1
|
Jiao Y, Yan J, Sutaria DS, Lu P, Vicchiarelli M, Reyna Z, Ruiz-Delgado J, Burk E, Moon E, Shah NR, Spellberg B, Bonomo RA, Drusano GL, Louie A, Luna BM, Bulitta JB. Population pharmacokinetics and humanized dosage regimens matching the peak, area, trough, and range of amikacin plasma concentrations in immune-competent murine bloodstream and lung infection models. Antimicrob Agents Chemother 2024; 68:e0139423. [PMID: 38289076 PMCID: PMC10916399 DOI: 10.1128/aac.01394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/22/2023] [Indexed: 03/07/2024] Open
Abstract
Amikacin is an FDA-approved aminoglycoside antibiotic that is commonly used. However, validated dosage regimens that achieve clinically relevant exposure profiles in mice are lacking. We aimed to design and validate humanized dosage regimens for amikacin in immune-competent murine bloodstream and lung infection models of Acinetobacter baumannii. Plasma and lung epithelial lining fluid (ELF) concentrations after single subcutaneous doses of 1.37, 13.7, and 137 mg/kg of body weight were simultaneously modeled via population pharmacokinetics. Then, humanized amikacin dosage regimens in mice were designed and prospectively validated to match the peak, area, trough, and range of plasma concentration profiles in critically ill patients (clinical dose: 25-30 mg/kg of body weight). The pharmacokinetics of amikacin were linear, with a clearance of 9.93 mL/h in both infection models after a single dose. However, the volume of distribution differed between models, resulting in an elimination half-life of 48 min for the bloodstream and 36 min for the lung model. The drug exposure in ELF was 72.7% compared to that in plasma. After multiple q6h dosing, clearance decreased by ~80% from the first (7.35 mL/h) to the last two dosing intervals (~1.50 mL/h) in the bloodstream model. Likewise, clearance decreased by 41% from 7.44 to 4.39 mL/h in the lung model. The humanized dosage regimens were 117 mg/kg of body weight/day in mice [administered in four fractions 6 h apart (q6h): 61.9%, 18.6%, 11.3%, and 8.21% of total dose] for the bloodstream and 96.7 mg/kg of body weight/day (given q6h as 65.1%, 16.9%, 10.5%, and 7.41%) for the lung model. These validated humanized dosage regimens and population pharmacokinetic models support translational studies with clinically relevant amikacin exposure profiles.
Collapse
Affiliation(s)
- Yuanyuan Jiao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Jun Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Dhruvitkumar S. Sutaria
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Peggy Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michael Vicchiarelli
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Zeferino Reyna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Juan Ruiz-Delgado
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elizabeth Burk
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Eugene Moon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Nirav R. Shah
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Brad Spellberg
- Los Angeles County-USC (LAC+USC) Medical Center, Los Angeles, California, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Case VA Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - George L. Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Brian M. Luna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
2
|
Contejean A, Maillard A, Canouï E, Kernéis S, Fantin B, Bouscary D, Parize P, Garcia-Vidal C, Charlier C. Advances in antibacterial treatment of adults with high-risk febrile neutropenia. J Antimicrob Chemother 2023; 78:2109-2120. [PMID: 37259598 DOI: 10.1093/jac/dkad166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND High-risk febrile neutropenia (HR-FN) is a life-threatening complication in patients with haematological malignancies or receiving myelosuppressive chemotherapy. Since the last international guidelines were published over 10 years ago, there have been major advances in the understanding and management of HR-FN, including on antibiotic pharmacokinetics and discontinuation/de-escalation strategies. OBJECTIVES Summarizing major advances in the field of antibacterial therapy in patients with HR-FN: empirical therapy, pharmacokinetics of antibiotics and antibiotic stewardship. SOURCES Narrative review based on literature review from PubMed. We focused on studies published between 2010 and 2023 about the pharmacokinetics of antimicrobials, management of antimicrobial administration, and discontinuation/de-escalation strategies. We did not address antimicrobial prophylaxis, viral or fungal infections. CONTENT Several high-quality publications have highlighted important modifications of antibiotic pharmacokinetics in HR-FN, with standard dosages exposing patients to underdosing. These recent clinical and population pharmacokinetics studies help improve management protocols with optimized initial dosing and infusion rules for β-lactams, vancomycin, daptomycin and amikacin; they highlight the potential benefits of therapeutic drug monitoring. A growing body of evidence also shows that antibiotic discontinuation/de-escalation strategies are beneficial for bacterial ecology and patients' outcome. We further discuss methods and limitations for implementation of such protocols in haematology. IMPLICATIONS We highlight recent information about the management of antibacterial therapy in HR-FN that might be considered in updated guidelines for HR-FN management.
Collapse
Affiliation(s)
- Adrien Contejean
- Service d'Hématologie, Centre Hospitalier Annecy Genevois, 1 Avenue de l'hôpital, F-74370 Epagny Metz-Tessy, France
- Équipe Mobile d'Infectiologie, AP-HP, APHP.CUP, Hôpital Cochin, F-75014 Paris, France
- Université Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Alexis Maillard
- Équipe Mobile d'Infectiologie, AP-HP, APHP.CUP, Hôpital Cochin, F-75014 Paris, France
| | - Etienne Canouï
- Équipe Mobile d'Infectiologie, AP-HP, APHP.CUP, Hôpital Cochin, F-75014 Paris, France
| | - Solen Kernéis
- Université Paris Cité, Faculté de Médecine, F-75006 Paris, France
- Équipe de Prévention du Risque Infectieux, AP-HP, Hôpital Bichat, F-75018 Paris, France
- Université Paris Cité, INSERM, IAME, F-75018 Paris, France
| | - Bruno Fantin
- Université Paris Cité, Faculté de Médecine, F-75006 Paris, France
- Département de Médecine Interne, AP-HP, Hôpital Beaujon, F-92110, Clichy, France
| | - Didier Bouscary
- Université Paris Cité, Faculté de Médecine, F-75006 Paris, France
- Service d'Hématologie, AP-HP, APHP.CUP, Hôpital Cochin, F-75014 Paris, France
| | - Perrine Parize
- Service de Maladies Infectieuses, AP-HP, APHP.CUP, Hôpital Necker-Enfants Malades, F-75015 Paris, France
| | - Carolina Garcia-Vidal
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
- CIBERINF, Madrid, Spain
| | - Caroline Charlier
- Équipe Mobile d'Infectiologie, AP-HP, APHP.CUP, Hôpital Cochin, F-75014 Paris, France
- Université Paris Cité, Faculté de Médecine, F-75006 Paris, France
- National Reference Center Listeriosis WHO Collaborating Center, Institut Pasteur, F-75015 Paris, France
- Biology of Infection Unit, Inserm U1117 Institut Pasteur, F-75015 Paris, France
| |
Collapse
|
3
|
Madaule J, Valenzuela F, Mittaine M, Gallois Y, Baladi B, Murris M, Calmels MN, Concordet D, Gandia P. Exploration of the relationship between cumulative exposure to tobramycin and ototoxicity in patients with cystic fibrosis. J Cyst Fibros 2023; 22:944-948. [PMID: 37088635 DOI: 10.1016/j.jcf.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Aminoglycosides (AGs), such as tobramycin, are essential antibiotics in the management of pulmonary infections in patients with cystic fibrosis (CF). They induce ototoxicity without the relationship being clearly described in the literature. Our aim is to propose a mathematical and statistical model describing the relationship between the estimated cumulative exposure (Area Under the Curve, AUC) to tobramycin and ototoxicity with audiogram interpretation in young patients with CF. METHODS Cumulative AUCs were estimated for each course of tobramycin, for the 106 individuals with CF (between 4 and 22 years of age) enrolled in this retrospective study (35 who had received IV tobramycin, 71 controls). Mean hearing loss was calculated for each audiogram and a statistical model was developed to predict hearing loss. RESULTS The model confirms a significant relationship between cumulative tobramycin exposure and changes in hearing acuity: Meanhearingloss=2.7+(3×10-5)×AUC_tobramycin+individual_susceptibility However, the ototoxic effect is not clinically perceptible (mean hearing loss: 3.8 dB). The impact of AUC on hearing loss is minor in these subjects who received a limited number of courses of tobramycin (median: 5 courses). CONCLUSION A significant relationship between cumulative exposure to tobramycin and ototoxicity was demonstrated. Individual treatment susceptibility should not be overlooked. As ototoxicity is not clinically perceptible in the study subjects, hearing tests should be continued during adulthood to provide individualized medical guidance and to obtain a lifetime analysis of the relationship between exposure and hearing loss.
Collapse
Affiliation(s)
- Justine Madaule
- Pharmacokinetics and Toxicology Laboratory, Toulouse University Hospital, France
| | - Félix Valenzuela
- ENT, Otoneurology and Paediatric ENT, Toulouse University Hospital, France
| | - Marie Mittaine
- Paediatrics - Pulmonology and Allergology, Toulouse University Hospital, France; Cystic Fibrosis Resources and Competence Centre, Toulouse University Hospital, France
| | - Yohan Gallois
- ENT, Otoneurology and Paediatric ENT, Toulouse University Hospital, France
| | - Blandine Baladi
- ENT, Otoneurology and Paediatric ENT, Toulouse University Hospital, France; Cystic Fibrosis Resources and Competence Centre, Toulouse University Hospital, France
| | - Marlène Murris
- Adult Cystic Fibrosis Center, Pulmonology, CHU Toulouse, France
| | - Marie-Noelle Calmels
- ENT, Otoneurology and Paediatric ENT, Toulouse University Hospital, France; Cystic Fibrosis Resources and Competence Centre, Toulouse University Hospital, France
| | - Didier Concordet
- INTHERES (Therapeutic Innovation and Resistance), Toulouse University, INRAE (French National Research Institute for Agriculture, Food and Environment), ENVT (National Veterinary School of Toulouse), France
| | - Peggy Gandia
- Pharmacokinetics and Toxicology Laboratory, Toulouse University Hospital, France; INTHERES (Therapeutic Innovation and Resistance), Toulouse University, INRAE (French National Research Institute for Agriculture, Food and Environment), ENVT (National Veterinary School of Toulouse), France
| |
Collapse
|
4
|
Lafaurie M, Burdet C, Hammas K, Goldwirt L, Berçot B, Sauvageon H, Houze P, Fourmont M, Mentré F, Molina JM. Population pharmacokinetics and pharmacodynamics of imipenem in neutropenic adult patients. Infect Dis Now 2023; 53:104625. [PMID: 36174960 DOI: 10.1016/j.idnow.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Imipenem is recommended in patients with chemotherapy-induced febrile neutropenia. Although alterations of antibiotic pharmacokinetic parameters have been reported in such patients, little data is available on imipenem. METHODS Prospective, single-center, non-interventional pharmacokinetic cohort study in adults with chemotherapy-induced febrile neutropenia. Critically ill patients were excluded. Imipenem was administered as a 30-min infusion of 1000 mg/8h. Total imipenem plasma concentrations were assayed by high-performance liquid chromatography during neutropenia and just after neutrophil recovery. We estimated population pharmacokinetic parameters of imipenem by non-linear mixed-effect modelling using the SAEM algorithm. RESULTS Sixteen patients were included in the study, including nine women (56.3%), median age 37 years (range, 18.3; 78.3). Eight patients had an hematological malignancy (50.0%) and seven had a solid tumor (43.8%). Imipenem pharmacokinetics were best described by a one-compartment model with first-order elimination. Mean values for imipenem were: clearance 14.3L/h and 10.9L/h and volume of distribution 20.7L and 14.5 L during neutropenia and after recovery, respectively. Imipenem plasma area under the curve at steady state was reduced by 23% during neutropenia. However, all patients achieved a pharmacodynamic target of %fT>MIC ≥ 40% with a regimen of 1000 mg/8 h or 500 mg/6 h, for MICs up to 2 mg/L. The pharmacodynamics profile for a target of %fT > MIC = 100% was however less favorable with 500 mg/6 h or 1000 mg/8 h either during or after neutropenia. CONCLUSION Pharmacokinetic/pharmacodynamic goals for imipenem were similar in patients during and after neutropenia, despite reduced plasma exposure.
Collapse
Affiliation(s)
- M Lafaurie
- AP-HP, Hôpital Saint-Louis, Lariboisière, Département de Maladies Infectieuses et Tropicales, F-75010 Paris, France.
| | - C Burdet
- AP-HP, Hôpital Bichat, Département d'Épidémiologie, Biostatistique et Recherche Clinique, F-75018 Paris, France; Université de Paris, IAME, INSERM, F-75018 Paris, France
| | - K Hammas
- AP-HP, Hôpital Bichat, Département d'Épidémiologie, Biostatistique et Recherche Clinique, F-75018 Paris, France
| | - L Goldwirt
- AP-HP, Hôpital Saint-Louis, Laboratoire de Pharmacologie Biologique, F-75010 Paris, France
| | - B Berçot
- Université de Paris, IAME, INSERM, F-75018 Paris, France; AP-HP, Hôpital Saint-Louis, Service de Bactériologie, F-75010 Paris, France
| | - H Sauvageon
- AP-HP, Hôpital Saint-Louis, Laboratoire de Pharmacologie Biologique, F-75010 Paris, France; Université de Paris, UMR S976, INSERM, F-75006 Paris, France
| | - P Houze
- Université de Paris, UTCBS, CNRS UMR8258, INSERM U1022, Paris, France
| | - M Fourmont
- AP-HP, Hôpital Saint-Louis, Service d'hématologie, unité Adolescent et jeunes adultes, F-75010 Paris, France
| | - F Mentré
- AP-HP, Hôpital Bichat, Département d'Épidémiologie, Biostatistique et Recherche Clinique, F-75018 Paris, France; Université de Paris, IAME, INSERM, F-75018 Paris, France
| | - J M Molina
- AP-HP, Hôpital Saint-Louis, Lariboisière, Département de Maladies Infectieuses et Tropicales, F-75010 Paris, France; Université de Paris, UMR S976, INSERM, F-75006 Paris, France
| |
Collapse
|
5
|
Gill CM, Nicolau DP. Piperacillin/Tazobactam Dose Optimization in the Setting of Piperacillin/Tazobactam-susceptible, Carbapenem-resistant Pseudomonas aeruginosa: Time to Reconsider Susceptible Dose Dependent. Clin Ther 2023; 45:72-77. [PMID: 36593150 DOI: 10.1016/j.clinthera.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE This study evaluates the in vitro potency of piperacillin/tazobactam among a global collection of carbapenem-resistant Pseudomonas aeruginosa (CR-PA) and assesses the adequacy of the Clinical and Laboratory Standards Institute (CLSI) P aeruginosa breakpoint dose in the setting of CR-PA using Monte Carlo simulation. METHODS Isolates were collected during the Enhancing Rational Antimicrobials Against Carbapenem-Resistant P aeruginosa (ERACE-PA) Global Surveillance Program. Piperacillin/tazobactam MICs were determined using broth microdilution per CLSI standards. A 5000-patient Monte Carlo simulation was performed using various piperacillin/tazobactam dosing regimens to determine the probability of target attainment (PTA) for 50% free time above the MIC. The MIC distribution of piperacillin/tazobactam-susceptible CR-PA was used to calculate cumulative fraction of response (CFR). Optimal PTA and CFR were defined as 90% target achievement. FINDINGS A total of 28% of tested CR-PA were piperacillin/tazobactam susceptible. Of these, 71% had MICs of 8 to 16/4 mg/L. Doses of 3.375 g q6h as 0.5-hour infusion (current breakpoint dose) had adequate PTA at MIC of 8/4 mg/L (CFR, 81%); however, extended infusion of 3 or 4 hours improved PTA at 16/4 mg/L (CFR, >90%). Doses of 4.5 g q8h as a 4-hour infusion and 4.5 g q6h as a 3-hour infusion both provide >90% PTA at an MIC of 16 mg/L (CFRs, 97 and 100%, respectively), favoring susceptible dose dependent interpretive criteria with these regimens. IMPLICATIONS Although susceptible, piperacillin/ tazobactam has reduced potency in CR-PA. If piperacillin/tazobactam is used for susceptible CR-PA, high-doses (4.5 g q6h) and extended infusion (3 hours or continuous infusion) are needed to optimize exposure.
Collapse
Affiliation(s)
- Christian M Gill
- Center for Anti-Infective Research & Development Hartford Hospital, Hartford, Connecticut
| | - David P Nicolau
- Center for Anti-Infective Research & Development Hartford Hospital, Hartford, Connecticut; Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut.
| | | |
Collapse
|
6
|
Zhao C, Chirkova A, Rosenborg S, Palma Villar R, Lindberg J, Hobbie SN, Friberg LE. Population pharmacokinetics of apramycin from first-in-human plasma and urine data to support prediction of efficacious dose. J Antimicrob Chemother 2022; 77:2718-2728. [PMID: 35849148 PMCID: PMC9525081 DOI: 10.1093/jac/dkac225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Apramycin is under development for human use as EBL-1003, a crystalline free base of apramycin, in face of increasing incidence of multidrug-resistant bacteria. Both toxicity and cross-resistance, commonly seen for other aminoglycosides, appear relatively low owing to its distinct chemical structure. OBJECTIVES To perform a population pharmacokinetic (PPK) analysis and predict an efficacious dose based on data from a first-in-human Phase I trial. METHODS The drug was administered intravenously over 30 min in five ascending-dose groups ranging from 0.3 to 30 mg/kg. Plasma and urine samples were collected from 30 healthy volunteers. PPK model development was performed stepwise and the final model was used for PTA analysis. RESULTS A mammillary four-compartment PPK model, with linear elimination and a renal fractional excretion of 90%, described the data. Apramycin clearance was proportional to the absolute estimated glomerular filtration rate (eGFR). All fixed effect parameters were allometrically scaled to total body weight (TBW). Clearance and steady-state volume of distribution were estimated to 5.5 L/h and 16 L, respectively, for a typical individual with absolute eGFR of 124 mL/min and TBW of 70 kg. PTA analyses demonstrated that the anticipated efficacious dose (30 mg/kg daily, 30 min intravenous infusion) reaches a probability of 96.4% for a free AUC/MIC target of 40, given an MIC of 8 mg/L, in a virtual Phase II patient population with an absolute eGFR extrapolated to 80 mL/min. CONCLUSIONS The results support further Phase II clinical trials with apramycin at an anticipated efficacious dose of 30 mg/kg once daily.
Collapse
Affiliation(s)
- Chenyan Zhao
- Department of Pharmacy, Uppsala University, SE-75123, Uppsala, Sweden
| | | | - Staffan Rosenborg
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-14186, Stockholm, Sweden
| | - Rodrigo Palma Villar
- Department Chemical and Pharmaceutical Safety, RISE Research Institutes of Sweden, Sweden
| | - Johan Lindberg
- Department Chemical and Pharmaceutical Safety, RISE Research Institutes of Sweden, Sweden
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, CH-8006, Zurich, Switzerland
| | - Lena E Friberg
- Department of Pharmacy, Uppsala University, SE-75123, Uppsala, Sweden
| |
Collapse
|
7
|
Haseeb A, Faidah HS, Alghamdi S, Alotaibi AF, Elrggal ME, Mahrous AJ, Abuhussain SSA, Obaid NA, Algethamy M, AlQarni A, Khogeer AA, Saleem Z, Iqbal MS, Ashgar SS, Radwan RM, Mutlaq A, Fatani N, Sheikh A. Dose optimization of β-lactams antibiotics in pediatrics and adults: A systematic review. Front Pharmacol 2022; 13:964005. [PMID: 36210807 PMCID: PMC9532942 DOI: 10.3389/fphar.2022.964005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: β-lactams remain the cornerstone of the empirical therapy to treat various bacterial infections. This systematic review aimed to analyze the data describing the dosing regimen of β-lactams. Methods: Systematic scientific and grey literature was performed in accordance with Preferred Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The studies were retrieved and screened on the basis of pre-defined exclusion and inclusion criteria. The cohort studies, randomized controlled trials (RCT) and case reports that reported the dosing schedule of β-lactams are included in this study. Results: A total of 52 studies met the inclusion criteria, of which 40 were cohort studies, 2 were case reports and 10 were RCTs. The majority of the studies (34/52) studied the pharmacokinetic (PK) parameters of a drug. A total of 20 studies proposed dosing schedule in pediatrics while 32 studies proposed dosing regimen among adults. Piperacillin (12/52) and Meropenem (11/52) were the most commonly used β-lactams used in hospitalized patients. As per available evidence, continuous infusion is considered as the most appropriate mode of administration to optimize the safety and efficacy of the treatment and improve the clinical outcomes. Conclusion: Appropriate antibiotic therapy is challenging due to pathophysiological changes among different age groups. The optimization of pharmacokinetic/pharmacodynamic parameters is useful to support alternative dosing regimens such as an increase in dosing interval, continuous infusion, and increased bolus doses.
Collapse
Affiliation(s)
- Abdul Haseeb
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hani Saleh Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Al Baha University, Al Baha, Saudi Arabia
| | - Amal F. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud Essam Elrggal
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad J. Mahrous
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Najla A. Obaid
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Manal Algethamy
- Department of Infection Prevention and Control Program, Alnoor Specialist Hospital, Makkah, Saudi Arabia
| | - Abdullmoin AlQarni
- Infectious Diseases Department, Alnoor Specialist Hospital, Makkah, Saudi Arabia
| | - Asim A. Khogeer
- Plan and Research Department, General Directorate of Health Affairs of Makkah Region, Ministry of Health, Makkah, Saudi Arabia
- Medical Genetics Unit, Maternity and Children Hospital, Makkah Healthcare Cluster, Ministry of Health, Makkah, Saudi Arabia
| | - Zikria Saleem
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya Univrsity, Multan, Pakistan
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sami S. Ashgar
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rozan Mohammad Radwan
- Pharmaceutical Care Department, Alnoor Specialist Hospital, Ministry of Health, Makkah, Saudi Arabia
| | - Alaa Mutlaq
- General Department of Pharmaceutical Care, Ministry of Health, Riyadh, Saudi Arabia
| | | | - Aziz Sheikh
- Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Berry AV, Kuti JL. Pharmacodynamic Thresholds for Beta-Lactam Antibiotics: A Story of Mouse Versus Man. Front Pharmacol 2022; 13:833189. [PMID: 35370708 PMCID: PMC8971958 DOI: 10.3389/fphar.2022.833189] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/24/2022] [Indexed: 01/20/2023] Open
Abstract
Beta-lactams remain a critical member of our antibiotic armamentarium and are among the most commonly prescribed antibiotic classes in the inpatient setting. For these agents, the percentage of time that the free concentration remains above the minimum inhibitory concentration (%fT > MIC) of the pathogen has been shown to be the best predictor of antibacterial killing effects. However, debate remains about the quantity of fT > MIC exposure needed for successful clinical response. While pre-clinical animal based studies, such as the neutropenic thigh infection model, have been widely used to support dosing regimen selection for clinical development and susceptibility breakpoint evaluation, pharmacodynamic based studies in human patients are used validate exposures needed in the clinic and for guidance during therapeutic drug monitoring (TDM). For the majority of studied beta-lactams, pre-clinical animal studies routinely demonstrated the fT > MIC should exceed approximately 40–70% fT > MIC to achieve 1 log reductions in colony forming units. In contrast, clinical studies tend to suggest higher exposures may be needed, but tremendous variability exists study to study. Herein, we will review and critique pre-clinical versus human-based pharmacodynamic studies aimed at determining beta-lactam exposure thresholds, so as to determine which targets may be best suited for optimal dosage selection, TDM, and for susceptibility breakpoint determination. Based on our review of murine and clinical literature on beta-lactam pharmacodynamic thresholds, murine based targets specific to each antibiotic are most useful during dosage regimen development and susceptibility breakpoint assessment, while a range of exposures between 50 and 100% fT > MIC are reasonable to define the beta-lactam TDM therapeutic window for most infections.
Collapse
|
9
|
Simulated intravenous versus inhaled tobramycin with and without intravenous ceftazidime evaluated against hypermutable Pseudomonas aeruginosa via a dynamic biofilm model and mechanism-based modeling. Antimicrob Agents Chemother 2022; 66:e0220321. [PMID: 35041509 DOI: 10.1128/aac.02203-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa, biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin with and without intravenous ceftazidime. Two hypermutable P. aeruginosa isolates, CW30 (MICCAZ 0.5mg/L, MICTOB 2mg/L) and CW8 (MICCAZ 2mg/L, MICTOB 8mg/L), were investigated for 120h in dynamic in vitro biofilm studies. Treatments were: intravenous ceftazidime 9g/day (33% lung fluid penetration); intravenous tobramycin 10mg/kg 24-hourly (50% lung fluid penetration); inhaled tobramycin 300mg 12-hourly, and both ceftazidime-tobramycin combinations. Total and less-susceptible planktonic and biofilm bacteria were quantified over 120h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7log10 CFU/mL) and biofilm (>3.8log10 CFU/cm2) bacteria, and resistance amplification by 120h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts, and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation.
Collapse
|
10
|
Musher DM, Arasaratnam RJ. Contributions of animal studies to the understanding of infectious diseases. Clin Infect Dis 2021; 74:1872-1878. [PMID: 34555163 DOI: 10.1093/cid/ciab844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/14/2022] Open
Abstract
Experiments in animals have played an integral role in furthering basic understanding of the pathophysiology, host immune response, diagnosis, and treatment of infectious diseases. However, competing demands of modern-day clinical training and increasingly stringent requirements to perform animal research have reduced the exposure of infectious disease physicians to animal studies. For practitioners of infectious diseases and, especially, for contemporary trainees in infectious diseases, it is important to appreciate this historical body of work and its impact on current clinical practice. In this article, we provide an overview of some major contributions of animal studies to the field of infectious diseases. Areas covered include transmission of infection, elucidation of innate and adaptive host immune responses, testing of antimicrobials, pathogenesis and treatment of endocarditis, osteomyelitis, intraabdominal and urinary tract infection, treatment of infection associated with a foreign body or in the presence of neutropenia, and toxin-mediated disease.
Collapse
Affiliation(s)
- Daniel M Musher
- Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas, USA
| | - Reuben J Arasaratnam
- Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
11
|
Lang Y, Shah NR, Tao X, Reeve SM, Zhou J, Moya B, Sayed ARM, Dharuman S, Oyer JL, Copik AJ, Fleischer BA, Shin E, Werkman C, Basso KB, Lucas DD, Sutaria DS, Mégroz M, Kim TH, Loudon-Hossler V, Wright A, Jimenez-Nieves RH, Wallace MJ, Cadet KC, Jiao Y, Boyce JD, LoVullo ED, Schweizer HP, Bonomo RA, Bharatham N, Tsuji BT, Landersdorfer CB, Norris MH, Shin BS, Louie A, Balasubramanian V, Lee RE, Drusano GL, Bulitta JB. Combating Multidrug-Resistant Bacteria by Integrating a Novel Target Site Penetration and Receptor Binding Assay Platform Into Translational Modeling. Clin Pharmacol Ther 2021; 109:1000-1020. [PMID: 33576025 PMCID: PMC10662281 DOI: 10.1002/cpt.2205] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
Multidrug-resistant bacteria are causing a serious global health crisis. A dramatic decline in antibiotic discovery and development investment by pharmaceutical industry over the last decades has slowed the adoption of new technologies. It is imperative that we create new mechanistic insights based on latest technologies, and use translational strategies to optimize patient therapy. Although drug development has relied on minimal inhibitory concentration testing and established in vitro and mouse infection models, the limited understanding of outer membrane permeability in Gram-negative bacteria presents major challenges. Our team has developed a platform using the latest technologies to characterize target site penetration and receptor binding in intact bacteria that inform translational modeling and guide new discovery. Enhanced assays can quantify the outer membrane permeability of β-lactam antibiotics and β-lactamase inhibitors using multiplex liquid chromatography tandem mass spectrometry. While β-lactam antibiotics are known to bind to multiple different penicillin-binding proteins (PBPs), their binding profiles are almost always studied in lysed bacteria. Novel assays for PBP binding in the periplasm of intact bacteria were developed and proteins identified via proteomics. To characterize bacterial morphology changes in response to PBP binding, high-throughput flow cytometry and time-lapse confocal microscopy with fluorescent probes provide unprecedented mechanistic insights. Moreover, novel assays to quantify cytosolic receptor binding and intracellular drug concentrations inform target site occupancy. These mechanistic data are integrated by quantitative and systems pharmacology modeling to maximize bacterial killing and minimize resistance in in vitro and mouse infection models. This translational approach holds promise to identify antibiotic combination dosing strategies for patients with serious infections.
Collapse
Affiliation(s)
- Yinzhi Lang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Nirav R. Shah
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Present address: Jansen R&D, Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Xun Tao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Present address: Genentech USA,Inc., South San Francisco, California, USA
| | - Stephanie M. Reeve
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jieqiang Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Alaa R. M. Sayed
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Suresh Dharuman
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeremiah L. Oyer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Alicja J. Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Brett A. Fleischer
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Eunjeong Shin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Carolin Werkman
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Deanna Deveson Lucas
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Dhruvitkumar S. Sutaria
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Present address: Genentech USA,Inc., South San Francisco, California, USA
| | - Marianne Mégroz
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Tae Hwan Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Gyeongbuk, Korea
| | - Victoria Loudon-Hossler
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Amy Wright
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Rossie H. Jimenez-Nieves
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Miranda J. Wallace
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Keisha C. Cadet
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yuanyuan Jiao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - John D. Boyce
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Eric D. LoVullo
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Herbert P. Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Robert A. Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Nagakumar Bharatham
- BUGWORKS Research India Pvt. Ltd., Centre for Cellular & Molecular Platforms, National Centre for Biological Sciences, Bengaluru, Karnataka, India
| | - Brian T. Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, Buffalo, New York, USA
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael H. Norris
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography and the Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Venkataraman Balasubramanian
- BUGWORKS Research India Pvt. Ltd., Centre for Cellular & Molecular Platforms, National Centre for Biological Sciences, Bengaluru, Karnataka, India
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - George L. Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
12
|
Affiliation(s)
- A.P. Macgowan
- Bristol Centre for Antimicrobial Research and Evaluation, Southmead Health Services NHS Trust and University of Bristol, Department of Medical Microbiology, Southmead Hospital, Westbury-on-Trym, Bristol, BS10 5NB, UK. Tel: ; Fax:
| | - K.E. Bowker
- Bristol Centre for Antimicrobial Research and Evaluation, Southmead Health Services NHS Trust and University of Bristol, Department of Medical Microbiology, Southmead Hospital, Westbury-on-Trym, Bristol, BS10 5NB, UK. Tel: ; Fax:
| |
Collapse
|
13
|
Soriano F, Aguilar L, Ponte C. In Vitro Antibiotic Sensitivity Testing Breakpoints and Therapeutic Activity in Induced Infections in Animal Models. J Chemother 2021. [DOI: 10.1080/1120009x.1997.12113188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- F. Soriano
- Department of Medical Microbiology, Fundación Jiménez Díaz
| | | | - C. Ponte
- Department of Medical Microbiology, Fundación Jiménez Díaz
| |
Collapse
|
14
|
Martinez MN, Soback S. An introduction to the JVPT special issue on antimicrobial drugs. J Vet Pharmacol Ther 2020; 44:133-136. [PMID: 32997371 DOI: 10.1111/jvp.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, US Food and Drug Administration, Rockville, MD, USA
| | - Stefan Soback
- National Residue Control Laboratory, Kimron Veterinary Institute, Ministry of Agriculture, Beit Dagan, Israel
| |
Collapse
|
15
|
Chen X, Thomsen TR, Winkler H, Xu Y. Influence of biofilm growth age, media, antibiotic concentration and exposure time on Staphylococcus aureus and Pseudomonas aeruginosa biofilm removal in vitro. BMC Microbiol 2020; 20:264. [PMID: 32831025 PMCID: PMC7444035 DOI: 10.1186/s12866-020-01947-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Biofilm is known to be tolerant towards antibiotics and difficult to eradicate. Numerous studies have reported minimum biofilm eradication concentration (MBEC) values of antibiotics for many known biofilm pathogens. However, the experimental parameters applied in these studies differ considerably, and often the rationale behind the experimental design are not well described. This makes it difficult to compare the findings. To demonstrate the importance of experimental parameters, we investigated the influence of biofilm growth age, antibiotic concentration and treatment duration, and growth media on biofilm eradication. Additionally, OSTEOmycin™, a clinically used antibiotic containing allograft bone product, was tested for antibiofilm efficacy. RESULTS The commonly used Calgary biofilm device was used to grow 24 h and 72 h biofilms of Staphylococcus aureus and Pseudomonas aeruginosa, which were treated with time-dependent vancomycin (up to 3000 mg L- 1) and concentration-dependent tobramycin (up to 80 mg L- 1), respectively. Two common bacteriological growth media, tryptic soy broth (TSB) and cation-adjusted Mueller Hinton broth (CaMHB), were tested. We found for both species that biofilms were more difficult to kill in TSB than in CaMHB. Furthermore, young biofilms (24 h) were easier to eradicate than old biofilms (72 h). In agreement with vancomycin being time-dependent, extension of the vancomycin exposure increased killing of S. aureus biofilms. Tobramycin treatment of 24 h P. aeruginosa biofilms was found concentration-dependent and time-independent, however, increasing killing was indicated for 72 h P. aeruginosa biofilms. Treatment with tobramycin containing OSTEOmycin T™ removed 72 h and 168 h P. aeruginosa biofilms after 1 day treatment, while few 72 h S. aureus biofilms survived after 2 days treatment with vancomycin containing OSTEOmycin V™. CONCLUSIONS This study demonstrated biofilm removal efficacy was influenced by media, biofilm age and antibiotic concentration and treatment duration. It is therefore necessary to taking these parameters into consideration when designing experiments. The results of OSTEOmycin™ products indicated that simple in vitro biofilm test could be used for initial screening of antibiofilm products. For clinical application, a more clinically relevant biofilm model for the specific biofilm infection in question should be developed to guide the amount of antibiotics used for local antibiofilm treatment.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark
| | - Trine Rolighed Thomsen
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark
- Life Science Division, Danish Technological Institute, Aarhus, Denmark
| | - Heinz Winkler
- Osteitis Centre, Privatklinik Döbling, Vienna, Austria
| | - Yijuan Xu
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark.
- Life Science Division, Danish Technological Institute, Aarhus, Denmark.
| |
Collapse
|
16
|
Dhaese S, Van Vooren S, Boelens J, De Waele J. Therapeutic drug monitoring of β-lactam antibiotics in the ICU. Expert Rev Anti Infect Ther 2020; 18:1155-1164. [PMID: 32597263 DOI: 10.1080/14787210.2020.1788387] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Individualizing antibiotic therapy is paramount to improve clinical outcomes while minimizing the risk of toxicity and antimicrobial therapy. β-lactam antibiotics are amongst the drugs most commonly prescribed in the Intensive Care Unit (ICU). The pharmacokinetics of β-lactam antibiotics are profoundly altered in critically ill patients, leading to the failure of standard drug dosing regimens to result in adequate drug concentrations. Therapeutic Drug Monitoring (TDM) of β-lactam antibiotics is a promising tool to help optimize β-lactam antibiotic therapy. AREAS COVERED The rationale behind TDM for β-lactam antibiotics is explained, as well as some more practical aspects such as when to sample, what concentrations to strive for and how to use it in clinical practice. We also discuss microbiological and analytical considerations, knowledge gaps, and future perspectives of β-lactam antibiotics TDM in ICU patients. EXPERT OPINION TDM of β-lactam antibiotics has been studied intensively in recent years. While TDM may not yet be widely available, and targets need to be further refined, TDM of β-lactam antibiotics will help to optimize antibiotic therapy in the critically ill patient, as an integrated part of an antimicrobial stewardship program.
Collapse
Affiliation(s)
- Sofie Dhaese
- Department of Internal Medicine and Pediatrics, Ghent University Hospital , Ghent, Belgium
| | - Sarah Van Vooren
- Department of Diagnostic Sciences, Ghent University Hospital , Ghent, Belgium
| | - Jerina Boelens
- Department of Diagnostic Sciences, Ghent University Hospital , Ghent, Belgium
| | - Jan De Waele
- Department of Internal Medicine and Pediatrics, Ghent University Hospital , Ghent, Belgium
| |
Collapse
|
17
|
Booranalertpaisarn V, Eiam-Ong S, Wittayalertpanya S, Kanjanabutr T, Ayudhya DPN. Pharmacokinetics of Ceftazidime in CAPD-Related Peritonitis. Perit Dial Int 2020. [DOI: 10.1177/089686080302300610] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ObjectiveThe aim of this study was to measure and evaluate the appropriateness of the actual concentrations of serum and dialysate ceftazidime in Thai continuous ambulatory peritoneal dialysis (CAPD) patients.DesignProspective and descriptive study of patients treated following the International Society for Peritoneal Dialysis (ISPD) 2000 recommendation for the empiric therapy of CAPD-related peritonitis.SettingInstitutional level of clinical care.PatientsCAPD-related peritonitis patients were diagnosed by dialysate effluent white blood cell count of more than 100/mm3and polymorphonuclear leukocytes of at least 50%. There were 10 patients, all at least 18 years of age, entered; all completed the study.InterventionIn accordance with the ISPD 2000 recommendations, the antibiotic regimen comprised continuous intraperitoneal (IP) cefazolin and once-daily IP ceftazidime. Cefazolin was administered as loading and continuous maintenance doses of 500 and 125 mg/L dialysate respectively. Ceftazidime (20 mg/kg body weight) was given IP once daily. Duration of treatment was 96 hours.Main Outcome MeasuresSerum and dialysate effluent samples of the 10 CAPD patients with peritonitis were measured for ceftazidime levels, which were used for the development of pharmacokinetic equations that could predict drug concentrations at any treatment time.ResultsFollowing ceftazidime administration as in the ISPD 2000 recommendation, serum ceftazidime levels were above 8 μg/mL, the minimum inhibitory concentration (MIC) recommended by NCCLS, throughout 24 hours. Dialysate ceftazidime levels were below the MIC for total periods of 4.19 and 6.26 hours in day 1 and day 4 respectively. The clinical response rate to the empiric regimen was 90%.ConclusionsOnce-daily IP administration of ceftazidime according to the ISPD 2000 recommendation could not provide adequately therapeutic levels of ceftazidime in dialysate throughout 24 hours. Despite this finding and the poor post-antibiotic property of ceftazidime, the empiric regimen including once-daily IP ceftazidime could yield good clinical outcome.
Collapse
|
18
|
Growcott EJ, Cariaga TA, Morris L, Zang X, Lopez S, Ansaldi DA, Gold J, Gamboa L, Roth T, Simmons RL, Osborne CS. Pharmacokinetics and pharmacodynamics of the novel monobactam LYS228 in a neutropenic murine thigh model of infection. J Antimicrob Chemother 2020; 74:108-116. [PMID: 30325447 DOI: 10.1093/jac/dky404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022] Open
Abstract
Objectives The neutropenic murine thigh infection model and a dose-fractionation approach were used to determine the pharmacokinetic/pharmacodynamic (PK/PD) relationship of LYS228, a novel monobactam antibiotic with activity against Enterobacteriaceae including carbapenem-resistant strains. Methods Mice (n = 4 per group) were inoculated with Enterobacteriaceae strains via intramuscular injection. Two hours post-bacterial inoculation, treatment with LYS228 was initiated. Animals were euthanized with CO2 24 h after the start of therapy and bacterial counts (log10 cfu) per thigh were determined. PK parameters were calculated using free (f) plasma drug levels. Results Following a dose-fractionation study, non-linear regression analysis determined that the predominant PK/PD parameter associated with antibacterial efficacy of LYS228 was the percentage of the dosing interval that free drug concentrations remained above the MIC (%fT>MIC). In a dose-dependent manner, LYS228 reduced the thigh bacterial burden in models established with Enterobacteriaceae producing β-lactamase enzymes of all classes (e.g. ESBLs, NDM-1, KPC, CMY-2 and OXA-48). The range of the calculated static dose was 86-649 mg/kg/day for the isolates tested, and the magnitude of the driver of efficacy was 37-83 %fT>MIC. %fT>MIC was confirmed as the parameter predominantly driving efficacy as evidenced by a strong coefficient of determination (r2 = 0.68). Neutrophils had minimal impact on the effect of LYS228 in the murine thigh infection model. Conclusions LYS228 is efficacious in murine thigh infection models using β-lactamase-producing strains of Enterobacteriaceae, including those expressing metallo-β-lactamases, ESBLs and serine carbapenemases, with the PK/PD driver of efficacy identified as %T>MIC.
Collapse
Affiliation(s)
- E J Growcott
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - T A Cariaga
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - L Morris
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - X Zang
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - S Lopez
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - D A Ansaldi
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - J Gold
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - L Gamboa
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - T Roth
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - R L Simmons
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - C S Osborne
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| |
Collapse
|
19
|
Synergistic Meropenem-Tobramycin Combination Dosage Regimens against Clinical Hypermutable Pseudomonas aeruginosa at Simulated Epithelial Lining Fluid Concentrations in a Dynamic Biofilm Model. Antimicrob Agents Chemother 2019; 63:AAC.01293-19. [PMID: 31427301 DOI: 10.1128/aac.01293-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
Exacerbations of chronic Pseudomonas aeruginosa infections are a major treatment challenge in cystic fibrosis due to biofilm formation and hypermutation. We aimed to evaluate different dosage regimens of meropenem and tobramycin as monotherapies and in combination against hypermutable carbapenem-resistant P. aeruginosa A hypermutable P. aeruginosa isolate (meropenem and tobramycin MICs, 8 mg/liter) was investigated in the dynamic CDC biofilm reactor over 120 h. Regimens were meropenem as the standard (2 g every 8 h, 30% epithelial lining fluid [ELF] penetration) and as a continuous infusion (CI; 6 g/day, 30% and 60% ELF penetration) and tobramycin at 10 mg/kg of body weight every 24 h (50% ELF penetration). The time courses of totally susceptible and less-susceptible bacteria and MICs were determined, and antibiotic concentrations were quantified by liquid chromatography-tandem mass spectrometry. All monotherapies failed, with the substantial regrowth of planktonic (>6 log10 CFU/ml) and biofilm (≥6 log10 CFU/cm2) bacteria occurring. Except for the meropenem CI (60% ELF penetration), all monotherapies amplified less-susceptible planktonic and biofilm bacteria by 120 h. The meropenem standard regimen with tobramycin caused initial killing followed by considerable regrowth with resistance (meropenem MIC, 64 mg/liter; tobramycin MIC, 32 mg/liter) for planktonic and biofilm bacteria. The combination containing the meropenem CI at both levels of ELF penetration synergistically suppressed the regrowth of total planktonic bacteria and the resistance of planktonic and biofilm bacteria. The combination with the meropenem CI at 60% ELF penetration, in addition, synergistically suppressed the regrowth of total biofilm bacteria. Standard regimens of meropenem and tobramycin were ineffective against planktonic and biofilm bacteria. The combination with meropenem CI exhibited enhanced bacterial killing and resistance suppression of carbapenem-resistant hypermutable P. aeruginosa.
Collapse
|
20
|
Abstract
Temocillin, a 6-α-methoxy derivative of ticarcillin, is a forgotten antibiotic that has recently been rediscovered, and issues about clinical breakpoints and optimal therapeutic regimens are still ongoing. Temocillin spectrum is almost restricted to Enterobacteriaceae. The addition of the α-methoxy moiety on ticarcillin confers resistance to hydrolysis by Ambler classes A and C β-lactamases (extended spectrum β-lactamases, Klebsiella pneumoniae carbapenemase and AmpC hyperproduced enzymes). Temocillin is bactericidal, and the effect of inoculum size on its activity is relatively mild. The proportion of spontaneous resistant mutants in vitro to temocillin is low, as found in vivo. After intravenous infusion, temocillin showed a prolonged elimination half-life of approximately 5 h. The percentage of protein binding of temocillin is high (approximately 80%), and is concentration-dependent. Temocillin clearance is mainly renal, and urinary recovery is high, ranging from 72 to 82% after 24 h. Furthermore, the penetration of temocillin into bile and peritoneal fluid is high, but poor into cerebrospinal fluid. The cumulative percentage of a 24-h period during which the free drug concentration exceeds the minimum inhibitory concentration (fT > MIC) at steady-state pharmacokinetic conditions seems to be the best pharmacokinetic/pharmacodynamic (PK/PD) index correlating with temocillin efficacy. An fT > MIC of 40-50% is associated with antibacterial effect and survival in vivo. Monte Carlo simulations performed in critically ill patients showed that the 2 g every 12 h and 2 g every 8 h regimens provide a 95% probability of target attainment of 40% fT > MIC up to an MIC of 8 mg/L. In less severely ill patients or in specific foci of infection, such as urinary tract infection, a 4 g daily regimen should be adequate for strains with temocillin MIC up to 16 mg/L. Data regarding actual wild-type MIC distribution, clinical efficacy, PK profiling in volunteers or patients, and PD targets are scarce, and further studies are required to support appropriate dosing recommendations and determination of clinical breakpoints.
Collapse
Affiliation(s)
- Kevin Alexandre
- Infectious Diseases Department, Rouen University Hospital, GRAM (EA2656), Rouen, France
| | - Bruno Fantin
- Univ. Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, 75018, Paris, France.
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, 100 boulevard du Général Leclerc, 92110, Clichy, France.
| |
Collapse
|
21
|
Gumbo T, Alffenaar JWC. Pharmacokinetic/Pharmacodynamic Background and Methods and Scientific Evidence Base for Dosing of Second-line Tuberculosis Drugs. Clin Infect Dis 2018; 67:S267-S273. [PMID: 30496455 PMCID: PMC6260166 DOI: 10.1093/cid/ciy608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A World Health Organization workshop systematically examined the evidence base for dosing second-line tuberculosis drugs, identifying knowledge gaps. To fill these in, pharmacokinetics/pharmacodynamics, Monte Carlo experiments, and artificial intelligence algorithms were used in hollow-fiber model studies and clinical data analyses.
Collapse
Affiliation(s)
- Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Jan-Willem C Alffenaar
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, The Netherlands
| |
Collapse
|
22
|
Huang DB. A pharmacokinetic and pharmacodynamic evaluation of iclaprim activity against wild-type and corresponding thymidine kinase-deficient Staphylococcus aureus in a mouse abscess model. J Med Microbiol 2018; 68:77-80. [PMID: 30451652 DOI: 10.1099/jmm.0.000878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The efficacy of iclaprim against Staphylococcus aureus ATCC 25923 and its corresponding isogenic TK-deficient mutant S. aureus strain AH 1246 mixed with cytodex beads was studied in a mouse abscess infection model. Iclaprim (2-80 mg kg-1) administered as a single dose via the subcutaneous route (2 h post-infection) was efficacious against the TK-deficient mutant with 1 and 2 log10 c.f.u. reductions at the 24 h post initiation of treatment time point, at doses of 14.4 and 30 mg kg-1, respectively. In contrast, poor antibacterial activity was observed against corresponding wild-type (TK-competent) S. aureus strain, ATCC 25923, at all doses tested. The PK/PD parameter which appeared to correlate best with efficacy was AUC/MIC (R2=0.91). This study showed that TK-deficient mutants may be used to evaluate DHFRi activity and PK/PD relationship in a mouse abscess model.
Collapse
Affiliation(s)
- David B Huang
- 1Motif BioSciences, New York, NY, USA.,2Rutgers New Jersey Medical School, Trenton, NJ, USA
| |
Collapse
|
23
|
In Vivo Pharmacodynamic Characterization of a Novel Odilorhabdin Antibiotic, NOSO-502, against Escherichia coli and Klebsiella pneumoniae in a Murine Thigh Infection Model. Antimicrob Agents Chemother 2018; 62:AAC.01067-18. [PMID: 29987156 DOI: 10.1128/aac.01067-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/22/2018] [Indexed: 11/20/2022] Open
Abstract
NOSO-502 is a novel odilorhabdin antibiotic with potent activity against Enterobacteriaceae The goal of these studies was to determine which pharmacokinetic/pharmacodynamic (PK/PD) indices and magnitude best correlated with efficacy in the murine thigh infection model. Six Escherichia coli and 6 Klebsiella pneumoniae isolates were utilized. MICs were determined using CLSI methods and ranged from 1 to 4 mg/liter. A neutropenic murine thigh infection model was utilized for all treatment studies. Single-dose plasma pharmacokinetics were determined in mice after subcutaneous administration of 7.81, 31.25, 125, and 500 mg/kg of body weight. Pharmacokinetic studies exhibited peak concentration (Cmax) values of 1.49 to 84.6 mg/liter, area under the concentration-time curve from 0 h to infinity (AUC0-∞) values of 1.94 to 352 mg · h/liter, and beta elimination half-lives of 0.41 to 1.1 h. Dose fractionation studies were performed using total drug doses of 7.81 mg/kg to 2,000 mg/kg fractionated into regimens of every 3 h (q3h), q6h, q12h, or q24h. Nonlinear regression analysis demonstrated that AUC/MIC was the PK/PD parameter that best correlated with efficacy (R2, 0.86). In subsequent studies, we used the neutropenic murine thigh infection model to determine the magnitude of NOSO-502 AUC/MIC needed for the efficacy against a diverse group of Enterobacteriaceae Mice were treated with 4-fold-increasing doses (range, 3.91 to 1,000 mg/kg) of NOSO-502 every 6 h. The mean 24-h free-drug AUC/MIC (fAUC)/MIC) magnitudes associated with net stasis and 1-log kill endpoint for K. pneumoniae were 4.22 and 17.7, respectively. The mean fAUC/MIC magnitude associated with net stasis endpoint for E. coli was 10.4. NOSO-502 represents a promising novel, first-in-class odilorhabdin antibiotic with in vivo potency against Enterobacteriaceae.
Collapse
|
24
|
Optimization of a Meropenem-Tobramycin Combination Dosage Regimen against Hypermutable and Nonhypermutable Pseudomonas aeruginosa via Mechanism-Based Modeling and the Hollow-Fiber Infection Model. Antimicrob Agents Chemother 2018; 62:AAC.02055-17. [PMID: 29437610 DOI: 10.1128/aac.02055-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/24/2018] [Indexed: 12/19/2022] Open
Abstract
Hypermutable Pseudomonas aeruginosa strains are prevalent in patients with cystic fibrosis and rapidly become resistant to antibiotic monotherapies. Combination dosage regimens have not been optimized against such strains using mechanism-based modeling (MBM) and the hollow-fiber infection model (HFIM). The PAO1 wild-type strain and its isogenic hypermutable PAOΔmutS strain (MICmeropenem of 1.0 mg/liter and MICtobramycin of 0.5 mg/liter for both) were assessed using 96-h static-concentration time-kill studies (SCTK) and 10-day HFIM studies (inoculum, ∼108.4 CFU/ml). MBM of SCTK data were performed to predict expected HFIM outcomes. Regimens studied in the HFIM were meropenem at 1 g every 8 h (0.5-h infusion), meropenem at 3 g/day with continuous infusion, tobramycin at 10 mg/kg of body weight every 24 h (1-h infusion), and both combinations. Meropenem regimens delivered the same total daily dose. Time courses of total and less susceptible populations and MICs were determined. For the PAOΔmutS strain in the HFIM, all monotherapies resulted in rapid regrowth to >108.7 CFU/ml with near-complete replacement by less susceptible bacteria by day 3. Meropenem every 8 h with tobramycin caused >7-log10 bacterial killing followed by regrowth to >6 log10 CFU/ml by day 5 and high-level resistance (MICmeropenem, 32 mg/liter; MICtobramycin, 8 mg/liter). Continuous infusion of meropenem with tobramycin achieved >8-log10 bacterial killing without regrowth. For PAO1, meropenem monotherapies suppressed bacterial growth to <4 log10 over 7 to 9 days, with both combination regimens achieving near eradication. An MBM-optimized meropenem plus tobramycin regimen achieved synergistic killing and resistance suppression against a difficult-to-treat hypermutable P. aeruginosa strain. For the combination to be maximally effective, it was critical to achieve the optimal shape of the concentration-time profile for meropenem.
Collapse
|
25
|
Identification of the In Vivo Pharmacokinetics and Pharmacodynamic Driver of Iclaprim. Antimicrob Agents Chemother 2018; 62:AAC.02550-17. [PMID: 29378717 DOI: 10.1128/aac.02550-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/22/2018] [Indexed: 11/20/2022] Open
Abstract
The neutropenic murine thigh infection model was used to define the pharmacokinetic/pharmacodynamic index linked to efficacy of iclaprim against Staphylococcus aureus ATCC 29213 and Staphylococcus pneumoniae ATCC 10813. The 24-h area under the curve (AUC)/MIC index was most closely linked to efficacy for S. aureus (R2, 0.65), while both the 24-h AUC/MIC and the percentage of time that drug concentrations remain above the MIC (%T>MIC) were strongly associated with effect (R2, 0.86 for both parameters) for S. pneumoniae.
Collapse
|
26
|
Droege ME, Van Fleet SL, Mueller EW. Application of Antibiotic Pharmacodynamics and Dosing Principles in Patients With Sepsis. Crit Care Nurse 2018; 36:22-32. [PMID: 27037336 DOI: 10.4037/ccn2016881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Sepsis is associated with marked mortality, which may be reduced by prompt initiation of adequate, appropriate doses of antibiotic. Critically ill patients often have physiological changes that reduce blood and tissue concentrations of antibiotic and high rates of multidrug-resistant pathogens, which may affect patients' outcomes. All critical care professionals, including critical care nurses, should understand antibiotic pharmacokinetics and pharmacodynamics to ensure sound antibiotic dosing and administration strategies for optimal microbial killing and patients' outcomes. Effective pathogen eradication occurs when the dose of antibiotic reaches or maintains optimal concentrations relative to the minimum inhibitory concentration for the pathogen. Time-dependent antibiotics, such as β-lactams, can be given as extended or continuous infusions. Concentration-dependent antibiotics such as aminoglycosides are optimized by using high, once-daily dosing strategies with serum concentration monitoring. Vancomycin and fluoroquinolones are dependent on both time and concentration above the minimum inhibitory concentration.
Collapse
Affiliation(s)
- Molly E Droege
- Molly E. Droege is a clinical pharmacy specialist, trauma, surgery, orthopedics, UC Health-University of Cincinnati Medical Center, and an assistant professor of clinical pharmacy and an adjunct instructor of advanced clinical nursing University of Cincinnati, Cincinnati, Ohio.Suzanne L. Van Fleet is a clinical pharmacy specialist, critical care, UC Health-West Chester Hospital, West Chester, Ohio, and an assistant professor of clinical pharmacy and an adjunct instructor of advanced clinical nursing, University of Cincinnati.Eric W. Mueller is an assistant director, clinical services and research, and a clinical pharmacy specialist, critical care, Department of Pharmacy Services, UC Health-University of Cincinnati Medical Center. He is also an adjunct associate professor of pharmacy practice and an adjunct instructor of advanced clinical nursing, University of Cincinnati
| | - Suzanne L Van Fleet
- Molly E. Droege is a clinical pharmacy specialist, trauma, surgery, orthopedics, UC Health-University of Cincinnati Medical Center, and an assistant professor of clinical pharmacy and an adjunct instructor of advanced clinical nursing University of Cincinnati, Cincinnati, Ohio.Suzanne L. Van Fleet is a clinical pharmacy specialist, critical care, UC Health-West Chester Hospital, West Chester, Ohio, and an assistant professor of clinical pharmacy and an adjunct instructor of advanced clinical nursing, University of Cincinnati.Eric W. Mueller is an assistant director, clinical services and research, and a clinical pharmacy specialist, critical care, Department of Pharmacy Services, UC Health-University of Cincinnati Medical Center. He is also an adjunct associate professor of pharmacy practice and an adjunct instructor of advanced clinical nursing, University of Cincinnati
| | - Eric W Mueller
- Molly E. Droege is a clinical pharmacy specialist, trauma, surgery, orthopedics, UC Health-University of Cincinnati Medical Center, and an assistant professor of clinical pharmacy and an adjunct instructor of advanced clinical nursing University of Cincinnati, Cincinnati, Ohio.Suzanne L. Van Fleet is a clinical pharmacy specialist, critical care, UC Health-West Chester Hospital, West Chester, Ohio, and an assistant professor of clinical pharmacy and an adjunct instructor of advanced clinical nursing, University of Cincinnati.Eric W. Mueller is an assistant director, clinical services and research, and a clinical pharmacy specialist, critical care, Department of Pharmacy Services, UC Health-University of Cincinnati Medical Center. He is also an adjunct associate professor of pharmacy practice and an adjunct instructor of advanced clinical nursing, University of Cincinnati.
| |
Collapse
|
27
|
Differences in suppression of regrowth and resistance despite similar initial bacterial killing for meropenem and piperacillin/tazobactam against Pseudomonas aeruginosa and Escherichia coli. Diagn Microbiol Infect Dis 2018; 91:69-76. [PMID: 29395712 DOI: 10.1016/j.diagmicrobio.2017.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/21/2017] [Accepted: 12/23/2017] [Indexed: 12/29/2022]
Abstract
We described bacterial killing and resistance emergence at various fixed concentrations of meropenem and piperacillin/tazobactam against Pseudomonas aeruginosa and Escherichia coli. Time-kill studies were conducted utilizing nine isolates and a large range of concentrations. Within each strain and antibiotic, initial killing was similar, with concentrations ≥2×MIC. At many (strain-specific) concentrations causing substantial initial killing, regrowth occurred at 24-48h. For remaining concentrations, growth typically remained suppressed (<5-log10 cfu/mL). The concentrations of meropenem required to suppress regrowth ranged from 2-8×MIC for P. aeruginosa and 2-64×MIC for E. coli. For piperacillin/tazobactam, the equivalent concentrations ranged from 8-16×MIC for P. aeruginosa and 4-16×MIC for E. coli. The number of less-susceptible bacteria increased with rising concentrations before decreasing at even higher concentrations. Suppression of regrowth and resistance was substantially improved with higher concentrations (typically ≥8×MIC), suggesting a benefit of higher β-lactam concentrations beyond those required for maximum initial killing.
Collapse
|
28
|
In Vivo Pharmacodynamic Target Assessment of Eravacycline against Escherichia coli in a Murine Thigh Infection Model. Antimicrob Agents Chemother 2017; 61:AAC.00250-17. [PMID: 28416552 DOI: 10.1128/aac.00250-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/11/2017] [Indexed: 01/16/2023] Open
Abstract
Eravacycline is a novel fluorocycline antibiotic with potent activity against a broad range of pathogens, including strains with tetracycline and other drug resistance phenotypes. The goal of the studies was to determine which pharmacokinetic/pharmacodynamic (PK/PD) parameter and magnitude best correlated with efficacy in the murine thigh infection model. Six Escherichia coli isolates were utilized for the studies. MICs were determined using CLSI methods and ranged from 0.125 to 0.25 mg/liter. A neutropenic murine thigh infection model was utilized for all treatment studies. Single-dose plasma pharmacokinetics were determined in mice after administration of 2.5, 5, 10, 20, 40, and 80 mg/kg of body weight. Pharmacokinetic studies exhibited maximum plasma concentration (Cmax) values of 0.34 to 2.58 mg/liter, area under the concentration-time curve (AUC) from time zero to infinity (AUC0-∞) values of 2.44 to 57.6 mg · h/liter, and elimination half-lives of 3.9 to 17.6 h. Dose fractionation studies were performed using total drug doses of 6.25 mg/kg to 100 mg/kg fractionated into 6-, 8-, 12-, or 24-h regimens. Nonlinear regression analysis demonstrated that the 24-h free drug AUC/MIC (fAUC/MIC) was the PK/PD parameter that best correlated with efficacy (R2 = 0.80). In subsequent studies, we used the neutropenic murine thigh infection model to determine if the magnitude of the AUC/MIC needed for the efficacy of eravacycline varied among pathogens. Mice were treated with 2-fold increasing doses (range, 3.125 to 50 mg/kg) of eravacycline every 12 h. The mean fAUC/MIC magnitudes associated with the net stasis and the 1-log-kill endpoints were 27.97 ± 8.29 and 32.60 ± 10.85, respectively.
Collapse
|
29
|
Continuous and Prolonged Intravenous β-Lactam Dosing: Implications for the Clinical Laboratory. Clin Microbiol Rev 2017; 29:759-72. [PMID: 27413094 DOI: 10.1128/cmr.00022-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beta-lactam antibiotics serve as a cornerstone in the management of bacterial infections because of their wide spectrum of activity and low toxicity. Since resistance rates among bacteria are continuously on the rise and the pipeline for new antibiotics does not meet this trend, an optimization of current beta-lactam treatment is needed. This review provides an overview of optimization through use of prolonged- and continuous-infusion dosing strategies compared with more traditional intermittent infusions. Included is an overview of the scientific basis for using these nontraditional prolonged- and continuous-infusion-based regimens, with a focus on major areas in which the clinical laboratory can support the clinical use of these regimens.
Collapse
|
30
|
Onufrak NJ, Forrest A, Gonzalez D. Pharmacokinetic and Pharmacodynamic Principles of Anti-infective Dosing. Clin Ther 2016; 38:1930-47. [PMID: 27449411 PMCID: PMC5039113 DOI: 10.1016/j.clinthera.2016.06.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/09/2016] [Accepted: 06/23/2016] [Indexed: 12/29/2022]
Abstract
PURPOSE An understanding of the pharmacokinetic (PK) and pharmacodynamic (PD) principles that determine response to antimicrobial therapy can provide the clinician with better-informed dosing regimens. Factors influential on antibiotic disposition and clinical outcome are presented, with a focus on the primary site of infection. Techniques to better understand antibiotic PK and optimize PD are acknowledged. METHODS PubMed (inception-April 2016) was reviewed for relevant publications assessing antimicrobial exposures within different anatomic locations and clinical outcomes for various infection sites. FINDINGS A limited literature base indicates variable penetration of antibiotics to different target sites of infection, with drug solubility and extent of protein binding providing significant PK influences in addition to the major clearing pathway of the agent. PD indices derived from in vitro studies and animal models determine the optimal magnitude and frequency of dosing regimens for patients. PK/PD modeling and simulation has been shown an efficient means of assessing these PD endpoints against a variety of PK determinants, clarifying the unique effects of infection site and patient characteristics to inform the adequacy of a given antibiotic regimen. IMPLICATIONS Appreciation of the PK properties of an antibiotic and its PD measure of efficacy can maximize the utility of these life-saving drugs. Unfortunately, clinical data remain limited for a number of infection site-antibiotic exposure relationships. Modeling and simulation can bridge preclinical and patient data for the prescription of optimal antibiotic dosing regimens, consistent with the tenets of personalized medicine.
Collapse
Affiliation(s)
- Nikolas J Onufrak
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alan Forrest
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
31
|
Ebert SC, Craig WA. Pharmacodynamic Properties of Antibiotics: Application to Drug Monitoring and Dosage Regimen Design. Infect Control Hosp Epidemiol 2016. [DOI: 10.2307/30145492] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The goal of antimicrobial chemotherapy is to effectively eradicate pathogenic organisms while minimizing the likelihood of drug-related adverse effects. In this era of cost containment, consideration should also be given to performing this task with the smallest total dose of drug and the shortest duration of therapy. Determination of the appropriate dose and dosing interval of an antimicrobial requires knowledge and integration of both its pharmacokinetic and pharmacodynamic properties.
Collapse
|
32
|
|
33
|
Berkhout J, Melchers MJ, van Mil AC, Seyedmousavi S, Lagarde CM, Schuck VJ, Nichols WW, Mouton JW. Pharmacodynamics of Ceftazidime and Avibactam in Neutropenic Mice with Thigh or Lung Infection. Antimicrob Agents Chemother 2016; 60:368-75. [PMID: 26525790 PMCID: PMC4704241 DOI: 10.1128/aac.01269-15] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/22/2015] [Indexed: 11/20/2022] Open
Abstract
Avibactam is a new non-β-lactam β-lactamase inhibitor that shows promising restoration of ceftazidime activity against microorganisms producing Ambler class A extended-spectrum β-lactamases (ESBLs) and carbapenemases such as KPCs, class C β-lactamases (AmpC), and some class D enzymes. To determine optimal dosing combinations of ceftazidime-avibactam for treating infections with ceftazidime-resistant Pseudomonas aeruginosa, pharmacodynamic responses were explored in murine neutropenic thigh and lung infection models. Exposure-response relationships for ceftazidime monotherapy were determined first. Subsequently, the efficacy of adding avibactam every 2 h (q2h) or q8h to a fixed q2h dose of ceftazidime was determined in lung infection for two strains. Dosing avibactam q2h was significantly more efficacious, reducing the avibactam daily dose for static effect by factors of 2.7 and 10.1, whereas the mean percentage of the dosing interval that free drug concentrations remain above the threshold concentration of 1 mg/liter (%fT>C(T) 1 mg/liter) yielding bacteriostasis was similar for both regimens, with mean values of 21.6 (q2h) and 18.5 (q8h). Dose fractionation studies of avibactam in both the thigh and lung models indicated that the effect of avibactam correlated well with %fT>C(T) 1 mg/liter. This parameter of avibactam was further explored for four P. aeruginosa strains in the lung model and six in the thigh model. Parameter estimates of %fT>C(T) 1 mg/liter for avibactam ranged from 0 to 21.4% in the lung model and from 14.1 to 62.5% in the thigh model to achieve stasis. In conclusion, addition of avibactam enhanced the effect of ceftazidime, which was more pronounced at frequent dosing and well related with %fT>C(T) 1 mg/liter. The thigh model appeared more stringent, with higher values, ranging up to 62.5% fT>C(T) 1 mg/liter, required for a static effect.
Collapse
Affiliation(s)
- Johanna Berkhout
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Maria J Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anita C van Mil
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | | | - Claudia M Lagarde
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Virna J Schuck
- AstraZeneca Pharmaceuticals, Waltham, Massachusetts, USA
| | | | - Johan W Mouton
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Qiu Z, Cao C, Qu Y, Lu Y, Sun M, Zhang Y, Zhong J, Zeng Z. In vivo
activity of cefquinome against Riemerella anatipestifer
using the pericarditis model in the duck. J Vet Pharmacol Ther 2015; 39:299-304. [DOI: 10.1111/jvp.12271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/19/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Z. Qiu
- College of Veterinary Medicine; National Reference Laboratory of Veterinary Drug Residues (SCAU); South China Agricultural University; Guangzhou China
| | - C. Cao
- College of Veterinary Medicine; National Reference Laboratory of Veterinary Drug Residues (SCAU); South China Agricultural University; Guangzhou China
| | - Y. Qu
- College of Veterinary Medicine; National Reference Laboratory of Veterinary Drug Residues (SCAU); South China Agricultural University; Guangzhou China
| | - Y. Lu
- College of Veterinary Medicine; National Reference Laboratory of Veterinary Drug Residues (SCAU); South China Agricultural University; Guangzhou China
| | - M. Sun
- College of Veterinary Medicine; National Reference Laboratory of Veterinary Drug Residues (SCAU); South China Agricultural University; Guangzhou China
| | - Y. Zhang
- College of Veterinary Medicine; National Reference Laboratory of Veterinary Drug Residues (SCAU); South China Agricultural University; Guangzhou China
| | - J. Zhong
- College of Veterinary Medicine; National Reference Laboratory of Veterinary Drug Residues (SCAU); South China Agricultural University; Guangzhou China
| | - Z. Zeng
- College of Veterinary Medicine; National Reference Laboratory of Veterinary Drug Residues (SCAU); South China Agricultural University; Guangzhou China
| |
Collapse
|
35
|
Cefotaxime and Amoxicillin-Clavulanate Synergism against Extended-Spectrum-β-Lactamase-Producing Escherichia coli in a Murine Model of Urinary Tract Infection. Antimicrob Agents Chemother 2015; 60:424-30. [PMID: 26525800 DOI: 10.1128/aac.02018-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/25/2015] [Indexed: 11/20/2022] Open
Abstract
We investigated the efficacies of cefotaxime (CTX) and amoxicillin (AMX)-clavulanate (CLA) (AMC) against extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli in vitro and in a murine model of urinary tract infection (UTI). MICs, the checkerboard dilution method, and time-kill curves were used to explore the in vitro synergism between cefotaxime and amoxicillin-clavulanate against two isogenic E. coli strains-CFT073-RR and its transconjugant, CFT073-RR Tc bla(CTX-M-15)-harboring a bla(CTX-M-15) plasmid and a bla(OXA-1) plasmid. For in vivo experiments, mice were separately infected with each strain and treated with cefotaxime, amoxicillin, and clavulanate, alone or in combination, or imipenem, using therapeutic regimens reproducing time of free-drug concentrations above the MIC (fT≥MIC) values close to that obtained in humans. MICs of amoxicillin, cefotaxime, and imipenem were 4/>1,024, 0.125/1,024, and 0.5/0.5 mg/liter, for CFT073-RR and CFT073-RR Tc bla(CTX-M-15), respectively. The addition of 2 mg/liter of clavulanate (CLA) restored the susceptibility of CFT073-RR Tc bla(CTX-M-15) to CTX (MICs of the CTX-CLA combination, 0.125 mg/liter). The checkerboard dilution method and time-kill curves confirmed an in vitro synergy between amoxicillin-clavulanate and cefotaxime against CFT073-RR Tc bla(CTX-M-15). In vivo, this antibiotic combination was similarly active against both strains and as effective as imipenem. In conclusion, the cefotaxime and amoxicillin-clavulanate combination appear to be an effective, easy, and already available alternative to carbapenems for the treatment of UTI due to CTX-M-producing E. coli strains.
Collapse
|
36
|
Regional Intraosseous Administration of Prophylactic Antibiotics is More Effective Than Systemic Administration in a Mouse Model of TKA. Clin Orthop Relat Res 2015; 473. [PMID: 26224291 PMCID: PMC4586203 DOI: 10.1007/s11999-015-4464-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND In human TKA studies, intraosseous regional administration (IORA) of prophylactic antibiotics achieves local tissue antibiotic concentrations 10 times greater than systemic administration. However, it is unclear if such high concentrations provide more effective prophylaxis. QUESTIONS/PURPOSES We asked: (1) What prophylaxis dosage and route (intravenous [IV] versus IORA of prophylactic antibiotics) produce less in vivo bacterial burden compared with no-antibiotic controls? (2) Compared with controls, what prophylaxis dosage and route yield fewer colony-forming units (CFUs) in euthanized animals in a model of TKA? (3) Is prophylactic IORA of antibiotics more effective than same-dose IV antibiotic administration in reducing CFUs? METHODS Mice (six to nine per group) were block randomized to one of six prophylaxis regimens: control, systemic cefazolin (C100IV), IORA of cefazolin (C100IORA), systemic vancomycin (V110IV), low-dose systemic vancomycin (V25IV), and low-dose IORA of vancomycin (V25IORA). Surgery involved placement of an intraarticular knee prosthesis, followed by an inoculum of bioluminescent Staphylococcus aureus strain Xen36. Biophotonic imaging assessed in vivo bacterial loads, and after 4 days bacterial load was quantified using culture-based techniques. Comparisons were made for each prophylactic regimen to controls and between same-dose IV and IORA of prophylactic antibiotic regimens. RESULTS Mice treated with systemic high-dose vancomycin, IORA of vancomycin, or IORA of cefazolin had lower in vivo Staphylococcus aureus burdens (median area under curve, Control: 5.0 × 10(6); V110IV: 1.5 × 10(6), difference of medians 3.5 × 10(6), p = 0.003; V25IV: 1.94 × 10(6), difference 3.07 × 10(6), p = 0.49; V25IORA: 1.51 × 10(6), difference 3.5 × 10(6), p = 0.0011; C100IORA: 1.55 × 10(6), difference 3.46 × 10(6), p = 0.0016; C100IV: 2.35 × 10(6), difference 2.66 × 10(6), p = 0.23.) Similar findings were seen with culture-based techniques on recovered implants. IORA of prophylactic antibiotics was more effective than same-dose IV administration in reducing bacterial load on recovered implants (median CFUs < 7.0 × 10(0) vs 2.83 × 10(2), p = 0.0183). CONCLUSIONS IORA of prophylactic cefazolin and vancomycin was more effective than the same dose of antibiotic given systemically. The effectiveness of vancomycin in particular was enhanced by IORA of prophylactic antibiotics despite using a lower dose. CLINICAL RELEVANCE Our study supports previous studies of IORA of prophylactic antibiotics in humans and suggests this novel form of administration has the potential to enhance the effectiveness of prophylaxis in TKA. Because of concerns regarding antibiotic stewardship, IORA of prophylactic vancomycin may be more appropriately restricted to patients having TKA who are at greater risk of infection, and clinical trials are in progress.
Collapse
|
37
|
Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases. Sci Rep 2015; 5:11827. [PMID: 26168713 PMCID: PMC4501059 DOI: 10.1038/srep11827] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
With the diminishing effectiveness of current antibacterial therapies, it is critically important to discover agents that operate by a mechanism that circumvents existing resistance. ETX0914, the first of a new class of antibacterial agent targeted for the treatment of gonorrhea, operates by a novel mode-of-inhibition against bacterial type II topoisomerases. Incorporating an oxazolidinone on the scaffold mitigated toxicological issues often seen with topoisomerase inhibitors. Organisms resistant to other topoisomerase inhibitors were not cross-resistant with ETX0914 nor were spontaneous resistant mutants to ETX0914 cross-resistant with other topoisomerase inhibitor classes, including the widely used fluoroquinolone class. Preclinical evaluation of ETX0914 pharmacokinetics and pharmacodynamics showed distribution into vascular tissues and efficacy in a murine Staphylococcus aureus infection model that served as a surrogate for predicting efficacious exposures for the treatment of Neisseria gonorrhoeae infections. A wide safety margin to the efficacious exposure in toxicological evaluations supported progression to Phase 1. Dosing ETX0914 in human volunteers showed sufficient exposure and minimal adverse effects to expect a highly efficacious anti-gonorrhea therapy.
Collapse
|
38
|
Soubirou JF, Rossi B, Couffignal C, Ruppé E, Chau F, Massias L, Lepeule R, Mentre F, Fantin B. Activity of temocillin in a murine model of urinary tract infection due toEscherichia coliproducing or not producing the ESBL CTX-M-15. J Antimicrob Chemother 2015; 70:1466-72. [DOI: 10.1093/jac/dku542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022] Open
|
39
|
Cars O, Craig WA. Pharmacodynamics of Antibiotics-Consequences for Dosing: Proceedings of a Symposium Held in Stockholm, June 7–9, 1990. ACTA ACUST UNITED AC 2015. [DOI: 10.3109/inf.1990.22.suppl-74.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Impact of MIC range for Pseudomonas aeruginosa and Streptococcus pneumoniae on the ceftolozane in vivo pharmacokinetic/pharmacodynamic target. Antimicrob Agents Chemother 2014; 58:6311-4. [PMID: 25092700 DOI: 10.1128/aac.03572-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ceftolozane is a novel cephalosporin with activity against drug-resistant pathogens, including Pseudomonas aeruginosa and Streptococcus pneumoniae. The in vivo investigation reported here tested the limits of this drug against 20 P. aeruginosa and S. pneumoniae isolates across a wide MIC range and defined resistance mechanisms. The times above the MIC (T>MIC) targets for stasis and 1- and 2-log reductions were 31%, 39%, and 42% for P. aeruginosa and 18%, 24%, and 27% for S. pneumoniae, respectively. The 1-log endpoint was achieved for strains with MICs as high as 16 μg/ml.
Collapse
|
41
|
In vivo activity of cefquinome against Escherichia coli in the thighs of neutropenic mice. Antimicrob Agents Chemother 2014; 58:5943-6. [PMID: 25070101 DOI: 10.1128/aac.03446-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cefquinome is a cephalosporin with broad-spectrum antibacterial activity, including activity against enteric Gram-negative bacilli such as Escherichia coli. We utilized a neutropenic mouse model of colibacillosis to examine the pharmacodynamic (PD) characteristics of cefquinome, as measured by organism number in homogenized thigh cultures after 24 h of therapy. Serum drug levels following 4-fold-escalating single doses of cefquinome were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The pharmacokinetic (PK) properties of cefquinome were linear over a dose range of 10 to 640 mg/kg of body weight. Serum half-lives ranged from 0.29 to 0.32 h. Dose fractionation studies over a 24-h dose range of 2.5 to 320 mg/kg were conducted every 3, 6, 12, or 24 h. Nonlinear regression analysis was used to determine which pharmacodynamic parameter best correlated with efficacy. The free percentage of the dosing interval that the serum levels exceed the MIC (fT>MIC) was the PK-PD index that best correlated with efficacy (R(2) = 73% for E. coli, compared with 13% for the maximum concentration of the free drug in serum [fCmax]/MIC and 45% for the free-drug area under the concentration-time curve from 0 to 24 h [fAUC0-24]/MIC). Subsequently, we employed a similar dosing strategy by using 4-fold-increasing total cefquinome doses administered every 4 h to treat animals infected with four additional E. coli isolates. A sigmoid maximum-effect (Emax) model was used to estimate the magnitudes of the %fT>MIC associated with net bacterial stasis, a 1-log10 CFU reduction from baseline, and a 2-log10 CFU reduction from baseline; the corresponding values were 28.01% ± 2.27%, 37.23% ± 4.05%, and 51.69% ± 9.72%. The potent bactericidal activity makes cefquinome an attractive option for the treatment of infections caused by E. coli.
Collapse
|
42
|
Cohen-Wolkowiez M, Watt KM, Zhou C, Bloom BT, Poindexter B, Castro L, Gao J, Capparelli EV, Benjamin DK, Smith PB. Developmental pharmacokinetics of piperacillin and tazobactam using plasma and dried blood spots from infants. Antimicrob Agents Chemother 2014; 58:2856-65. [PMID: 24614369 PMCID: PMC3993246 DOI: 10.1128/aac.02139-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/01/2014] [Indexed: 02/07/2023] Open
Abstract
Piperacillin-tazobactam is often given to infants with severe infection in spite of limited pharmacokinetics (PK) data. We evaluated piperacillin-tazobactam PK in premature and term infants of ages <61 days with suspected systemic infection. Infants received intravenous piperacillin-tazobactam (80 to 100 mg/kg of body weight every 8 h [q 8 h]) based on gestational and postnatal age. Sparse plasma samples were obtained after first and multiple doses. Drug concentrations were measured by tandem mass spectrometry. PK data were analyzed using population nonlinear mixed-effect modeling. Target attainment rates for the time unbound piperacillin concentrations remained above the MIC for 50% and 75% of the dosing interval at steady state were evaluated. Bias in population PK parameter estimates was assessed for dried blood spot (DBS) samples, and a comparability analysis was performed for DBS and plasma drug concentrations using linear regression. We obtained 128 plasma samples from 32 infants, median gestational age of 30 weeks (range, 23 to 40 weeks) and postnatal age of 8 days (range, 1 to 60). Piperacillin and tazobactam PK models included body weight (WT) and postmenstrual age (PMA) as covariates for clearance and WT for volume of distribution and were used to optimize dosing in infants. DBS drug concentrations were 50 to 60% lower than those in plasma, but when combined with plasma concentrations and a matrix effect, the data generated PK model parameters similar to those for plasma alone. With PMA-based dosing (100 mg/kg q 8 h, 80 mg/kg q 6 h, and 80 mg/kg q 4 h for PMA of ≤30, 30 to 35, and 35 to 49 weeks, respectively), 90% of simulated infants achieved the surrogate therapeutic target of time above the MIC (≤32 mg/liter) for 75% of the dosing interval.
Collapse
Affiliation(s)
- Michael Cohen-Wolkowiez
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Kevin M. Watt
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Chenguang Zhou
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Barry T. Bloom
- Wichita Medical Research and Education Foundation, Wichita, Kansas, USA
| | | | - Lisa Castro
- Overland Park Regional Medical Center, Overland Park, Kansas, USA
| | - Jamie Gao
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Edmund V. Capparelli
- Department of Pediatric Pharmacology, University of California, San Diego, California, USA
| | - Daniel K. Benjamin
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - P. Brian Smith
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
43
|
Goulenok T, Fantin B. Antimicrobial treatment of febrile neutropenia: pharmacokinetic-pharmacodynamic considerations. Clin Pharmacokinet 2014; 52:869-83. [PMID: 23807657 DOI: 10.1007/s40262-013-0086-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Patients with cancer or hematologic diseases are particularly at risk of infection leading to high morbidity, mortality and costs. Extensive data show that optimization of the administration of antimicrobials according to their pharmacokinetic and pharmacodynamic parameters improves clinical outcome. Evidence is growing that when pharmacokinetic and pharmacodynamic parameters are used to target not only clinical cure but also eradication, the selection resistance is also contained. This is of particular importance in patients with neutropenia in whom increasing rates of drug-resistant Gram-negative bacteria have been reported, particularly Pseudomonas aeruginosa. Based on experimental and clinical studies, pharmacokinetic and pharmacodynamic parameters are discussed in this review for each antibiotic used in febrile neutropenia in order to help physicians improve dosing and optimization of antimicrobial agents.
Collapse
Affiliation(s)
- Tiphaine Goulenok
- Internal Medicine Department, Beaujon Hospital, APHP and University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|
44
|
Pharmacodynamics of cefquinome in a neutropenic mouse thigh model of Staphylococcus aureus infection. Antimicrob Agents Chemother 2014; 58:3008-12. [PMID: 24614373 DOI: 10.1128/aac.01666-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cefquinome is a cephalosporin with broad-spectrum antibacterial activity, including activity against Staphylococcus aureus. The objective of our study was to examine the in vivo activity of cefquinome against S. aureus strains by using a neutropenic mouse thigh infection model. Cefquinome kinetics and protein binding in infected neutropenic mice were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In vivo postantibiotic effects (PAEs) were determined after a dose of 100 mg/kg of body weight in mice infected with S. aureus strain ATCC 29213. The animals were treated by subcutaneous injection of cefquinome at doses of 2.5 to 320 mg/kg of body weight per day divided into 1, 2, 3, 6, or 12 doses over 24 h. Cefquinome exhibited time-dependent killing and produced in vivo PAEs at 2.9 h. The percentage of time that serum concentrations were above the MIC (%T>MIC) was the pharmacokinetic-pharmacodynamic (PK-PD) index that best described the efficacy of cefquinome. Subsequently, we employed a similar dosing strategy by using increasing total cefquinome doses that increased 4-fold and were administered every 4 h to treat animals infected with six additional S. aureus isolates. A sigmoid maximum effect (Emax) model was used to estimate the magnitudes of the ratios of the %T that the free-drug serum concentration exceeded the MIC (%T>fMIC) associated with net bacterial stasis, a 0.5-log10 CFU reduction from baseline, and a 1-log10 CFU reduction from baseline; the respective values were 30.28 to 36.84%, 34.38 to 46.70%, and 43.50 to 54.01%. The clear PAEs and potent bactericidal activity make cefquinome an attractive option for the treatment of infections caused by S. aureus.
Collapse
|
45
|
Nielsen EI, Friberg LE. Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol Rev 2013; 65:1053-90. [PMID: 23803529 DOI: 10.1124/pr.111.005769] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pharmacokinetic-pharmacodynamic (PKPD) modeling and simulation has evolved as an important tool for rational drug development and drug use, where developed models characterize both the typical trends in the data and quantify the variability in relationships between dose, concentration, and desired effects and side effects. In parallel, rapid emergence of antibiotic-resistant bacteria imposes new challenges on modern health care. Models that can characterize bacterial growth, bacterial killing by antibiotics and immune system, and selection of resistance can provide valuable information on the interactions between antibiotics, bacteria, and host. Simulations from developed models allow for outcome predictions of untested scenarios, improved study designs, and optimized dosing regimens. Today, much quantitative information on antibiotic PKPD is thrown away by summarizing data into variables with limited possibilities for extrapolation to different dosing regimens and study populations. In vitro studies allow for flexible study designs and valuable information on time courses of antibiotic drug action. Such experiments have formed the basis for development of a variety of PKPD models that primarily differ in how antibiotic drug exposure induces amplification of resistant bacteria. The models have shown promise for efficacy predictions in patients, but few PKPD models describe time courses of antibiotic drug effects in animals and patients. We promote more extensive use of modeling and simulation to speed up development of new antibiotics and promising antibiotic drug combinations. This review summarizes the value of PKPD modeling and provides an overview of the characteristics of available PKPD models of antibiotics based on in vitro, animal, and patient data.
Collapse
Affiliation(s)
- Elisabet I Nielsen
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
46
|
In vivo activities of ceftolozane, a new cephalosporin, with and without tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae, including strains with extended-spectrum β-lactamases, in the thighs of neutropenic mice. Antimicrob Agents Chemother 2012; 57:1577-82. [PMID: 23274659 DOI: 10.1128/aac.01590-12] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceftolozane is a new cephalosporin with potent activity against Pseudomonas aeruginosa and Enterobacteriaceae. A neutropenic murine thigh infection model was used to determine which pharmacokinetic/pharmacodynamic index and magnitude drives the efficacy of ceftolozane with Gram-negative bacilli, to compare the rates of in vivo killing of P. aeruginosa by ceftolozane and ceftazidime, and to determine the impact of different ratios of ceftolozane plus tazobactam on Enterobacteriaceae containing extended-spectrum β-lactamases (ESBLs). Neutropenic mice had 10(6.2-7.1) CFU/thigh when treated with ceftolozane for 24 h with (i) various doses (3.12 to 1,600 mg/kg) and dosage intervals (3, 6, 12, and 24 h) against two Enterobacteriaceae strains, (ii) 0.39 to 800 mg/kg every 6 h for four Enterobacteriaceae and four P. aeruginosa strains, and (iii) 400 or 800 mg/kg with 2:1. 4:1, and 8:1 ratios of tazobactam against five Enterobacteriaceae strains with ESBLs. The pharmacokinetics of ceftolozane at 25, 100, and 400 mg/kg were linear with peak/dose values of 1.0 to 1.4 and half-lives of 12 to 14 min. T>MIC was the primary index driving efficacy. For stasis (1 log kill), T>MIC was 26.3% ± 2.1% (31.6% ± 1.6%) for wild-type Enterobacteriaceae, 31.1% ± 4.9% (34.8% ± 4.4%) for Enterobacteriaceae with ESBLs, and 24.0% ± 3.3% (31.5% ± 3.9%) for P. aeruginosa. At 200 mg/kg every 3 h, the rate of in vivo killing of P. aeruginosa was faster with ceftolozane than with ceftazidime (-0.34 to -0.41 log10 CFU/thigh/h versus -0.21 to -0.24 log10 CFU/thigh/h). The 2:1 ratio of ceftolozane with tazobactam was the most potent combination studied. The T>MIC required for ceftolozane is less than with other cephalosporins and may be due to more rapid killing.
Collapse
|
47
|
Owens CA, Ambrose PG, Quintiliani R, Nightingale CH, Nicolau DP. Infusion phlebitis: relative incidence associated with cefuroxime administered by intermittent and continuous infusion. Clin Drug Investig 2012; 15:531-5. [PMID: 18370511 DOI: 10.2165/00044011-199815060-00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- C A Owens
- York Prescription Benefits, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
48
|
Isla A, Trocóniz IF, de Tejada IL, Vázquez S, Canut A, López JM, Solinís MÁ, Gascón AR. Population pharmacokinetics of prophylactic cefoxitin in patients undergoing colorectal surgery. Eur J Clin Pharmacol 2012; 68:735-45. [DOI: 10.1007/s00228-011-1206-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/25/2011] [Indexed: 11/24/2022]
|
49
|
Cefoxitin as an alternative to carbapenems in a murine model of urinary tract infection due to Escherichia coli harboring CTX-M-15-type extended-spectrum β-lactamase. Antimicrob Agents Chemother 2012; 56:1376-81. [PMID: 22214774 DOI: 10.1128/aac.06233-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We investigated the efficiency of the cephamycin cefoxitin as an alternative to carbapenems for the treatment of urinary tract infections (UTIs) due to Escherichia coli producing CTX-M-type extended-spectrum β-lactamases. The susceptible, UTI-inducing E. coli CFT073-RR strain and its transconjugant CFT073-RR Tc (pbla(CTX-M-15)), harboring a bla(CTX-M-15) carrying-plasmid, were used for all experiments. MICs of cefoxitin (FOX), ceftriaxone (CRO), imipenem (IMP), and ertapenem (ETP) for CFT073-RR and CFT073-RR Tc (pbla(CTX-M-15)) were 4 and 4, 0.125 and 512, 0.5 and 0.5, and 0.016 and 0.032 μg/ml, respectively. Bactericidal activity was similarly achieved in vitro against the two strains after 3 h of exposure to concentrations of FOX, IMI, and ETP that were 2 times the MIC, whereas CRO was not bactericidal against CFT073-RR Tc (pbla(CTX-M-15)). The frequencies of spontaneous mutants of the 2 strains were not higher for FOX than for IMP or ETP. In the murine model of UTIs, mice infected for 5 days were treated over 24 h. Therapeutic regimens in mice (200 mg/kg of body weight every 3 h or 4 h for FOX, 70 mg/kg every 6 h for CRO, 100 mg/kg every 2 h for IMP, and 100 mg/kg every 4 h for ETP) were chosen in order to reproduce the percentage of time that free-drug concentrations above the MIC are obtained in humans with standard regimens. All antibiotic regimens produced a significant reduction in bacterial counts (greater than 2 log(10) CFU) in kidneys and bladders for both strains (P < 0.001) without selecting resistant mutants in vivo, but the reduction obtained with CRO against CFT073-RR Tc (pbla(CTX-M-15)) in kidneys was significantly lower than that obtained with FOX. In conclusion, FOX appears to be an effective therapeutic alternative to carbapenems for the treatment of UTIs due to CTX-M-producing E. coli.
Collapse
|
50
|
Butterfield J, Lodise TP, Pai MP. Applications of Pharmacokinetic and Pharmacodynamic Principles to Optimize Drug Dosage Selection. Ther Drug Monit 2012. [DOI: 10.1016/b978-0-12-385467-4.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|