-founder mutation-negative Finnish individuals and 384 healthy Finnish population controls were compared by using Fisher's exact test. In silico prediction for novel missense variants effects was carried out by using Pathogenic-Or-Not -Pipeline (PON-P). RESULTS Three previously reported breast cancer-associated variants, BRCA1 c.5095C > T, CHEK2 c.470T > C, and CHEK2 c.1100delC, were observed in eleven (13.4%) individuals. Ten of these individuals (12.2%) had CHEK2 variants, c.470T > C and/or c.1100delC. Fourteen novel sequence alterations and nine individuals with more than one non-synonymous variant were identified. One of the novel variants, BRCA2 c.72A > T (Leu24Phe) was predicted to be likely pathogenic in silico. No large genomic rearrangements were detected in BRCA1/2 by multiplex ligation-dependent probe amplification (MLPA). CONCLUSIONS In this study, mutations in previously known breast cancer susceptibility genes can explain 13.4% of the analyzed high-risk BRCA1/2-negative HBOC individuals. CHEK2 mutations, c.470T > C and c.1100delC, make a considerable contribution (12.2%) to these high-risk individuals but further segregation analysis is needed to evaluate the clinical significance of these mutations before applying them in clinical use. Additionally, we identified novel variants that warrant additional studies. Our current genetic testing protocol for 28 Finnish BRCA1/2-founder mutations and protein truncation test (PTT) of the largest exons is sensitive enough for clinical use as a primary screening tool.
Collapse
Affiliation(s)
- Kirsi M Kuusisto
- Institute of Biomedical Technology, University of Tampere, Biokatu 8, Tampere, 33520, Finland
- Centre for Laboratory Medicine, Tampere University Hospital, Biokatu 4, Tampere, 33520, Finland
| | - Aleksandra Bebel
- Institute of Biomedical Technology, University of Tampere, Biokatu 8, Tampere, 33520, Finland
| | - Mauno Vihinen
- Institute of Biomedical Technology, University of Tampere, Biokatu 8, Tampere, 33520, Finland
| | - Johanna Schleutker
- Institute of Biomedical Technology, University of Tampere, Biokatu 8, Tampere, 33520, Finland
- Centre for Laboratory Medicine, Tampere University Hospital, Biokatu 4, Tampere, 33520, Finland
| | - Satu-Leena Sallinen
- Department of Pediatrics, Genetics Outpatient Clinic, Tampere University Hospital, Biokatu 8, Tampere, 33520, Finland
| |
Collapse
|
24
|
Stegel V, Krajc M, Žgajnar J, Teugels E, De Grève J, Hočevar M, Novaković S. The occurrence of germline BRCA1 and BRCA2 sequence alterations in Slovenian population. BMC MEDICAL GENETICS 2011; 12:9. [PMID: 21232165 PMCID: PMC3025939 DOI: 10.1186/1471-2350-12-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/14/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND the BRCA1 and BRCA2 mutation spectrum and mutation detection rates according to different family histories were investigated in 521 subjects from 322 unrelated Slovenian cancer families with breast and/or ovarian cancer. METHODS the BRCA1 and BRCA2 genes were screened using DGGE, PTT, HRM, MLPA and direct sequencing. RESULTS eighteen different mutations were found in BRCA1 and 13 in BRCA2 gene. Mutations in one or other gene were found in 96 unrelated families. The mutation detection rates were the highest in the families with at least one breast and at least one ovarian cancer - 42% for BRCA1 and 8% for BRCA2. The mutation detection rate observed in the families with at least two breast cancers with disease onset before the age of 50 years and no ovarian cancer was 23% for BRCA1 and 13% for BRCA2. The mutation detection rate in the families with at least two breast cancers and only one with the disease onset before the age of 50 years was 11% for BRCA1 and 8% for BRCA2. In the families with at least two breast cancers, all of them with disease onset over the age of 50 years, the detection rate was 5% for BRCA2 and 0% for BRCA1. CONCLUSION among the mutations detected in Slovenian population, 5 mutations in BRCA1 and 4 mutations in BRCA2 have not been described in other populations until now. The most frequent mutations in our population were c.181T > G, c.1687C > T, c.5266dupC and c.844_850dupTCATTAC in BRCA1 gene and c.7806-2A > G, c.5291C > G and c.3978insTGCT in BRCA2 gene (detected in 69% of BRCA1 and BRCA2 positive families).
Collapse
Affiliation(s)
- Vida Stegel
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| | - Mateja Krajc
- Unit of Genetic Counseling, Institute of Oncology Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| | - Janez Žgajnar
- Department of Surgical Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| | - Erik Teugels
- Laboratory of Molecular Oncology, Oncologisch Centrum UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Jacques De Grève
- Laboratory of Molecular Oncology, Oncologisch Centrum UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Marko Hočevar
- Department of Surgical Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
25
|
Glycodelin expression associates with differential tumour phenotype and outcome in sporadic and familial non-BRCA1/2 breast cancer patients. Breast Cancer Res Treat 2010; 128:85-95. [PMID: 20676758 DOI: 10.1007/s10549-010-1065-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/10/2010] [Indexed: 10/19/2022]
Abstract
Glycodelin (encoded by PAEP gene) is a secreted lipocalin protein mainly expressed in reproductive tissues, but also in several tumour types. In the breast, glycodelin is expressed both in normal epithelial and cancerous tissue. To investigate the association of glycodelin with clinicopathological features of breast cancer and outcome of patients we evaluated the protein expression of glycodelin in a large series of breast tumours. Immunohistochemical analysis of tissue microarrays was used to study glycodelin expression on 399 sporadic and 436 familial non-BRCA1/2 tumours with strong family history. Gene expression analysis was used to define genes co-expressed with PAEP in sporadic and familial non-BRCA1/2 breast tumours. In the sporadic series, the glycodelin expression associated with low proliferation rate (P < 0.001), with a tendency towards well-differentiated tumours (grades 1 and 2, P = 0.012) and high cyclin D1 (P = 0.034) expression. However, in familial non-BRCA1/2 cases with strong family history glycodelin expression associated with a less favourable phenotype, i.e. positive lymph node status (P = 0.003) and HER2-positive tumours (P = 0.009). Moreover, the patients with glycodelin-positive tumours had an increased risk for distant metastases (P = 0.001) and in multivariate analysis glycodelin expression was an independent predictor of metastasis (hazard ratio (HR) = 2.22, 95% confidence interval (95% CI) = 1.22-4.03, P = 0.009) in familial non-BRCA1/2 breast cancer. Gene expression analysis further revealed different gene expression profiles correlating with the PAEP expression in the sporadic and familial non-BRCA1/2 breast cancers. Our findings suggest differential progression pathways in the sporadic and familial non-BRCA1/2 breast tumours expressing glycodelin.
Collapse
|
26
|
Low YL, Li Y, Humphreys K, Thalamuthu A, Li Y, Darabi H, Wedrén S, Bonnard C, Czene K, Iles MM, Heikkinen T, Aittomäki K, Blomqvist C, Nevanlinna H, Hall P, Liu ET, Liu J. Multi-variant pathway association analysis reveals the importance of genetic determinants of estrogen metabolism in breast and endometrial cancer susceptibility. PLoS Genet 2010; 6:e1001012. [PMID: 20617168 PMCID: PMC2895650 DOI: 10.1371/journal.pgen.1001012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 06/01/2010] [Indexed: 12/19/2022] Open
Abstract
Despite the central role of estrogen exposure in breast and endometrial cancer development and numerous studies of genes in the estrogen metabolic pathway, polymorphisms within the pathway have not been consistently associated with these cancers. We posit that this is due to the complexity of multiple weak genetic effects within the metabolic pathway that can only be effectively detected through multi-variant analysis. We conducted a comprehensive association analysis of the estrogen metabolic pathway by interrogating 239 tagSNPs within 35 genes of the pathway in three tumor samples. The discovery sample consisted of 1,596 breast cancer cases, 719 endometrial cancer cases, and 1,730 controls from Sweden; and the validation sample included 2,245 breast cancer cases and 1,287 controls from Finland. We performed admixture maximum likelihood (AML)–based global tests to evaluate the cumulative effect from multiple SNPs within the whole metabolic pathway and three sub-pathways for androgen synthesis, androgen-to-estrogen conversion, and estrogen removal. In the discovery sample, although no single polymorphism was significant after correction for multiple testing, the pathway-based AML global test suggested association with both breast (pglobal = 0.034) and endometrial (pglobal = 0.052) cancers. Further testing revealed the association to be focused on polymorphisms within the androgen-to-estrogen conversion sub-pathway, for both breast (pglobal = 0.008) and endometrial cancer (pglobal = 0.014). The sub-pathway association was validated in the Finnish sample of breast cancer (pglobal = 0.015). Further tumor subtype analysis demonstrated that the association of the androgen-to-estrogen conversion sub-pathway was confined to postmenopausal women with sporadic estrogen receptor positive tumors (pglobal = 0.0003). Gene-based AML analysis suggested CYP19A1 and UGT2B4 to be the major players within the sub-pathway. Our study indicates that the composite genetic determinants related to the androgen–estrogen conversion are important for the induction of two hormone-associated cancers, particularly for the hormone-driven breast tumour subtypes. Estrogen exposure is the most important risk factor for breast and endometrial cancers. Genetic variation of the genes involved in estrogen metabolism has, however, not been consistently associated with these two cancers. We posited that the genetic risk associated with the estrogen metabolic genes is likely to be carried by multiple variants and is therefore most effectively detected by multi-variant analysis. We carried out a comprehensive association analysis of the estrogen metabolic pathway by interrogating SNPs within 35 genes of the pathway in three tumor samples from Sweden and Finland. Through pathway-based multi-variant association analysis, we showed that the genetic variation within the estrogen metabolic pathway is associated with risk for breast and endometrial cancers and that the genetic variation within the genes involved in androgen-to-estrogen conversion is particularly important for the development of ER–positive and sporadic breast tumors in postmenopausal women. Our study has demonstrated that the influence of genetic variation on hormone exposure has an impact on breast cancer development, especially on the development of hormone-driven breast tumor subtypes. Our study has also highlighted that future genetic studies of the estrogen metabolic genes should focus on the androgen-to-estrogen conversion process.
Collapse
Affiliation(s)
- Yen Ling Low
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Yuqing Li
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Yi Li
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sara Wedrén
- Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carine Bonnard
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mark M. Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds, United Kingdom
| | - Tuomas Heikkinen
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Central Hospital, Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland
- Department of Oncology, Radiology, and Clinical Immunology, Uppsala University Hospital, Uppsala, Sweden
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (JL); (ETL); (PH)
| | - Edison T. Liu
- Cancer Biology, Genome Institute of Singapore, Singapore, Singapore
- * E-mail: (JL); (ETL); (PH)
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
- * E-mail: (JL); (ETL); (PH)
| |
Collapse
|
27
|
Abstract
Detection of mutations in hereditary breast and ovarian cancer-related BRCA1 and BRCA2 genes is an effective method of cancer prevention and early detection. Different ethnic and geographical regions have different BRCA1 and BRCA2 mutation spectrum and prevalence. Along with the emerging targeted therapy, demand and uptake for rapid BRCA1/2 mutations testing will increase in a near future. However, current patients selection and genetic testing strategies in most countries impose significant lag in this practice. The knowledge of the genetic structure of particular populations is important for the developing of effective screening protocol and may provide more efficient approach for the individualization of genetic testing. Elucidating of founder effect in BRCA1/2 genes can have an impact on the management of hereditary cancer families on a national and international healthcare system level, making genetic testing more affordable and cost-effective. The purpose of this review is to summarize current evidence about the BRCA1/2 founder mutations diversity in European populations.
Collapse
|
28
|
BRCA1 and BRCA2 mutations across race and ethnicity: distribution and clinical implications. Curr Opin Obstet Gynecol 2010; 22:72-8. [PMID: 19841585 DOI: 10.1097/gco.0b013e328332dca3] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To summarize evidence on the prevalence and spectrum of BRCA1 and BRCA2 BRCA1/2 mutations across racial and ethnic groups and discuss implications for clinical practice. RECENT FINDINGS The prevalence of BRCA1/2 mutations is comparable among breast cancer patients of African, Asian, white, and Hispanic descent: approximately 1-4% per gene. Among ovarian cancer patients in North America, BRCA1/2 mutations are present in 13-15%. Between racial/ethnic groups, there are important differences in the spectrum of BRCA1 compared with BRCA2 mutations, in BRCA1/2 variants of uncertain significance, and in the accuracy of clinical models that predict BRCA1/2 mutation carriage. SUMMARY Given the significant prevalence of BRCA1/2 mutations across race/ethnicity, there is a need to expand and customize genetic counseling, genetic testing, and follow-up care for members of all racial/ethnic groups.
Collapse
|
29
|
Esteves VF, Thuler LCS, Amêndola LC, Koifman RJ, Koifman S, Frankel PP, Vieira RJS. Prevalence of BRCA1 and BRCA2 gene mutations in families with medium and high risk of breast and ovarian cancer in Brazil. Braz J Med Biol Res 2009; 42:453-7. [PMID: 19377795 DOI: 10.1590/s0100-879x2009000500009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 02/19/2009] [Indexed: 11/22/2022] Open
Abstract
Of all malignant neoplasias affecting women, breast cancer has the highest incidence rate in Brazil. The objective of the present study was to determine the frequency of genetic modifications in families with medium and high risk for breast and ovarian cancer from different regions of Brazil. An exploratory, descriptive study was carried out on the prevalence of the BRCA1 and BRCA2 mutations in case series of high-risk families for breast and/or ovarian cancer. After heredogram construction, a blood sample was taken and DNA extraction was performed in all index cases. The protein truncation test was used to screen for truncated mutations in exon 11 of the BRCA1 gene and in exons 10 and 11 of the BRCA2 gene. Of the 612 individuals submitted to genetic testing, 21 (3.4%), 19 women and 2 men, had mutations in the BRCA1 or BRCA2 genes. Of the 19 BRCA1 mutations found in the 18 participants, 7 consisted of ins6kb mutations, 4 were 5382insC, 3 were 2156delGinsCC, 2 were 185delAG, 1 was C1201G, 1 was C3522T, and 1 was 3450del4. With respect to the BRCA2 gene, 3 mutations were found: 5878del10, 5036delA and 4232insA (one case each). The prevalence of germline mutations in the BRCA1 and BRCA2 genes found in the present study was lower than reported by other studies on high-risk Brazilian populations. The inclusion of individuals with medium risk may have contributed to the lower prevalence observed.
Collapse
|
30
|
Palomba G, Loi A, Uras A, Fancello P, Piras G, Gabbas A, Cossu A, Budroni M, Contu A, Tanda F, Farris A, Orrù S, Floris C, Pisano M, Lovicu M, Santona MC, Landriscina G, Crisponi L, Palmieri G, Monne M. A role of BRCA1 and BRCA2 germline mutations in breast cancer susceptibility within Sardinian population. BMC Cancer 2009; 9:245. [PMID: 19619314 PMCID: PMC2724545 DOI: 10.1186/1471-2407-9-245] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 07/20/2009] [Indexed: 12/14/2022] Open
Abstract
Background In recent years, numerous studies have assessed the prevalence of germline mutations in BRCA1 and BRCA2 genes in various cohorts. We here extensively investigated the prevalence and geographical distribution of BRCA1-2 mutations in the entire genetically-homogeneous Sardinian population. The occurrence of phenotypic characteristics which may be predictive for the presence of BRCA1-2 germline mutations was also evaluated. Methods Three hundred and forty-eight breast cancer patients presenting a familial recurrence of invasive breast or ovarian carcinoma with at least two affected family members were screened for BRCA1-2 mutations by DHPLC analysis and DNA sequencing. Association of BRCA1 and BRCA2 mutational status with clinical and pathological parameters was evaluated by Pearson's Chi-Squared test. Results and Conclusion Overall, 8 BRCA1 and 5 BRCA2 deleterious mutations were detected in 35/348 (10%) families; majority (23/35;66%) of mutations was found in BRCA2 gene. The geographical distribution of BRCA1-2 mutations was related to three specific large areas of Sardinia, reflecting its ancient history: a) the Northern area, linguistically different from the rest of the island (where a BRCA2 c.8764_8765delAG mutation with founder effect was predominant); b) the Middle area, land of the ancient Sardinian population (where BRCA2 mutations are still more common than BRCA1 mutations); and c) the South-Western area, with many Phoenician and Carthaginian locations (where BRCA1 mutations are prevalent). We also found that phenotypic features such as high tumor grading and lack of expression of estrogen/progesterone receptors together with age at diagnosis and presence of ovarian cancer in the family may be predictive for the presence of BRCA1-2 germline mutations.
Collapse
Affiliation(s)
- Grazia Palomba
- Istituto Chimica Biomolecolare-CNR, Trav. La Crucca - Baldinca Li Punti, 07100 Sassari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Heikkinen T, Kärkkäinen H, Aaltonen K, Milne RL, Heikkilä P, Aittomäki K, Blomqvist C, Nevanlinna H. The breast cancer susceptibility mutation PALB2 1592delT is associated with an aggressive tumor phenotype. Clin Cancer Res 2009; 15:3214-22. [PMID: 19383810 DOI: 10.1158/1078-0432.ccr-08-3128] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE To determine the effect of the breast cancer susceptibility mutation PALB2 1592delT on tumor phenotype and patient survival. EXPERIMENTAL DESIGN We defined the PALB2 mutation status in 947 familial and 1,274 sporadic breast cancer patients and 1,079 population controls, and compared tumor characteristics and survival in mutation carriers relative to other familial and sporadic cases and to 79 BRCA1 and 104 BRCA2 mutation carrier cases. RESULTS The PALB2 1592delT mutation was found in 19 familial [2.0%; odds ratio, 11.03; 95% confidence interval (95% CI), 2.65-97.78; P < 0.0001] and eight sporadic patients (0.6%; odds ratio, 3.40; 95% CI, 0.68-32.95; P = 0.1207) compared with two (0.2%) control individuals. Tumors of the PALB2 mutation carriers presented triple negative (estrogen receptor negative/progesterone receptor negative/HER negative) phenotype more often (54.5%; P < 0.0001) than those of other familial (12.2%) or sporadic (9.4%) breast cancer patients. They were also more often of higher grade (P = 0.0027 and P = 0.0017, respectively) and had higher expression of Ki67 (P = 0.0004 and P = 0.0490, respectively). Carrying a PALB2 mutation was also associated with reduced survival, especially in familial cases (hazard ratio, 2.30; 95% CI, 1.01-5.24; P = 0.0466) and among familial patients with HER2-negative tumors (hazard ratio, 4.57; 95% CI, 1.96-10.64; P = 0.0004). Carrying a BRCA2 mutation was also found to be an independent predictor of poor survival at 10-year follow-up (P = 0.04). CONCLUSIONS The PALB2 1592delT mutation has a strong effect on familial breast cancer risk. The tumors rising in patients carrying this mutation manifest a phenotype associated with aggressive disease. Our results also suggest a significant impact of carrying a BRCA2 mutation on long-term breast cancer survival.
Collapse
Affiliation(s)
- Tuomas Heikkinen
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Haitian Z, Yunfei L, Jian Z, Jian L, Qinghua L, Fuqiang W. Mutation screening of the BRCA1 gene in sporadic breast cancer in southern Chinese populations. Breast 2008; 17:563-7. [DOI: 10.1016/j.breast.2008.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 06/20/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022] Open
|
33
|
Bartkova J, Tommiska J, Oplustilova L, Aaltonen K, Tamminen A, Heikkinen T, Mistrik M, Aittomäki K, Blomqvist C, Heikkilä P, Lukas J, Nevanlinna H, Bartek J. Aberrations of the MRE11-RAD50-NBS1 DNA damage sensor complex in human breast cancer: MRE11 as a candidate familial cancer-predisposing gene. Mol Oncol 2008; 2:296-316. [PMID: 19383352 PMCID: PMC5527773 DOI: 10.1016/j.molonc.2008.09.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Revised: 09/11/2008] [Accepted: 09/14/2008] [Indexed: 02/07/2023] Open
Abstract
The MRE11, RAD50, and NBS1 genes encode proteins of the MRE11-RAD50-NBS1 (MRN) complex critical for proper maintenance of genomic integrity and tumour suppression; however, the extent and impact of their cancer-predisposing defects, and potential clinical value remain to be determined. Here, we report that among a large series of approximately 1000 breast carcinomas, around 3%, 7% and 10% tumours showed aberrantly reduced protein expression for RAD50, MRE11 and NBS1, respectively. Such defects were more frequent among the ER/PR/ERBB2 triple-negative and higher-grade tumours, among familial (especially BRCA1/BRCA2-associated) rather than sporadic cases, and the NBS1 defects correlated with shorter patients' survival. The BRCA1-associated and ER/PR/ERBB2 triple-negative tumours also showed high incidence of constitutively active DNA damage signalling (gammaH2AX) and p53 aberrations. Sequencing the RAD50, MRE11 and NBS1 genes of 8 patients from non-BRCA1/2 breast cancer families whose tumours showed concomitant reduction/loss of all three MRN-complex proteins revealed two germline mutations in MRE11: a missense mutation R202G and a truncating mutation R633STOP (R633X). Gene transfer and protein analysis of cell culture models with mutant MRE11 implicated various destabilization patterns among the MRN complex proteins including NBS1, the abundance of which was restored by re-expression of wild-type MRE11. We propose that germline mutations qualify MRE11 as a novel candidate breast cancer susceptibility gene in a subset of non-BRCA1/2 families. Our data have implications for the concept of the DNA damage response as an intrinsic anti-cancer barrier, various components of which become inactivated during cancer progression and also represent the bulk of breast cancer susceptibility genes discovered to date.
Collapse
Affiliation(s)
- Jirina Bartkova
- Institute Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Copenhagen, Denmark
| | - Johanna Tommiska
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital (HUCH), FI-00029 Helsinki, Finland
| | - Lenka Oplustilova
- Institute Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Copenhagen, Denmark
- Laboratory of Genome Integrity, Palacky University, Olomouc, Czech Republic
| | - Kirsimari Aaltonen
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital (HUCH), FI-00029 Helsinki, Finland
- Department of Oncology, HUCH, Helsinki, Finland
| | - Anitta Tamminen
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital (HUCH), FI-00029 Helsinki, Finland
| | - Tuomas Heikkinen
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital (HUCH), FI-00029 Helsinki, Finland
| | - Martin Mistrik
- Institute Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Copenhagen, Denmark
- Laboratory of Genome Integrity, Palacky University, Olomouc, Czech Republic
| | | | - Carl Blomqvist
- Department of Oncology, HUCH, Helsinki, Finland
- Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | | | - Jiri Lukas
- Institute Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Copenhagen, Denmark
| | - Heli Nevanlinna
- Institute Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital (HUCH), FI-00029 Helsinki, Finland
| | - Jiri Bartek
- Institute Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Copenhagen, Denmark
- Laboratory of Genome Integrity, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
34
|
Bartkova J, Tommiska J, Oplustilova L, Aaltonen K, Tamminen A, Heikkinen T, Mistrik M, Aittomäki K, Blomqvist C, Heikkilä P, Lukas J, Nevanlinna H, Bartek J. Aberrations of the MRE11-RAD50-NBS1 DNA damage sensor complex in human breast cancer: MRE11 as a candidate familial cancer-predisposing gene. Mol Oncol 2008. [PMID: 19383352 DOI: 10.1016/molonc.2008.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The MRE11, RAD50, and NBS1 genes encode proteins of the MRE11-RAD50-NBS1 (MRN) complex critical for proper maintenance of genomic integrity and tumour suppression; however, the extent and impact of their cancer-predisposing defects, and potential clinical value remain to be determined. Here, we report that among a large series of approximately 1000 breast carcinomas, around 3%, 7% and 10% tumours showed aberrantly reduced protein expression for RAD50, MRE11 and NBS1, respectively. Such defects were more frequent among the ER/PR/ERBB2 triple-negative and higher-grade tumours, among familial (especially BRCA1/BRCA2-associated) rather than sporadic cases, and the NBS1 defects correlated with shorter patients' survival. The BRCA1-associated and ER/PR/ERBB2 triple-negative tumours also showed high incidence of constitutively active DNA damage signalling (gammaH2AX) and p53 aberrations. Sequencing the RAD50, MRE11 and NBS1 genes of 8 patients from non-BRCA1/2 breast cancer families whose tumours showed concomitant reduction/loss of all three MRN-complex proteins revealed two germline mutations in MRE11: a missense mutation R202G and a truncating mutation R633STOP (R633X). Gene transfer and protein analysis of cell culture models with mutant MRE11 implicated various destabilization patterns among the MRN complex proteins including NBS1, the abundance of which was restored by re-expression of wild-type MRE11. We propose that germline mutations qualify MRE11 as a novel candidate breast cancer susceptibility gene in a subset of non-BRCA1/2 families. Our data have implications for the concept of the DNA damage response as an intrinsic anti-cancer barrier, various components of which become inactivated during cancer progression and also represent the bulk of breast cancer susceptibility genes discovered to date.
Collapse
Affiliation(s)
- Jirina Bartkova
- Institute Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Aaltonen K, Blomqvist C, Amini RM, Eerola H, Aittomäki K, Heikkilä P, Nevanlinna H. Familial breast cancers without mutations in BRCA1 or BRCA2 have low cyclin E and high cyclin D1 in contrast to cancers in BRCA mutation carriers. Clin Cancer Res 2008; 14:1976-83. [PMID: 18381935 DOI: 10.1158/1078-0432.ccr-07-4100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We analyzed the expression of critical cell cycle regulators cyclin E and cyclin D1 in familial breast cancer, focusing on BRCA mutation-negative tumors. Cyclin E expression in tumors of BRCA1 or BRCA2 carriers is higher, and cyclin D1 expression lower, than in sporadic tumors. In familial non-BRCA1/2 tumors, cyclin E and cyclin D1 expression has not been studied. EXPERIMENTAL DESIGN Cyclin E and cyclin D1 immunohistochemical expression was studied in tissue microarrays consisting of 53 BRCA1, 58 BRCA2, 798 familial non-BRCA1/2, and 439 sporadic breast tumors. RESULTS In univariate analysis, BRCA1 tumors had significantly more frequently high cyclin E (88%) and low cyclin D1 (84%) expression than sporadic (54% and 49%, respectively) or familial non-BRCA1/2 (38% and 45%, respectively) tumors. BRCA2 tumors had significantly more frequently low cyclin D1 expression (68%) than sporadic or familial non-BRCA1/2 tumors and significantly more frequently high cyclin E expression than familial non-BRCA1/2 tumors. In a logistic regression model, cyclin expression, early age of onset, and estrogen receptor (ER) and human epidermal growth factor receptor-2 (HER2) status were the independent factors most clearly distinguishing tumors of BRCA1 mutation carriers from other familial breast cancers. High cyclin E and low cyclin D1 expression were also independent predictors of BRCA2 mutation when compared with familial non-BRCA1/2 tumors. Most interestingly, lower frequency of high cyclin E expression independently distinguished familial non-BRCA1/2 tumors also from sporadic ones. CONCLUSIONS Cyclin E and cyclin D1 expression distinguishes non-BRCA1/2 tumors from both sporadic and BRCA1- and BRCA2-associated tumors and may reflect different predisposition and pathogenesis in these groups.
Collapse
Affiliation(s)
- Kirsimari Aaltonen
- Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
36
|
Pylkäs K, Erkko H, Nikkilä J, Sólyom S, Winqvist R. Analysis of large deletions in BRCA1, BRCA2 and PALB2 genes in Finnish breast and ovarian cancer families. BMC Cancer 2008; 8:146. [PMID: 18501021 PMCID: PMC2413256 DOI: 10.1186/1471-2407-8-146] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 05/26/2008] [Indexed: 11/17/2022] Open
Abstract
Background BRCA1 and BRCA2 are the two most important genes associated with familial breast and ovarian cancer susceptibility. In addition, PALB2 has recently been identified as a breast cancer susceptibility gene in several populations. Here we have evaluated whether large genomic rearrangement in these genes could explain some of Finnish breast and/or ovarian cancer families. Methods Altogether 61 index patients of Northern Finnish breast and/or ovarian cancer families were analyzed by Multiplex ligation-dependent probe amplification (MLPA) method in order to identify exon deletions and duplications in BRCA1, BRCA2 and PALB2. The families have been comprehensively screened for germline mutation in these genes by conventional methods of mutation analysis and were found negative. Results We identified one large deletion in BRCA1, deleting the most part of the gene (exon 1A-13) in one family with family history of ovarian cancer. No large genomic rearrangements were identified in either BRCA2 or PALB2. Conclusion In Finland, women eligible for BRCA1 or BRCA2 mutation screening, when found negative, could benefit from screening for large genomic rearrangements at least in BRCA1. On the contrary, the genomic rearrangements in PALB2 seem not to contribute to the hereditary breast cancer susceptibility.
Collapse
Affiliation(s)
- Katri Pylkäs
- Laboratory of Cancer Genetics, Oulu University Hospital and University of Oulu/Biocenter Oulu, Oulu, Finland.
| | | | | | | | | |
Collapse
|
37
|
Cao AY, Huang J, Hu Z, Li WF, Ma ZL, Tang LL, Zhang B, Su FX, Zhou J, Di GH, Shen KW, Wu J, Lu JS, Luo JM, Yuan WT, Shen ZZ, Huang W, Shao ZM. Mutation analysis of BRIP1/BACH1 in BRCA1/BRCA2 negative Chinese women with early onset breast cancer or affected relatives. Breast Cancer Res Treat 2008; 115:51-5. [PMID: 18483852 DOI: 10.1007/s10549-008-0052-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 10/22/2022]
Abstract
The proper interaction between BRIP1/BACH1 and BRCA1 protein has been found to be crucial for BRCA1-mediated DNA double-strand break repair and BRIP1/BACH1 mutations were estimated to confer a relative risk for breast cancer of 2.0 in western populations. In Chinese population, BRCA1 mutations could explain a relatively large proportion of inherited breast cancer cases in comparison with BRCA2 mutations, which probably deduced a hypothesis that those genes involved in BRCA1-mediated DNA repair pathway might play a more significant role in the etiology of Chinese breast cancer. To investigate the contribution of BRIP1/BACH1 mutations to the predisposition of Chinese non-BRCA1/BRCA2 hereditary breast cancer, we screened all the coding exons and adjacent intronic splice junction regions of BRIP1/BACH1 in 357 Chinese women with early-onset breast cancer or affected relatives from five different breast disease clinical centers in China, using PCR-DHPLC and DNA sequencing analysis. Some genetic variants identified in the cases were then studied in 864 normal controls with no personal or family history of breast cancer. We found no protein-truncated mutations in our population, while a novel recurrent non-synonymous variant, Q944E, was detected in two independent families in contrast with none in the controls, interestingly, this alteration occurs in the BRCA1 binding domain of the BACH1 protein. Then a further study performed on the two mutation positive families revealed the partial co-segregation of this mutation allele with cancer. The novel alteration Q944E identified in our study possibly represents a rare disease-related allele, nevertheless functional analysis is still warranted to resolve the ability of this altered BACH1 protein to bind BRCA1. Altogether, the results of our study indicated that germline mutations in BRIP1/BACH were extremely rare in Chinese population and there was no evidence for the recommendation of BRIP1/BACH1 for genetic testing in Chinese.
Collapse
Affiliation(s)
- A-Yong Cao
- Department of Oncology, Breast Cancer Institute, Cancer Hospital/Cancer Institute, Shanghai Medical College, Institutes of Biomedical Science, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Heinonen M, Fagerholm R, Aaltonen K, Kilpivaara O, Aittomäki K, Blomqvist C, Heikkilä P, Haglund C, Nevanlinna H, Ristimäki A. Prognostic role of HuR in hereditary breast cancer. Clin Cancer Res 2008; 13:6959-63. [PMID: 18056170 DOI: 10.1158/1078-0432.ccr-07-1432] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE HuR is an mRNA-binding protein that enhances the stability of certain transcripts and can regulate their translation. Elevated cytoplasmic expression of HuR protein has been linked to carcinogenesis and is associated with reduced survival in breast, ovarian, and gastric adenocarcinomas. EXPERIMENTAL DESIGN Here, we have explored the relevance of HuR in familial breast cancer. Tumor samples were collected from patients with identified BRCA1 (n = 51) or BRCA2 (n = 47) mutations or familial non-BRCA1/2 cases (n = 525), and analyzed by immunohistochemistry. RESULTS Among familial non-BRCA1/2 breast cancer patients, cytoplasmic HuR protein expression was present in 39.4% of the cases and was associated with estrogen receptor negativity, progesterone receptor negativity, p53 positivity, high tumor grade, and ductal type of the tumor. In multivariate analysis, cytoplasmic HuR expression was an independent marker of reduced survival in the non-BRCA1/2 group along with tumor size >2 cm, lymph node metastasis, and high histologic grade. In patients with BRCA1 or BRCA2 mutations, cytoplasmic HuR expression was more frequent (62.7% for BRCA1 and 61.7% for BRCA2) than in the non-BRCA1/2 group, but in BRCA-mutated subgroups cytoplasmic HuR expression did not associate with survival. CONCLUSIONS Our results show that HuR is an important prognostic factor in familial breast cancer patients and may contribute to carcinogenesis in this disease.
Collapse
Affiliation(s)
- Mira Heinonen
- Department of Pathology/HUSLAB and Haartman Institute, Helsinki University Central Hospital, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rassi H, Gorovenko NG, Houshmand M, Podolskaya SV, Hashemi M, Majidzadeh K, Hosseini Akbari MH, Shafa Shariat Panahi M. Application of multiplex PCR with histopathologic features for detection of familial breast cancer in formalin-fixed, paraffin-embedded histological specimens. CYTOL GENET+ 2008. [DOI: 10.1007/s11956-008-2010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Kilpivaara O, Rantanen M, Tamminen A, Aittomäki K, Blomqvist C, Nevanlinna H. Comprehensive analysis of NuMA variation in breast cancer. BMC Cancer 2008; 8:71. [PMID: 18331640 PMCID: PMC2311318 DOI: 10.1186/1471-2407-8-71] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 03/10/2008] [Indexed: 12/27/2022] Open
Abstract
Background A recent genome wide case-control association study identified NuMA region on 11q13 as a candidate locus for breast cancer susceptibility. Specifically, the variant Ala794Gly was suggested to be associated with increased risk of breast cancer. Methods In order to evaluate the NuMa gene for breast cancer susceptibility, we have here screened the entire coding region and exon-intron boundaries of NuMa in 92 familial breast cancer patients and constructed haplotypes of the identified variants. Five missense variants were further screened in 341 breast cancer cases with a positive family history and 368 controls. We examined the frequency of Ala794Gly in an extensive series of familial (n = 910) and unselected (n = 884) breast cancer cases and controls (n = 906), with a high power to detect the suggested breast cancer risk. We also tested if the variant is associated with histopathologic features of breast tumors. Results Screening of NuMA resulted in identification of 11 exonic variants and 12 variants in introns or untranslated regions. Five missense variants that were further screened in breast cancer cases with a positive family history and controls, were each carried on a unique haplotype. None of the variants, or the haplotypes represented by them, was associated with breast cancer risk although due to low power in this analysis, very low risk alleles may go unrecognized. The NuMA Ala794Gly showed no difference in frequency in the unselected breast cancer case series or familial case series compared to control cases. Furthermore, Ala794Gly did not show any significant association with histopathologic characteristics of the tumors, though Ala794Gly was slightly more frequent among unselected cases with lymph node involvement. Conclusion Our results do not support the role of NuMA variants as breast cancer susceptibility alleles.
Collapse
Affiliation(s)
- Outi Kilpivaara
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The sequencing of the human genome and the growing understanding of its function are providing powerful new research tools for identifying genetic variants that are associated with complex diseases and traits. Somewhat less emphasis has been given to genes related to healthy aging, although the approaches for studying health-related traits are analogous to those used for disease-related studies. A critical step prior to the design of such studies is to define a healthy aging phenotype, which should be standardized to permit comparisons across studies and should involve more than simple longevity. Phenotypes of particular value for genetic research are those with high heritability and close relationships to gene products or pathways, preferably with minimal or at least measurable environmental influences. Appropriate study designs to identify genotype-phenotype associations include family-based linkage studies, candidate gene association analyses, and genome-wide association studies. Advances in genotyping and sequencing technologies, and the generation of the human haplotype map database, now permit the cost-effective investigation of the very large sample sizes needed for genome-wide association studies in unrelated individuals. Challenges in interpretation and translation of such studies include assessing the potential for bias and confounding, as well as determining the clinical validity and utility of findings proposed for wider application. Many such studies are currently supported or being planned across the National Institutes of Health (NIH), and lend themselves to the kind of coordinated clinical research envisioned in programs such as the NIH Roadmap.
Collapse
Affiliation(s)
- Teri A Manolio
- Office of Population Genomics at the National Human Genetics Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland 20892-2154, USA.
| |
Collapse
|
42
|
Eerola H, Heinonen M, Heikkilä P, Kilpivaara O, Tamminen A, Aittomäki K, Blomqvist C, Ristimäki A, Nevanlinna H. Basal cytokeratins in breast tumours among BRCA1, BRCA2 and mutation-negative breast cancer families. Breast Cancer Res 2008; 10:R17. [PMID: 18275599 PMCID: PMC2374973 DOI: 10.1186/bcr1863] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 11/23/2007] [Accepted: 02/14/2008] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Finding new immunohistochemical markers that are specific to hereditary breast cancer could help us to select candidates for BRCA1/BRCA2 mutation testing and to understand the biological pathways of tumour development. METHODS Using breast cancer tumour microarrays, immunohistochemical expression of cytokeratin (CK)-5/6, CK-14 and CK-17 was evaluated in breast tumours from BRCA1 families (n = 46), BRCA2 families (n = 40), non-BRCA1/BRCA2 families (n = 358) and familial breast cancer patients with one first-degree relative affected by breast or ovarian cancer (n = 270), as well as from patients with sporadic breast cancer (n = 364). Staining for CK-5/6, CK-14 and CK-17 was compared between these groups and correlated with other clinical and histological factors. RESULTS CK-5/6, CK-14 and CK-17 were detected mostly among oestrogen receptor (ER)-negative, progesterone receptor (PR)-negative and high-grade tumours. We found the highest percentages of samples positive for these CKs among ER-negative/HER2-negative tumours. In univariate analysis, CK-14 was significantly associated with tumours from BRCA1 (39%; P < 0.0005), BRCA2 (27%; P = 0.011), and non-BRCA1/BRCA2 (21%; P < 0.005) families, as compared with sporadic tumours (10%). However, in multivariate analysis, CKs were not found to be independently associated with BRCA1 or BRCA2 mutation status, and the most effective predictors of BRCA1 mutations were age at onset, HER2 status, and either ER or PR status. CONCLUSION Although our study confirms that basal CKs can help to identify BRCA1 mutation carriers, this effect was weaker than previously suggested and CKs did not independently predict BRCA1 mutation either from sporadic or familial breast cancer cases. The most effective, independent predictors of BRCA1 mutations were age at onset, HER2 status, and either ER or PR status, as compared with sporadic or non-BRCA1/BRCA2 cancers.
Collapse
Affiliation(s)
- Hannaleena Eerola
- Department of Oncology, Helsinki University Central Hospital, Haartmaninkatu, 00029 HUS, Helsinki Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Is BRCA1-5083del19, identified in breast cancer patients of Sicilian origin, a Calabrian founder mutation? Breast Cancer Res Treat 2008; 113:67-70. [PMID: 18228134 DOI: 10.1007/s10549-008-9906-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 01/15/2008] [Indexed: 01/20/2023]
Abstract
Various studies have been published in Italy regarding the different BRCA1 mutations, but only the BRCA1-5083del19 mutation is recurrent and specific to individuals of Italian descent with a founder effect on the Calabrian population. In our previous study, BRCA1-5083del19 mutation carriers were found in four index cases of 106 Sicilian patients selected for familial and/or hereditary breast/ovarian cancers. The high frequency rate of this mutation identified in the Sicilian population led us to perform haplotype analysis in all family carriers. Five highly polymorphic microsatellite markers were used (D17S1320, D17S932, D17S1323, D17S1326, D17S1325) to establish whether or not all these families had a common ancestor. This analysis showed that all mutation carriers of these families had a common allele. None of the non-carriers of the mutation or of the 50 healthy Sicilian controls showed this haplotype. This allelotype analysis highlighted the presence of a common allele (ancestor), thus suggesting the presence of a founder effect in the Sicilian population. Our results are in contrast with other studies but only the allelotype analysis of all the BRCA1-5083del19 mutation carriers of two neighboring regions of the south of Italy (Calabria and Sicily) will make it possible to identify the real ancestor of this mutation.
Collapse
|
44
|
Hartikainen JM, Kataja V, Pirskanen M, Arffman A, Ristonmaa U, Vahteristo P, Ryynänen M, Heinonen S, Kosma VM, Mannermaa A. Screening for BRCA1 and BRCA2 mutations in Eastern Finnish breast/ovarian cancer families. Clin Genet 2007; 72:311-20. [PMID: 17850627 DOI: 10.1111/j.1399-0004.2007.00866.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Familial aggregation is thought to account for 5-10% of all breast cancer cases, and high penetrance breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 explain < or =20% of these. Hundreds of mutations among breast/ovarian cancer families have been found in these two genes. The mutation spectrum and prevalence, however, varies widely among populations. Thirty-six breast/ovarian cancer families were identified from a population sample of breast and ovarian cancer cases among a relatively isolated population in Eastern Finland, and the frequency of BRCA1/BRCA2 germline mutations were screened using heteroduplex analysis, protein truncation test and sequencing. Five different mutations were detected in seven families (19.4%). Two mutations were found in BRCA1 and three in BRCA2. One of the mutations (BRCA2 4088insA) has not been detected elsewhere in Finland while the other four, 4216-2nt A-->G and 5370 C-->T in BRCA1 and 999del5 and 6503delTT in BRCA2, are recurrent Finnish founder mutations. These results add to the evidence of the geographical differences in distribution of Finnish BRCA1/BRCA2 mutations. This screen also provides further evidence for the presumption that the majority of Finnish BRCA1/BRCA2 founder mutations have been found and that the proportion of BRCA1/BRCA2 mutations in Finnish breast/ovarian cancer families is around 20%.
Collapse
Affiliation(s)
- J M Hartikainen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Milne RL, Ribas G, González-Neira A, Fagerholm R, Salas A, González E, Dopazo J, Nevanlinna H, Robledo M, Benítez J. ERCC4 associated with breast cancer risk: a two-stage case-control study using high-throughput genotyping. Cancer Res 2007; 66:9420-7. [PMID: 17018596 DOI: 10.1158/0008-5472.can-06-1418] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The failure of linkage studies to identify further high-penetrance susceptibility genes for breast cancer points to a polygenic model, with more common variants having modest effects on risk, as the most likely candidate. We have carried out a two-stage case-control study in two European populations to identify low-penetrance genes for breast cancer using high-throughput genotyping. Single-nucleotide polymorphisms (SNPs) were selected across preselected cancer-related genes, choosing tagSNPs and functional variants where possible. In stage 1, genotype frequencies for 640 SNPs in 111 genes were compared between 864 breast cancer cases and 845 controls from the Spanish population. In stage 2, candidate SNPs identified in stage 1 (nominal P < 0.01) were tested in a Finnish series of 884 cases and 1,104 controls. Of the 10 candidate SNPs in seven genes identified in stage 1, one (rs744154) on intron 1 of ERCC4, a gene belonging to the nucleotide excision repair pathway, was associated with recessive protection from breast cancer after adjustment for multiple testing in stage 2 (odds ratio, 0.57; Bonferroni-adjusted P = 0.04). After considering potential functional SNPs in the region of high linkage disequilibrium that extends across the entire gene and upstream into the promoter region, we concluded that rs744154 itself could be causal. Although intronic, it is located on the first intron, in a region that is highly conserved across species, and could therefore be functionally important. This study suggests that common intronic variation in ERCC4 is associated with protection from breast cancer.
Collapse
|
46
|
Tommiska J, Bartkova J, Heinonen M, Hautala L, Kilpivaara O, Eerola H, Aittomäki K, Hofstetter B, Lukas J, von Smitten K, Blomqvist C, Ristimäki A, Heikkilä P, Bartek J, Nevanlinna H. The DNA damage signalling kinase ATM is aberrantly reduced or lost in BRCA1/BRCA2-deficient and ER/PR/ERBB2-triple-negative breast cancer. Oncogene 2007; 27:2501-6. [PMID: 17982490 DOI: 10.1038/sj.onc.1210885] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ataxia-telangiectasia-mutated (ATM) kinase is a key transducer of DNA damage signals within the genome maintenance machinery and a tumour suppressor whose germline mutations predispose to familial breast cancer. ATM signalling is constitutively activated in early stages of diverse types of human malignancies and cell culture models in response to oncogene-induced DNA damage providing a barrier against tumour progression. As BRCA1 and BRCA2 are also components of the genome maintenance network and their mutations predispose to breast cancer, we have examined the ATM expression in human breast carcinomas of BRCA1/2 mutation carriers, sporadic cases and familial non-BRCA1/2 patients. Our results show that ATM protein expression is aberrantly reduced more frequently among BRCA1 (33%; P=0.0003) and BRCA2 (30%; P=0.0009) tumours than in non-BRCA1/2 tumours (10.7%). Furthermore, the non-BRCA1/2 tumours with reduced ATM expression were more often estrogen receptor (ER) negative (P=0.0002), progesterone receptor (PR) negative (P=0.004) and were of higher grade (P=0.0004). In our series of 1013 non-BRCA1/2 cases, ATM was more commonly deficient (20%; P=0.0006) and p53 was overabundant (47%; P<0.0000000001) among the difficult-to-treat ER/PR/ERBB2-triple-negative subset of tumours compared with cases that expressed at least one of these receptors (10 and 16% of aberrant ATM and p53, respectively). We propose a model of 'conditional haploinsufficiency' for BRCA1/2 under conditions of enhanced DNA damage in precancerous lesions resulting in more robust activation and hence increased selection for inactivation or loss of ATM in tumours of BRCA1/2 mutation carriers, with implications for genomic instability and curability of diverse subsets of human breast cancer.
Collapse
Affiliation(s)
- J Tommiska
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital (HUCH), Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Israeli ‘cancer shift’ over heart disease mortality may be led by greater risk in women with high intake of n-6 fatty acids. Eur J Cancer Prev 2007; 16:486-94. [DOI: 10.1097/cej.0b013e3280145b6d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Origin and distribution of the BRCA2-8765delAG mutation in breast cancer. BMC Cancer 2007; 7:132. [PMID: 17640379 PMCID: PMC1940259 DOI: 10.1186/1471-2407-7-132] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 07/19/2007] [Indexed: 11/15/2022] Open
Abstract
Background The BRCA2-8765delAG mutation was firstly described in breast cancer families from French-Canadian and Jewish-Yemenite populations; it was then reported as a founder mutation in Sardinian families. We evaluated both the prevalence of the BRCA2-8765delAG variant in Sardinia and the putative existence of a common ancestral origin through a haplotype analysis of breast cancer family members carrying such a mutation. Methods Eight polymorphic microsatellite markers (D13S1250, centromeric, to D13S267, telomeric) spanning the BRCA2 gene locus were used for the haplotype analysis. Screening for the 8765delAG mutation was performed by PCR-based amplification of BRCA2-exon 20, followed by automated sequencing. Results Among families with high recurrence of breast cancer (≥ 3 cases in first-degree relatives), those from North Sardinia shared the same haplotype whereas the families from French Canadian and Jewish-Yemenite populations presented distinct genetic assets at the BRCA2 locus. Screening for the BRCA2-8765delAG variant among unselected and consecutively-collected breast cancer patients originating from the entire Sardinia revealed that such a mutation is present in the northern part of the island only [9/648 (1.4%) among cases from North Sardinia versus 0/493 among cases from South Sardinia]. Conclusion The BRCA2-8765delAG has an independent origin in geographically and ethnically distinct populations, acting as a founder mutation in North but not in South Sardinia. Since BRCA2-8765delAG occurs within a triplet repeat sequence of AGAGAG, our study further confirmed the existence of a mutational hot-spot at this genomic position (additional genetic factors within each single population might be involved in generating such a mutation).
Collapse
|
49
|
Rashid MU, Zaidi A, Torres D, Sultan F, Benner A, Naqvi B, Shakoori AR, Seidel-Renkert A, Farooq H, Narod S, Amin A, Hamann U. Prevalence of BRCA1 and BRCA2 mutations in Pakistani breast and ovarian cancer patients. Int J Cancer 2006; 119:2832-9. [PMID: 16998791 DOI: 10.1002/ijc.22269] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Among Asian countries, Pakistan has the highest rates of breast and ovarian cancer. To assess the contribution of the BRCA1 and BRCA2 germ line mutations to these high rates, we conducted the first study of 176 Pakistani breast and ovarian cancer patients, selected on family history and on age of diagnosis. Comprehensive BRCA mutation screening was performed using a range of techniques, including denaturing high-pressure liquid chromatography, single strand conformational polymorphism analysis and protein truncation test, followed by DNA sequencing. Thirty deleterious germ-line mutations were identified in the 176 families (17.0%), including 23 in BRCA1 and 7 in BRCA2. Four mutations, 185delAG, 185insA, S1503X and R1835X, were recurrent; these accounted for 52% of all identified BRCA1 mutations. Haplotype analyses suggested founder effects for 3 of these. The prevalence of BRCA1 or BRCA2 mutations was 42.8% for families with multiple cases of breast cancer, and was 50.0% for the breast/ovarian cancer families. The prevalence of mutations was 11.9% for single cases of early-onset breast cancer (< or =30 years) and was 9.0% for single cases of early-onset ovarian cancer (< or =45 years). Our findings show that BRCA mutations account for a substantial proportion of hereditary breast/ovarian cancer and early-onset breast and ovarian cancer cases in Pakistan.
Collapse
Affiliation(s)
- Muhammad U Rashid
- Division of Molecular Genome Analysis, Molecular Genetics of Breast Cancer, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Karhu R, Laurila E, Kallioniemi A, Syrjäkoski K. Large genomic BRCA2 rearrangements and male breast cancer. ACTA ACUST UNITED AC 2006; 30:530-4. [PMID: 17113724 DOI: 10.1016/j.cdp.2006.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Germ-line mutations of the BRCA2 gene are the highest known risk factors for male breast cancer (MBC). Mutations in BRCA2 are mainly point mutations in contrast to BRCA1 in which large genomic rearrangements are quite common. In recent literature, however, genomic alterations of BRCA2 have been linked especially to male breast cancer families. We wanted to screen large genomic deletions and duplications of BRCA2 among Finnish male breast cancer patients. METHODS We used multiplex ligation-dependent probe amplification (MLPA) to detect large genomic rearrangements in the BRCA2 gene among 36 unselected Finnish male breast cancer patients previously tested and found negative for Finnish BRCA1 and BRCA2 founder mutations. RESULTS No genomic mutations of BRCA2 nor CHEK2*1100delC point mutations, also included in the assay, were found in this study. CONCLUSION Large genomic BRCA2 rearrangements were not found among our 36 Finnish male breast cancer patients. Screening of large BRCA2 rearrangements is not likely to be advantageous in Finland.
Collapse
Affiliation(s)
- Ritva Karhu
- Laboratory of Cancer Genetics, Tampere University Hospital and Institute of Medical Technology, University of Tampere, Teiskontie 35, FIN-33520 Tampere, Finland.
| | | | | | | |
Collapse
|